
RL-LABEL: A Deep Reinforcement Learning Approach Intended for
AR Label Placement in Dynamic Scenarios

Zhutian Chen1, Daniele Chiappalupi1,2, Tica Lin1, Yalong Yang3, Johanna Beyer1, Hanspeter Pfister1

2m/s

5m/sa
Force-based Ours RL-based

Moment T Moment T+1 Moment T+2 Moment T+1 Moment T+2
2m/s

5m/s

2m/s

5m/s

2m/s

5m/s

2m/s

5m/sb c d e

Fig. 1: RL-LABEL adapts label placement considering players’ current motion status (e.g., speed, direction) and long-term outcomes.
(a) Both players move left, with the rear player moving faster. A label is attached to the front player. (b)-(c) Using a force-based
method, the label shifts left to avoid immediate occlusion but results in future occlusion. (d)-(e) With our method, the label moves
right, sacrificing some immediate occlusion-free space for preventing future occlusion.

Abstract—Labels are widely used in augmented reality (AR) to display digital information. Ensuring the readability of AR labels
requires placing them occlusion-free manner while keeping visual linkings legible, especially when multiple labels exist in the scene.
Although existing optimization-based methods, such as force-based methods, are effective in managing AR labels in static scenarios,
they often struggle in dynamic scenarios with constantly moving objects. This is due to their focus on generating layouts optimal for
the current moment, neglecting future moments and leading to sub-optimal or unstable layouts over time. In this work, we present
RL-LABEL, a deep reinforcement learning-based method intended for managing the placement of AR labels in scenarios involving
moving objects. RL-LABEL considers both the current and predicted future states of objects and labels, such as positions and velocities,
as well as the user’s viewpoint, to make informed decisions about label placement. It balances the trade-offs between immediate and
long-term objectives. We tested RL-LABEL in simulated AR scenarios on two real-world datasets, showing that it effectively learns
the decision-making process for long-term optimization, outperforming two baselines (i.e., no view management and a force-based
method) by minimizing label occlusions, line intersections, and label movement distance. Additionally, a user study involving 18
participants indicates that, within our simulated environment, RL-LABEL excels over the baselines in aiding users to identify, compare,
and summarize data on labels in dynamic scenes.

Index Terms—Augmented Reality, Reinforcement Learning, Label Placement, Dynamic Scenarios

1 INTRODUCTION

Many augmented reality (AR) applications (e.g., sports analytics [26],
mechanical maintenance [32], and education [49]) use labels to display
digital information. A label is a small virtual canvas connected to phys-
ical objects via leader lines. Determining label layouts is essential to
help users perceive the visual information. Thus, extensive research has
explored automatic generation of AR label layouts, with most methods
treating it as an optimization problem [3]. These view management
systems aim to maximize objectives such as preventing label-object
overlaps, avoiding leader line intersections, and minimizing distances
between labels and their physical referents [3]. Though these methods
work well for static scenarios, they often fall short in dynamic scenarios

• 1 Harvard John A. Paulson School of Engineering and Applied Sciences
• 2 ETH Zurich, Zurich
• 3 Virginia Tech

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

where physical objects, like athletes in sports games, are constantly
moving. This presents a clear need for improved AR label management
systems that can adapt to changing object positions.

Managing label layouts for dynamic objects in AR presents unique
challenges. Labels need to adapt their positions continually and sta-
bly to moving objects while avoiding occlusion and line intersections.
Thus, view management systems should generate layouts that are opti-
mal not only for the current moment but also capable of transitioning
smoothly to future layouts. However, existing methods primarily focus
on optimizing layouts for the present, often neglecting future scenarios.
This leads to sub-optimal or unstable layouts over time. For instance,
one most widely-used method for label management is the force-based
algorithm [3], which models objectives as forces (e.g., occlusion-free
placement is modeled as repulsive forces between labels and objects).
Consider a scenario where both players in Fig. 1a are moving to the
left, with the rear player moving faster and a label attached to the front
player. A force-based method would push the label to the left to avoid
occluding the rear player (Fig. 1b). However, this would result in future
occlusion since the rear player also moves to the left (Fig. 1c).

We approach the AR labels placement problem for moving objects
from a new angle: the view management system should generate label

layouts based on both current and predicted future states. Inspired
by other applications in dynamic real-world environments (e.g., self-
driving cars, robotics control), we achieve this goal by employing a rein-
forcement learning (RL) method. Specifically, we propose RL-LABEL,
an RL-based view management system for scenes with multiple moving
objects, each with an attached label. To the best of our knowledge,
we are the first to explore using RL to manage AR labels for moving
objects. RL-LABEL observes object and label states, such as positions
and velocities, and the user’s viewpoint, to make informed decisions
about label placement that balance the trade-offs between immediate
and long-term objectives. For instance, RL-LABEL moves the label to
the right, while temporarily causing occlusion of the players (Fig. 1d),
to prevent future occlusion (Fig. 1e).

To ensure reproducibility, we tested RL-LABEL within simulated
AR environments based on Virtual Reality and two real-world trajec-
tory datasets (one for NBA players and the other for students on a
campus). Computational experiments demonstrate that RL-LABEL can
effectively learn the decision process to achieve a long-run optimiza-
tion, outperforming two baselines (i.e., no view management and a
force-based method) by reducing occlusions, line intersections, and
movement distance of the labels. Furthermore, we conducted a formal
user study with 18 participants in the same simulated environments to
compare RL-LABEL with the two baselines in assisting users in three
visual search tasks, i.e., identify, compare, and summarize data on AR
labels. Overall, within the simulated environments, users performed
these tasks faster, more accurately, and with a lower mental load when
using RL-LABEL than the baselines.

In summary, our contributions are threefold: First, we formulate the
label placement in dynamic scenes as a sequential decision (instead
of an optimization) problem with the goal to maximize cumulative
rewards; Second, we design and develop RL-LABEL, an RL-based
method to solve this problem; Third, we evaluate RL-LABEL with both
computational experiments and user studies, showing that it outper-
forms force-based methods in both quantitative and qualitative aspects.

2 RELATED WORK

Labels in Augmented Reality. Labels have long been used to anno-
tate objects in illustrations [3]. Since the early ’80s, automated view
management systems for label placement have emerged in computer
graphics research [1], varying by label type (internal or external) and
environment (desktop or AR). This work concentrates on placing exter-
nal labels in AR environments.

Fig. 2: Left: 2D labels are placed and managed in the image space.
Right: 3D labels are placed and managed in the world space, and
subsequently projected onto the image plane.

Early view management systems for AR environments mainly place
labels in 2D screen space (Fig. 2 Left), unaffected by 3D transfor-
mations. Representative examples include Azuma and Furmanski’s
identification of label clusters in screen space [2], visual saliency driven
label placement [14, 17, 38], and Tatzgern et al.’s implementation of
adaptive clustering based on information density to reduce visual clut-
ter [48]. Yet, 2D labels faced the “floating labels” issue [47], where
frequently changing user viewpoints led to unpredictable label positions
due to changing projected 3D points during camera movements.

Unlike 2D labels, 3D labels (Fig. 2 Right) offer greater stability
in AR when users change viewpoints. Tatzgern et al. [47] proposed
Hedgehog labeling, a representative example of 3D labels. They use
3D geometric constraints to generate label placements that fulfill the

desired objectives (e.g., occlusion-free) and are stable over time, even
when the viewpoint changes. Madsen et al. [30] later compared this
method to 2D labels in an empirical study. Findings revealed that
3D labels with a limited update rate outperform 2D and continuously
updated 3D labels. More recently, Koppel et al. [22] contributed a
system for 3D AR labels that manages label visibility and level of detail,
considering both the labels in front of and out of the view. Gebhardt et
al. [13] utilized RL to control the visibility (i.e., show or hide) of an
object’s label based on the user’s gaze data. Lin et al. [27] studied the
design space of 2D and 3D AR labels for out-of-view objects.

While existing methods have proven useful and effective in various
AR scenarios, they primarily focus on static objects with fixed positions.
However, in real-world environments, objects often move dynamically
(e.g., basketball players, vehicles, conveyor belt sushi). This presents
additional challenges for label placement, which should consider both
the current and predicted future states of the objects. We aim to develop
a view management system that observes dynamic moving objects and
adapts 3D labels in real-time.

Adaptive User Interfaces in Augmented Reality. A label is a type of
user interface (UI) that displays visual content in a small canvas [3]. Un-
like traditional desktop UIs, many design decisions of AR UIs, such as
display location and manner, cannot be predetermined and must adapt
to the user’s context in real-time [15]. Extensive research has focused
on making AR UIs adaptive by leveraging geometry information from
the environments. For example, AR UIs can be aligned with edges [34],
placed on surfaces [12], and interacted with 3D meshes [10, 11] ex-
tracted from the physical environments.

