Quantifying the Impact of XR Visual Guidance on User Performance
Using a Large-Scale Virtual Assembly Experiment
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Figure 1: Overview of the virtual environment, featuring the assembly instruction board (A), one of three workstations (B), a guidance
arrow to support Object Identification (C), a connection line and placement outline to support Action Guidance (D), and the indicator

at the edge of the screen to support Gaze Guidance (E).

ABSTRACT

The combination of Visual Guidance and Extended Reality (XR)
technology holds the potential to greatly improve the performance
of human workforces in numerous areas, particularly industrial en-
vironments. Focusing on virtual assembly tasks and making use of
different forms of supportive visualisations, this study investigates
the potential of XR Visual Guidance. Set in a web-based immersive
environment, our results draw from a heterogeneous pool of 199
participants. This research is designed to significantly differ from
previous exploratory studies, which yielded conflicting results on
user performance and associated human factors. Our results clearly
show the advantages of XR Visual Guidance based on an over 50%
reduction in task completion times and mistakes made; this may
further be enhanced and refined using specific frameworks and other
forms of visualisations/Visual Guidance. Discussing the role of
other factors, such as cognitive load, motivation, and usability, this
paper also seeks to provide concrete avenues for future research and
practical takeaways for practitioners.

Index Terms: [Human-centered computing]: Visualization, Hu-
man computer interaction (HCI), Interaction design—Empirical
studies in visualization, HCI, and interaction design

1 INTRODUCTION

Extended Reality (XR) technologies such as Augmented or Vir-
tual Reality (AR/VR) provide immersive and interactive ways to
seamlessly experience a blend of real and virtual elements. They
hence offer the potential to significantly impact a range of fields,
including manufacturing, education, and healthcare [11, 16, 19]. By
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embedding visual support within the user’s field of vision XR tech-
nologies may be leveraged to increase worker performance during
both training and operations, e.g. by reducing the time required to
complete tasks or the number of mistakes made in the process [11].
Although the literature on XR technology is extensive, the respective
influence, design, and implementation of Visual Guidance are not
well-understood overall. Further, only few studies focus on compar-
ing the impact of different visualisation types on user performance
ceteris paribus [11].

Therefore, in this study, we quantify the impact of XR Visual
Guidance on user performance using a large-scale virtual assembly
experiment. To recruit a large number of participants, our research
design was based on webVR, meaning an immersive but desktop-
based setup. Given our focus on different forms of visualisations,
this approach allowed for comparable insights while accessing a
broader population of participants compared to more traditional lab-
based XR Visual Guidance experiments; these are usually smaller in
participant numbers and less diverse. To the best of our knowledge,
this study is the first to quantify the effect of different forms of XR
Visual Guidance on user performance on such a large scale.

In pursuing the following objectives, we hope to advance the fields
of XR Visual Guidance, operator performance-oriented visualisation
research, and Human-Computer Interaction by (1) quantifying the
impact different modes of XR Visual Guidance have on user perfor-
mance, (2) exploring the human factors tied to potential changes in
performance, and (3) further refining and field-testing the XR Visual
Guidance framework proposed by Pietschmann et al. [18] as part of
(4) a large-scale experiment.

2 BACKGROUND AND RESEARCH PROBLEM

XR Visual Guidance refers to in-situ visual support in the form of
information embedded into users’ field of vision via XR technology,
e.g. AR headsets [7,11, 13,14, 18,23]. Previous studies have investi-
gated the potential for applying XR Visual Guidance to a range of
procedural knowledge-intensive tasks, including assembly, mainte-



nance, and training [2,6,11,18,22]. While a multitude of studies have
covered the effects of XR technology on user performance, much
fewer have delved into the impact of XR Visual Guidance. Despite
often reporting conflicting results on the relationship between XR
Visual Guidance, user performance, and underlying human factors,
the overall stance on XR Visual Guidance is positive [1,6,8,17,18].

