
Reducing Tarski to Unique Tarski

(In the Black-Box Model)

Xi Chen #

Columbia University, New York, NY, USA

Yuhao Li #

Columbia University, New York, NY, USA

Mihalis Yannakakis #

Columbia University, New York, NY, USA

Abstract

We study the problem of Ąnding a Tarski Ąxed point over the k-dimensional grid [n]k. We give a

black-box reduction from the Tarski problem to the same problem with an additional promise that

the input function has a unique Ąxed point. It implies that the Tarski problem and the unique

Tarski problem have exactly the same query complexity. Our reduction is based on a novel notion of

partial-information functions which we use to fool algorithms for the unique Tarski problem as if

they were working on a monotone function with a unique Ąxed point.
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1 Introduction

We start with the deĄnition of monotone functions and state TarskiŠs Ąxed point theorem [12]:

▶ DeĄnition 1 (Monotone functions). Let (L,⪯) be a complete lattice. A function f : L → L

is said to be monotone if f(a) ⪯ f(b) for all a, b ∈ L with a ⪯ b.

▶ Theorem 2 (Tarski). For any complete lattice (L,⪯) and any monotone function f : L → L,

there must be a point x ∈ L such that f(x) = x, i.e., x is a Ąxed point. In fact, the Ąxed

points form a sublattice, with a greatest and a smallest element.

TarskiŠs Ąxed point theorem has extensive applications in many Ąelds, including for

example veriĄcation, semantics, game theory and economics. For example in game theory

there is an important class of games, called supermodular games (or games with strategic

complementarities) which model economic settings where a playerŠs best response is a

monotone function (or correspondence) of the other playersŠ actions [13, 14, 10]. These

games always have pure equilibria (in fact a lattice of pure equilibria) by TarskiŠs theorem.

Computing a pure equilibrium in such a game corresponds to Ąnding a Tarski Ąxed point.

In fact, as shown in [4], Ąnding a pure equilibrium in supermodular games is essentially

equivalent to Ąnding a Ąxed point of monotone functions.
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21:2 Reducing Tarski to Unique Tarski (In the Black-Box Model)

There are several other types of games that reduce to the Tarski problem. For example,

CondonŠs simple stochastic games [2] have been intensely studied both in theoretical computer

science as well as in the veriĄcation Ąeld (and they subsume other well-studied problems, such

as parity games); their complexity remains a notorious open problem. The problem can be

reduced to the Tarski problem of Ąnding a Ąxed point of a given monotone function f , and in

fact in this case we can even guarantee that the function has a unique Ąxed point. A similar

property holds for the broader class of stochastic games deĄned originally by Shapley [11],

and studied extensively since then. These games have in general irrational solutions, but it

can be shown again that approximating the solution to any desired accuracy reduces to the

problem of computing a Ąxed point of a monotone function that is furthermore guaranteed to

have a unique Ąxed point (see [4] for more details). More generally, uniqueness of solutions

is a desirable property in many applications in game theory, economics, and other Ąelds. For

sufficient conditions that ensure the uniqueness of Tarski Ąxed points, see [9] and references

therein.

Thus, these facts raise the question, how hard is it to Ąnd a Ąxed point of a given

monotone function? And if we know that the function has a unique Ąxed point, does this

make the problem easier?

In this paper, we study the deterministic query complexity of Ąnding a Ąxed point of

a monotone function f over the complete lattice of a k-dimensional grid ([n]k,⪯), where

[n] denotes ¶1, . . . , n♢ and ⪯ denotes the natural partial order over Z
k: a ⪯ b if and only

if ai ≤ bi for every i ∈ [k]. So a monotone function f : [n]k → [n]k satisĄes f(a) ⪯ f(b)

for all a, b ∈ [n]k with a ⪯ b, and we write Fix(f) to denote the set of Ąxed points x of f

satisfying f(x) = x. In the applications, n is typically exponential in the input size and k is

polynomial. Thus, polynomial complexity in this context means polynomial in log n and k.

Under the query model, an algorithm has oracle access to an unknown monotone function

f : [n]k → [n]k. In each round, it can send a query x ∈ [n]k to the oracle to reveal f(x), and

it succeeds after making a query x that returns f(x) = x. We write Tarski(n, k) to denote

this problem.

Our understanding of the query complexity of Tarski(n, k) remains rather limited. On

the upper bound side, there are two basic algorithms. TarskiŠs algorithm (or Kleene iteration

in a different literature) starts from the bottom element 1k of the lattice (or the top element

nk) and applies repeatedly f until it reaches a Ąxed point; the query complexity is Θ(nk) in

the worst case. Another algorithm by [3] applies a binary search strategy in a recursive way

and has query complexity O(logk n). More recently, [7] gave an algorithm for Tarski(n, k)

with O(log⌈2k/3⌉ n) queries, which was further improved to O(log⌈(k+1)/2⌉ n) in [1]. Both

algorithms of [7] and [1] are based on decomposition theorems that lead to more efficient

recursive schemes for Tarski Ąxed points.

On the lower bound side, [4] showed that Tarski(n, 2) requires Ω(log2 n) queries. Their

lower bound uses the family of ŞherringboneŤ functions which have a unique Ąxed point.

Therefore, the same Ω(log2 n) lower bound also holds for the unique Tarski Ąxed point

problem over [n]2, where the input function is not only monotone but also promised to have

a unique Ąxed point. Let UniqueTarski(n, k) denote the unique Tarski problem over [n]k.

Given that UniqueTarski(n, 2) is as hard as Tarski(n, 2), is it the case for general k? or

maybe UniqueTarski(n, k) is easier than Tarski(n, k) for larger k? This was posed as an

open question in [4].

Our main result is a black-box reduction from Tarski(n, k) to UniqueTarski(n, k),

which shows that the phenomenon observed in [4] between query complexities of Tarski(n, 2)

and UniqueTarski(n, 2) holds for general k.
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▶ Theorem 3. Let qT(n, k) be the query complexity of Tarski(n, k) and qUT(n, k) be the

query complexity of UniqueTarski(n, k). Then qT(n, k) = qUT(n, k).

Remark. In fact, we will show that the query complexity of Tarski(n, k) is exactly the

same as that of a seemingly even easier (more structural) problem: Ąnding a Ąxed point of a

monotone function over [n]k with the promise that every slice has a unique Ąxed point. See

Lemma 16 for more details.

Note that the query complexity of UniqueTarski(n, k) is trivially at most that of

Tarski(n, k). In the rest of the paper, we prove the other direction by giving a reduction

from Tarski(n, k) to UniqueTarski(n, k) via a novel framework we call partial information

reductions. We believe that this framework is of independent interest and we expect that it

can be applied to a wider range of search problems concerning their query complexities.

1.1 Sketch of the Reduction

Unlike standard reductions that map from instances to instances, our reduction transforms

any given algorithm for UniqueTarski (denoted by U) to an algorithm for Tarski (our

main algorithm, Algorithm 1) while keeping the query complexity the same. To the best of

our knowledge, we have not seen such a non-standard black-box reduction before, and we

view this as a conceptual contribution of this work. We would like to highlight the following

high-level roadmap: Algorithm 1 will simulate U , but provide it with modiĄed answers to

its queries to the oracle. These modiĄed answers are constructed adaptively on-the-Ćy, and

depend on what previous queries U has made. It may seem dangerous to modify the answers

to the queries in the Ąrst place, but our reduction makes sure that the answers fed to U are

always safe, in the sense that they always correspond to some monotone function with a

unique Ąxed point, and any Ąxed point that is found by U must also be a Ąxed point of the

original monotone function. LetŠs explain the reduction in more detail next.

Let U be a deterministic query algorithm for UniqueTarski(n, k) with query complexity

q(n, k). Given any monotone function g : [n]k → [n]k that has a unique Ąxed point x∗, U

always Ąnds x∗ by querying it within the Ąrst q(n, k) queries. At a high level, we would like

to simulate U to Ąnd a Ąxed point of any monotone function f : [n]k → [n]k as an input to

Tarski(n, k). But clearly we cannot run U on f directly since the latter may have multiple

Ąxed points and it is likely that after some queries, answers that U receives are not consistent

with any monotone function with a unique Ąxed point, in which case U may fail to Ąnd a

Ąxed point within q(n, k) queries. (See Figure 2 in Section 4 for an example.)

Instead, our reduction needs to serve as a surrogate between f and U to achieve the

following two goals that are seemingly contradictory to each other:

(i) On the one hand, we need to fool U by making sure that answers it receives during

the whole process are consistent with some monotone function that has a unique Ąxed

point.

So from U Šs point of view, the function it interacts with can totally be a monotone

function with a unique Ąxed point. LetŠs refer to this function, which is made up by

our reduction, by g. Given that we cannot always return f(x) to each query x of U ,

the true input function f can potentially disagree signiĄcantly with the fake function g

that U interacts with (see the comparison of Figure 2b and 4d);

(ii) On the other hand, the way we answer queries to U (or the way we make up this fake

function g) needs to achieve that, whenever U Ąnds a Ąxed point of the fake function g

(which always happens within q(n, k) queries if the Ąrst goal is met), the same point

must be a Ąxed point of the true input function f as well.

We achieve these goals using partial information functions (or PI functions in short).

CCC 2023



21:4 Reducing Tarski to Unique Tarski (In the Black-Box Model)

A PI function p over [n]k is a map from [n]k to ¶−1, 0, 1,≤,≥, ⋄♢k. Intuitively a PI

function p reveals some partial information of an unknown function h : [n]k → [n]k. (For

example, p(x)i = 1 implies that h(x)i > xi, p(x)i =≥ implies that h(x)i ≥ xi and p(x)i = ⋄

implies no information about h(x)i; the connection will become cleaner after we introduce

the notion of simple functions at the beginning of Section 2.) Moreover, we say a PI function

p is monotone if it reveals some partial information of an unknown monotone function so

one should not be able to infer from p any violation to monotonicity; see DeĄnition 7.