In addition to basic geometry information, recent AR UIs have lever-
aged semantic information of the scene to enhance the user experience.
For instance, Tahara et al. [45] employ a scene graph to define the spa-
tial relationships between virtual and physical objects, automatically
adjusting the virtual content when the user moves to other environments.
AdapTutAR [18], an AR task tutoring system, adjusts the teaching con-
tent adaptively based on the user’s characteristics. SemanticAdapt [7]
uses computer vision techniques to detect the category of real objects
and associates them with AR content. Lindlbauer et al. [28] control
the placement and level of detail of virtual content by considering both
the indoor environment and the cognitive load of the user’s performing
task. ScalAR [37] enables designers to author semantically adaptive
AR experiences in VR. However, all these works focus on static scenar-
ios where the physical objects are placed in fixed positions. In contrast,
we target dynamic scenarios where objects are moving.

AR Labeling as a Partially Observable Decision Problem. Funda-
mentally, managing labels for moving objects in AR involves dealing
with a partially observable decision problem [19]. In a partially ob-
servable environment, the entire state is partially visible to external
sensors. For instance, an object’s destination and planned route are
known only to the object itself. This distinguishes AR from other 3D
environments, where the system state is fully visible. Recently, deep RL
has demonstrated promising performance in addressing partially observ-
able problems in applications such as self-driving cars [21], robotics
control [29], and video games [42]. Inspired by these applications, this
work explores using deep RL to manage labels for moving objects.

Reinforcement Learning for Data Visualizations. An RL model
observes an environment and learns to take actions that maximize cu-
mulative rewards. Unlike supervised learning, which relies on historical
data, RL models learn from interactive experiences with the environ-
ments (e.g., play GO), making RL suitable for dynamic scenarios with
large solution spaces or requiring long-term optimization.

Only a few studies have explored RL methods for solving visual-
ization problems. For instance, PlotThread [46] uses RL to create
user-preferred storyline layouts. MobileVisFixer [51] employs RL
methods to adapt visualizations for different mobile devices by adjust-
ing parameters like size, offset, and margin. Table2Chart [53] uses deep
Q-learning to recommend chart templates based on input data tables.
In summary, most existing works focus on static 2D environments. We
aim to apply RL-based methods to manage label layouts in dynamic
3D environments, an underexplored area with unique challenges.

3 PROBLEM FORMULATION

This work, similar to Yao et al. [52], focuses on scenarios where the
viewer is stationary but can rotate their viewpoint horizontally or ver-
tically to observe multiple moving objects, such as watching sports
in a stadium or monitoring environments using surveillance cameras.
We constrain that each object is annotated by a single label and leave
multiple-label or moving viewpoint scenarios for future research.

𝑠!
",$ = {𝒑 }

$\mathbf{s}^{i,t}_{\mathbf{o}} = \{\mathbf{p}^{i,
t}_\mathbf{o}, \mathbf{v}^{i, t}_\mathbf{o}\}$

𝐨! = {𝐩𝐨! , 𝐯𝐨! , 𝐧𝐨! }

𝐥! = {𝐩𝐥
! , 𝐯𝐥

! , 𝐧𝐥
! , 𝐩𝐨! }

𝐩𝐨
",$ = {𝑥",$, 𝑦",$, 𝑧",$}

𝐯𝐨
",$ = {𝑣𝒙

",$, 𝑣𝒚
",$, 𝑣𝒛

",$}

position velocity normal

position velocitystate of object 𝑖

state of label 𝑖 position of object 𝑖 𝐜 = 𝐌$%&

normal

Fig. 3: We consider scenarios where a stationary viewer observes
multiple moving objects, each with a corresponding label.

At each time step, the view management process involves three compo-
nents (Fig. 3):

• Object: An object o𝑖 can be approximated as a cube shape rigid
body in the 3D world space R3

𝑤𝑙𝑑
. The object o𝑖 attempts to

move to a goal position following a planned route and a preferred
velocity. For a view management system, the observable state
of the object can be represented as o𝑖 = {p𝑖o,v𝑖o,n𝑖o}, where p𝑖o =

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), v𝑖o = (𝑣𝑖𝑥 , 𝑣𝑖𝑦 , 𝑣𝑖𝑧), and n𝑖o = (𝑛𝑖𝑥 , 𝑛𝑖𝑦 , 𝑛𝑖𝑧) are its position,
velocity, and normal, respectively. The observable state of all the
objects is thus o = {o𝑖}𝑛

𝑖=1, where 𝑛 is the number of objects.

• Label: A label l𝑖 is a rectangle shape canvas in the 3D world space
R3
𝑤𝑙𝑑

, linking to its target object o𝑖 through a leader line. The
observable state of the label can be defined as l𝑖 = {p𝑖l ,v

𝑖
l ,n

𝑖
l ,p

𝑖
o},

where p𝑖l , v𝑖l , and n𝑖l are its position, velocity, and normal, re-
spectively; p𝑖o represents the other endpoint of the leader line. In
practice, the label usually keeps its normal n𝑖l pointing to the cam-
era to maximize its readability. Similarly, the state of all labels is
represented by l = {l𝑖}𝑛

𝑖=1, where 𝑛 is the number of labels, which
equals the number of objects.

• Viewpoint: A viewpoint is determined by the camera c and
specifies the observer’s position in relation to the objects and
labels being watched. Thus, the state of the viewpoint c can be
represented as the projection matrix M𝑐𝑎𝑚.

For a label l𝑖 , a view management system should generate an action
a𝑖 to update its position based on its current state l𝑖 , the states of
its target object o𝑖 , other labels l \ {l𝑖}, other objects o \ {o𝑖}, and the
viewpoint c. We simplify these states as s𝑖 = {l𝑖 , o𝑖 , l\{l𝑖}, o\{o𝑖}, c}
and regard this process as a mapping function:

π(s𝑖) ↦→ a𝑖 (1)

This mapping process is applied on each label at each timestamp.
Typically, a view management system should output actions to op-

timize the objectives. We can define a reward function 𝑟 (s𝑖 ,a𝑖) to
evaluate how good the action a𝑖 achieves the objectives given the input
s𝑖 . A good view management system for dynamic scenarios should
maximize the reward in the long run. This can be formulated in an RL
framework [44]:

argmax
π

{𝑟 (s𝑖 ,a𝑖) +𝛾𝑉∗ (s𝑖 ,a𝑖) |π(s𝑖) ↦→ a𝑖} (2)

where 𝛾 is a discount factor, 𝑉∗ is the optimal value function that es-
timates the optimal cumulative rewards to the future after performing

action a𝑖 under state s𝑖 . Simply put, Equation 2 describes that the opti-
mal view management system π should generate actions to maximize
not only the reward 𝑟 (s𝑖 ,a𝑖) for the current state but also the future
cumulative rewards 𝛾𝑉∗ (s𝑖 ,a𝑖).

Similar to previous works [5, 6], we aim to solve Eq. 2 using deep
RL. Specifically, we train a neural network to approximate an optimal
mapping function π. To assist in the training, we also train a neural
network to approximate the optimal value function 𝑉∗.
The difference between RL- and optimization-based methods.
Most of the existing systems for static objects formulate the view
management problem as an optimization problem that aims to opti-
mize the reward for the current state [3] (i.e., the first part of Eq. 2,
argmaxπ{𝑟 (s𝑖 ,a𝑖)}). They excel when the scene is static, as the current
state will not change over time. However, in dynamic scenarios, where
the state changes continuously, these methods tend to underperform
because they cannot predict the future states of objects. Consequently,
they may not provide the optimal or stable layout over time. In con-
trast, RL-based methods have the potential to overcome this issue by
considering both current and future states.
The challenges of placing labels in AR vs. other 3D dynamic sce-
narios. Placing labels on moving objects in AR environments presents
a unique challenge compared to other similar 3D dynamic scenarios,
such as VR or 3D games. In 3D games, the system can access the full
states of objects and thus can plan the best moving trajectories of the
labels in advance. In contrast, in AR environments, the system can
only observe the current state of the objects and is uncertain about their
future states, such as their velocities. Therefore, the system must have
the capability to predict future states to place the labels properly.

4 RL-LABEL DESIGN

Environment

Reward

States

Encoder

State
Embedding

Action

Actor 𝜋

Critic 𝑉∗

Est. Max.
Rewards

Action

Fig. 4: Our RL-based method consists of three components: an En-
coder that encodes the current state of the environment, an Actor that
generates actions for placing the labels, and a Critic that evaluates the
generated actions and provides feedback to improve the actor based on
the rewards obtained from the environment.

We introduce RL-LABEL, which uses an Actor-Critic framework [44]
to manage the label placements of moving objects. We chose the Actor-
Critic framework since it has demonstrated state-of-the-art performance
in various domains and benchmarks [9, 16, 31, 40]. It consists of three
main components (Fig. 4):

1. Encoder for State Embedding (Sec.4.1). One of the main chal-
lenges of this work comes from state heterogeneity (i.e., associating
each label with the viewpoint and objects) and variability (i.e., en-
coding the relationship between each label and its neighbors, which
can vary in number). We address the challenge through space trans-
formations and a neural network with a self-attention mechanism.

