Extremal Combinatorics, lterated Pigeonhole
Arguments and Generalizations of PPP
Amol Pasarkar &

Columbia University, New York, NY, USA

Christos Papadimitriou &
Columbia University, New York, NY, USA

Mihalis Yannakakis &
Columbia University, New York, NY, USA

—— Abstract
We study the complexity of computational problems arising from existence theorems in extremal
combinatorics. For some of these problems, a solution is guaranteed to exist based on an iterated
application of the Pigeonhole Principle. This results in the definition of a new complexity class
within TENP, which we call PLC (for “polynomial long choice”). PLC includes all of PPP, as well
as numerous previously unclassified total problems, including search problems related to Ramsey’s
theorem, the Sunflower theorem, the Erdds-Ko-Rado lemma, and Ko6nig’s lemma. Whether the first
two of these four problems are PLC-complete is an important open question which we pursue; in
contrast, we show that the latter two are PPP-complete. Finally, we reframe PPP as an optimization
problem, and define a hierarchy of such problems related to Turan’s theorem.

2012 ACM Subject Classification Theory of computation — Complexity classes
Keywords and phrases Total Complexity, Extremal Combinatorics, Pigeonhole Principle
Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.88

Related Version Full Version: https://arxiv.org/abs/2209.07625

Funding Research partially supported by NSF Grants CCF-1763970, CCF-2212233.

1 Introduction

The complexity class TENP [13] captures a wide variety of search problems which are believed
to lie between P and NP — in fact, almost all problems in NP not yet known to be in P, or close
to it, appear to belong to this class. The “TF” in TFNP indicates that it is a class of total
function problems — computational search problems which are mathematically guaranteed
to have a solution on all instances — while the letters “NP” in TFNP signify that solutions
are polynomially checkable. Two things make TFNP interesting: First, it is a microcosm of
many complexity classes, each of which is identified with a non-constructive combinatorial
lemma used in the proof of totality [14, 9, 6]. Second, it contains — almost by its definition —
many problems that are of great interest in Cryptography. The most obvious and best known
example is of course factoring, but many other computational problems of cryptographic
interest lie in the subclass PPP [8, 15] whose existence lemma is the Pigeonhole Principle:
if there are 2™ pigeons to be placed into 2™ — 1 pigeonholes, there must exist a pigeonhole
with at least two pigeons.

In this paper we study the complexity of total search problems in the important field of
extremal combinatorics [2, 7, 10]. Notice that the Pigeonhole Principle itself can be seen
as an argument in extremal combinatorics: “If a combinatorial object of a certain kind
(here, a set mapped to [N]) is large enough, it must contain a certain substructure (here
a collision).” This leads one to ask: Are then the computational problems coming from
extremal combinatorics in PPP? We point out that the combinatorial lemma underlying

© Amol Pasarkar, Christos Papadimitriou, and Mihalis Yannakakis;
37 licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).

Editor: Yael Tauman Kalai; Article No. 88; pp. 88:1-88:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

88:2

Extremal Combinatorics, Iterated Pigeonhole Arguments & Generalizations of PPP

many such problems is a counting argument which iteratively uses a form of the Pigeonhole
Principle. Accordingly, we introduce a new complexity class, which we call “Polynomial Long
Choice” (PLC) capturing the complexity of the iterated Pigeonhole Principle.

To understand the generic problem in this class, consider the following two-player game.
Player 1 seeks to construct a long sequence of pigeons and Player 2 tries to make this
impossible. We start with 2™ pigeons. At each stage, Player 1 can pick (without replacement)
a single pigeon from the remaining available pigeons to add to the long sequence. Once
Player 1 has made a move, Player 2 can then partition the remaining pigeons into two groups.
Next, Player 1 will pick a pigeon from one of these groups to add to the sequence, and the
pigeons from the other group will immediately be removed from the game. Player 1 wins
if a sequence of pigeons of length n + 1 is constructed, otherwise Player 2 wins. It is easy
to see that Player 1 has a winning strategy in this game (pick any pigeon from the larger
group in every iteration) — and this is the existence lemma defining PLC. To make this into
a computational problem, which we call LONG CHOICE, we equip Player 2 with a suite of
polynomial-time algorithms, one for each stage of the game (we give the precise definitions
below); PLC is the class of all search problems reduced to LONG CHOICE.

We show that LoNG CHOICE is PPP-hard, and hence PLC contains PPP. But is this
containment strict? And even if not, why is LONG CHOICE, defined by an iterative application
of pigeonhole arguments, not contained in PPPP? The difficulty is this: The winning strategy
requires that Player 1 estimates the majority correctly at each stage and also successfully
selects a pigeon from this majority. PPP does not seem to support both of these challenges.

It turns out that PLC contains a host of natural problems embodying important theorems
in extremal combinatorics, first and foremost Ramsey’s, but also the sunflower theorem, the
Erdos-Ko-Rado lemma and Koénig’s Lemma. The latter two, however, can be shown to be
PPP-complete. We also study problems associated with another classical result in extremal
combinatorics, namely Mantel’s Theorem (“a graph with N nodes and more than N2 /4 edges
cannot be triangle-free”) and Turan’s theorem (the generalization to k-clique-free graphs).
We identify an infinite hierarchy of problems related to these theorems, each of which is
PPP-hard. This generalization of PPP seems substantially different from PLC, in the sense
that the source of computational hardness arises from information-theoretic reasons, namely,
an inefficient encoding of the search problem.

But iterating the Pigeonhole Principle can take us even higher: consider the dual problem
which can be called SHORT CHOICE: Suppose that the above game had 2" — 2 pigeons, and
that Player 1 now wants to terminate the game as soon as possible and Player 2 wants the
opposite, to extend it; the game terminates when one of the groups created by Player 2 is
empty. It is easy to see that Player 1 cannot be forced to make more than n — 1 moves,
by choosing in every iteration to continue in the smaller of the two groups. Now call this
problem SHORT CHOICE; it is certainly total, but it does not seem to belong to NP (how
does one verify that there is no pigeon left that is consistent with all the previous choices of
Player 17). This is reminiscent of the empty pigeonhole principle recently explored in [11]
and the class PEPP belonging in TF¥, P and not believed to be inside TFNP (or NP).