It is hypothesised that well-applied XR Visual Guidance may
increase overall user performance and benefit learning and reten-
tion [4, 11, 18]. This positive effect of Visual Guidance is often
associated with a reduction in cognitive load [3]. Novelty effects,
however, which stem from participants’ unfamiliarity with XR hard-
ware have been reported to negatively affect cognitive load. This
causes opposing influences and facilitates conflicting results [18].
To mitigate such novelty effects on cognitive load, previous studies
recommended the implementation of pre-training into the research
design. Doing so enables the familiarisation of participants with the
virtual environment (VE), associated XR hardware, and the HCI pro-
cess prior to the main study [15]. When it comes to the underlying
task to be completed by the user, sequential tasks based on procedu-
ral knowledge have been among the most suitable applications of
Visual Guidance [18].

Systematic approaches to XR Visual Guidance, such as the
framework proposed by Pietschmann et al. [18], are still rare.
Additionally, almost all related or similar empirical studies con-
ducted small-scale (i.e. n =~ 20) experiments, often based on highly
specific tasks and with a largely male-dominated, undergraduate
participant pool recruited from the respective researchers’ university
environments (for an in-depth discussion, see [11, 18]). The
resulting lack of generalisability is driven by the exploratory
experimental designs employed in previous studies in combination
with largely homogeneous participant pools, ultimately making it
challenging to quantify the impact XR Visual Guidance has on user
performance [11, 18]. In this study, and based on related work, we
investigate three hypotheses: We expect time to completion (H1),
the number of mistakes (H2), and cognitive load (H3) all to sig-
nificantly differ between the different visualisation types (see Fig. 2).

3 METHODOLOGY

In line with the XR Visual Guidance framework proposed by
Pietschmann et. al [18], we investigated the impact of three different
dimensions of Visual Guidance (VG): Gaze Guidance (GG), Object
Identification (OI) and Action Guidance (AG) in a between-subjects
design. The framework suggests that a sequential assembly task can
be split into three repeating parts, which may be supported by dis-
tinct Visual Guidance: (1) orientation in the three-dimensional VE
to move the field of vision in the correct general direction, supported
by GG, (2) identification of the correct part to pick up, supported
by OI, and (3) placing the part in the correct spot, supported by AG.
For GG, we included an arrow at the edge of the participant’s field
of vision, indicating the direction to look at (E in Fig. 1). OI was
implemented as a red arrow pointing at the next part to pick up (C in
Fig. 1). AG consisted of a transparent hologram indicating the target
location of where to add the part to the workpiece and a connection
line between the target location and the part in hand, thus guiding
the user to place the part (D in Fig. 1).

3.1 Study Design

To measure the effect of every possible combination of GG, OI, and
AG on the performance metrics, eight groups (G1-G8) were required,
as shown in Fig. 2. An ex-ante power analysis yielded a total required
number of participants greater than 168; hence, we opted for a
web-based immersive experiment that could accommodate large
amounts of participants, especially in times of COVID-19. We
developed a system which automatically recruited participants via
Amazon Mechanical Turk (MTurk), fed them through the experiment

(including pre-and post-questionnaire and a browser-based virtual
environment), and collected the data [26].

Online XR experiments such as browser-based webVR applica-
tions have been increasingly recognised as a viable alternative to
traditional in-lab XR research [20,24]. Although webVR simula-
tions may not fully replicate those experiments using XR hardware,
they enable data collection from a greater and potentially more di-
verse pool of participants in less time, using fewer resources, while
yielding comparable results — all of these factors were important for
this study [9].

Participants were recruited internationally and pseudonymously
via MTurk and were allowed to participate only once based on their
MTurk ID, which was their sole identifier.
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Figure 2: Experimental procedure and different groups including the
respective number of participants included in final analysis (n).