2. Actor for Action Generation (Sec.4.2). We then use an Actor
network to generate actions to place labels based on the state embed-
ding. The challenge lies in designing an appropriate action space
that enables the model to converge during training and generate
effective actions to achieve objectives. Our action space consists of
two accelerations (x- and z-) that control the movement of a label in
an x-z square plane on top of its target object.

3. Critic for Reward Learning (Sec.4.3). To improve the effective-
ness of the actions generated by the Actor network, we introduce
a Critic network that predicts the future cumulative reward for the
actions based on the current environment states and rewards. The
environmental rewards are designed to incorporate the objectives of
the label layout, such as avoiding occlusion, line intersections, and
jittering. The Critic network is solely utilized to aid in training the
Actor network and is not used during inference.

4.1 Encoder for State Embedding

Self-
A
tten

tion

FC

…FC

FC

Neighbor
Embedding

State
Embedding

…

Self Embedding

…

A
vg

. P
olling

Hidden LayerStates

Encoder

Label

𝑧

…

a
b

c d

Fig. 5: For each label or object, the Encoder considers its state (e.g.,
position) relative to the camera and neighboring objects. It then em-
ploys a neural network to embed the label or object’s state into a
high-dimensional vector.

To train the neural network, it is necessary to convert the state informa-
tion of labels, objects, and the viewpoint into a vector. We achieve this
by a label-centered space transformation and a neural network with a
self-attention mechanism.
Space Transformation. To place a label l𝑖 , the view management
system needs to consider its state in relation to other labels, objects,
and the viewpoint. We achieve this in two steps (Fig. 5a):

1. Neighbor Encoding. To encode the states of the label’s neighbors
(i.e., other objects and labels), we transfer their positions and veloci-
ties into the label’s local space. This captures their relative positions
and movements with respect to the label. Additionally, to distin-
guish between objects and labels, we append a binary value 𝑤 to
each neighbor vector. A value of 1 indicates that a neighbor is an
object, while a value of 0 indicates that the neighbor is a label.

2. Viewpoint Encoding. To ensure that the label does not occlude other
objects and labels, it is necessary to associate the viewpoint’s state
with the objects and labels. To encode the viewpoint’s state, we
transfer all objects’ and labels’ positions to ray spaceR3

𝑟𝑎𝑦 , in which
a point p𝑟𝑎𝑦 is defined as (𝑢𝑠𝑐𝑛, 𝑣𝑠𝑐𝑛, 𝑧𝑐𝑎𝑚), where (𝑢𝑠𝑐𝑛, 𝑣𝑠𝑐𝑛)
is the point’s position in screen space R2

𝑠𝑐𝑛 and the third coordinate
𝑧𝑐𝑎𝑚 specifies the distance from the camera to the point’s 3D posi-
tion in R3

𝑐𝑎𝑚. Such transformation can retain both the 2D and 3D
information.

The resulting states after the two steps are referred to as encoded
states. Specifically, the states of the label l𝑖𝑟𝑎𝑦 , a neighbor object o 𝑗

𝑟𝑎𝑦 ,

and a neighbor label l 𝑗𝑟𝑎𝑦 are encoded as:

l𝑖𝑟𝑎𝑦 = {p𝑖l,𝑟𝑎𝑦 , v𝑖l , n𝑖l , p𝑖o,𝑟𝑎𝑦 −p𝑖l,𝑟𝑎𝑦}

o 𝑗
𝑟𝑎𝑦 = {p 𝑗

o,𝑟𝑎𝑦 −p𝑖l,𝑟𝑎𝑦 , v 𝑗
o −v𝑖l , n 𝑗

o , 𝑤 : 1}

l 𝑗𝑟𝑎𝑦 = {p 𝑗

l,𝑟𝑎𝑦 −p𝑖l,𝑟𝑎𝑦 , v 𝑗

l −v𝑖l , n 𝑗

l , p 𝑗
o,𝑟𝑎𝑦 −p𝑖l,𝑟𝑎𝑦 , 𝑤 : 0}

State Embedding. Following the space transformation, we utilize a
neural network to embed the resulting states into a high-dimensional
space. The network embeds the label l𝑖 and its neighbors differently:

1. Self Embedding (Fig. 5b). We first concatenate the encoded state of
the label l𝑖𝑟𝑎𝑦 with the encoded state of its target object o𝑖𝑟𝑎𝑦 and
then embed them into a 128-length vector using a fully connected
(FC) network.

2. Neighbor Embedding (Fig. 5c). Building on previous work [5], we
embedded the neighbors of the label l𝑖 as follows:

For each of the label’s neighbors (except for its target object), we
first concatenate its encoded state (e.g., l 𝑗𝑟𝑎𝑦 or o 𝑗

𝑟𝑎𝑦) with the 128-
length embedding vector obtained from the previous step. Next,
we embed the concatenated vector into a 128-length vector using
an FC network. Since the number of neighbors can vary across
different scenes, we use a self-attention mechanism [50] to address
the variable number of inputs. This network mechanism learns the
relative importance of each neighbor as attention scores and uses the
scores as weights to combine all the inputs into a fixed-size output.

Finally, we concatenate the embedding of the label and its neighbors
into a single vector (Fig. 5d), which contains rich information about
the label, its neighbors, and the viewpoint of the current moment.

4.2 Actor for Action Generating

Label

FC FC

FC

FC

State
Embedding

Sam
p
lin
g

(𝜇! , 𝜎!)

(𝜇", 𝜎")
Probability
Distribution

𝑎!
𝑎"𝑎!

𝑎"

Actor

𝜋

Fig. 6: An Actor network generates actions based on the state em-
bedding to place the label. The label’s movement is constrained to a
two-dimensional x-z square plane on top of its target object, and the
available actions consist of x- and z- accelerations for the label.

The system should generate actions to place the labels. To achieve
this, we first define an action space that contains all possible actions,
and then use an Actor network to learn a policy (i.e., 𝜋) that generates
actions from this space.
Action Space. The action space plays a central role in successfully
training a model: a large action space can make the model fail to con-
verge while a small one may not be able to generate effective actions
that fulfill the objectives (e.g., occlusion free, stable movements). In-
spired by Tatzgern et al. [47], we first constrain the label’s movement
to an x-z square plane on top of its target object (Fig. 6, right). We
choose this plane to ensure consistency in the degrees of freedom of
the labels and objects, as we assume that the objects can only move in
the x and z dimensions. We then define the actions generated by the
model as x- and z- accelerations (i.e., 𝑎𝑥 and 𝑎𝑧) that control the label’s
movement to ensure stability. In other words, the action space consists
of two accelerations that control the label to move in an x-z square
plane on top of its target object. In our study, we also explored another
action space in which the model generated the x and z velocities or
positions of the labels, but this led to jittering movements due to due to
the non-deterministic nature of the network output (see below).
Action Generation. We use a three-layer FC network to learn a map-
ping function 𝜋 that generates actions. The network inputs the embed-
ding vector of label l𝑖 and outputs the means and standard deviations of
two normal distributions. These two distributions serve as probability
distributions to sample the accelerations for the x and z directions of
the label (Fig. 6, left). This stochastic policy encourages the network
to explore different actions during training, rather than only selecting
the same action every time, which can help reduce the possibility of
getting stuck in a locally optimal solution and has been widely used in
RL to improve performance [44].

4.3 Critic for Reward Learning
To improve the Actor network’s ability in generating effective actions,
we designed rewards to reflect the feedback from the environment,
incorporating the objectives of the label layout, such as avoiding oc-
clusion, line intersections, and jittering. However, these rewards only

FC FC FC

State
Embedding

𝑉𝑎𝑙𝑢𝑒!"#

Critic

Actions

𝑉∗

(𝑎!, 𝑎")

FC FC FC

State Embedding

𝑉𝑎𝑙𝑢𝑒!"#

Critic𝑉∗

Fig. 7: The Critic network estimates the future accumulated reward for
the actions generated by the Actor, based on the current state of the
environment. The estimated reward is then used to refine the Actor.

provide feedback for the current moment. To improve long-term per-
formance, we use a Critic network (𝑉∗). The Critic learns from the
rewards, actions, and states to predict the future cumulative reward of a
given action on the current state, guiding the Actor network.
Reward Design. In line with previous work [3], we aim for the labels
to move without occlusion, line intersection, and jittering. Thus, we
design the reward from the environment as 𝑟 (s𝑖 ,a𝑖) = 𝑟𝑜𝑐𝑐 +𝑟𝑖𝑛𝑡 +𝑟𝑎𝑥,𝑦

,
which awards achieving each objective while penalizing any failures.
Specifically, each term is defined as follows:

𝑟𝑜𝑐𝑐 =

{
−0.1𝑛𝑜𝑐𝑐 , if 𝑛𝑜𝑐𝑐 > 0
0.1, otherwise

𝑟𝑖𝑛𝑡 =

{
−0.1𝑛𝑖𝑛𝑡 , if 𝑛𝑖𝑛𝑡 > 0
0.1, otherwise

𝑟𝑎𝑥,𝑦
=

{
0.001, if |𝑎𝑥 | ≤ max𝑎𝑥

and
��𝑎𝑦 �� ≤ max𝑎𝑦

−0.001, otherwise

where 𝑛𝑜𝑐𝑐 represents the number of objects occluded by a label, 𝑛𝑖𝑛𝑡
represents the number of lines intersected by the label’s leader line, and
max𝑎𝑥

and max𝑎𝑧
represent the predefined maximum accelerations

on x- and z- dimensions. We chose the number of rewards (e.g., 0.1,
0.001) based on prior works [5, 20] and empirical evaluations.