We show that SHORT CHOICE is a PEPP-hard problem that defines a new subclass of
TFY,P.

2 Long Choice

We start by recalling the definition of the class PPP. We first define the problem COLLISION
to be the following: we are given a Boolean circuit C' with n input bits and n output bits,
and we seek either (a) an input x such that C'(z) = 0™, or (b) a collision, two distinct inputs

A. Pasarkar, C. Papadimitriou, and M. Yannakakis

x # y such that C(x) = C(y). The class PPP is the set of all search problems that reduce to
CoLLISION. For the weak version of PPP, denoted PWPP, the circuit has n inputs and n — 1
outputs, and a collision is sought. It is known that n — 2 or fewer outputs, down to n’ for
any ¢ > 0, yield the same class [12].

Let us next define the search problem RAMSEY, motivated by one of the most influential
theorems in all of combinatorics: Given a graph with 22" nodes, represented by a circuit with
4n input bits and one output bit, we seek either a clique with n nodes, or an independent set
with n nodes. The nodes are represented by 2n-bit strings and the circuit specifies the edge
relation of the graph. The well known proof of Ramsey’s theorem proceeds by constructing
a sequence of 2n nodes, where: the first node is arbitrary; and the next node is selected
from the available nodes to belong in the majority, either adjacent or nonadjacent to the last
node, whichever group is larger. In addition, the smaller group becomes unavailable. Since
we start with 22" nodes and the minority becomes unavailable at each step, it is clear that a
sequence of 2n nodes can be selected, and therein we will find either an independent set or a
clique with n nodes.

This proof inspires the key definition of this paper:

» Definition 1. The LoNG CHOICE problem is the following: There is a universe U of
2™ objects, represented by the 2™ n-bit strings. We are given a sequence of n — 1 circuits
Py,...,Ph_a, each of poly(n) size, such that P; has (i + 2)n input bits and one output
bit; circuit P; represents a predicate on i + 2 objects. We are asked to find a sequence of
n + 1 distinct objects ag, . ..,a,, with the following property: for each i in [0,...,n — 2|,
P;(ao, . ..,a;,a;) is the same for all j > i.

» Theorem 2. LoNG CHOICE is a total problem in TEFNP.

Proof. Our construction is inspired by the proof of Ramsey’s Theorem as well as the
two-player game which we described in the introduction.

First, we pick an arbitrary element ag in the universe. Then, we partition the remaining
elements a; into two categories, based on the value of Py(ag,a;). Since there are 2™ — 1
elements being partitioned, the majority of this partition must have at least 2" ! elements.
We select an arbitrary element a; from this majority and discard all elements from the
minority.

We then continue this procedure: we partition the remaining elements z based on the
value of Pj(ag,a1,z), and we pick an arbitrary element as from the majority of this new
partition.

We can continue partitioning elements in this fashion and picking elements from the
majority until we arrive at a complete Long Choice certificate. This proves the totality of the
problem. Membership in TENP follows from the fact that a candidate certificate sequence
ag, - - - @, can be checked easily in polynomial time. |

Critically, LONG CHOICE is also PPP-hard. To see why, consider the two-player game
from the Introduction which characterizes LONG CHOICE. In this game, player 2 can behave
(i.e., the predicates P; can be specified) in a way that guarantees that the only way player 1
wins is by finding a certificate to a PPP-complete problem COLLISION. Consider an instance
of COLLISION, given by a circuit, C, which maps n-bit strings to n-bit strings. Player 1
starts the game with 2" objects (the domain of the circuit). At each round, player 1 picks
an element from the remaining set of objects. If at any round, player 1’s choices so far
contain a certificate to COLLISION (that is, one element is a zero element or a pair of elements
collide under C), then player 2 stops partitioning the remaining elements. That is, player 2,
for the rest of the game, places all remaining elements into the same side of the partition,
guaranteeing a path to victory for player 1.

88:3

ITCS 2023

88:4

Extremal Combinatorics, Iterated Pigeonhole Arguments & Generalizations of PPP

In each round, player 2 considers the “vacant spots” in the range of C: the nonzero values
of the range that do NOT contain the image of player 1’s choices. At round 1 of the game,
player 1 makes some choice, call it ag. If C(ag) = 0, then player 1 has found a certificate,
and we are done. If C'(aq) is positive, then there are 2" — 2 vacant spots left. Player 2 splits
the set of vacant spots into two even halves (there are many ways to do this, one way is for
player 2 to specify a constant, k and declare that all vacant spots less than or equal to k&
belong to one half, and the vacant spots greater than k& belong to the other).

Regardless of what value player 1 chooses for a; in round 2, all subsequent elements must
belong to the same subgroup of C(a;). After C(ay) is chosen, the number of vacant spots in
this subgroup is 2771 — 2.

The game continues in this fashion, with player 2 always taking note of the remaining
available vacant spots, and splitting this set into 2 even groups. In general, after the i-th
round, there will be at most 2"~ *! — 2 vacant spots left. Therefore, after the n-th round,
assuming no certificate has yet been found, there will be 2! — 2 = 0 vacant spots. Therefore,
the (n + 1)-th choice player 1 makes must provide a collision (or zero element). We provide
a complete proof of this result in the appendix.

» Theorem 3. LoNG CHOICE is PPP-hard.

Several problems reduce to simplified cases of Long Choice where the predicates have fixed
arity. Define UNARY LONG CHOICE to be the version of Long Choice where every predicate
P; depends only on its last argument, i.e., P;(ag,...,a;,x) = P;(z). Define BINARY LONG
CHOICE to be the version of Long Choice where every predicate P; depends only on two of its
arguments, the last argument x and one of the previous ag, i.e. P;(ao,...,a;,z) = Pi(ag,)
for some k < i.