Let f : [n]k → [n]k be the input monotone function. Our main algorithm, Algorithm 1

solves Tarski(n, k) on f by simulating U round by round as follows: During the t-th round,

t = 1, 2, . . .,

1. Algorithm 1 runs U to obtain the t-th point qt ∈ [n]k that U would like to query;

2. Algorithm 1 queries f to obtain f(qt) and uses it to obtain the answer at ∈ [n]k to the

query. (As discussed earlier, at is not necessarily the same as f(qt); picking at based on

f(qt) and the query history is the part that heavily relies on the use of PI functions.)

3. Finally Algorithm 1 sends at to U as the result of its t-th query, and moves onto round

t + 1 (unless f(qt) = qt so a Ąxed point of f has already been found).

Algorithm 1 picks answers at to queries of U by maintaining a monotone PI function p

to connect f with U . After receiving the t-th query qt from U , Algorithm 1 uses f(qt) to

update the current PI function and then uses the updated PI function to set the answer

at to U . The design of the updating rule for the PI function (see the main subroutine

Generate-PI-Function in Section 3) to achieve both goals (i) and (ii) discussed earlier is

the most challenging part of the paper.

2 Partial-Information Functions

For a, b ∈ Z
k with a ⪯ b, we write La,b to denote the set of points x ∈ Z

k with a ⪯ x ⪯ b.

We say a function f : [n]k → [n]k is a simple function if it satisĄes ♣f(x)i − xi♣ ≤ 1 for

all x ∈ [n]k and i ∈ [k] (i.e., f(x)i − xi ∈ ¶−1, 0, 1♢). Let sgn(a) for a number a be 1, 0,−1

respectively if a > 0, a = 0, a < 0. We include the following folklore observations:

▶ Observation 4. For any monotone function f : [n]k → [n]k, let g : [n]k → [n]k be deĄned as

g(x)i := xi + sgn(f(x)i − xi), for all x ∈ [n]k and i ∈ [k].

Then g is a monotone simple function and satisĄes Fix(g) = Fix(f).

It follows that for both Tarski and UniqueTarski, we may assume without loss of

generality that the input monotone function f : [n]k → [n]k is simple.

▶ Observation 5. A simple function f : [n]k → [n]k is monotone if and only if it satisĄes

the following conditions:

(1) f(x)i = xi + 1 implies f(y)i = yi + 1 and f(y + ei)i ≥ yi + 1 for all y with x ⪯ y and

xi = yi;

(2) f(x)i = xi − 1 implies f(y)i = yi − 1 and f(y − ei)i ≤ yi − 1 for all y with x ⪰ y and

xi = yi; and

(3) f(x)i = xi implies (a) f(y)i ≤ yi for all y with x ⪰ y and xi = yi, and (b) f(y)i ≥ yi

for all y with x ⪯ y and xi = yi.

Observation 5 provides an alternative way to check the monotonicity of a simple function.

It will mainly serve to verify the monotonicity of the following introduced partial-information

functions. All functions from [n]k → [n]k we deal with from now on are assumed to be simple;

for convenience, we will skip the word ŞsimpleŤ in the rest of the paper.
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⋄

≤ ≥

−1 0 1

Figure 1 The information partial order. Arrow means ŞdominatesŤ or Şmore informativeŤ.

Now we deĄne partial-information (PI) functions. A PI function over [n]k is a function

from [n]k to ¶−1, 0, 1,≤,≥, ⋄♢k. Intuitively a PI function reveals some partial information on

the values of an underlying function f : [n]k → [n]k; the next deĄnition illustrates meanings

of symbols in ¶−1, 0, 1,≤,≥, ⋄♢:

▶ DeĄnition 6 (Consistency). A function g : [n]k → [n]k and a PI function p : [n]k →

¶−1, 0, 1,≤,≥, ⋄♢k are consistent if the following conditions hold for all x ∈ [n]k and i ∈ [k]:

p(x)i = −1 implies g(x)i − xi = −1;

p(x)i = 0 implies g(x)i − xi = 0;

p(x)i = 1 implies g(x)i − xi = 1;

p(x)i =≤ implies g(x)i − xi ∈ ¶−1, 0♢;

p(x)i =≥ implies g(x)i − xi ∈ ¶0, 1♢; and

p(x)i = ⋄ implies nothing about g(x)i.

We introduce a natural partial order over symbols in ¶−1, 0, 1,≤,≥, ⋄♢, illustrated in

Figure 1. We say α dominates β (or α is more informative than β, denoted by α⇒ β), for

some α, β ∈ ¶−1, 0, 1,≤,≥, ⋄♢, if either α = β or there is a path from α to β. With this

notation, we have that g : [n]k → [n]k is consistent with a PI function p iff g(x)i−xi ⇒ p(x)i

for all x ∈ [n]k and i ∈ [k]. Given two PI functions p′, p : [n]k → ¶−1, 0, 1,≤,≥, ⋄♢k, we say

p′ dominates p (or p′ is more informative than p, denoted by p′ ⇒ p) if p′(x)i ⇒ p(x)i for all

x ∈ [n]k and i ∈ [k].

Given that we are interested in monotone functions f : [n]k → [n]k, we introduce the

notion of monotone PI functions below. Intuitively a PI function p is monotone if it reveals

some partial information of a monotone function (so one cannot infer from p any violation to

monotonicity):

▶ DeĄnition 7 (Monotone PI Functions). A PI function p : [n]k → ¶−1, 0, 1,≤,≥, ⋄♢k is said

to be monotone if it satisĄes the following conditions: For any x ∈ [n]k and i ∈ [k],

(1) p(x)i = 1 implies p(y)i = 1 and p(y + ei)i ∈ ¶1, 0,≥♢ for all y with x ⪯ y and xi = yi;

(2) p(x)i = −1 implies p(y)i = −1 and p(y − ei)i ∈ ¶−1, 0,≤♢ for all y with x ⪰ y and

xi = yi;

(3) p(x)i = 0 implies (a) p(y)i ∈ ¶0,−1,≤♢ for all y with x ⪰ y and xi = yi, and

(b) p(y)i ∈ ¶0, 1,≥♢ for all y with x ⪯ y and xi = yi;

(4) p(x)i =≤ implies p(y)i ∈ ¶−1,≤♢ for all y with x ⪰ y and xi = yi;

(5) p(x)i =≥ implies p(y)i ∈ ¶1,≥♢ for all y with x ⪯ y and xi = yi;

(6) If xi = 1, then p(x)i ∈ ¶0, 1,≥♢; and

(7) If xi = n, then p(x)i ∈ ¶0,−1,≤♢.

A PI function is weakly monotone if it satisĄes (1)Ű(5) above, but not necessarily (6) and (7).

Note that items (6) and (7) are only about the boundary constraints. Weak monotonicity

will only appear for the simplicity of the proofs below and there are no technical details

behind them.

CCC 2023
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The next lemma shows that every monotone PI function is consistent with at least one

monotone function. (Looking ahead, later in Section 3.2 we will give a sufficient condition for

a monotone PI function to be consistent with at least one monotone function with a unique

Ąxed point.)

▶ Lemma 8. For every monotone PI function p over [n]k, there exists a monotone function

g : [n]k → [n]k that is consistent with p.

Proof. Given p we deĄne g : [n]k → [n]k as follows:

g(x)i :=



xi + p(x)i if p(x)i ∈ ¶−1, 0, 1♢;

xi otherwise.

We will prove g is a monotone function that is consistent with p by Observation 5.

Fix any point x and coordinate i.

Suppose that g(x)i = xi + 1, then we have p(x)i = 1. Since p(x)i = 1 implies p(y)i = 1

and p(y + ei)i ∈ ¶1, 0,≥♢ for all y such that x ⪯ y and xi = yi, we have g(x)i = xi + 1

implies g(y)i = yi + 1 and g(y + ei)i ≥ yi + 1 for all y such that x ⪯ y and xi = yi.

The proof of the case that g(x)i = xi − 1 is symmetric.

Suppose that g(x)i = xi, then we have p(x)i ∈ ¶0,≤,≥, ⋄♢. This implies that (a) p(y)i ̸= 1

for all y such that x ⪰ y and xi = yi, and (b) p(y)i ̸= −1 for all y such that x ⪯ y and

xi = yi. So we have (a) g(y)i ≤ yi for all y such that x ⪰ y and xi = yi, and (b) g(y)i ≥ yi

for all y such that x ⪯ y and xi = yi. ◀

Given two elements α, β ∈ ¶−1, 0, 1,≤,≥, ⋄♢, if their least upper bound (or join) in

the partial order exists, we write α ∩ β to denote it and say that α ∩ β is well deĄned;

otherwise (when their least upper bound does not exist), we say α ∩ β is not well deĄned.

(For example, ≥ ∩ ≤= 0 and ≥ ∩−1 is not well deĄned.) Given two PI functions p1, p2 :

[n]k → ¶−1, 0, 1,≤,≥, ⋄♢k, we deĄne their intersection p1 ∩ p2 to be the PI function p such

that p(x)i = p1(x)i ∩ p2(x)i for all x ∈ [n]k and i ∈ [k]. The intersection p1 ∩ p2 is well

deĄned only when p1(x)i ∩ p2(x)i is well deĄned for all x ∈ [n]k and i ∈ [k].

The reason that we introduce the operation of intersections is the following lemma which

we will often use to modify a given monotone PI function:

▶ Lemma 9. Let p1 be a monotone PI function and p2 be a weakly monotone PI function,

both over [n]k, such that p1 ∩ p2 is well deĄned. Then p1 ∩ p2 is also a monotone PI function

and it satisĄes p1 ∩ p2 ⇒ p1.

Proof. The part about p1 ∩ p2 ⇒ p1 is trivial.

Note that p1 ∩ p2 satisĄes (6) and (7) in DeĄnition 7 since p1 is a monotone PI function.

So in what follows, we will verify (1)-(5) for p1 ∩ p2.