Reward engineering [8] is an iterative process, similar to fine-tuning
hyperparameters. We arrived at our current design through extensive
exploration of reward designs, including variations in positive/negative
reward values, reward magnitudes, incorporation of occlusion area, and
measuring label movement distances to assess jittering. None of them
demonstrated the same level of performance as our current design.
Cumulative Rewards Prediction. To help the Actor network generate
actions that maximize both the reward for the current state and the
future cumulative rewards, we used three FC layers to approximate the
optimal value function 𝑉∗. This network predicts the future cumulative
reward based on the current state and the action generated by the Actor.
The predicted reward is then used to calculate the loss to train the Actor.
Note that the Critic network is only used as an assistant during training
and is not necessary for inference [44].

5 DATASET AND NETWORK TRAINING

To train and evaluate RL-LABEL, we collected two human movement
datasets to simulate real-world scenarios with moving objects (Sec. 5.1).
We first introduce the training process (Sec. 5.2) and then report the
quantitative evaluation results (Sec. 6).

5.1 Dynamic Environments Simulation

Real-world Human Movement Datasets. We used two popular human
movement datasets to simulate real-world environments with moving
objects. The first dataset, NBA [43], consists of the trajectories of 10
players on the court during the first quarter (720 seconds in total) of a
well-known NBA game 1. The second dataset, STU [23], records the
trajectories of students in an open campus environment over a period
of 400 seconds. Unlike the NBA dataset, the number of objects over
time in the STU dataset is dynamic, as some students enter or leave
the campus environment during the period. Both datasets represent the
trajectory of an object (i.e., player or student) as a list of 2D positions
taken at an interval of 0.04 seconds. In total, the NBA and STU datasets
contain over 180K and 160K positions, respectively.

Table 1: Statistics of scenes in the two datasets.

Dataset Avg. Max. #Objects Avg. Speed (m/s) Avg. Moving Distance (m)

NBA 10 1.88 28.19
STU 20 1.29 9.82

We preprocessed the NBA and STU datasets by dividing them into
small scenes lasting 15 seconds each, so that there is no overlap between
objects’ trajectories in different scenes. We excluded scenes that are
less than 15 seconds long. For the NBA dataset, we further removed
scenes where the game stops due to events such as fouls or substitutions.
Ultimately, we gathered 26 scenes for each dataset. Table. 1 summarizes
the statistics of the scenes for each dataset. The STU dataset is generally
more challenging due to the larger and dynamic number of objects.
Simulated Environments in Unity. We used Unity to simulate the
scenes in the two datasets. Specifically, we created 3D cubes to repre-
sent the objects in the scenes and updated the cubes’ positions every
0.04 seconds to follow the objects’ trajectories. An example scene for
each dataset is shown in Fig. 8a and b.

5.2 Network Training
We followed machine learning conventions and randomly split the
scenes of each dataset into two sets: 80% of the scenes for training and
20% of the scenes for testing. This resulted in 20 scenes for training
and 6 scenes for testing in each dataset.
Loss Function. Our method adopts an actor-critic framework [44],
which usually involves two loss terms:

1Golden State Warriors and Cleveland Cavaliers on Dec 25th, 2015

a b

Fig. 8: a) the NBA dataset, in which each scene contains 10 fast-moving objects. b) the STU dataset, in which the number of objects is dynamic.
Objects move slower than those in NBA.

L𝜋 = − 1
𝑛𝑇

𝑛∑︁
𝑖=0

𝑇∑︁
𝑡=0

log𝜋(a𝑖,𝑡 |s𝑖,𝑡)𝐴𝑖,𝑡 (3)

L𝑉 = − 1
𝑛𝑇

𝑛∑︁
𝑖=0

𝑇∑︁
𝑡=0

(𝑉∗ (s𝑖,𝑡 ,a𝑖,𝑡) −𝑅𝑡)2 (4)

where 𝑇 represents the maximum time step of a scene, 𝑛 is the
number of labels. Eq. 3 penalizes the actor’s actions that have a
high probability of occurring but result in low advantages 𝐴𝑖,𝑡 =

𝑟 (s𝑖,𝑡 ,a𝑖,𝑡) +𝛾𝑉∗ (s𝑖,𝑡 ,a𝑖,𝑡) −𝑉∗ (s𝑖,𝑡−1,a𝑖,𝑡−1), which is an estimation
of the future cumulative rewards with bias subtraction for the actions in
the current state. Eq. 4 trains the critic’s estimation to match the future
cumulative rewards, 𝑅𝑡 =

∑𝑇
𝑡′=𝑡 𝛾

𝑡′−𝑡𝑟 (s𝑖,𝑡′ ,a𝑖,𝑡′). In our implementa-
tion, we use PPO [40], a state-of-the-art actor-critic algorithm, which
involves several advanced techniques to calculate Eq. 3, such as using
generalized advantage estimation [39] to compute 𝐴𝑖,𝑡 , differential en-
tropy loss to encourage exploration and avoid premature convergence,
and clipped surrogate objective to stabilize the training process. We
refer the readers to Schulman et al. [40] for more technical details.
Hyper Parameters. Two hyper parameters play important roles in our
method, namely, maxAcc and numAgent:

• maxAcc controls the absolute value of the maximum acceleration
the actor can apply for the labels. A larger maxAcc can reduce
occlusions but increases the jittering of the labels. Based on the
mean moving speed of objects, we set the maxAcc for NBA and
STU datasets as 3𝑚/𝑠2 and 2𝑚/𝑠2, respectively.

• numAgent specifies the number of labels to be controlled by the
model. Ideally, the model should control all the labels in a scene.
However, a larger numAgent can make the training more difficult.
To address this issue, we employ a technique called Curriculum
Learning [33], in which we gradually increase the numAgent
during training. Based on the maximum number of objects in
different datasets, we increase the numAgent from 2 to 10 by 2
and 4 to 20 by 4 for the NBA and STU datasets, respectively.

Implementations Details. We use ML-Agent [20], a Unity-based
reinforcement learning toolkit, to implement our system. ML-Agent
provides an implementation of the RL networks using PyTorch [36], as
well as components to connect the Unity environments with the PyTorch
backends and manage the training. To accelerate the training, we also
leverage the concurrent Unity instances feature provided by ML-Agent.
Accordingly, we choose 204,800 and 1,024 for the buffer size and
batch size to ensure the models collect rich enough experiences from
the simulated environments. The learning rate is initialized as 3e-4 and
decays linearly over training. Each training process contains 20 million
steps, leading to about 1.3 million episodes (each episode lasts 150
steps). The training process for the models was conducted on servers
equipped with NVIDIA V100 graphics cards and 6 vCPUs, and took
approximately 5 hours to complete.

6 COMPUTATIONAL EXPERIMENTS

To evaluate our method, we first examined the effectiveness of the
training process (Sec. 6.1), then qualitatively inspected the ability of
the value network to predict future rewards (Sec. 6.2), compared our
method with two baselines to assess its performance in handling oc-
clusions, line intersections, and label jittering (Sec. 6.1), and finally
discussed some typical behaviors of the model (Sec. 6.4).

6.1 Rewards Over the Training
Figure 9 demonstrates the rewards obtained by the RL model in the
training (blue) and testing (purple) scenes during the training process.
The plot indicates that both the rewards increase over the training
process, indicating that the model is effectively learning and improving.
The negative rewards in our approach stem from the strict reward
definition, where occlusion is considered to occur whenever two labels
overlap. However, from a human perspective, these occlusions can
often be overlooked. Despite the presence of negative rewards, the
scenes may still appear occlusion-free to the audience.

-60

-50

-40

-30

-20

-10

0

10

0 5 10 15 20
-60

-50

-40

-30

-20

-10

0

10

0 5 10 15 20

NBA STU

Train Test

Steps (Millions) Steps (Millions)

R
ew

a
rds

R
ew

a
rds

["#4e79a7","#f28e2c","#e15759","#76b7b2","#59a14f","#edc9
49","#af7aa1","#ff9da7","#9c755f","#bab0ab"]

Fig. 9: Accumulated rewards per epoch in training and testing scenes
for NBA (left) and STU (right) datasets.

6.2 Value Heatmap Learned by the Model

𝑎!