It is easy to see that PWPP reduces to UNARY LONG CHOICE: Given a circuit C' for
PWPP with n input bits and n — 1 output bits, define P;(z) to be the (i + 1)-th bit of C(z).
Then in any valid certificate ag,...,an_1, ay, for this instance of UNARY LONG CHOICE, we
must have C(a,—1) = C(ay).

» Theorem 4. PWPP reduces to UNARY LONG CHOICE.

In the next section we will see that Ramsey problems reduce to BINARY LONG CHOICE.

In the opposite direction, we can make the Long Choice problem harder by requiring
the elements a; in the certificate to satisfy additional conditions, while still preserving the
totality of the problem; for example we can require the a; to satisfy a given total order. In
the proof of the totality of LoNG CHOICE, we partition in each step the currently available
set and pick an arbitrary element from the majority. We can instead pick a specific element,
e.g. the smallest element under the given ordering. We call this generalization LONG CHOICE
WITH ORDER; see the appendix for a formal definition.

3 Long Choice and r-Color Ramsey

Ramsey’s theorem for multi-colored graphs states that for every number r > 2 of colors and
every integer n > 2, there is a number R(r,n) such that for every r-coloring of the edges of
the complete graph on R(r,n) nodes there is a monochromatic clique with n nodes. The
standard Ramsey theorem corresponds to the case of r = 2 colors. A simple proof of the
multi-colored Ramsey theorem uses the same type of iterative process as the r = 2 case,

A. Pasarkar, C. Papadimitriou, and M. Yannakakis

except that in every step we partition the set of available nodes into r groups instead of 2!;
as before, we pick the largest group to continue the process. The bound on R(r,n) from this
simple proof is R(r,n) < r™™. Obtaining better upper and lower bounds on R(r,n) for r = 2
and for general r has been (and continues to be) the subject of a long line of intense research
effort.

In the computational version of the problem, denoted (r,n)-RAMSEY, we are given the
r-coloring of an exponentially large complete graph, which is specified via a poly-size circuit
C, and are asked to find a monochromatic clique of size n. The RAMSEY problem of the
last section is equivalent to (2,n)-RAMSEY. The number r of colors in general need not be
fixed, it could be a function of n. Assume for simplicity that r is power of 2 (otherwise,
replace logr in the following by [logr]). Every node of the complete graph is represented by
a unique rnlogr-bit string, and the given circuit C' takes as input two rnlogr-bit strings
(two nodes u, v) and outputs a log r-bit string (the color of the edge (u,v)).

» Theorem 5. (r,n)-RAMSEY is in PLC for all r,n. In particular, (r,n)-RAMSEY reduces
to BINARY LONG CHOICE.

Proof Sketch. We describe first the proof for the case r = 2, which simply follows the
existence proof sketched in the previous section: Given a 2-colored complete graph on 22"
nodes, specified by a given circuit C, define the predicate P; for each i, to map any sequence
ap, - .., a;,x of nodes to the color, 0 or 1, of the edge (a;,x). Note that P; depends only
on the last two arguments a;, . Consider a valid certificate ay, . .., a2, of this instance of
Binary Long Choice. For each i = 0,...,2n — 2, all edges (a;,a;) for j > ¢ must have the
same color, 0 or 1; assign this color to node a;. At least n of the 2n — 1 nodes ag, . .. a2,—2
are assigned the same color. These nodes induce a monochromatic clique of size n.

In the case of general r, given an r-colored complete graph on 2"™!°8” nodes, define each
function P; as follows. Let k = (|i/logr|)logr, i.e, k is the greatest multiple of logr that is
<. Set Pi(ao,-..,a;,x) to be the (i — k + 1)-th bit of the color of the edge (aj,x). Note
that again all these predicates depend only on two arguments, ax and x.

Consider a valid certificate ag,...,arn10gr Of this instance of Long Choice, and let
bi = aj10gr for each 7. From the construction of the Long Choice instance, it is easy
to see that, for each ¢ = 0,...,r(n — 1), all edges (b;,b;) for j > ¢ must have the same
color: note that the t-th bit of the color of edge (b;,b;), for all j > 4, is the value of
Pag,...,a1,b;) = Plaog,...,a;,a;41) for I = ilogr +t — 1. Assign to each node b; the
(common) color of the edges (b;, b;), j > i. There are r(n—1)+1 distinct nodes by, . . ., by (,—1),
each assigned one of r colors, therefore at least n of them are assigned the same color. These
nodes induce a monochromatic clique of size n. |

Finally, consider how Ramsey relates to PWPP. It was shown previously in [12] that
there exists a randomized reduction from PWPP to RAMSEY, as well as a reduction from
PWPP to the multi-color Ramsey problem. In the full paper, we use properties of metric
spaces to provide an alternative deterministic reduction from PWPP to multi-color Ramsey.

4 Sunflowers

An important aspect in extremal combinatorics is the extremal bound: how large a system
has to be to guarantee that the desired combinatorial structure exists. Often times, the
tightest bounds are unknown - improving these bounds is an important research tradition in
Combinatorics [1, 3].

1 Along the same lines, we could extend Long Choice to allow the functions P; to have a more general
range [r] instead of {0, 1}.

88:5

ITCS 2023

88:6

Extremal Combinatorics, Iterated Pigeonhole Arguments & Generalizations of PPP

However, despite this uncertainty, we can still use weaker extremal bounds to define
provably hard TFNP search problems, which we can then relate to the subclasses of TFNP.
In this section, we focus on the Sunflower Lemma [10], but this paradigm for reasoning about
extremal problems can be applied to many other problems as well.

We begin with some basic definitions.

» Definition 6. A k-set system is a collection of distinct sets in which every set contains
exactly k elements. A collection of distinct sets Si, ..., Sy is a sunflower if for all i, j, S;NS;
is the same.

The Sunflower lemma states that for all positive integers k, s, there is a number f(k,s)
such that every k-set system of size f(k,s) contains a sunflower of size s. The lemma was
formulated and proved by Erdés and Rado [5] for f(k,s) = k!(s — 1)¥*1, using an inductive
proof that applies an iterative pigeonhole argument. The conjecture is that f(k,s) < C* for
some constant C that depends only on s. Progress on improving the upper bound on f(k, s)
was made recently in [1].