To show p1 ∩ p2 satisĄes (1), Ąx x ∈ [n]k and i ∈ [k]. If p1 ∩ p2(x)i = 1, then either

p1(x)i = 1 or p2(x)i = 1. Suppose that pτ (x)i = 1 for τ ∈ ¶1, 2♢. Then we have pτ (y)i = 1

and pτ (y + ei)i ∈ ¶1,≥♢ for all y ⪰ x and yi = xi. So we have p1 ∩ p2(y)i = 1 and

p1 ∩ p2(y + ei)i ∈ ¶1,≥♢ for all y ⪰ x and yi = xi.

Items (2)-(5) can be veriĄed similarly. ◀

Given a monotone function f : [n]k → [n]k and a monotone PI function p over [n]k, we

deĄne a function f ♣p : [n]k → [n]k as follows: For any x ∈ [n]k and i ∈ [k], let

f ♣p(x)i =



















xi + p(x)i if p(x)i ∈ ¶−1, 0, 1♢;

max(f(x)i, xi) if p(x)i =≥;

min(f(x)i, xi) if p(x)i =≤;

f(x)i, if p(x)i = ⋄.
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Note that f ♣p is a function that is consistent with p (but may disagree with f in general).

Looking ahead, our algorithm for Tarski running on f will maintain a monotone PI function

p and (essentially) use f ♣p to answer the next query from an algorithm for UniqueTarski it

simulates. As it will become clear in Section 3, using f ♣p (with a carefully updated p) instead

of f to answer queries is crucial in making sure answers to the algorithm for UniqueTarski

are consistent with a monotone function with a unique Ąxed point (given that the input

function f to Tarski can have multiple Ąxed points in general).

We record the following lemma about f ♣p:

▶ Lemma 10. Let f be a monotone function and p be a monotone PI function, both over

[n]k. Then f ♣p : [n]k → [n]k is also a monotone function and is consistent with p.

Proof. The part about f ♣p being consistent with p is easy, since f ♣p(x)i − xi = p(x)i when

p(x)i ∈ ¶−1, 0, 1♢; f ♣p(x)i−xi ∈ ¶0, 1♢ when p(x)i =≥; f ♣p(x)i−xi ∈ ¶0,−1♢ when p(x)i =≤;

and f ♣p(x)i − xi ∈ ¶−1, 0, 1♢ when p(x)i = ⋄.

Note that since f is a function from [n]k to [n]k and p is a monotone PI function that

satisĄes the boundary conditions (6) and (7), we have 1 ≤ f ♣p(x)i ≤ n for all x and i.

To show f ♣p is monotone, given any x ∈ [n]k and i ∈ [k], we consider three cases where

f ♣p(x)i = xi + 1, f ♣p(x)i = xi − 1, and f ♣p(x)i = xi.

Suppose that f ♣p(x)i = xi + 1. Then either f(x)i − xi = 1 or p(x)i = 1. If f(x)i − xi = 1

and p(x)i ∈ ¶1,≥, ⋄♢, then we have (i) f(y)i − yi = 1 and f(y + ei)i ≥ yi + 1, and (ii)

p(y)i ∈ ¶1,≥, ⋄♢ and p(y + ei)i ̸= −1 for all y ⪰ x with yi = xi, which imply f ♣p(y)i − yi = 1

and f(y + ei)i ≥ yi + 1. The proof is similar in the case p(x)i = 1.

The proof of the case f ♣p(x)i = xi − 1 is symmetric.

Suppose that f ♣p(x)i = xi. Then one of the following four cases meets: (1) f(x)i = xi

and p(x)i ∈ ¶≤,≥, ⋄♢; (2) p(x)i = 0; (3) f(x)i − xi = 1 and p(x)i =≤; (4) f(x)i − xi = −1

and p(x)i =≥. LetŠs prove the Ąrst case and others are similar. Suppose that f(x)i = xi

and p(x)i ∈ ¶≤,≥, ⋄♢, then we have f(y)i ≤ yi for all y ⪯ x with yi = xi and f(y)i ≥ yi for

all y ⪰ x with yi = xi. Since p(x)i ∈ ¶≤,≥, ⋄♢, we have p(y)i ̸= 1 for all y ⪯ x with yi = xi

and p(y)i ̸= −1 for all y ⪰ x with yi = xi. This Ąnishes the proof. ◀

Before moving to the main reduction, we need to introduce the notion of slices. We note

that the notion of slices was also used in the literature.

▶ DeĄnition 11 (Slices). A slice of [n]k is speciĄed by a tuple s ∈ ([n] ∪ ¶∗♢)k. Given s, we

write Ls to denote the set of points x such that xi = si for all i such that si ̸= ∗.

Given a monotone PI function p and a slice s, we say a point x ∈ Ls is a postĄxed point

of p on the slice s if p(x)i ∈ ¶1, 0,≥♢ for all i with si = ∗ and a point x ∈ Ls is a preĄxed

point of p on the slice s if p(x)i ∈ ¶−1, 0,≤♢ for all i with si = ∗.

We use Posts(p) to denote the set of postĄxed points of p on s and Pres(p) to denote

the set of preĄxed points of p on s.

▶ Lemma 12. Given a monotone PI function p, for any slice s, Posts(p) is a join-semilattice

and Pres(p) is a meet-semilattice.

Proof. Fix a slice s and consider any two points x, y ∈ Posts(p). Then we have p(x)i, p(y)i ∈

¶1, 0,≥♢ for all i with si = ∗. Let z = x∨y be the join of x and y, namely, the coordinatewise

maximum of x and y. Then we have x ⪯ z and y ⪯ z and either zi = xi or zi = yi for all i

with si = ∗. So by the monotonicity of p, we have p(z)i ∈ ¶1, 0,≥♢.

The proof of that Pres(p) is a meet-semilattice is similar. This Ąnishes the proof. ◀
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Lemma 12 guarantees that the join of Posts(p) is well deĄned and the meet of Pres(p) is

well deĄned. We write Js(p) to denote the join of Posts(p) and Ms(p) to denote the meet of

Pres(p). When the context is clear, we may omit p for the simplicity of notations.

▶ Proposition 13. Given a monotone PI function p, for any slice s, we have p(Js)i ∈ ¶0,≥♢

for all i with si = ∗ and p(Ms)i ∈ ¶0,≤♢ for all i with si = ∗.

Proof. Consider any point x ∈ Posts. Suppose that there exists i with si = ∗ such that

p(x)i = 1, then we have x + ei ∈ Posts as well. This means x can not be Js. So we have

p(Js)i ∈ ¶0,≥♢ for all i with si = ∗. The proof of p(Ms) is similar. ◀

3 The Partial-Information Reduction and Proof of Theorem 3

We prove Theorem 3 in this section. Let U be any query algorithm for UniqueTarski(n, k)

with query complexity q(n, k). We show that our main algorithm, Algorithm 1, can employ

U to solve Tarski(n, k) with the same number of queries.

LetŠs continue from the sketch presented in Section 1.1 and elaborate more on how

Algorithm 1 works. Algorithm 1 computes the answer at to the t-th query qt of U by

maintaining a sequence of monotone PI functions p0, p1, . . ., where p0 is the initial monotone

PI function set by the boundary conditions (see line 2 of Algorithm 1) and pt is the monotone

PI function it maintains at the end of the t-th round. During the t-th round, Algorithm 1

Ąrst continues to run U to obtain the t-th query qt. It then queries f to obtain f(qt) and

uses the latter to update the PI function pt−1 to pt. Finally the answer at to U is set to be

f ♣pt(qt) ∈ [n]k.

The correctness of Algorithm 1 relies on the following list of properties of pt: For every t,

pt is a monotone PI function such that

1. pt(qj) + qj = aj for all j ∈ [t] (i.e., pt agrees with answers to all queries U has made so

far);

2. There is a monotone function g that is consistent with pt and has a unique Ąxed point;

3. Any Ąxed point of f ♣pt must be a Ąxed point of f .

To see that Algorithm 1 always Ąnds a Ąxed point of f within q(n, k) queries, we note that

item 3 above implies that qt is a Ąxed point of f if at = f ♣pt(qt) is the same as qt. So the only

bad case is that at ̸= qt for all t = 1, . . . , q(n, k). However, this cannot happen because after

q(n, k) rounds, by item 2, there is a monotone function g that is consistent with pq(n,k) and

has a unique Ąxed point, and by item 1, g(qj) = aj for all j ∈ [q(n, k)]. So g is a monotone

function that has a unique Ąxed point, on which U fails to Ąnd a Ąxed point (since aj ̸= qj

for all j ∈ [q(n, k)]).

3.1 Subroutine Generate-PI-Function

The main challenge is about how to update the PI function pt−1 to pt during the t-th round

to maintain properties listed above for the correctness of the algorithm. This is done by

making calls to a subroutine called Generate-PI-Function (see Algorithm 1; in general it

may take k calls to Generate-PI-Function to obtain pt during the t-th round).

The subroutine Generate-PI-Function(p, q, ℓ, b) takes four inputs, namely, a PI function

p, a point q ∈ [n]k, an index ℓ ∈ [k], and a sign b ∈ ¶−1, 0, 1♢, and returns a new PI

function. Before stating the main technical theorem about Generate-PI-Function, we need

the following deĄnition:

▶ DeĄnition 14. We say a monotone PI function p is safe if, for every slice s ∈ ([n]∪ ¶∗♢)k,

it satisĄes
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(1) for any point x ∈ Ls and x ≺ Js(p), p(x)i ∈ ¶−1, 0, 1♢ for all i with xi < Js(p)i and

p(x)i = 1 for some i with xi < Js(p)i; and

(2) for any point x ∈ Ls and x ≻Ms(p), p(x)i ∈ ¶−1, 0, 1♢ for all i with xi > Ms(p)i and

p(x)i = −1 for some i with xi > Ms(p)i.