𝑎"

𝑎!

𝑎"

Value heatmap
for the left label

Value heatmap
for the right label

Fig. 10: Two value heatmaps generated by our model in a scenario
where two objects move towards each other. Each heatmap represents
the estimated future rewards of actions in the corresponding object’s
action space. Brighter colors indicate areas where the network considers
a higher reward for moving, while darker colors indicate areas where
the network does not prefer movement.

We conducted a qualitative inspection of the value network to assess
its ability to estimate the accumulated rewards. We set up a scenario
where two objects move towards each other and divided the action space
into a 30x30 grid. Then, we estimated the rewards for different grids
across the action space using the value network and visualized them
as value heatmaps. Figure 10 displays examples of these heatmaps.
The network suggests that the left label can achieve the maximum
reward if it moves to the top right, while the right label should move to
the bottom left. As a result, both objects avoid occluding each other.
These examples demonstrate that the value network has learned to
meaningfully estimate the consequences of different actions.

6.3 Performance in Achieving Objectives
We compared three different view management methods: 1) NO view
management as the baseline, where a label is fixed on top of its target
object, 2) a FORCE-based method, and 3) OURS, the RL-based method.
Since there is no existing view management system for labels of moving
objects, we chose to implement and adapt FORCE based on Plane-based
Hedgehog Labeling [47], a state-of-the-art method for managing 3D
labels for static objects, under the guidance of their authors. Note that
our comparison only intends to use FORCE as a reference instead of
showing our method is better than Hedgehog Labeling [47].

Ideally, the view management system should reduce occlusions, line
intersections, and the jittering of labels. We measure three metrics for
each label to assess these three objectives:

• OCC measures the average number of objects and labels occluded
by a label in each time step. A smaller OCC value is better.

• INT measures how many leader lines are intersected by a label’s
leader line on average in each time step, with a lower score
indicating better performance.

• DIST measures the average extra moving distance of each label
compared to its target object. DIST approximates the degree of
jittering of the labels, and a smaller value is better.

Table 3 presents the results of the three methods on different metrics.
For OCC, without using a view management system, each label oc-
cludes 0.15 and 0.18 label and objects per time step in the NBA or STU

Table 2: Performance of three methods in reducing occlusion, line
intersections, and extra movement distance of the labels.

NBA STU

OCC INT DIST OCC INT DIST

No 0.15 0 0 0.18 0 0
Force 0.05 0.04 +11.29 0.07 0.06 +11.46
Ours 0.04 0.02 +7.34 0.06 0.02 +2.58

datasets, respectively. Both OURS and FORCE succeeded in reducing
label occlusions by over two-thirds compared to the NO baseline. As
for INT, without view management, it is zero since all the leader lines
are perpendicular to the ground. Table 3 shows that the intersection
introduced by OURS is half that of FORCE. Similarly, DIST should be
zero without view management since the moving distance of a label
should be the same as its target object. Table 3 indicates that OURS has
much smaller DIST than FORCE, with OURS being almost one-fifth of
FORCE in crowded STU scenarios. In general, these results show that
OURS can reduce occlusions with fewer line intersections and more
stable movements than FORCE.

6.4 Examples
We manually observed the model’s control of the labels in all scenes
to understand how it achieves the objectives. Here, we discuss some
typical behaviors of the model. Video examples are also provided in
the supplemental materials to illustrate these behaviors.
Avoiding occlusions through minimal movement. Figure 11a shows
an example of the model’s capacity to avoid occlusion by moving labels
minimally. In this example, two objects are moving forward, with the
rear object moving faster. To prevent occlusion of the rear object’s
label, the model controls the front object’s label to move backward,
using the small gap between the rear object and its label, rather than
taking an easier but longer distance route (as indicated by the dashed
arrow). This demonstrates the model’s high controllability, with the
task being completed within 0.2 seconds.
Avoiding line interactions through collaboratively label movement.
Figure 11b illustrates how the model controls the labels to move collab-
oratively to avoid line intersections in a complex movement scenario.
The labels on the outside move in a circular path around the objects,
similar to driving around a roundabout, while the label of the center
object moves straight forward to the right. This strategy effectively elim-
inates any line intersections. This example demonstrates the model’s
ability to observe the states of a label’s neighbors and adjust the label
movement based on their relationships, highlighting its capability to
handle complex situations.
Reducing Occlusion through strategic label placements. In Fig. 11c,
the model is shown strategically placing the labels outside the court
to reduce the likelihood of occlusion. When the objects move to the
left side of the court, the model moves the labels to the empty space

on the left, and vice versa when the objects are on the right. This
behavior suggests that the model has learned to associate the empty
space outside the court with safety based on the movement of objects
and environmental feedback.

7 USER STUDY

We conducted a controlled user study to evaluate if RL-LABEL can
help users perform visual tasks in dynamic scenes.

7.1 Experiment Settings

a
b

Fig. 12: a) A scene example of a task in which the objects are divided
into blue and red teams. b) A table on a label, where the rows and
columns represent quarters and points, respectively.

Participants and Apparatus. We recruited 18 participants (P1-P18;
M = 8, F = 8; Age: 20 - 40) through university mailing lists and forums.
Nine had no experience with AR/VR devices, seven had less than 1
year of experience, and one had 1-3 years of experience. Only one
participant had no experience with data visualizations, while others had
0 to 5+ years of experience. The study was conducted in a quiet lab
room using a standalone wireless Oculus Quest 2 VR headset, allowing
participants to move freely in space without being limited by headset
cables. The study took approximately 60 minutes, and each participant
received a $20 gift card as compensation.
Conditions. We compared the three view management methods men-
tioned in Sec.6.3, i.e., NO, FORCE, and OURS.
Datasets. We reused the NBA and STU datasets for the user study. We
used the scenes in the training set for practice trials and the scenes in
the testing set for the actual study. In each scene, the objects are divided
into blue and red teams. Each scene contained objects divided into blue
and red teams, each with a unique ID displayed on its body (Fig. 12a).
The objects were also attached with a label showing a static data table

a b c

Fig. 11: Examples of the model’s capabilities in controlling labels to avoid occlusion and line intersections. a) The model minimizes label
movement by utilizing the small gap between an object and its label to avoid occlusion. b) The model controls labels to move collaboratively in a
circular path around objects, eliminating any line intersections c) The model strategically places labels outside the court to reduce occlusion.

(Fig. 12b), in which the rows and columns represented quarters and
points, respectively. Each scene lasted for 15 seconds.
Tasks. Following the previous work [27] on AR labels, we designed
three basic visual search tasks [4]:

• Identify: This task asks the participants to identify the points
a specific player got in a specific quarter. The participants need
to answer a question in the format of “How many [2, 3] points
has player [X] got in the quarter [1, 2]?”, in which the underline
numbers are randomized across participants.

• Compare: This task asks the participants to compare the points the
players in a specific team got in a specific quarter. The participants
need to answer a question in the format of “In [blue, red] team,
who got the most [2, 3] points in the quarter [1, 2]?”, in which
the underline numbers are randomized across participants.

• Summarize: This task asks the participants to summarize the
points a team got in a specific quarter. The participants need
to answer a question in the format of “Overall, which team got
more [2, 3] points in the quarter [1, 2]?”, in which the underline
numbers are randomized across participants.

Study Design. We used the following full-factorial within-subject
study design with Latin square-randomized order of the techniques:

18 participants
× 3 techniques: NO, FORCE, OURS

× 2 datasets: NBA, STU
× 3 tasks: Identify, Compare, Summarize
× 2 timed repetition

648 total trials (36 per participant)

Participants were split evenly between the 3 Latin square-
randomized technique orders. The orders of the datasets and tasks
were kept consistent across all participants. Each task had randomized
data on the labels and was repeated in different scenes.
Procedure. Each study started with an introduction to the motivation,
tasks, general procedure, and obtaining consent (10mins). Before the
actual tasks, participants completed a training session (10mins) to
become familiar with the tasks, user interfaces, and to adjust the device
until they were comfortable. The training session consisted of 18 =
3 (techniques) x 3 (tasks) x 2 (datasets) trials. Once the participant
was confident, the experimenter proceeded to the actual tasks, which
consisted of two sessions for the NBA and STU datasets, respecitvely.
Each session (10mins) includes 18 = 3 (techniques) x 3 (tasks) x 2
(datasets) x 2 (repetition) trials. For each trial, the participants were
instructed to finish the task as fast and accurately as possible and to
click a button to stop the timer once they were confident to answer. The
scene in each trial looped until the participants clicked the button, after
which it disappeared. After speaking their answer aloud, participants
were asked to rate their mental load for the task. Participants were
allowed to take a break between each session. At the end of the study,
participants provided subjective feedback on each technique (5mins).
Measures. For each trial, we recorded the completion time (in seconds,
from start to button click), accuracy (true or false), and the user’s
perceived mental load (on a 1-7 Likert scale).