A computational problem based on the Sunflower Lemma was formulated in [12], and
shown to be hard on average assuming the existence of collision resistant hash function. Here,
we use an even weaker bound to define a problem which we call NAIVE SUNFLOWER, and
relate it to the multi-color Ramsey problem.

» Definition 7 (NAIVE SUNFLOWER). We are given a poly(k)-sized circuit
C - {o, 1}k3 logk |, ({0, 1}k3 logk)k

which is supposed to specify a family of ok’ logk gistinct sets of size k over a universe of

2k’ logk clements (each element is represented by a k®logk-bit string). The problem is to

find either:

1. (An error): An index i such that the set (represented by) C(i) contains two identical
elements, or find two distinct indices i, j such that the sets C(i),C(j) are equal,or

2. A sunflower of size k2.

Following the exact same argument presented in [12], this problem is hard on average
assuming that Collision Resistant Hash Function families exist.

We will reduce NAIVE SUNFLOWER to Multi-color Ramsey by using a characterization of
large sunflowers as a pairwise equidistant collection of points in a metric space. Given a k-set
system F, define the distance d(A4, B) between any two sets A, B of F as d(A, B) = |AAB|/2,
where AAB = {A\ B}U{B\ A} is their symmetric difference (it has even size since A, B
have the same size). The function d is a valid metric. Clearly, any sunflower in F is a set of
pairwise equidistant points in this metric.

Conversely, by a result of Deza [4], any collection of at least k? — k + 2 pairwise equidistant
k-sets must form a sunflower. Therefore, in this regime, we can reduce the problem of finding
a sunflower of size k2 to the problem of finding k2 pairwise equidistant sets. In turn, we can
reduce this problem to the multi-color Ramsey problem.

» Theorem 8. NAIVE SUNFLOWER reduces to (v/n,n)-RAMSEY.

Proof. Consider an instance of NAIVE SUNFLOWER, given by a circuit C. As above, C' is
supposed to define a set system consisting of ok? log k sets, where each set contains k£ elements.
The core idea behind our reduction is simple: we construct a graph consisting of 2k’ logk
nodes, where the i-th node u; corresponds to the set C(i). To color the edges of this graph,

we use k colors, given by the numbers 1,2, ..., k. Every edge (u;,u;) is colored as follows.

A. Pasarkar, C. Papadimitriou, and M. Yannakakis

If C(i),C(j) are distinct k-sets, then assign color d(C(i),C(j)) to the edge (u;,u;). If one
of C(i),C(4) is not a k-set, e.g. contains a duplicate element, or if the sets are equal, then
assign color 1 to the edge (u;,u;).

Let n = k2. Since the graph has 2k logk — pnk nodes, it contains a monochromatic clique
of size n = k? by Ramsey’s Theorem. Let M be any such monochromatic clique of size k2.
If M contains a node w; such that C(4) is not a k-set, or if it contains two nodes u;,u; such
that C(i),C(j) are equal sets, then we have a violation for the circuit C. Otherwise, the
collection {C(i)|u; € M} has k? pairwise equidistant sets, and thus by Deza’s theorem, they
form a sunflower. <

We have shown earlier that (r,n)-RAMSEY is in PLC for any r, n; thus we can conclude:

» Corollary 9. NAIVE SUNFLOWER is in PLC.

5 Short Choice

As we have seen above, PPP is contained in the class PLC. There is an intuitive reason for
this: implicit in any PPP-complete problem is an iterated pigeonhole argument.

The class PEPP, introduced in [11], embodies the dual of the class PPP - an anti-
pigeonhole principle: if there are 2™ — 1 pigeons and 2™ holes, then no matter how the pigeons
are placed, there must be an empty hole. PEPP belongs to the class TFY,P, which is
believed to lie outside of the class N P.

While the existence proof for Pigeonhole Circuit has a majority argument, the existence
proof for Empty has a corresponding “minority” argument. Suppose we are given an
instance of the PEPP-complete problem EMPTY: we are given a poly(n)-sized circuit
C :[2™ — 1] — [2"], where the inputs and outputs are all represented concisely using exactly
n bits. The challenge here is to find an element j in the range such that there is no ¢ with
C(i) = j. There must exist a bit ¢; such that the minority of elements in the domain of C
map to a n-bit string whose first bit is ¢;. This minority has size at most 2"~! — 1. Among
the elements in this minority, there must exist a bit ¢ such that the minority of these
elements map to a n-bit string whose second element is ¢;. This new minority has size at
most 2"~2 — 1. If we continue this argument n times, we find that there exists a bit string
€1 0¢ 00 ¢y, which is not in the image of C.

As discussed earlier, LoNG CHOICE is a generalization of PPP that encapsulates the
iterated majority arguments. We can define an analogous generalization of the class PEPP
that encapsulates the iterated minority argument. For this, we introduce a problem called
SHORT CHOICE, a problem in TF3X5;P which is the dual of LONG CHOICE.

» Definition 10 (Subcertificate). Given a Long Choice problem instance defined by predicate
functions Py, Py, ..., P,_o we call a subcertificate a sequence of distinct elements ag, a1, ..., ax
(k < n) which satisfy the LONG CHOICE conditions imposed by the predicate functions P;.
That is, for each predicate function i < k, we require that P;(ao,...a;,a;) is the same for all
j >

» Definition 11 (Problem: SHORT CHOICE). The input is the same as in the LONG CHOICE
problem, except that the universe U has now 2" —2 objects. As in LONG CHOICE, we are given

a sequence of n — 1 poly(n)-sized circuits, Py, ..., P,_2, where each P; defines a predicate
function P; : U2+ {0,1}
The problem is to find a sequence ag, a1, ...,ar of at most n — 1 distinct objects in U

and a bit ¢ € {0,1} with the property that (1) the sequence ag,aq,...,ax is a subcertificate,
and (2) there does not exist any object axy1 € U that both extends this subcertificate and has
Pk((lo, a1,.-.., a’k7ak+1) = C.