We are now ready to state our main technical theorem:

▶ Theorem 15 (Main Technical Theorem). Given a monotone and safe PI function p, q ∈ [n]k,

ℓ ∈ [k], and b ∈ ¶−1, 0, 1♢ such that (p(q)ℓ, b) satisĄes the following condition:

p(q)ℓ ∈ ¶≥, ⋄♢ if b = 1; p(q)ℓ ∈ ¶≤, ⋄♢ if b = −1; p(q)ℓ ∈ ¶≤,≥, ⋄♢ if b = 0, (1)

the function pr returned by Generate-PI-Function(p, q, ℓ, b) satisĄes the following properties:

1. pr is also a monotone PI function;

2. pr ⇒ p;

3. pr(q)ℓ = b; and

4. pr remains safe.

Additionally, if f : [n]k → [n]k is a monotone function such that Fix(f ♣p) ⊆ Fix(f) and

f ♣p(q)ℓ = qℓ + b, then we have Fix(f ♣pr ) ⊆ Fix(f ♣p) ⊆ Fix(f).

We prove Theorem 15 in the rest of the section. An important property of safe, monotone

PI functions is given in the following lemma which we prove in the next subsection.

▶ Lemma 16. If p is a monotone and safe PI function, then there is a monotone function g

that is consistent with p and has a unique Ąxed point in every slice s. In particular, g has a

unique Ąxed point in the whole lattice.

We can use Theorem 15 and Lemma 16 to prove the main theorem:

Proof of Theorem 3. Let f be the input function. We Ąrst note that every time Algorithm 1

obtains p(t,i) from p(t,i−1), either p(t,i) is the same as p(t,i−1) or p(t,i) is set to be

Generate-PI-Function

(

p(t,i−1), q, i, b
)

for some q, i, b that satisfy b = f ♣p(t,i−1)(q)i − qi and (1):

p
(t,i−1)(q)i ∈ ¶≥, ⋄♢ if b = 1; p

(t,i−1)(q)i ∈ ¶≤, ⋄♢ if b = −1; p
(t,i−1)(q)i ∈ ¶≤, ≥, ⋄♢ if b = 0,

Given that p(1,0) = p0 is monotone and safe, it follows directly from an induction using

Theorem 15 that every PI function p in the following list:

p(1,0), . . . , p(1,k), p(2,0), . . . , p(2,k), . . . , p(t,0), . . . , p(t,k), . . .

is monotone and safe, and satisĄes Fix(f ♣p) ⊆ Fix(f). Furthermore, every PI function p in

the list dominates all of its predecessors and p(t,i)(qt)i ∈ ¶−1, 0, 1♢ for all t, i. Combining

the latter with at = f ♣pt(qt), as well as that pt = p(t,k) dominates all of its predecessors, we

have at − qt = pt(qt). It follows that aj − qj = pt(qj) for all j ≤ t.

Let N = q(n, k). Consider the following two cases:

1. If at = qt for some t ∈ [N ], then given that at = f ♣pt(qt) and Fix(f ♣pt) ⊆ Fix(f), we

have that qt is a Ąxed point of f . In this case Algorithm 1 succeeds within q(n, k) queries;

2. Otherwise, we have at ≠ qt for all t ∈ [N ]. In this case, given that pN is both monotone

and safe, Lemma 16 implies that there exists a monotone function g that is consistent

with pN and has a unique Ąxed point. However, given that aj−qj = pN (qj) for all j ≤ N ,

we have that qj ≠ aj = g(qj) for all j ∈ [N ]. As a result, U fails to Ąnd a Ąxed point of g

within its N queries q1, . . . , qN , which it should given that g is a monotone function with

a unique Ąxed point, a contradiction.

This Ąnishes the proof of the theorem. ◀
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Algorithm 1 Algorithm for Tarski(n, k) via the algorithm U for UniqueTarski(n, k).

1 Let U be an algorithm for UniqueTarski(n, k).

2 Let p0 be an empty PI function with the initial boundary conditions, i.e., p0(x)i =≥

if xi = 1; p0(x)i =≤ if xi = n; and p0(x)i = ⋄ otherwise for all x ∈ [n]k and i ∈ [k].

3 Let t← 1 be the round number.

4 do

5 Let qt be the point queried by U and make one query to get f(qt).

6 Let p(t,0) ← pt−1.

7 for each i from 1 to k do

8 If p(t,i−1)(qt)i ∈ ¶−1, 0, 1♢, let p(t,i) ← p(t,i−1).

9 Otherwise, let

p(t,i) ← Generate-PI-Function(p(t,i−1), qt, i, f ♣p(t,i−1)(qt)i − qt
i).

10 Let pt ← p(t,k) and use at ← f ♣pt(qt) as the answer to the algorithm U .

11 If qt = at, then return qt as the Ąxed point and terminate.

12 Else, let t← t + 1.

13 while;

Subroutine 2 Generate-PI-Function(p, q, ℓ, b).

1 If b = 1, then return Generate-PI-Function-Plus(p, q, ℓ).

2 If b = −1, then return Generate-PI-Function-Minus(p, q, ℓ).

3 If b = 0, then return Generate-PI-Function-Zero(p, q, ℓ).

Subroutine 3 Generate-PI-Function-Plus(p, q, ℓ).

1 Initialize p′ ← p.

2 Let p′(x)ℓ ← 1 and p′(x + eℓ)ℓ ← p′(x + eℓ)ℓ∩ ≥ for all x such that x ⪰ q and xℓ = qℓ.

3 Initialize p+(x)i ← ⋄ for all x and i as a weak PI function.

4 for each x ∈ [n]k and each i ∈ [k] do

5 if there exists y such that (a) x ⪯ y; (b) xi < yi; and (c) xj = yj for all j with

p′(y)j ̸∈ ¶1, 0,≥♢ then

6 If p′(x)i ∈ ¶1,≥, ⋄♢, let p+(x)i ← 1 and p+(x + ei)i ← p+(x + ei)i∩ ≥.

7 If p′(x)i ∈ ¶0,≤♢, let p+(x)i ←≥.

8 Let pr ← p′ ∩ p+.

9 return pr.

3.2 Consequences of PI Function Being Safe

The motivation to focus on DeĄnition 14 is that they have nice properties given in the

following lemmas.

▶ Lemma 17. Suppose that a PI function p is monotone and safe, then we have

1. Js(p) ⪯Ms(p) for all slices s; and

2. g(x) ̸= x for any monotone function g that is consistent with p and any x such that there

exists s with x ̸∈ LJs,Ms
.

Proof. We will prove the following claim, by which we will deduce this lemma.
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Subroutine 4 Generate-PI-Function-Minus(p, q, ℓ).

1 Initialize p′ ← p.

2 Let p′(x)ℓ ← −1 and p′(x− eℓ)ℓ ← p′(x− eℓ)ℓ∩ ≤ for all x such that x ⪯ q and

xℓ = qℓ.

3 Initialize p−(x)i ← ⋄ for all x and i as a weak PI function.

4 for each x ∈ [n]k and each i ∈ [k] do

5 if there exists y such that (a) x ⪰ y; (b) xi > yi; and (c) xj = yj for all j with

p′(y)j ̸∈ ¶−1, 0,≤♢ then

6 If p′(x)i ∈ ¶−1,≤, ⋄♢, let p−(x)i ← −1 and p−(x− ei)i ← p−(x− ei)i∩ ≤.

7 If p′(x)i ∈ ¶0,≥♢, let p−(x)i ←≤.

8 Let pr ← p′ ∩ p−.

9 return pr.

Subroutine 5 Generate-PI-Function-Zero(p, q, ℓ).

1 Initialize pr ← p.

2 If qℓ > 1 and p(q − eℓ)ℓ ̸= 1, let pr ← Generate-PI-Function-Plus(pr, q − eℓ, ℓ).

3 If qℓ < n and p(q + eℓ)ℓ ̸= −1, let pr ← Generate-PI-Function-Minus(pr, q + eℓ, ℓ).

4 return pr.

▷ Claim 18. Given the PI function p is monotone and safe, we have

(a) for any point x ∈ Ls and x ̸⪯Ms(p), there exists i with si = ∗ and p(x)i = −1; and

(b) for any point x ∈ Ls and x ̸⪰ Js(p), there exists i with si = ∗ and p(x)i = 1.

Proof. We will show that the Ąrst item in DeĄnition 14 implies item (b), and the second

item in DeĄnition 14 implies item (a). Fix a slice s, a point x ∈ Ls and x ̸⪰ Js(p). We will

prove there exists i with si = ∗ and p(x)i = 1. The proof for the item (a) is similar.

Construct a sub-slice s′ as follows:

s′
i :=







si si ̸= ∗;

xi si = ∗ and xi ≥ Js(pr)i;

∗ otherwise (si = ∗ and xi < Js(pr)i).

Then we have s′
i = ∗ implies si = ∗ and x ∈ Ls′ . Let z be the join of x and Js(p). Note

that z ∈ Ls′ as well. In addition, we have xi < zi for all i with s′
i = ∗.

We will prove that z ∈ Posts′(p), so we will have z ⪯ Js′(p), which implies xi < Js′(p)i

for all i with s′
i. Since p is safe, we conclude that there exists i with s′

i = ∗ and p(x)i = 1.

Such an i also satisĄes si = ∗.

The statement z ∈ Posts′(p) follows from the observation that whenever s′
i = ∗, we have

si = ∗ and zi = Js(p)i. Since p(Js)i ∈ ¶≥, 0♢, we have p(z)i ∈ ¶1, 0,≥♢. ◁

We show that each of items (a) and (b) is strong enough to deduce the Ąrst item

(Js(p) ⪯Ms(p) for all s). (This will be used in the proof of Lemma 22 below). Take item

(b) as an example: Given any point x ∈ Ls such that x ̸⪯Ms(p), since there exists i with

si = ∗ and p(x)i = −1, we have x ̸∈ Pres(p) by deĄnition. So Js(p) must be somewhere that

is ⪯Ms(p).