7.2 Quantitative Results
We analyzed the statistical differences between the three methods in
accuracy, completion time, and mental load. Overall, both OURS and
FORCE are significantly better than NO in all three measures and OURS
slightly better than FORCE in completion time and mental load.

Table 3: Accuracy per method per task on the two datasets.

NBA STU

Identify Compare Summarize Identify Compare Summarize

NO 100% 83% 97% 50% 17% 100%
FORCE 97% 94% 100% 92% 67% 97%
OURS 97% 97% 97% 97% 75% 100%

Accuracy. Table 3 shows the accuracy of participants in different
tasks using the three methods. The mean accuracy, in percentage,
for NBA were: NO = 93% (𝜎 = 17%), FORCE = 97% (𝜎 = 12%), and
OURS = 97% (𝜎 = 12%). For STU, the mean accuracy were: NO = 56%
(𝜎 = 44%), FORCE = 85% (𝜎 = 27%), and OURS = 91% (𝜎 = 22%).
A Shapiro-Wilk test reveals that the accuracy did not follow a nor-
mal distribution. Thus, we used a Friedman test with a null hypoth-
esis that participants performed equally correctly with each method,
which showed significant differences in the Identify (𝑝 = .0001) and
Compare (𝑝 < 0.0001) tasks on the STU dataset. By further performing
a Nemenyi post-hoc test, we found that participants performed signifi-
cantly better in the Identify tasks with OURS (𝑝 = .0099) or FORCE
(𝑝 = .0265) than with NO. Similarly, participants performed signif-
icantly better in the Compare task with OURS (𝑝 = .001) or FORCE
(𝑝 = .0018) than with NO.

Fig. 13: Completion time per method per task on the two datasets.

Completion Time. Figure 13 presents the completion time of partici-
pants in different tasks using different methods with 95% confidence
intervals (CIs). The respective mean times in seconds are NO = 6.38
(𝜎 = 3.25), FORCE = 7.20 (𝜎 = 4.94), and OURS = 5.63 (𝜎 = 3.20) on
NBA, and NO = 20.97 (𝜎 = 16.15), FORCE = 12.79 (𝜎 = 8.91), and
OURS = 12.60 (𝜎 = 8.95) on STU. Through a Shapiro-Wilk test, we
confirmed that the completion times in each condition did not follow
a normal distribution. Using a Friedman test with a null hypothesis
that participants performed equally fast with each method, we found
significant differences in the Compare (𝑝 = .0387) task on NBA, and
in both the Identify (𝑝 < 0.0001) and Compare (𝑝 = .0293) tasks on
STU. A Nemenyi post-hoc test revealed that participants completed the
Compare task significantly faster with OURS than FORCE (𝑝 = .0355)
on NBA, and significantly faster with OURS than NO in the Identify
(𝑝 = .001) and Compare (𝑝 = .0497) tasks on STU. Participants also
completed the Identify (𝑝 = .001) and Compare (𝑝 = .0483) tasks
significantly faster with FORCE than NO on STU.

Fig. 14: Mental load per method per task on the two datasets.

Mental Load. Figure 14 shows the participants’ subjective ratings
on the mental load of using different methods in different tasks after
each trial, where 1 means significantly low and 7 means the opposite.
The respective mean ratings are NO = 2.55 (𝜎 = 1.1), FORCE = 2.74
(𝜎 = 1.29), and OURS = 2.36 (𝜎 = 1.08) on NBA, and NO = 3.83
(𝜎 = 1.59), FORCE = 3.02 (𝜎 = 1.27), and OURS = 3.01 (𝜎 = 1.20) on
STU. Since a Shapiro-Wilk test shown that the ratings did not follow
a normal distribution, we used a Friedman test with a null hypothesis
that the participants had the same mental load with the three methods.
Findings revealed significant differences in the Compare (𝑝 = .0071)
task on NBA and in both the Identify (𝑝 = .0004) and Compare
(𝑝 < .0001) tasks on STU. After performing a Nemenyi post-hoc test,

we found that participants reported significantly higher mental load
with FORCE than with OURS in the Compare (𝑝 = .0483) task on
NBA, and significantly higher mental load with NO than with OURS in
both the Identify (𝑝 = .013) and Compare (𝑝 = .009) tasks on STU.
Furthermore, participants reported significantly higher mental load with
NO than with FORCE in both the Identify (𝑝 = .0075) and Compare
(𝑝 = .001) tasks on STU.

7.3 Qualitative Feedback
We also collected qualitative from the participants after the study. Par-
ticipants were asked to comment on the pros and cons of each method.
Overall, participants thought that OURS is the most promising method
as it achieves occlusion-free and stable labels.

• NO. Participants provided mixed feedback on NO, which was
primarily recognized for its label stability. Many participants
appreciated the limited movement of the labels, mentioning that
it made them “easier to catch” and that the “length and direction
not changed too much.” However, a significant drawback noted
by several participants was the excessive label occlusion, which
made it difficult to read the labels when players were behind one
another. One participant stated that the labels “overlapped a lot,
sometimes [making it] impossible to recognize the numbers.”

• FORCE. By contrast, participants praised FORCE for its ability
to eliminate label occlusion but complained about the excessive
jittering and abrupt movement of the labels. Several participants
noted the absence of overlapping labels, with one stating “almost
no occlusion at all.” However, some participants found the un-
stable and unpredictable label movement distracting and “hard to
follow,” or even “made me dizzy.” Although we believe that im-
proved results can be achieved through an enhanced force-based
method, it may still be prone to unpredictable movement, as it
does not take into account the future states of the labels.

• OURS. Participants appreciated OURS primarily for its occlusion-
free presentation and stable movement of labels. Many partici-
pants praised the method’s ability to avoid label overlap effec-
tively, as one user stated, “Overlap is avoided well.” The stable
movement was also well-received, as users found it easy to track
labels, e.g., “movement of the labels is natural and easy to follow.”
However, some participants noted drawbacks, such as labels oc-
casionally moving out of the screen and the layouts are “not so
appealing visually.” Future improvements can involve optimizing
the visual aesthetics of the labels as one objective or considering
users’ gaze and attention to enhance the local layout of the labels.

7.4 Summary
The user study demonstrated that resolving occlusions is crucial for
reading labels in dynamic scenarios. OURS, the proposed method,
was shown to effectively achieve this goal in both scenarios with fast-
moving or many labels, and assist users with various visual search tasks,
such as identifying, comparing, and summarizing data on moving labels.
In addition, participants performed significantly better with OURS than
with FORCE in comparing labels in the NBA dataset, suggesting that
OURS can help users read multiple fast-moving labels. We attribute
this to OURS’s ability to stabilize label movements while resolving
occlusions. Participants’ subjective feedback also suggested that OURS
can achieve both occlusion-free and stable movements of the labels.

8 DISCUSSION, FUTURE WORK, AND LIMITATIONS

AR Visualizations as Robots Without A Physical Body. Our RL
method considers AR visualizations as robots without a physical body,
which offers a key insight: if we can control robots to react and adapt to
real-world environments, then we can do the same, or more, for AR vi-
sualizations. Although this concept is still in its early stages, it presents
exciting opportunities for merging research in robotics with data vi-
sualization. By combining these two fields, we can create dynamic,
interactive AR visualizations that adapt to real-world environments and
assist users in making in-situ decisions. As we embark on this journey,
we are excited to explore the potential of this innovative approach.

Involving Human Feedback for RL-based Visualizations. The very
purpose of visualizations is to aid humans in gaining insights into the
data presented. Therefore, when developing RL methods for visual-
izations, it is essential to incorporate human feedback in the training
process. By doing so, we ensure that the AR visualization not only ful-
fills the optimization objectives but also meets the user’s requirements
and expectations that are often difficult to quantify. Recent studies
in large language models have highlighted the importance of human
feedback in RL [35]. Although we did not incorporate human feedback
in the training process of our RL model as the first step, we are en-
thusiastic about exploring this direction in the future. Doing so would
enable more advanced AR visualizations by, for example, incorporating
aesthetics and level of detail in presenting the information.
Generalize to More Complex and Diverse Scenarios. Our experi-
ments on the STU datasets have already demonstrated the generalizabil-
ity of our method to scenarios where the number of objects in the scene
is continuously changing. Our method’s data-driven nature enables
us to apply it to other dynamic scenarios where objects or labels have
different sizes, shapes, or anchor points as long as we incorporate those
factors into the observable states and train the network with relevant
data. In the future, we aim to expand our method to more complex and
varied scenarios, such as city spaces with pedestrians and cars, similar
to controlling mobile robots [5]. Furthermore, we are interested in ex-
ploring diverse action spaces that involve modifying the size, position
(in the xyz coordinates), and opacity of the labels. Yet, this requires
collecting additional movement datasets from the real world, which
is beyond the scope of our current work. Nonetheless, our research
lays the foundation for developing AR visualizations that can adapt to
dynamic environments.
Extend to Real AR scenarios. In this study, we utilized VR to simulate
AR environments, allowing the view management system to acquire
accurate object states, such as positions and velocities. In real AR
environments, such states can be obtained through the use of sensors
like LiDAR [41]. However, these advanced sensors can be costly. A
more cost-effective alternative is to use vision-based signals such as
videos as input. For instance, Zhu et al. [54] developed an RL-based
approach for navigating robots to locate a specified target using solely
visual inputs. However, challenges such as real-time computing must
be addressed in future research.
Study Limitations. While the model experiment and user study have
demonstrated that RL-LABEL advances baselines, several limitations
exist in our study. Firstly, we simplified the tasks by using cube shapes
to represent humans and fixing the label size and viewer position. How-
ever, we believe that this is a necessary first step toward developing a
more complex RL-based method, which is known to be more challeng-
ing to train compared to other machine learning models [24]. Secondly,
we only evaluated users’ performance on three fundamental visual tasks,
while in-situ analytics with AR visualization can present more com-
plex challenges. Finally, even though we followed established exciting
works [25, 27], we acknowledge that simulating AR interactions in VR
may not fully represent real-world scenarios. These limitations suggest
potential areas for future research and improvements to RL-LABEL.