3.2 Procedure

The experiment itself consisted of a pre-questionnaire, a familiarisa-
tion phase, one main assembly task, and a post-questionnaire. Fig. 2
illustrates the experimental procedure. Firstly, after accepting the
task, participants were forwarded to the pre-questionnaire hosted on
Qualtrics. Following this, they received a link to the virtual environ-
ment which ran a full-screen webVR application on their machines.
Secondly, participants were familiarised with the controls, interac-
tion methods, an abstract assembly procedure, and specifics about
the VE as well as the general goals of the experiment (Fam-Phase).
We incorporated this pre-training principle to mitigate potential nov-
elty effects on our results [18]. Thirdly, participants entered the main
VE after successfully completing the familiarisation phase. They
were randomly allocated to one of the eight groups. Participants
were tasked with assembling a LEGO car in 71 steps, spread out
over three different workstations (B in Fig. 1). The visual support re-
ceived depended on the group participants were allocated to. For all
groups, a large virtual monitor in the VE displayed the assembly in-
structions. These were developed based on, and closely resembling,
LEGO’s official instruction manual (A in Fig. 1). Figure 1 shows
the concrete implementation within the VE. Lastly, upon completing
the assembly task, participants progressed to the post-questionnaire.

3.3 Measurements

Time to completion (TTC) and mistakes were metered automatically
in the VE. Both the attempted placement of the correct part at an
incorrect location or an incorrect part at any location was counted as
mistake. Cognitive load (CL) was measured using NASA-TLX [10,
25]. Attention check questions (ACQs) and mutually exclusive
questions were also included to ensure participants’ attentiveness
and the coherence of their answers. The VE was developed using
Unity based on an adapted version used in previous studies and
exported as a webVR application [4,9,26].



4 RESULTS

After filtering for completeness and validity of the collected data,
a total of 199 participants were included in this study. 63% of
participants were male and the average age was 34.8 years (SD
= 9.8 years). As their occupation, 74 participants selected ’full-
time MTurk worker’, 72 selected ’office worker’, 29 selected "non-
office worker’, and 9 selected ’university student’. As their highest
completed educational background, 52 indicated "high school’, 134
’college’, and 13 ’other’. An added analysis of the participants’
experience with LEGO and VR revealed a homogeneous distribution
across all experience levels.

Based on the collected data, we statistically analysed the de-
pendent variables. To determine the suitable test, we tested for
normal distribution using the Shapiro-Wilk test [21] and homogene-
ity of variance [5]. The assumption of normality was invalidated by
two out of three distributions. For normal distributions we applied
ANOVA, and for non-normal distributions, we applied the Kruskal-
Wallis (KW) test [12] and calculated the average values (i) using
the median [5, 12].

4.1 Time to Completion

The first hypothesis (H1) was confirmed, as our results and the non-
parametric KW test (H = 62.153,p < 0.001, f2 = 0.449) demon-
strate that the average TTC differs significantly between the visu-
alisation types (see Fig. 3). The descriptive statistics indicate that
the control group had the highest TTC (G1; u=797s), followed by
combined GG and OI (GS5; u=778s), GG (G2; u=759s), OI (G3;
n=723s), AG (G4; u=597s), combined GG and AG (G6; u=493s),
combined OI and AG (G7; u=403s), and combined GG, OI, and AG
(G8; u=333s).

4.2 Number of Mistakes Made

The second hypothesis (H2) was confirmed, as the ANOVA test
shows a significant difference in the number of mistakes made be-
tween the visualisation types (F = 12.827, p < 0.001, fZ = 0.033).
Our descriptive statistics reveal that combined GG, OI, and AG (G8;
1=9) lead to the least number of errors followed by combined OI
and AG (G7; u=13), combined GG and AG (G6; u=14), AG (G4,
U=16), the control group (G1; u=24), combined GG and OI (G5;
n=25), OI (G3;u=26), and GG (G2; u=27.5).

4.3 Cognitive Load

The third hypothesis (H3) was not confirmed, as the KW test indi-
cates no significant differences in cognitive load between the groups
(H = 8.28, p = 0.309, 2 = 0.007) on the basis of the NASA-TLX
data. The lowest cognitive load was found in combined GG, OI, and
AG (G8; u=34) and AG (G4; u=34), followed by combined OI and
AG (G7; u=37), OI (G3; u=37), combined GG and AG (G6; u=37),
and the control group (G1; u=37). The highest load was found in
GG (G2; u=40) and combined GG and OI (G5; u=43).