88:7

ITCS 2023

88:8

Extremal Combinatorics, Iterated Pigeonhole Arguments & Generalizations of PPP

As in our discussion of LONG CHOICE, we can show that SHORT CHOICE is both total
and PEPP-hard. The proof of totality uses a repeated minority argument, in the same
way that the proof for Long Choice used a repeated majority argument. And the proof of
PEPP-hardness is along similar lines as the PPP-hardness proof for LONG CHOICE. We
provide the complete proofs in the appendix.

» Theorem 12. SHORT CHOICE is a total problem.

» Theorem 13. SHORT CHOICE is PEPP-hard

We can define the class PSC (Polynomial Short Choice) to be the class whose complete
problem is SHORT CHOICE.

6 Konig and Erd6s-Ko-Rado

In this section we introduce and characterize computational problems associated with two
classical theorems in combinatorics.

6.1 Konig

Konig’s lemma states that in every infinite connected graph with finite degree there is an
infinite simple path starting at every node. The lemma is often stated and used for trees:
Every infinite (rooted) tree with finite branching has an infinite path (starting at the root).
The finite version of the lemma is that every large enough connected graph (or tree) with
bounded degree contains a long path. For example, every rooted binary tree with 2™ nodes
contains a path of length n. The graph version follows easily from the tree version: Given a
connected graph, take a spanning tree of the graph, for example a breadth-first-tree from an
arbitrary node.

The standard proof of Konig’s tree lemma (both the infinitary as well as the finitary
version) is by the same type of repeated majority argument as in the proof of totality for
Long Choice. Starting from the root of the tree, proceed to the child whose subtree contains
the largest number of nodes, and repeat the process from there. If the tree is infinite, one of
the children must have an infinite subtree (since the degree is finite), thus this process will
generate an infinite path. Similarly, in the finite case, every iteration reduces the number of
nodes at most by a factor of d (the degree), so the process generates a path of logarithmic
length.

Given a (succinctly represented) exponentially large connected graph or tree with bounded
degree, e.g. a binary tree, how hard is it to find a long simple path? We formulate this
problem below for binary trees, represented through the parent information.

» Definition 14 (Problem: KONIG). We are given a poly(n)-sized circuit, P : {0,1}" —
{0,1}" x {0,1}. This circuit is supposed to define a rooted binary tree on 2™ nodes, where
each node is encoded by a n-bit string. It does so by defining a parent relation: for a node wu,
P(u) is an ordered pair (v,b) where v is the (binary encoding of) the parent of u, and b is a
bit which indicates whether u is the left or right child of v. If P(u) = u, that means that u
does not have a parent (it is a root node). In the Kénig problem, we are given P and a root
node, v, and are asked to find either a violation (P does not specify a binary tree rooted at r)
or find a path of length n. Specifically, return one of the following certificates:

1. Identical children: Return 2 distinct nodes a and b with the property that P(a) = P(b).

(That is, they are both left children or right children of the same node).

A. Pasarkar, C. Papadimitriou, and M. Yannakakis 88:9

2. Invalid Root: Returnr if P(r) #r.

3. Non-Unique Root: Return a node s # r with the property that P(s) = s.

4. Far Away Node: Return a node s with the following property: if we apply the parent
operator P to s a total of n times, we do not reach the root r.

5. Long Path: A sequence of n+ 1 nodes ag,ay,...,a, with ag = r, and the property
that P(a;) = a;—1 for all i > 1. Note that it suffices to provide a,_1 as a valid certificate
here; the rest of the path can be recovered by applying the parent operator P.

We refer to the circuit P as the parent operator. In cases 1, 2, 3, P does not induce a binary

tree. The same is true in case 4, if applying P to s n times produces a repeated node;

otherwise, we get a simple path of length n. Case 5 yields a path of length n from the root r.
The proof of Konig’s lemma suggests that the problem should be in PLC. It turns out

that KONIG is in fact in PPP, and furthermore it is complete; see the appendix for a formal

proof.

» Theorem 15. KONIG is PPP-complete.

6.2 Erdés-Ko-Rado

The Erdés-Ko-Rado Lemma is one of the foundational results in extremal set theory.

» Theorem 16 (Erdés-Ko-Rado Lemma). If F' is any k-set system over a universe X of size
n > 2k, and every pair of sets in F' has non-empty intersection, then

n—1
F<(37))
Thus, if |F| > (Zj) then F' must contain two disjoint sets. How hard is it to find these
two disjoint sets, if F' is a succinctly given exponentially large system?
Take the case in which £ = 2 and the size of the universe is 2". In this case, the Erdos-Ko-
Rado lemma tell us that the largest possible intersecting set system has size (*'; ') = 2" — 1.
Therefore, given a 2-set system F of size 2" > 2™ — 1, then F' must contain two disjoint sets.

» Definition 17 (Problem Statement: ERDOS-K0-RADO). We are given a poly(n)-sized
circust

F:{0,1}" — ({0,1}")?

which is supposed to represent a 2-set system of size 2" over the universe X = {0,1}". The

problem is to find either a violation (F is not a valid encoding) or two disjoint sets of the set

system. Specifically, return one of the following certificates:

1. (Error:) An index i such that F (i) = (a,a) for some a € {0,1}" (i.e., the set F(i) has
two identical elements), or two distinct indices i,j such that the sets (represented by)
F (i), F(j) are equal, or

2. (Disjoint sets:) Two indices i,j such that the sets (represented by) F(i), F(j) are disjoint.

By the Erdés-Ko-Rado lemma, one of these conditions must occur, placing the problem
in TFNP.
In the Appendix we show the following:

» Theorem 18. ErRDOS-K0-RADO is PPP-complete.

ITCS 2023

88:10

Extremal Combinatorics, Iterated Pigeonhole Arguments & Generalizations of PPP

7 Mantel, Turan, and Bad Colorings

In this section, we introduce a new flavor of problems from extremal combinatorics which
generalize PPP. This class of problems is related to Mantel’s and Turan’s theorem and
graph colorings. Mantel’s theorem states that a triangle-free graph with N nodes has at
maximum |N?/4] edges. The maximum is achieved by a complete bipartite graph with
equal or almost equal parts (depending on whether N is even or odd). Turdn’s theorem
answers the generalized question of what is the maximum number of edges in a graph with
N nodes that does not contain a (k + 1)-clique: the maximum is achieved by a complete
k-partite graph that has equal or almost equal parts (see [10] for a detailed exposition).