For the second item, consider any point x such that there exists s with x ̸∈ LJs,Ms
. Then

we know either x ̸⪯Ms(p) or x ̸⪰ Js(p). Since there exists i with p(x)i = −1 or p(x)i = 1,

we have g(x) ̸= x as long as g is a monotone function that is consistent with p. ◀
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We also present the proof of Lemma 16 in this subsection.

Proof of Lemma 16. We will reĄne p to a more informative monotone PI function p′ such

that every monotone function that is consistent with p′ has in each slice s only one Ąxed

point, Ms(p).

Consider a slice s, and let Ms = Ms(p) be the lowest preĄxed point of p in the slice. By

Claim 18, for every point x ∈ Ls, if x ̸⪯ Ms, there exists i with si = ∗ and p(x)i = −1.

Consider a point x ∈ Ls where x ⪯ Ms, x ≠ Ms. If i is a coordinate with si = ∗ and

xi = (Ms)i then p(x)i ∈ ¶0,−1,≤♢ since p(Ms)i ∈ ¶0,−1,≤♢. Since Ms is the lowest

preĄxed point in Ls, there is a coordinate i such that si = ∗ and p(x)i ̸∈ ¶0,−1,≤♢, therefore

p(x)i ∈ ¶1,≥, ⋄♢ and xi < (Ms)i.

DeĄne p′ as follows. Initialize p′(x) = p(x) for all x ∈ [n]k. For each slice s and every point

x ∈ Ls where x ⪯Ms, x ̸= Ms, and each coordinate i such that si = ∗ and p(x)i ∈ ¶1,≥, ⋄♢,

set p′(x)i = 1, and for every y ⪰ x with yi = xi set p′(y)i = 1 and p′(y +ei)i = p′(y +ei)i∩ ≥.

(Note that p′(y + ei)i may be also updated due to other points x′, including possibly being

set to 1.)

We Ąrst claim that p′ is a well deĄned PI function and dominates (is more informative

than) p. Note that p′ changes the value of p(z)i for some points z and some coordinates

i by either setting the value to 1 or taking the join with ≥. Thus, to show the claim it

suffices to show that (i) p′ does not set the value to 1 for any point z and coordinate i such

that p(z)i ∈ ¶−1, 0,≤♢, and (ii) it does not take the join with ≥ for any z and i such that

p(z)i = −1. To see this, consider any slice s, a point x ∈ Ls with x ⪯ Ms, x ̸= Ms, and a

coordinate i such that si = ∗ and p(x)i ∈ ¶1,≥, ⋄♢. Since p(x)i ∈ ¶1,≥, ⋄♢, the new value

p′(x)i = 1 dominates p(x)i. Consider any other point y ⪰ x with yi = xi. If p(y)i was in

¶−1, 0,≤♢, then p(x)i would also be in ¶−1, 0,≤♢ by DeĄnition 7. We infer therefore that

p(y)i ∈ ¶1,≥, ⋄♢, thus p′(y)i = 1 dominates p(y)i. Also, if p(y + ei)i was −1 then p(x)i

would be in ¶−1, 0,≤♢. We infer therefore that p(y + ei)i ≠ −1, thus the join with ≥ exists,

it dominates p(y + ei)i, and is not −1. We conclude that p′ is well deĄned and dominates p.

We then claim that p′ is monotone. Consider any slice s, a point x ∈ Ls with x ⪯ Ms,

x ̸= Ms, and a coordinate i such that si = ∗ and p(x)i ∈ ¶1,≥, ⋄♢. Then we know p′(x)i = 1.

Consider any other point y ⪰ x with yi = xi, we have p(y)i ∈ ¶1,≥, ⋄♢, so p′(y)i would also

be 1. Also, since p(y + ei)i is not −1, we conclude that p′(y + ei)i ⇒ p(y + ei)i∩ ≥. Since

p′(y + ei)i is well deĄned, we infer therefore that p′(y + ei)i ∈ ¶≥, 0, 1♢. For other points x

and coordinates i, we have p′(x)i = p(x)i and p′(x)i satisfying DeĄnition 7 follow from the

monotonicity of p and p′ ⇒ p. We conclude that p′ is monotone.

The PI function p′ has the property that for every slice s and for every point x ∈ Ls with

x ̸= Ms, there exists a coordinate i such that either p′(x)i = −1 (this is the case if x ̸⪯Ms)

or p′(x)i = 1 (this is the case if x ⪯Ms). We conclude that any monotone function that is

consistent with p′ has only one Ąxed point in each slice s, namely, Ms. Since p′ dominates p,

any such monotone function is also consistent with p. In particular, there exists at least one

such monotone function, as constructed in Lemma 8. ◀

3.3 Preserving Monotonicity and Safety

In this subsection, we will prove items (1)Ű(4) of Theorem 15.

▶ Lemma 19 (Monotonicity Preserving of Subroutine 3). Given a monotone PI function p, a

point q ∈ [n]k and a coordinate ℓ ∈ [k] such that p(q)ℓ ∈ ¶≥, ⋄♢ (which implies qℓ < n), we

have the PI function pr returned by Generate-PI-Function-Plus(p, q, ℓ) remains monotone.

Furthermore, we have pr ⇒ p.



X. Chen, Y. Li, and M. Yannakakis 21:13

Proof. We start by proving the monotonicity of p′ on line 2. Since p(q)ℓ ∈ ¶≥, ⋄♢, we have

p(x)ℓ ∈ ¶1,≥, ⋄♢ and p(x + eℓ)ℓ ∈ ¶0, 1,≤,≥, ⋄♢ for all x such that x ⪰ q and xℓ = qℓ. So

p(x + eℓ)ℓ∩ ≥ is well deĄned. The monotonicity of p′ follows from the observation that we

changed p′(q)ℓ ← 1 and maintained the consequences it should imply. Clearly, p′ ⇒ p.

After that, we will maintain a new function p+ from line 3 to line 7. Note that we will

update pr ← p′ ∩ p+ on line 8 and return it. So by Lemma 9, it suffices for us to prove p+ is

a weakly monotone PI function, and p′(x)i ∩ p+(x)i is well deĄned for all x and i at the end

of the for loop.

To this end, we will prove that, at the end of the for loop, item (1) in DeĄnition 7 is true

for every point x and coordinate i such that p+(x)i = 1; and item (5) in DeĄnition 7 is true

for every point x and coordinate i such that p+(x)i =≥. Before getting into details, we Ąrst

provide a clearer picture of the condition of if on line 5.

▷ Claim 20. Given a coordinate i and two points x ⪯ x′ such that xi = x′
i, if the if condition

on line 5 is true for x and i, then the if condition on line 5 is also true for x′ and i.

Proof. By deĄnition, we know there exists y such that (a) x ⪯ y; (b) xi < yi; and (c)

xj = yj for all j with p′(y)j ̸∈ ¶1, 0,≥♢. Now we explicitly show there also exists such a

y′ for x′. Let y′ be the join of x′ and y (i.e., y′
j = max(x′

j , yj) for all j). Then obviously

we have (a) x′ ⪯ y′. Since xi = x′
i, we have (b) y′

i = yi > xi = x′
i. For the last property

(c), note that y ⪯ y′. By the monotonicity, as long as y′
j = yj and p′(y)j ∈ ¶1, 0,≥♢, we

have p′(y′)j ∈ ¶1, 0,≥♢. The contrapositive tells us for every j such that p′(y′)j ̸∈ ¶1, 0,≥♢,

either y′
j ̸= yj (then y′

j = max(x′
j , yj) = x′

j) or p′(y)j ̸∈ ¶1, 0,≥♢ (then xj = yj , so

y′
j = max(x′

j , yj) = max(x′
j , xj) = x′

j), which is the statement of (c).

This Ąnishes the existence of y′ for x′ and i. ◁

We divide the proof into two cases:

Case 1: item (1) in DeĄnition 7. Fix a coordinate i and two points x ⪯ x′ such that

xi = x′
i. Suppose that p+(x)i = 1 (which means p′(x)i ∈ ¶1,≥, ⋄♢). By monotonicity, we

have p′(x′)i ∈ ¶1,≥, ⋄♢ as well. Since the if condition on line 5 is true for x, by Claim 20,

we know that the if condition is also true for x′. Combining with p′(x′)i ∈ ¶1,≥, ⋄♢, we

know that p+(x′)i ← 1 and p+(x′ + ei)i is updated by p+(x′ + ei)i∩ ≥ on line 6, which

means p+(x′)i = 1 and p+(x′ + ei)i ∈ ¶1,≥♢ at the end of the for loop.

Case 2: item (5) in DeĄnition 7. Fix a coordinate i and two points x ⪯ x′ and xi = x′
i.

Suppose that p+(x)i =≥. We will prove p+(x′)i ∈ ¶1,≥♢ at the end of the for loop.

There are two possibilities: p+(x)i is updated on line 6 or line 7. If p+(x)i is updated on

line 6, then we have p+(x′ − ei)i = 1 and p+(x′)i ∈ ¶1,≥♢. If p+(x)i is updated on line 7

(which means p′(x)i ∈ ¶0,≤♢), then we have p′(x′)i ̸= −1. Meanwhile, by Claim 20, we

know that the if condition on line 5 is true. So p+(x′)i will be updated by either 1 or ≥.

This Ąnishes the proof that p+ is a weakly monotone PI function before line 8.

The Ąnal step is to show that p′(x)i ∩ p+(x)i is well deĄned for all x and i, which follows

from the observation that p+(x)i = 1 only if p′(x)i ∈ ¶1,≥, ⋄♢ and p+(x)i =≥ only if

p′(x)i ∈ ¶0, 1,≤,≥, ⋄♢ for all x and i. ◀

Symmetrically, we conclude the following lemma.

▶ Lemma 21 (Monotonicity Preserving of Subroutine 4). Given a monotone PI function p, a

point q ∈ [n]k and a coordinate ℓ ∈ [k] such that p(q)ℓ ∈ ¶≤, ⋄♢ (which implies qℓ > 1), we

have the function pr returned by Generate-PI-Function-Minus(p, q, ℓ) remains monotone.