4.4 Qualitative Feedback

Most participants who provided free-text answers were satisfied
with the implemented XR Visual Guidance and confirmed our initial
assumptions of their helpfulness to them during the different stages
of the assembly process: “Easy fo understand with arrows point-
ing to objects and destinations highlighted”. Multiple participants
from those groups lacking one of the three dimensions of Visual
Guidance pointed out a need for the lacking dimension — without
knowing about the existence of the other groups. This, therefore,
supports the overall design of the XR Visual Guidance framework
by Pietschmann et al. [18]. Participants without GG, for example,
reported problems with orientation, such as locating the next work-
station: “I also had a little trouble locating the new station, perhaps
[an] arrow showing where the new station was would have been
helpful.” Participants without OI reported problems identifying the
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Figure 3: Distribution plots for task completion times, mistakes made
and cognitive load by group (from left to right)

correct next piece, especially when there were multiple pieces which
looked alike: “Highlighting would have been nice, especially in
cases where there were multiple identical components |[...]”. Partici-
pants without AG suggested that situated visualisation, supporting
them in finding the correct placement location, would have been
beneficial: “It would be helpful to provide translucent installation
instructions in the field of view.” However, there were also complains
about the design of the OI arrow, as it was not precise enough and
sometimes obstructed the field of view: “I think highlighting the
piece that needs moving would work better than having an arrow
pointing to it.” Additionally, a handful of participants complained
about performance issues, a lack of clear instructions, and cyber
sickness. Overall, the experiment and especially the implemented
XR Visual Guidance were well-received.

5 DISCUSSION

The aim of this large-scale, immersive study was to quantify the im-
pact of different forms of XR Visual Guidance on user performance
by investigating time to completion and mistakes made, as well as
the underlying human factors, such as cognitive load.

5.1 XR Visual Guidance Positively Impacting User Per-
formance

H1 and H2 were confirmed, as the results of our study affirmed a
significant difference between the individual visualisations for both
TTC and the number of mistakes made. Visual Guidance was able



to reduce TTC by as much as 58% and mistakes by 62% when com-
paring G8 against the control group (G1). The overall differences
between the groups for TTC and mistakes are strongly significant
(pi0.001). Interestingly, TTC was reduced most by combining OI
and AG, whereas the reduction in mistakes appeared to be largely
associated with AG only. GG did not appear to have a strong overall
impact, which is not surprising given that tridimensional orientation
was only a minor part of the assembly task.

Based on the above observations, AG, which is designed to sup-
port the placement process, appears to have effectively mitigated
challenges associated with the placement process, thus leading to a
shorter and more accurate placement of parts. AG alone (G4) was
able to reduce TTC by 25% and mistakes by 33%. OI, which is
designed to help the user pick the correct part, by itself (G3) seems
to have shortened the time to identify and select the correct part
by 9%. Surprisingly, OI did not appear to have a big impact on
mistakes made, thus indicating that users did not have any issues
with selecting the wrong parts. Combining both AG and OI (G7)
yields a reduction in TTC and mistakes made by up to 49% and
46% respectively. In line with our expectations, providing the users
with visuals to help them navigate the most challenging parts of
the assembly process, such as choosing the right part and placing it
where it belongs, yielded the biggest improvements in performance.

The above findings on TTC contrast recent findings from [11] who
reported that the type of visualisation did not impact TTC. However,
they align with previous studies presenting significantly reduced
task completion times using different forms of visualisation [2,22].
Regarding mistakes, the above findings are in line with [2, 11,22].

5.2 Cognitive Load not Impacted by Different XR Visual
Guidance

H3 was not confirmed since there is no significant difference in
cognitive load between the individual visualisations. Although CL
was reduced in G7 compared to the control group (G1), overall the
results did not cross the significance threshold (p=0.27).

The similarity of cognitive load in combination with stark dif-
ferences in user performance comes as a surprise, as the increase
in performance does not appear to be the result of a reduction in
cognitive load based on our observations. We expected to see an
increase in performance with reduced cognitive load associated with
a reduction of the split-attention effect. However, this does not seem
to be the case. Here, further research is needed in this regard, as this
finding contrasts with those of previous studies [2, 11].