The same quantities answer the easier question of, what is the maximum number of
edges of a k-colorable graph on N nodes. A k-colorable graph whose color classes have sizes
Z1,...,T can have at most Z#j x;x; edges. Since the z;’s are integers that sum to N, it
can be shown that the maximum is achieved when they are all equal or almost equal.

These theorems induce corresponding total computational problems: Given (succinctly)
an exponential graph with more edges than the above bounds of Mantel or Turdn, find a
triangle or a (k + 1)-clique respectively. If we are given in addition a k-coloring of the nodes,
find an illegally colored edge. We call these problems respectively MANTEL, k-TURAN and
BAD k-COLORING (MANTEL is just 2-TURAN). We define below formally the problems as
TFNP problems.

» Definition 19 (k-TURAN). We are given a poly(n)-sized circuit E : [(5)(27)2+1] = [(k2")?],
which is supposed to represent a graph with k2™ nodes and (g) (2")2 + 1 edges (nodes and
indices of edges are encoded by bit-strings of appropriate length as usual); E maps the index
of an edge to the two nodes of the edge. The problem is to find either a violation (E is not
a valid encoding of the edges of a graph) or a (k + 1)-clique. Specifically, return one of the
following certificates:

1. (Error): An index i such that E(i) consists of two identical nodes, or two distinct indices
i,7 such that E(i), E(j) contain the same two nodes (not necessarily in the same order),
or

2. ((k+1)-clique): (k;rl) indices which are mapped by E to the edges of a clique on k + 1
nodes.

» Definition 20 (BAD k-COLORING). We are given a poly(n)-sized circuit E : [(g) (2")24+1]

[(k2™)?], which is supposed to represent a graph with k2" nodes and (15)(2")2 +1 edges and a

poly(n)-sized circuit C : [k2™] — [k] which colors the nodes with k colors. The problem is to

find either a violation (E is not a valid encoding of the edges of a graph) or an edge whose

nodes have the same color. Specifically, return one of the following certificates:

1. (Error): An index i such that E(i) consists of two identical nodes, or two distinct indices
1,7 such that E(i), E(j) contain the same two nodes (not necessarily in the same order),
or

2. (Bad edge): An index i such that E(i) = (a,b) and C(a) = C(b).

We show the following relations between PPP and these problems (proofs in the full
paper):

» Theorem 21.

1. PPP reduces to BAD 2-COLORING.

2. For all k > 2, BAD k-COLORING reduces to k-TURAN. In particular, BAD 2-COLORING
reduces to M ANTEL.

3. For all k > 2, BAD k-COLORING reduces to BAD (k + 1)-COLORING.

4. For all k > 2, k TURAN reduces to (k + 1)-TURAN.

A. Pasarkar, C. Papadimitriou, and M. Yannakakis

Thus, we have a hierarchy of problems on top of PPP. The Bad Coloring problems can be
viewed as instances of the pigeonhole problem (there is no iteration here), but the mapping
is given indirectly and cannot be easily constructed: We can view the indices of the edges as
the pigeons and the potential legal edges, i.e. all the pairs of differently colored nodes, as the
holes. There are more pigeons than holes, so either two pigeons are mapped to the same hole
(E(i), E(j) are the same edge for some pair of indices 4, j)), or some pigeon is not mapped to
a hole (for some ¢, E(i) = (a,a) or E(i) = (a,b) with C(a) = C(b); this corresponds to the
special 0 value in the PPP problem). The difference with PPP, is that the set of holes (the
range of the mapping) is not given a priori explicitly as a set of bit-strings (or integers) as in
PPP, but rather it is implied indirectly by the coloring C. As a consequence, even for k = 2,
we cannot compute easily in polynomial time for example the number & of available holes (h
is the product of the sizes of the two color classes), and we cannot compute efficiently an
index function mapping each legal pair of nodes (pair (a,b) with C'(a) # C(b)) to an index
in [h]. In the Turdn problems, there is in addition the complication of optimizing over all
partitions (colorings) and of seeking a clique rather than a single edge.

Another example along the same lines is the following BAD k-SET COLORING problem:
Given (poly(n)-size circuits specifying) a k-coloring C of a set V of k2™ nodes and a family
F of 28" 4+ 1 k-sets over V, find a k-set in F that is not panchromatic, i.e. two of its clements
have the same color, or find two equal sets in F.

» Theorem 22.
1. PPP is equivalent to BAD 1-SET COLORING.
2. For all k > 1, BAD k-SET COLORING reduces to BAD (k + 1)-SET COLORING

These problems form a hierarchy on top of PPP, where again existence of a certificate is
guaranteed by (1) the answer to an optimization problem (what is the maximum number of
panchromatic k-sets over all k-colorings), and (2) the pigeonhole principle, where however
the mapping is not given explicitly, but is defined indirectly in an inefficient manner.

8 Discussion and Future Work

The generalizations of PPP which we explore in this paper seem to give rise to a remarkably

rich set of tantalizing open questions. Some examples:

1. Prove black box separations between the problems and classes studied in this paper. For
example, prove a separation between PPP and PLC; between PEPP and PSC; between
PPP and the hierarchy of Turan and Bad coloring problems.

2. What other natural problems belong to PLC or are PLC-complete? One problem in
TENP that has long evaded classification is BERTRAND-CHEBYSHEV: given a number n,
find a prime number between n and 2n.

3. What is the complexity of finding monochromatic cliques in smaller graphs, whose
existence is guaranteed by a century of fascinating improvements of Ramsey’s theorem?

4. What natural problems belong to the class PSC (but not to PEPP)?

5. How does PLC relate to problems in cryptography, and specifically lattices?

6. The Bad Coloring hierarchy suggests a novel source of computational hardness: inefficient
encoding of objects. What other interesting natural problems share this type of hardness?