Furthermore, we have pr ⇒ p.
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▶ Lemma 22 (Safety Preserving of Subroutine 3). Given a monotone and safe PI function

p : [n]k → ¶−1, 0, 1,≤,≥, ⋄♢k, a point q and a coordinate ℓ such that p(q)ℓ ∈ ¶≥, ⋄♢, we have

the PI function pr returned by Generate-PI-Function-Plus(p, q, ℓ) remains safe.

Proof. Since p(q)ℓ ∈ ¶≥, ⋄♢, we know that pr returned by Generate-PI-Function-

Plus(p, q, ℓ) is also monotone and pr ⇒ p by Lemma 19.

Note that in the subroutine Generate-PI-Function-Plus, pr is obtained by only adding

1 and ≥ on the function p. So we have Ms(pr) = Ms(p) for every slice s. By the same reason,

p is safe, and pr ⇒ p, we have for any point x ∈ Ls with x ≻Ms(pr), pr(x)i ∈ ¶−1, 0, 1♢ for

all i with xi > Ms(pr)i and pr(x)i = −1 for some i with xi > Ms(pr)i for all slices s. As

a corollary, we have Js(pr) ⪯Ms(pr) for all s, derived from the proof of Lemma 17. (This

corollary will be used in this proof later).

So we will focus on proving the Ąrst item in DeĄnition 14 for pr, namely, we will prove

for any point x ∈ Ls with x ≺ Js(pr), pr(x)i ∈ ¶−1, 0, 1♢ for all i such that xi < Js(pr)i and

pr(x)i = 1 for some i with xi < Js(pr)i.

We Ąrst prove the Ąrst part: for any point x ∈ Ls and x ≺ Js(pr), pr(x)i ∈ ¶−1, 0, 1♢ for

all i such that xi < Js(pr)i. Fix arbitrarily a slice s, a point x ∈ Ls such that x ≺ Js(pr)

and i such that xi < Js(pr)i. We will show that the if condition on line 5 is true for

x and i. (Note that we need to show there exists a point y such that (a) x ⪯ y; (b)

xi < yi; and (c) xj = yj for all j with p′(y)j ̸∈ ¶1, 0,≥♢. One may try to directly use

Js(pr) to serve as that y. But note that the deĄnition of Js(pr) only guarantees that

xj = yj for all j with pr(y)j ̸∈ ¶1, 0,≥♢ instead of what we need in (c) (which concerns

p′(y)). So extra effort is needed here.)

Let Y := ¶y ♣ there exists i′ such that Js(pr)− ei′ ⪯ y, (Js(pr)− ei′)i′ < yi′ and (Js(pr)−

ei′)j = yj for all j with p′(y)j ̸∈ ¶1, 0,≥♢♢. Let y∗ be the join of Y ∪ ¶Js(pr)♢. Then we

prove the following claim.

▷ Claim 23. y∗ could serve as the y for the if condition on line 5 for x and i.

Proof. Since x ⪯ Js(pr) and xi < Js(pr)i, we have x ⪯ y∗ and xi < y∗
i . So in what follows,

we will show p′(y∗)j ∈ ¶1, 0,≥♢ for all j such that xj < y∗
j .

If Y = ∅, then we know that p+(Js(pr))i = ⋄ for all i (since any y ∈ Y along with the i′

should active the condition on line 5, which will update (Js(pr))i′). So we have pr(Js(pr))i =

p′(Js(pr))i for all i, which implies xj = Js(pr)j for all j with p′(Js(pr))j ̸∈ ¶1, 0,≥♢. This

means y∗ = Js(pr) itself could serve as the y for the if condition on line 5 for x and i.

Now letŠs consider the case Y ̸= ∅ and let j be such that xj < y∗
j . Let y ∈ Y be such

that yj = y∗
j (which must exist since Js(pr) ⪯ y for all y ∈ Y). Since Js(pr)j ≤ y∗

j , we have

(Js(pr)− ej)j < yj . So we have p′(y)j ∈ ¶1, 0,≥♢, which implies p′(y∗)j ∈ ¶1, 0,≥♢ as well.

This Ąnishes the proof. ◁

Claim 23 tells us that y∗ could serve as the y for the if condition on line 5 for x and i.

So we know that p+(x)i ∈ ¶1,≥♢. Furthermore, p+(x)i =≥ only if p′(x)i ∈ ¶0,≤♢, which

implies pr(x)i ∈ ¶−1, 0, 1♢.

We then prove the second part: for any point x ∈ Ls and x ≺ Js(pr), pr(x)i = 1 for

some i with xi < Js(pr)i. Fix arbitrarily a slice s and a point x ∈ Ls such that x ≺ Js(pr).

Assume for the sake of contradiction that pr(x)i ∈ ¶−1, 0♢ for all i with xi < Js(pr)i. Then

construct a new slice s′ as follows:

s′
i :=







si si ̸= ∗;

xi si = ∗ and xi = Js(pr)i;

∗ otherwise (si = ∗ and xi < Js(pr)i).
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Then clearly x, Js(pr) ∈ Ls′ and xi < (Js(pr))i for all i with s′
i = ∗. Note that pr(Js(pr))i ∈

¶≥, 0♢ for all i with s′
i = ∗. However, we have pr(x)i ∈ ¶−1, 0♢ for all i with s′

i = ∗ by

assumption. This means Js′(pr) ̸⪯Ms′(pr), which leads to a contradiction.

This Ąnishes the proof. ◀

Again, symmetrically, we conclude the following lemma.

▶ Lemma 24 (Safety Preserving of Subroutine 4). Given a monotone and safe PI function

p : [n]k → ¶−1, 0, 1,≤,≥, ⋄♢, a point q and a coordinate i such that p(q)i ∈ ¶≤, ⋄♢, we have

the PI function pr returned by Generate-PI-Function-Minus(p, q, i) remains safe.

Before proving the analogs for Generate-PI-Function-Zero, we Ąrst derive a simple

but crucial characterization for any 1-dimensional slice s from the safety.

▷ Claim 25. Given a monotone and safe PI function p, and any 1-dimensional slice s with

its free coordinate j, we have

p(x)j = 1 for all x ∈ Ls and x ≺ Js; and

p(x)j = −1 for all x ∈ Ls and x ≻Ms.

In addition, if Js = Ms then p(Js)j = p(Ms)j = 0; otherwise (Js ≺Ms), we have

p(x)j = ⋄ for all Js ≺ x ≺Ms; and

p(Js)j =≥ and p(Ms)j =≤.

Proof. Note that in 1-dimensional slice, for any point x ∈ Ls, x ̸⪰ Js is actually equivalent

to x ≺ Js. So by the Ąrst item of the DeĄnition 14, we have p(x)j = 1 for all x ∈ Ls and

x ≺ Js. Symmetrically, we also have p(x)j = −1 for all x ∈ Ls and x ≻Ms.

Given that Js ⪯Ms by Lemma 17, we divide the proof into two simple cases.

Case 1: Js = Ms. Note that by Proposition 13, we have p(Js)j ∈ ¶0,≥♢ and p(Ms)j ∈

¶0,≤♢. Take the intersection then we have p(Js)j = p(Ms)j = 0;

Case 2: Js ≺ Ms. Given s is a 1-dimensional slice and Js(p) ≺ Ms(p), for any point

Js(p) ≺ x ≺Ms(p), the only way that is consistent with the deĄnition of Js(p) and Ms(p)

is to have p(x)j = ⋄.

Then we move to p(Js)j . By Proposition 13, we have p(Js)j ∈ ¶0,≥♢. Since Js ≺ Ms,

we know that p(Js)j =≥. Symmetrically, we have p(Ms)j =≤. ◁

Now we are ready to present the analogs for Generate-PI-Function-Zero.

▶ Lemma 26 (Monotonicity and Safety Preserving of Subroutine 5). Given a monotone and

safe PI function p : [n]k → ¶−1, 0, 1,≤,≥, ⋄♢, a point q, and a coordinate ℓ such that p(q)ℓ ∈

¶≤,≥, ⋄♢, we have the PI function pr returned by Generate-PI-Function-Zero(p, q, ℓ) re-

mains monotone and safe. Furthermore, we have pr ⇒ p.

Proof. We Ąrst prove two easy cases.

Case 1: p(q)ℓ =≥. We note that in this case, line 2 (the call of Generate-PI-

Function-Plus) will be skipped, since we have either qℓ = 1 or p(q − eℓ)ℓ = 1 given p is

safe. So when we run line 3, either it is also skipped then nothing gets changed or this

lemma can be deduced directly by Lemma 21 and Lemma 24, whose conditions can be

veriĄed easily.

Case 2: p(q)ℓ =≤. This case follows from a similar reason. It is easy to show line 3 (the

call of Generate-PI-Function-Minus) will be skipped and this lemma can be deduced

directly by Lemma 19 and Lemma 22.
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The following claim essentially proves the last trickier case.

▷ Claim 27. Suppose that we are given a monotone and safe PI function p : [n]k →

¶−1, 0, 1,≤,≥, ⋄♢, a point q and a coordinate ℓ such that 1 < qℓ < n and p(q)ℓ = ⋄. Let

pr be the PI function returned by Generate-PI-Function-Plus(p, q − eℓ, ℓ), then we have

pr(q)ℓ =≥ (so that pr(q + eℓ)ℓ ∈ ¶≤, ⋄♢).

Proof. Note that p′(q)ℓ =≥ at the end of line 2. So it suffices for us to prove that p+(q)ℓ ̸= 1

at the end of for loop.

Assume that p+(q)ℓ = 1 for the sake of contradiction. Then we know there exists y such

that (a) q ⪯ y; (b) qℓ < yℓ; and (c) qj = yj for all j with p′(y)j ̸∈ ¶1, 0,≥♢. Since qℓ < yℓ,

we have p′(y)j = p(y)j for all j. So we have (a) q ⪯ y; (b) qℓ < yℓ; and (c) qj = yj for all j

with p(y)j ̸∈ ¶1, 0,≥♢. DeĄne the slice s as follows:

sj :=



yj qj = yj ;

∗ otherwise .