9 CONCLUSION

We introduced RL-LABEL, a novel RL-based method to address the
challenges of managing AR label placements for moving objects. To
the best of our knowledge, this is the first study to utilize RL for
managing AR labels of moving objects. RL-LABEL takes into account
both current and future predicted environment states to make optimal
decisions regarding label placements. Our experimental results on two
real-world trajectory datasets demonstrated that RL-LABEL effectively
learned the decision-making process and outperformed two baselines in
reducing occlusions, line intersections, and movement distance of the
labels. The user study further showed that RL-LABEL improved user
performance in various visual search tasks and achieved both occlusion-
free and stable movements of the labels. Overall, our work establishes a
strong foundation for the development of more advanced and effective
RL-based methods for AR visualizations.

ACKNOWLEDGMENTS

This research is supported in part by the NSF award III-2107328,
NSF award IIS-1901030, NIH award R01HD104969, and the Harvard
Physical Sciences and Engineering Accelerator Award.

REFERENCES

[1] J. Ahn and H. Freeman. A program for automatic name placement. Car-
tographica: The International Journal for Geographic Information and
Geovisualization, 21(2-3):101–109, 1984.

[2] R. T. Azuma and C. Furmanski. Evaluating label placement for augmented
reality view management. In 2003 IEEE / ACM International Symposium
on Mixed and Augmented Reality (ISMAR 2003), 7-10 October 2003,
Tokyo, Japan, pp. 66–75. IEEE Computer Society, 2003. doi: 10.1109/
ISMAR.2003.1240689

[3] M. A. Bekos, B. Niedermann, and M. Nöllenburg. External labeling
techniques: A taxonomy and survey. Comput. Graph. Forum, 38(3):833–
860, 2019. doi: 10.1111/cgf.13729

[4] M. Brehmer and T. Munzner. A multi-level typology of abstract visualiza-
tion tasks. IEEE Trans. Vis. Comput. Graph., 19(12):2376–2385, 2013.
doi: 10.1109/TVCG.2013.124

[5] C. Chen, Y. Liu, S. Kreiss, and A. Alahi. Crowd-robot interaction: Crowd-
aware robot navigation with attention-based deep reinforcement learning.
In International Conference on Robotics and Automation, ICRA, pp. 6015–
6022. IEEE, 2019. doi: 10.1109/ICRA.2019.8794134

[6] Y. F. Chen, M. Liu, M. Everett, and J. P. How. Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning. In IEEE International Conference on Robotics and Automation,
ICRA, pp. 285–292. IEEE, 2017. doi: 10.1109/ICRA.2017.7989037

[7] Y. Cheng, Y. Yan, X. Yi, Y. Shi, and D. Lindlbauer. Semanticadapt:
Optimization-based adaptation of mixed reality layouts leveraging virtual-
physical semantic connections. In J. Nichols, R. Kumar, and M. Nebeling,
eds., UIST ’21: The 34th Annual ACM Symposium on User Interface
Software and Technology, Virtual Event, USA, October 10-14, 2021, pp.
282–297. ACM, 2021. doi: 10.1145/3472749.3474750

[8] D. Dewey. Reinforcement learning and the reward engineering principle.
In AAAI Spring Symposia. AAAI Press, 2014.

[9] M. S. Esmaeeli and H. Malek. Evolutionary deep reinforcement learning
using elite buffer: A novel approach towards DRL combined with EA in
continuous control tasks. CoRR, abs/2209.08480, 2022. doi: 10.48550/
arXiv.2209.08480

[10] A. Fender, P. Herholz, M. Alexa, and J. Müller. Optispace: Automated
placement of interactive 3d projection mapping content. In R. L. Mandryk,
M. Hancock, M. Perry, and A. L. Cox, eds., Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, CHI 2018,
Montreal, QC, Canada, April 21-26, 2018, p. 269. ACM, 2018. doi: 10.
1145/3173574.3173843

[11] A. Fender, D. Lindlbauer, P. Herholz, M. Alexa, and J. Müller. Heatspace:
Automatic placement of displays by empirical analysis of user behavior.
In K. Gajos, J. Mankoff, and C. Harrison, eds., Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology, UIST
2017, Quebec City, QC, Canada, October 22 - 25, 2017, pp. 611–621.
ACM, 2017. doi: 10.1145/3126594.3126621

[12] R. Gal, L. Shapira, E. Ofek, and P. Kohli. FLARE: fast layout for aug-
mented reality applications. In IEEE International Symposium on Mixed
and Augmented Reality, ISMAR 2014, Munich, Germany, September 10-12,
2014, pp. 207–212. IEEE Computer Society, 2014. doi: 10.1109/ISMAR.
2014.6948429

[13] C. Gebhardt, B. Hecox, B. van Opheusden, D. Wigdor, J. Hillis, O. Hilliges,
and H. Benko. Learning cooperative personalized policies from gaze data.
In F. Guimbretière, M. S. Bernstein, and K. Reinecke, eds., Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and
Technology, UIST 2019, New Orleans, LA, USA, October 20-23, 2019, pp.
197–208. ACM, 2019. doi: 10.1145/3332165.3347933

[14] R. Grasset, T. Langlotz, D. Kalkofen, M. Tatzgern, and D. Schmalstieg.
Image-driven view management for augmented reality browsers. In 11th
IEEE International Symposium on Mixed and Augmented Reality, ISMAR
2012, Atlanta, GA, USA, November 5-8, 2012, pp. 177–186. IEEE Com-
puter Society, 2012. doi: 10.1109/ISMAR.2012.6402555

[15] J. Grubert, T. Langlotz, S. Zollmann, and H. Regenbrecht. Towards
pervasive augmented reality: Context-awareness in augmented reality.
IEEE Trans. Vis. Comput. Graph., 23(6):1706–1724, 2017. doi: 10.1109/
TVCG.2016.2543720

[16] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor. In Proceedings of the International Conference on Machine Learn-
ing, ICML, vol. 80 of Proceedings of Machine Learning Research, pp.
1856–1865. PMLR, 2018.

[17] S. Hegde, J. Maurya, R. Hebbalaguppe, and A. Kalkar. Smartoverlays:
A visual saliency driven label placement for intelligent human-computer
interfaces. In Winter Conference on Applications of Computer Vision, pp.
1110–1119. IEEE, 2020. doi: 10.1109/WACV45572.2020.9093587

[18] G. Huang, X. Qian, T. Wang, F. Patel, M. Sreeram, Y. Cao, K. Ramani, and
A. J. Quinn. Adaptutar: An adaptive tutoring system for machine tasks
in augmented reality. In Y. Kitamura, A. Quigley, K. Isbister, T. Igarashi,
P. Bjørn, and S. M. Drucker, eds., CHI Conference on Human Factors
in Computing Systems, pp. 417:1–417:15. ACM, 2021. doi: 10.1145/
3411764.3445283

[19] T. S. Jaakkola, S. Singh, and M. I. Jordan. Reinforcement learning algo-
rithm for partially observable markov decision problems. In G. Tesauro,
D. S. Touretzky, and T. K. Leen, eds., Advances in Neural Information
Processing Systems 7, [NIPS Conference, Denver, Colorado, USA, 1994],
pp. 345–352. MIT Press, 1994.

[20] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy,
Y. Gao, H. Henry, M. Mattar, et al. Unity: A general platform for intelligent
agents. arXiv preprint arXiv:1809.02627, 2018.

[21] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. K.
Yogamani, and P. Pérez. Deep reinforcement learning for autonomous
driving: A survey. IEEE Trans. Intell. Transp. Syst., 23(6):4909–4926,
2022. doi: 10.1109/TITS.2021.3054625

[22] T. Köppel, M. E. Gröller, and H. Wu. Context-responsive labeling in aug-
mented reality. In 14th IEEE Pacific Visualization Symposium, PacificVis
2021, Tianjin, China, April 19-21, 2021, pp. 91–100. IEEE, 2021. doi: 10.
1109/PacificVis52677.2021.00020

[23] A. Lerner, Y. Chrysanthou, and D. Lischinski. Crowds by Example.
Comput. Graph. Forum, 26(3):655–664, 2007. doi: 10.1111/j.1467-8659.
2007.01089.x

[24] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015.