7. More generally, what other problems from extremal combinatorics give rise to search
problems in TFNP, and how are these problems classified in TFNP subclasses?

88:11

ITCS 2023

88:12 Extremal Combinatorics, lterated Pigeonhole Arguments & Generalizations of PPP

—— References

1 Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. Improved bounds for the
sunflower lemma. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, pages 624-630, 2020.

2 Bela Bollobas. Extremal Graph Theory. Dover, 2013.

3 David Conlon and Asaf Ferber. Lower bounds for multicolor ramsey numbers, 2020. doi:
10.48550/arXiv.2009.10458.

4 Michel Deza and Peter Frankl. Every large set of equidistant (0, +1, —1)-vectors forms a
sunflower. Combinatorica, 1:225-231, September 1981.

5 P. Erdés and R. Rado. Intersection theorems for systems of sets. Journal of the London
Mathematical Society, s1-35(1):85-90, 1960.

6 Paul W. Goldberg and Christos H. Papadimitriou. Towards a unified complexity theory of
total functions. Journal of Computer and System Sciences, 94:167-192, 2018.

7 Ronald L Graham, Bruce L Rothschild, and Joel H Spencer. Ramsey theory, volume 20. 'John
Wiley & Sons’, 1990.

8 Emil Jerfdbek. Integer factoring and modular square roots. Journal of Computer and System
Sciences, 82(2):380-394, 2016.

9 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79-100, 1988.

10 Stasys Jukna. Ezxtremal Combinatorics With Applications in Computer Science. Springer
Berlin, 2013.

11 Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadimitriou. Total
functions in the polynomial hierarchy. In 12th Innovations in Theoretical Computer Science
Conference, ITCS, volume 185 of LIPIcs, pages 44:1-44:18, 2021.

12 TIlan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-box complexity of
search problems: Ramsey and graph property testing. J. ACM, 66(5), July 2019.

13 Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems and
computational complexity. Theoretical Computer Science, 81(2):317-324, 1991.

14 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498-532, 1994.

15 Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. Ppp-completeness with connec-
tions to cryptography. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS, pages 148-158. IEEE Computer Society, 2018.

A Missing material from Section 2 (Long Choice)

We first remark that in the definition of Long Choice, it is unimportant what the initial
element ag actually is, and whether it is specified or not. Consider a variant of the problem,
CONSTRAINED LONG CHOICE, where a specific initial element is required. By the proof
of Theorem 2, this constrained variant is also a total search problem. In the full paper we
prove:

» Proposition 23. LoNG CHOICE with no initial element is equivalent to CONSTRAINED
LoNG CHOICE.

» Theorem 3. LoNG CHOICE is PPP-hard.

Proof. Suppose that we are given a circuit Cy mapping n bits to n bits, an instance of the
COLLISION problem. We can view the inputs and outputs of circuits both as n-bit strings
or as the equivalent integers in [0,...,2" — 1]. Given Cj, we define a new circuit, C' which
maps n-bit strings to n-bit strings. On input a, we define C' as follows:

1. C(a) = 2™ — 1 (the all-1 string) if Cy(a) =0

2. C(a) = Cy(a) otherwise

A. Pasarkar, C. Papadimitriou, and M. Yannakakis

By the pigeonhole principle, since C' only maps inputs to nonzero values, it must have
collisions. Any such collision will either allow us to recover a collision in Cy or allow us to
recover a zero element of C.

We now reduce the problem instance given by circuit C' to a Long Choice problem. We
begin by defining our set, U, to be the domain of circuit C: the set of n-bit strings. Note
that U has 2™ distinct elements, each of which is represented as a unique n-bit string. It
now suffices to define n — 1 predicate functions Py, Py, ..., P,_o.

As in the proof of totality for Long Choice, we can think about constructing a certificate
by sequentially making the choices ag, a1, ..., a,. Put simply, our predicate functions will
classify the elements of U based on their émages under C. These functions will enforce the
following property: subsequent elements of our Long Choice certificate will have images
under C' which are closer and closer together. More specifically, consider the first three
elements of a Long Choice certificate, ag, ar,az. While C(ag) and C(a1) may be more than
27~ — 1 units apart, predicate function Py will enforce the condition that C(a;) and C(asz)
are within 2"~ — 1 units of each other. Each predicate function will, in effect, enforce similar
“closeness” conditions. Ultimately, this will force any Long Choice certificate to have two

distinct elements whose images under C' are 0 units apart (a collision under C!), as desired.

In the following discussion, we assume all inputs to predicate functions are distinct,
because this is required of any valid certificate.

We now explicitly define the predicate functions:
1. P(ag,...,a;,x) =11if C(z) is in the interval F; (defined below)
2. Py(ag,...,a;,z)=0if C(z) is not in the interval F;.

To complete the definition, we define the intervals, F;, which depend on the elements

ag, - - - ,a;. Before we do so, we introduce some basic terminology to make this discussion
clearer.
1. Unfilled set: For any sequence of elements ag, ..., a; and an interval [p, g, the unfilled

set of the interval is defined as {{p,p+1,...,¢}\{C(ao),C(a1),...,C(a;)}} For example,
if given a sequence of points ag, a1, az with C(ag) =0, C(a;) = 2, C(az2) = 1, the unfilled
set for the interval [0,5] is {3,4,5}.

2. Indexing an interval: (Purely for notational convenience) Given an interval I = [a, b,
for k > 0, define I[k] as the interval containing the smallest k elements of I, and define
I[—k] as the interval containing the largest k elements of I. For example, given I = [1,4],
I[2] = [1,2], the first two integers in the interval, while I[—3] = [2,4], the largest 3
integers in the interval.

We now define a sequence of intervals By, ..., B;,... and Fy,..., F;,.... Critically, each
interval F; is a contained in the corresponding interval B;. We proceed with an inductive
definition.

Base Case Definition. For any single element sequence ag, the corresponding interval By
is [1,2™ — 1]. The unfilled set for By has size 2™ — 2. Consider the value of k that guarantees
that Bg[k] has an unfilled set of size 2"~! — 1. This can be easily computed: k = 2"~ — 1 if
Clag) > 2" 1 —1, else k = 2"~ 1. We define Fy = Bylk].