Then we have q, y ∈ Ls and y ∈ Posts(p). Since q ⪯ y and qℓ < yℓ, by the Ąrst property in

DeĄnition 14, we know that p(q)ℓ ̸= ⋄, which contradicts the condition that p(q)ℓ = ⋄.

This Ąnishes the proof. ◁

Case 3: p(q)ℓ = ⋄.

This implies that 1 < qℓ < n. At the end of line 2, by Lemma 19 and Lemma 22, we have

pr remains monotone and safe. Furthermore, pr ⇒ p. Now by Claim 27, we know that

pr(q)ℓ =≥, which means pr(q + eℓ) ∈ ¶≤, ⋄♢ by Claim 25.

So at the end of line 3, by Lemma 21 and Lemma 24 (which need the condition of

pr(q + eℓ) ∈ ¶≤, ⋄♢), we have pr remains monotone and safe. Furthermore, pr ⇒ p.

This Ąnishes the proof. ◀

▶ Lemma 28. Given a monotone and safe PI function p, a point q ∈ [n]k, a coordinate

ℓ ∈ [k], and b ∈ ¶−1, 0, 1♢ such that (p(q)ℓ, b) satisĄes the following condition:

p(q)ℓ ∈ ¶≥, ⋄♢ if b = 1; p(q)ℓ ∈ ¶≤, ⋄♢ if b = −1; p(q)ℓ ∈ ¶≤,≥, ⋄♢ if b = 0,

the function pr returned by Generate-PI-Function(p, q, ℓ, b) satisĄes pr(q)ℓ = b.

Proof. When b = 1, we have p′(q)ℓ = 1 at the end of line 2. Since pr ⇒ p′, we have pr(q)ℓ = 1

as well. The case of b = −1 is similar.

If qℓ = 1, qℓ = n, or p(q)ℓ ̸= ⋄, then pr(q)ℓ = 0 can be derived by previous cases since at

most one of Generate-PI-Function-Plus and Generate-PI-Function-Minus is called. For

the case 1 < qℓ < n and p(q)ℓ = ⋄, by Claim 27, we have both Generate-PI-Function-Plus

and Generate-PI-Function-Minus are called and pr(q − eℓ)ℓ = 1 and pr(q − eℓ)ℓ = −1,

which forces pr(q)ℓ = 0 since p is monotone. ◀

3.4 Not Creating New Fixed Points

▶ Lemma 29 (Fixed Points of Subroutine 3). Given a monotone function f : [n]k → [n]k, a

PI function p, a point q and a coordinate ℓ such that

p is monotone and safe;

p(q)ℓ ∈ ¶≥, ⋄♢;

f ♣p(q + eℓ)ℓ ≥ qℓ + 1; and

Fix(f ♣p) ⊆ Fix(f),

the function pr returned by Generate-PI-Function-Plus(p, q, ℓ) satisĄes Fix(f ♣pr ) ⊆

Fix(f ♣p) ⊆ Fix(f).
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Proof. Note that whenever we have pr(x)i ̸= p(x)i for some x and i, it must be the case that

pr(x)i = 1 or pr(x)i = p(x)i∩ ≥. If pr(x)i = 1, then we have f ♣pr (x) ̸= x, which means x is

not a Ąxed point of f ♣pr . So we only need to analyze the case that p(x)i ̸= pr(x)i = p(x)i∩ ≥.

Fix arbitrary z and i such that p(z)i ≠ pr(z)i = p(z)i∩ ≥. First consider the updating

rule on line 2, in which case i = ℓ and z = x + eℓ for some x ⪰ q and xℓ = qℓ, then we have

f ♣p(z)ℓ ≥ zℓ by the third condition. Note that it suffices for us to know f ♣p(x)i ≥ xi, since it

implies that either f ♣p(x)i = f ♣pr (x)i or f ♣pr (x)i = xi + 1 since pr(x)i ∈ ¶0, 1,≥♢ given that

pr(x)i = p(x)i∩ ≥.

Next, we consider the case that p+(z)i is updated on line 6 and 7, where we will show

f ♣pr (x) ̸= x. Let y be such that (a) z ⪯ y; (b) zi − 1 < yi (zi ≤ yi); and (c) zj = yj for all j

with p(y)j ̸∈ ¶1, 0,≥♢ on line 5. DeĄne a slice s as follows:

sj :=



yj p(y)j ̸∈ ¶1, 0,≥♢;

∗ otherwise.

Then we have z, y ∈ Ls and z ⪯ Js(p) (given that z ⪯ y and y ⪯ Js(p)). Further note

that z ̸= Js(p), otherwise we have p(z)i = pr(z)i = p(z)i∩ ≥. So it suffices for us to argue

f ♣p(z) ̸= z for all z ≺ Js(p), which follows from that p is safe and Lemma 17.

This Ąnishes the proof. ◀

We conclude the analog for Generate-PI-Function-Minus.

▶ Lemma 30 (Fixed Points Preserving of Subroutine 4). Given a monotone function f : [n]k →

[n]k, a PI function p, a point q and a coordinate ℓ such that

p is monotone and safe;

p(q)ℓ ∈ ¶≤, ⋄♢;

f ♣p(q − eℓ)ℓ ≤ qℓ − 1; and

Fix(f ♣p) ⊆ Fix(f),

the function pr returned by Generate-PI-Function-Minus(p, q, ℓ) satisĄes Fix(f ♣pr ) ⊆

Fix(f ♣p) ⊆ Fix(f).

▶ Lemma 31 (Fixed Points of Subroutine 5). Given a monotone function f : [n]k → [n]k, a

PI function p, a point q and a coordinate ℓ such that

p is monotone and safe;

p(q)ℓ ∈ ¶≤,≥, ⋄♢;

f ♣p(q)ℓ = qℓ; and

Fix(f ♣p) ⊆ Fix(f),

the function pr returned by Generate-PI-Function-Zero(p, q, ℓ) satisĄes Fix(f ♣pr ) ⊆

Fix(f ♣p) ⊆ Fix(f).

Proof. Let us consider the non-trivial case where both subroutines

Generate-PI-Function-Plus and Generate-PI-Function-Minus are called. Other-

wise, this lemma can be derived by either Lemma 29 or Lemma 30 (given that f ♣p(q)ℓ = qℓ).

Suppose that both subroutines are called, then we have 1 < qℓ < n and p(q)ℓ = ⋄. Since

f ♣p(q)ℓ = qℓ, we have f(q)ℓ = qℓ.

By Claim 27, we know that at the end of line 2, we have pr(q)ℓ =≥ and pr(q+eℓ)ℓ ∈ ¶≤, ⋄♢.

At this time, we still have f ♣pr (q)ℓ = qℓ as well as other properties in the condition of this

lemma by Lemmas 19, 22, and 29. So this lemma can be derived by Lemmas 21, 24, and 30.

This Ąnishes the proof. ◀
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4 An Illustrating Example

In this section, we illustrate how our reduction works in one concrete but tricky example.

Recall that we have to make sure our Algorithm 1 works for any monotone function and

any algorithm solving UniqueTarski. For simplicity, we pick the following 2D example:

a monotone function f : [6]2 → [6]2 with f(3, 4) = (4, 3) and f(4, 3) = (3, 4) as shown in

Figure 2a, as well as an algorithm U for UniqueTarski, which will Ąrst query (3, 4), given

the answer f(3, 4) = (4, 3), then query (4, 3).

(a) A monotone function f : [6]2 → [6]2 with
f(3, 4) = (4, 3) and f(4, 3) = (3, 4).

(b) The standard partial information derived by
(3, 4) and (4, 3), described in the light blue color.
The solid arrows mean −1 or 1 and the dashed
arrows mean ≤ or ≥ (the same rule applies below).

Figure 2 A 2D example for which after two queries the algorithm U for UniqueTarski will fail.

(a) The partial information by adding f(3, 4)1 = 4. (b) The safe PI function constructed by Algorithm 1.
The new information is described in the green color
(the same rule applies below).

(c) The partial information by adding f(3, 4)2 = 3. (d) The safe PI function constructed by Algorithm 1.

Figure 3 The evolution of PI function when adding f(3, 4)1 = 4 and f(3, 4)2 = 3.
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(a) The partial information by adding f(4, 3)1 = 3. (b) The safe PI function constructed by Algorithm 1.

(c) The partial information by adding f(4, 3)2 = 4. (d) The safe PI function constructed by Algorithm 1.

Figure 4 The evolution of PI function when adding f(4, 3)1 = 3 and f(4, 3)2 = 4.

Note that the function (actually partial function) in Figure 2a does not violate monoton-

icity. But clearly, no monotone function that is consistent with Figure 2a has a unique Ąxed

point. This is because the partial information derived from f(3, 4) = (4, 3) and f(4, 3) = (3, 4)

is sufficient to conclude the existence of Ąxed points in both the bottom left corner and top

right corner, as shown in Figure 2b. Observe that if the algorithm U is not fooled, it could

immediately reject the function f and return Şthe underlying function has multiple Ąxed

pointsŤ once it gets the true answer f(4, 3) = (3, 4).

Perhaps surprisingly, our reduction will modify the answer the algorithm U gets when

querying (3, 4), by creating safe PI functions p that satisfy Fix(f ♣p) ⊆ Fix(f) (the formal

statement is in Theorem 15).

We show how the PI function evolves step by step in Figure 3 and 4. The Ągures on

the left-hand side are obtained by adding one piece of information (namely, f(3, 4)1 = 4,

f(3, 4)2 = 3, f(4, 3)1 = 3, and f(4, 3)2 = 4). The Ągures on the right-hand side are obtained

by the Subroutine Generate-PI-Function. Note that in the last step after Figure 4b, we

will try to add the last piece of information f(4, 3)2 = 4. However, since p(4, 3)2 =≤ already,

the algorithm U will get f ♣p(4, 3)2 = 3.