[25] T. Lin, Z. Chen, Y. Yang, D. Chiappalupi, J. Beyer, and H. Pfister. The
quest for omnioculars: Embedded visualization for augmenting basketball
game viewing experiences. CoRR, abs/2209.00202, 2022. doi: 10.48550/
arXiv.2209.00202

[26] T. Lin, R. Singh, Y. Yang, C. Nobre, J. Beyer, M. A. Smith, and H. Pfister.
Towards an understanding of situated ar visualization for basketball free-
throw training. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, pp. 1–13, 2021.

[27] T. Lin, Y. Yang, J. Beyer, and H. Pfister. Labeling out-of-view objects
in immersive analytics to support situated visual searching. IEEE Trans.
Vis. Comput. Graph., 29(3):1831–1844, 2023. doi: 10.1109/TVCG.2021.
3133511

[28] D. Lindlbauer, A. M. Feit, and O. Hilliges. Context-aware online adap-
tation of mixed reality interfaces. In F. Guimbretière, M. S. Bernstein,
and K. Reinecke, eds., Proceedings of the 32nd Annual ACM Symposium
on User Interface Software and Technology, UIST 2019, New Orleans,
LA, USA, October 20-23, 2019, pp. 147–160. ACM, 2019. doi: 10.1145/
3332165.3347945

[29] R. Liu, F. Nageotte, P. Zanne, M. de Mathelin, and B. Dresp-Langley. Deep
reinforcement learning for the control of robotic manipulation: A focussed
mini-review. Robotics, 10(1):22, 2021. doi: 10.3390/robotics10010022

[30] J. B. Madsen, M. Tatzgern, C. B. Madsen, D. Schmalstieg, and
D. Kalkofen. Temporal coherence strategies for augmented reality la-
beling. IEEE Trans. Vis. Comput. Graph., 22(4):1415–1423, 2016. doi:
10.1109/TVCG.2016.2518318

[31] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. In Proceedings of the International Conference on
Machine Learning, ICML, vol. 48 of JMLR Workshop and Conference
Proceedings, pp. 1928–1937. JMLR.org, 2016.

[32] P. Mohr, S. Mori, T. Langlotz, B. H. Thomas, D. Schmalstieg, and
D. Kalkofen. Mixed reality light fields for interactive remote assistance.
In R. Bernhaupt, F. F. Mueller, D. Verweij, J. Andres, J. McGrenere,
A. Cockburn, I. Avellino, A. Goguey, P. Bjøn, S. Zhao, B. P. Samson,
and R. Kocielnik, eds., CHI Conference on Human Factors in Computing
Systems, pp. 1–12. ACM, 2020. doi: 10.1145/3313831.3376289

[33] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone.
Curriculum learning for reinforcement learning domains: A framework
and survey. The Journal of Machine Learning Research, 21(1):7382–7431,
2020.

[34] B. Nuernberger, E. Ofek, H. Benko, and A. D. Wilson. Snaptoreality:
Aligning augmented reality to the real world. In J. Kaye, A. Druin,
C. Lampe, D. Morris, and J. P. Hourcade, eds., Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems, San Jose, CA,
USA, May 7-12, 2016, pp. 1233–1244. ACM, 2016. doi: 10.1145/2858036
.2858250

[35] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, et al. Training language models to
follow instructions with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information
processing systems, 32, 2019.

[37] X. Qian, F. He, X. Hu, T. Wang, A. Ipsita, and K. Ramani. Scalar:
Authoring semantically adaptive augmented reality experiences in virtual
reality. In CHI Conference on Human Factors in Computing Systems, pp.
65:1–65:18. ACM, 2022. doi: 10.1145/3491102.3517665

[38] N. Rakholia, S. Hegde, and R. Hebbalaguppe. Where to place: A real-time
visual saliency based label placement for augmented reality applications.
In 2018 IEEE International Conference on Image Processing, pp. 604–608.
IEEE, 2018. doi: 10.1109/ICIP.2018.8451052

[39] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-
dimensional continuous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438, 2015.

[40] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[41] N. O. Service. What is lidar? https://oceanservice.noaa.gov/

facts/lidar.html.
[42] K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao. A survey of deep reinforce-

ment learning in video games. CoRR, abs/1912.10944, 2019.
[43] SportVU. Papers with code - nba sportvu dataset. https://

paperswithcode.com/dataset/nba-sportvu.
[44] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.

MIT press, 2018.
[45] T. Tahara, T. Seno, G. Narita, and T. Ishikawa. Retargetable AR: context-

aware augmented reality in indoor scenes based on 3d scene graph. In
2020 IEEE International Symposium on Mixed and Augmented Reality
Adjunct, ISMAR 2020 Adjunct, Recife, Brazil, November 9-13, 2020, pp.
249–255. IEEE, 2020. doi: 10.1109/ISMAR-Adjunct51615.2020.00072

[46] T. Tang, R. Li, X. Wu, S. Liu, J. Knittel, S. Koch, L. Yu, P. Ren, T. Ertl,
and Y. Wu. Plotthread: Creating expressive storyline visualizations using
reinforcement learning. IEEE Trans. Vis. Comput. Graph., 27(2):294–303,
2021. doi: 10.1109/TVCG.2020.3030467

[47] M. Tatzgern, D. Kalkofen, R. Grasset, and D. Schmalstieg. Hedgehog
labeling: View management techniques for external labels in 3d space. In
IEEE Virtual Reality, pp. 27–32. IEEE Computer Society, 2014. doi: 10.
1109/VR.2014.6802046

[48] M. Tatzgern, V. Orso, D. Kalkofen, G. Jacucci, L. Gamberini, and
D. Schmalstieg. Adaptive information density for augmented reality
displays. In T. Höllerer, V. Interrante, A. Lécuyer, and E. A. Suma, eds.,
2016 IEEE Virtual Reality, VR 2016, Greenville, SC, USA, March 19-23,
2016, pp. 83–92. IEEE Computer Society, 2016. doi: 10.1109/VR.2016.
7504691

[49] W. Tong, Z. Chen, M. Xia, L. Y. Lo, L. Yuan, B. Bach, and H. Qu. Explor-
ing interactions with printed data visualizations in augmented reality. IEEE
Trans. Vis. Comput. Graph., 29(1):418–428, 2023. doi: 10.1109/TVCG.
2022.3209386

[50] A. Vemula, K. Muelling, and J. Oh. Social attention: Modeling atten-
tion in human crowds. In IEEE International Conference on Robotics
and Automation, ICRA, pp. 1–7. IEEE, 2018. doi: 10.1109/ICRA.2018.
8460504

[51] A. Wu, W. Tong, T. Dwyer, B. Lee, P. Isenberg, and H. Qu. Mobilevisfixer:
Tailoring web visualizations for mobile phones leveraging an explainable
reinforcement learning framework. IEEE Trans. Vis. Comput. Graph.,
27(2):464–474, 2021. doi: 10.1109/TVCG.2020.3030423

[52] L. Yao, A. Bezerianos, R. Vuillemot, and P. Isenberg. Visualization in
motion: A research agenda and two evaluations. IEEE Trans. Vis. Comput.
Graph., 28(10):3546–3562, 2022. doi: 10.1109/TVCG.2022.3184993

[53] M. Zhou, Q. Li, X. He, Y. Li, Y. Liu, W. Ji, S. Han, Y. Chen, D. Jiang, and
D. Zhang. Table2charts: Recommending charts by learning shared table
representations. In F. Zhu, B. C. Ooi, and C. Miao, eds., ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2389–2399.
ACM, 2021. doi: 10.1145/3447548.3467279

[54] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi. Target-driven visual navigation in indoor scenes using deep
reinforcement learning. In IEEE International Conference on Robotics
and Automation, pp. 3357–3364. IEEE, 2017. doi: 10.1109/ICRA.2017.
7989381

https://oceanservice.noaa.gov/facts/lidar.html
https://oceanservice.noaa.gov/facts/lidar.html
https://paperswithcode.com/dataset/nba-sportvu
https://paperswithcode.com/dataset/nba-sportvu

	Introduction
	Related Work
	Problem Formulation
	RL-Label Design
	Encoder for State Embedding
	Actor for Action Generating
	Critic for Reward Learning

	Dataset and Network Training
	Dynamic Environments Simulation
	Network Training

	Computational Experiments
	Rewards Over the Training
	Value Heatmap Learned by the Model
	Performance in Achieving Objectives
	Examples

	User Study
	Experiment Settings
	Quantitative Results
	Qualitative Feedback
	Summary

	Discussion, Future Work, and Limitations
	Conclusion