5.3 Practical Takeaways

Our study yielded multiple takeaways for leveraging and designing
XR Visual Guidance. Firstly, XR Visual Guidance can signifi-
cantly increase user performance if designed and applied sys-
tematically. Instead of copying textual information from standard
operating procedures and displaying them without adaptation, those
designing immersive applications, especially in industrial contexts,
should use the unique opportunity of embedding visualisations of-
fered by XR technology. Pietschmann et al’s underlying XR Visual
Guidance framework can further guide such design processes [18].
Secondly, Action Guidance most efficiently reduces mistakes. In
combination with Object Identification, a strong reduction in TTC is
also possible. For practitioners, this means that identifying the type
of challenge their users are facing is instrumental in selecting an
appropriate Visual Guidance technique. For example, the placement
process seemed to be a source of mistakes for our participants, and
AG was able to mitigate associated challenges. Finally, Object Iden-
tification can reduce picking times but should not obstruct users’
fields of view. While the overall effect on performance was positive,
the most frequent constructive criticism participants provided was
that parts to be selected should be highlighted without obstructing
their field of view. Based on this, highlighting approaches utilising

glow or colour change techniques appear to be more advisable than
arrows pointing out the correct objects. Furthermore, this empha-
sises the potential drawbacks of occlusion and visual clutter.

5.4 Limitations and Opportunities for Future Research

While the amount and diversity of our recruited participants were one
of the greatest strengths of this study, controlling the experimental
environment and ensuring the validity of the collected data remained
a challenge due to the remote setup. Although we were able to check
the plausibility of the data, participants nonetheless took part in the
experiment in an uncontrolled environment on their own machines.
One upside of this circumstance, however, is that this reflects a more
realistic setup than those recreated in lab-based immersive exper-
iments; thus, our research may potentially yield insights that are
more reflective of real-world engagements with applied XR Visual
Guidance. Although we had several technical checks in place, we
could not entirely rule out poor machine performance or distrac-
tions during the experiment. Furthermore, measurements of human
factors in this study are subjectively queried. While questionnaires
such as NASA-TLX, IMI, and SUS are highly standardised, future
work should aim to additionally include biometric data collected via
different sensors, such as eye tracking or EEG technology.

Among potential avenues for further research, two themes stand
out in particular: Firstly, the relationship between performance
improvements and the underlying human factors remains to be inves-
tigated. In this regard, we were not able to obtain results in line with
our expectations, with previous studies reporting mixed evidence
as well. Especially the causes and effects of cognitive load in com-
bination with XR Visual Guidance need to be better understood to
design efficient visual support and leverage the unique opportunities
offered by XR technology to augment human workforces.

Secondly, exploring additional design options of Gaze Guidance,
Object Identification, and Action Guidance, or even the entire XR
Visual Guidance framework, could lead to further insights into ef-
fective XR Visual Guidance. While we chose promising approaches
based on well-performing design options from previous studies, the
variety of visualisations we could implement as part of this study
was limited. Higher variation in Visual Guidance methods used
may ultimately lead to more holistic design guidelines for future XR
designers and developers. Further investigating the impact different
visualisations may have on performance and human factors would
likely lead to novel and interesting insights.

6 CONCLUSION

The relevance of well-designed Visual Guidance and its importance
for enhancing human performance is increasingly being recognised
within a growing XR community. While previous studies have in-
vestigated the impact of different forms of Visual Guidance on user
performance, using exploratory small-scale experiments, we set out
to quantify the impact on user performance based on a larger-scale
study and a highly diverse participant pool. Based on Pietschmann
et al’s XR Visual Guidance framework, we designed eight differ-
ent groups with differing forms of XR Visual Guidance [18]. Our
results confirmed that XR Visual Guidance can reduce the time to
complete a virtual assembly task by as much as 58% and the mis-
takes made by 62%. While user performance greatly benefited from
the implemented XR Visual Guidance, cognitive load did not seem
to differ. Our data suggested that improvements in performance
were not linked to a decrease in cognitive load; this is a significant
insight, given the deviating results of related studies. Our findings
demonstrate the potential of XR Visual Guidance in visually im-
mersive environments to improve user performance, particularly for
tasks requiring procedural knowledge. This study paves the way
for a deeper exploration of the underlying human factors associated
with XR Visual Guidance and the relationship between visualisation,
performance, and cognitive load.
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