It is easy to verify that all PI functions of the Ągures on the right-hand side are safe and

satisfy Fix(f ♣p) ⊆ Fix(f). In particular, for Figure 4d, every point outside the bottom left

corner is certainly not a Ąxed point of f ♣p, and the Ąxed point(s) in the bottom left corner is

not affected.
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5 Promise Problem versus TFNP Version

The problems Tarski(n, k) and UniqueTarski(n, k) are promise problems. In the former,

we want to compute a Ąxed point of the given function under the promise (condition) that it

is monotone; in the latter the function is promised to be monotone and have a unique Ąxed

point.

From a promise problem, one can deĄne a total search problem, where on any given

arbitrary input one seeks either a desired solution as in the promise problem, or a violation

certiĄcate showing that the input does not satisfy the promise. The total search version of

the Tarski problem is formally the following search problem.

▶ DeĄnition 32 (Total search version of Tarski(n, k)). Given a function f : [n]k → [n]k,

Ąnd one of the following:

a point x ∈ [n]k such that f(x) = x; or

two points x, y ∈ [n]k such that x ⪯ y and f(x) ̸⪯ f(y).

In the black box setting, the function f is given by a black box (an oracle). In the white box

setting, the function f is given by a poly(k, log n)-size circuit C with k ∗ ⌈log n⌉ input gates

and k ∗ ⌈log n⌉ output gates.

The total search version of Tarski in the white box setting is in TFNP, in fact it is PLS

∩ PPAD. Any algorithm for the total search version of a promise problem (whether in the

white box or the black box setting) can be obviously used also to solve the promise problem,

so the total version is always at least as hard as the promise problem. In general the converse

may not hold, since in the total search version, the algorithm is not allowed to simply fail if

the input does not satisfy the promise, but it must provide a violation certiĄcate (and in

general the complexity of the total problem may depend on the type of certiĄcate that is

required). In the case of the Tarski problem in the black box setting however it is easy to

see that the total version is no harder than the promise problem. This is because of the

following property.

▶ Lemma 33. Let Q = ¶q1, . . . , qm♢ be a set of query points in [n]k and A = ¶a1, . . . , am♢

the corresponding answers of the black box. There is a monotone function f that is consistent

with all the answers (i.e such that f(qi) = ai for all i ∈ [m]) if and only if there is no pair

i, j such that qi ⪯ qj and ai ̸⪯ aj.

Proof. If there is a pair i, j such that qi ⪯ qj and ai ̸⪯ aj then clearly there is no monotone

function f that is consistent with the answers. Suppose now that there is no such pair.

DeĄne the function f as follows: For every point x ∈ [n]k and every coordinate i, set

f(x)i = min¶aj
i ♣ x ⪯ qj♢; if the set on the right-hand side is empty then set f(x)i = n. We

have to show that f is monotone and is consistent with the answers.

Consider any two points x ⪯ y and any coordinate i. Then y ⪯ qj implies x ⪯ qj , thus

f(x)i = min¶aj
i ♣ x ⪯ qj♢ ≤ f(y)i = min¶aj

i ♣ y ⪯ qj♢. Therefore, f is monotone.

By the deĄnition of f , for any query point qt and coordinate i, f(qt)i = min¶aj
i ♣ q

t ⪯

qj♢ ≤ at
i. If f(qt)i < at

i then there is another query point qj such that qt ⪯ qj and aj
i < at

i,

hence at ̸⪯ aj . ◀

▶ Corollary 34. In the black-box setting, suppose that Tarski(n, k) (the promise problem)

can be solved in q(n, k) queries and t(n, k) time, then total search version of Tarski(n, k)

can be solved in q(n, k) queries and O(t(n, k) + q(n, k)2 · k) time.
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Proof. Run the algorithm for the promise problem. Either the algorithm will Ąnd a Ąxed

point within the query and time complexity of the promise problem, or two of the query

points provide a violation certiĄcate. ◀

We showed that Tarski(n, k) reduces to UniqueTarski(n, k) with the same query

complexity. Therefore, we have.

▶ Corollary 35. Any black-box algorithm for UniqueTarski(n, k) (the promise problem) can

be used to solve also the total search version of Tarski(n, k) with the same query complexity.

We can deĄne a total search version of UniqueTarski(n, k) that includes as a possible

answer also a violation certiĄcate of uniqueness. One way to deĄne it is as follows.

▶ DeĄnition 36 (Total search version of UniqueTarski(n, k)). Given a function f : [n]k →

[n]k, Ąnd one of the following:

a point x ∈ [n]k such that f(x) = x; or

two points x, y ∈ [n]k such that x ⪯ y and f(x) ̸⪯ f(y); or

two points x, y ∈ [n]k such that x ⪯ f(x), y ⪰ f(y) and x ̸⪯ y.

In the black box setting, the function f is given by a black box (an oracle). In the white box

setting, the function f is given by a poly(k, log n)-size circuit C with k ∗ ⌈log n⌉ input gates

and k ∗ ⌈log n⌉ output gates.

Note that if f is monotone and x ⪯ f(x) then f has a Ąxed point in Lx,nk , and if y ⪰ f(y)

then f has a Ąxed point in L1k,y. If x ̸⪯ y then L1k,y and Lx,nk are disjoint, and hence f

has at least two Ąxed points. Clearly, the total search version of Tarski(n, k) is at least as

hard as that of UniqueTarski(n, k), both in the white box and the black box setting, since

the latter includes one more option for an acceptable output. It is not much harder however.

Let T-Tarski(n, k) and T-UniqueTarski(n, k) denote the total search versions of the two

problems, as deĄned above.

▶ Theorem 37. If T-UniqueTarski(n, k) can be solved in q(n, k) queries in the black box

setting, then T-Tarski(n, k) can be solved in q(n, k) queries. If T-UniqueTarski(n, k) can

be solved in time t(n, k) in the black box (respectively, white box) setting, then T-Tarski(n, k)

can be solved in time O(t(n, k) ∗ (k · log n)) in the black box (resp. white box) setting.

Proof. The statement in the Ąrst sentence follows from Corollary 35. Next, we show the

statement in the second sentence.

Given a black-box or white-box algorithm U for T-UniqueTarski(n, k), the algorithm

for T-Tarski(n, k) in the same setting is as follows. Use the algorithm U to Ąnd a solution

of T-UniqueTarski(n, k). If the solution is a Ąxed point (i.e., a point x ∈ [n]k such that

f(x) = x) or a violation certiĄcate of monotonicity (i.e., two points x, y ∈ [n]k such that

x ⪯ y and f(x) ̸⪯ f(y)) then we are done, since they are also solution of T-Tarski(n, k).

Otherwise, we Ąnd a solution that is a violation certiĄcate of uniqueness (i.e., two points

x, y ∈ [n]k such that x ⪯ f(x), y ⪰ f(y) and x ̸⪯ y). Then there exists i such that xi > yi,

which means either xi > n/2 or yi ≤ n/2. If xi > n/2, then we shrink the search space to

Lx,nk and recursively call U to Ąnd a solution in Lx,nk ; If yi ≤ n/2, then we shrink the search

space to L1k,y and recursively call U to Ąnd a solution in L1k,y. The function f may map a

point q in the reduced space to a point outside the space; in that case the point q together

with either the top or the bottom point of the reduced space form a violation certiĄcate for

monotonicity. In the black box setting, if the algorithm ever queries such a point q then we

immediately get a violation of monotonicity and can terminate. In the white box setting,
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when we recurse to the reduced space, we replace the circuit for f with a modiĄed circuit for

a function f ′ which restricts the coordinates of the output point to lie in the reduced space.

When the recursive call returns a solution to T-Tarski for the reduced space, i.e. either a

Ąxed point x of f ′ or a pair of points x, y that certify that f ′ is not monotone, then we test

if f and f ′ have the same value on these points. If they do, then they constitute a solution

for f in the original space; if one of them does not, then that point with the bottom or the

top element provide a certiĄcate for the violation of monotonicity of f .

The search space goes down by a factor of two after each call of U . So after at most

k · log n many rounds, we can Ąnd a solution of T-Tarski(n, k). ◀

6 Discussion and Open Problems

Our results resolve an open question in [4] and could potentially shed new light on the

upper bounds and lower bounds of the query complexity of Tarski(n, k). As we showed,

Tarski(n, k) is no harder, with respect to query complexity, than the special case of monotone

functions that have a unique Ąxed point in the lattice, and even further, have a unique Ąxed

point in every slice of the lattice. There is a lot of structure in such monotone functions. In

a function f with a unique Ąxed point, the least Ąxed point and the greatest Ąxed point

coincide. There is a path connecting the bottom element 1k of the lattice with the top

element nk, the Ąxed point lies on this path, and the function f on all points in this path

point in the direction of the Ąxed point. The same structure holds for every slice if the

function has a unique Ąxed point on all slices. This structure may well be useful in helping

to design an algorithm with low complexity. On the lower bound side, it may also provide a

useful framework; indeed the lower bound constructions for two dimensions in [4] use this

structure. Can we use uniqueness to improve the bounds on the query complexity of Tarski?

A second question concerns the time complexity of the algorithms in the black box setting.

Our reduction involves the maintenance of a partial information function p that is deĄned

over the whole lattice. A straightforward implementation would take of course exponential

time. Note however that we do not need to compute p on the whole domain; we only need to

be able to compute p on demand on speciĄc points, namely the query points of the Unique

Tarski algorithm. Is it possible to implement the algorithm so that it runs in polynomial time

in the number of queries? More generally, does the black-box time complexity of Tarski(n, k)

reduce also to that of UniqueTarski(n, k)?

Regarding the white-box complexity, we know that the total search version of Tarski(n, k)

is in PLS ∩ PPAD [4] and thus by the results of [5, 8], it is in the classes CLS

(Continuous-Local-Search) and EOPL (End-of-Potential-Line). Is the total search version of

UniqueTarski in the class UEOPL (Unique-EOPL) [6]? Is it hard for UEOPL?
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