Inductive Definition. Suppose that we have a sequence of elements ag, ..., a;, and for all
k < i, B and F} are defined. We first define B; using the following rules:
1. First, if B;_1 is an interval of size 1, then B; = F; = B;_1

88:13

ITCS 2023

88:14

Extremal Combinatorics, Iterated Pigeonhole Arguments & Generalizations of PPP

2. Otherwise, if C(a;) is in F;_1, then B; = F;,_y. If C(a;) is not in F;_;, then B; =
Bi_1\ Fi_1.

3. Finally, we define F;. Let x denote the size of the unfilled set of B;. Let k be the smallest
integer such that B;[k] has [5] unfilled spots. We let F; = B;[k].

This completes the definition of the Long Choice problem instance. It remains to prove
that a valid certificate for this problem instance allows us to recover a collision under C. Let
ap,a, - .., a, be a valid certificate. If there is a collision among these elements, we are done.
So assume there is no collision; we will derive a contradiction.

Counsider the sequence of set B;, F; generated from the sequence ag,aq,...,a,. Note
that By D By--- 2 B;... and F; C B; for all i. It is easy to show inductively from the
construction that the following two properties hold:

1. Vi,V¥j > i,C(a;) € B;.
2. |B; \ {C(ap),...,C(a;)}| =2"""—2foralli <n—2.

The basis case (i = 0) for both properties is trivial. The induction step for property 1
follows from the fact that P;_(ag, ...,a;—1,a;) has the same value for all j > ¢, hence either
all these C(aj) are in F;_; or they are all not in F;_; and thus they are in B;_1 \ F;_1
(because they are all in B;_; by the induction hypothesis). It follows from the definition of
B; that they are all in B;.

For the induction step of property 2 note that the induction hypothesis

|B1'_1 \ {C(ao), ey C(ai_l)}| = 2n7i+1 -2

implies that both F;_; and B;_; \ F;_; have 2"~% — 1 unfilled spots. Since C(a;) € B; and
a; does not collide with any earlier aj, it follows that |B; \ {C(ao),...,C(a;)}| = 2"~ — 2.

From property 2, B,,_s has an unfilled set of size 22 — 2 = 2. The interval F,,_; is, by
definition, constructed such that F,,_1 and B,_s \ F,,_1 both have 1 unfilled spot. Critically,
based on the definition of P,_o, we know that C'(a,,—1) and C(a,) must both belong to F,,_1
or both belong to B,_2 \ F,,—1. Therefore, C(a,—1) and/or C(a,) must collide with each
other or with another element in the sequence, a contradiction. <

Finally, we define Long Choice with Order formally:

» Definition 24 (LonG CHOICE WITH ORDER). Consider a set U of 2" objects, each
represented by a unique n-bit string. We are given a sequence of n — 1 predicate functions,
Py, ..., P,_s represented by poly(n)-size circuits. Predicate function P; has arity i + 2:

P : U™ — {0,1}

We are also given a function F, which purportedly defines a strict total order over the above
set U. The function F is also represented by a poly(n)-size circuit:

F:U? {0,1}

Given two distinct inputs ag,ay, F(az,ay) = 0 indicates that ay < ay in this total ordering.

F(ag,ay) =1 indicates that az > a,. The problem is to find any of the following:

1. Monotone certificate: A monotone increasing sequence of n + 1 distinct objects
ag, ..., an i U, with the following property: for each i in [0,...,n —2], Pi(ao, ..., a;)
is the same for all j > 1.

2. Order Violation: A set of 3 distinct objects ay,ay, a, which violate the transitivity
property of total orders.

A. Pasarkar, C. Papadimitriou, and M. Yannakakis

B Missing material from Section 5 (Short Choice)
» Theorem 12. SHORT CHOICE is a total problem.

Proof. Let U denote the set of 2" — 2 objects in the universe of this Short Choice problem
instance. We will construct a certificate, given by a subcertificate ag, a1, ...,ar, (k <n —2)
and a bit ¢. In order to construct this sequence, we will also define a sequence of nonempty
sets Uy D Uy D -+ D Uy with the following properties:

1. Uy=U

2. |Uy| <277% — 2 for all k

3. ax € Uy, for all k and whenever k > 1, ag,...,ax_1 & Uy.

4

. For every j < k, an element = extends the subcertificate ag,a1,...,a; if and only if
T € Uj \ {aj}.
5. For all € Uj 1, Pj(ao,...,a;,x) is the same.

As a base case, we begin by defining Uy := U, and we pick an arbitrary element ag € Uy.

Note that the base case of our construction so far satisfies properties 1 and 2: Uy = U,
|Ug| = |U| <2779 —2. Property 3 holds because ag € Uy (the second condition in property 3
is vacuously true here). Property 4 holds trivially, since any element = # ag must belong to
Uo \ agp.

We now define U; in such a way that our base case satisfies property 5 as well. We
partition the elements z € {Up \ {ao}} in two groups based on the value Py(ag, z). We know
that [Up \ {ao}| = 2™ — 3, and since this set is being partitioned into two disjoint sets, the
minority must have size at most 2"~! — 2. If the minority is nonempty, we define U; to
be the minority (which guarantees condition 5 holds). We also define a; as an arbitary
element of U;. Otherwise, if the minority is empty, this means that Py(ag, z) takes on a
constant value (call it b) for all © € U \ {ag}. This in turn means that there is no value x
with Py(ag,x) = —b (the opposite of bit b). We can thus return ag along with the bit —b as a
valid certificate to the Short Choice problem. This completes the base case.

Now, suppose for some 0 < j < k we have defined the nonempty sets Uy D Uy D --- D U;

and the subsequence ag,a1,...,a; in such a way that they satisfy the above properties.

We can first conclude based on properties 3 and 5 that the sequence aq,...,a; is a valid
subcertificate. Furthermore, an element x extends this subcertificate if and only if it belongs
to U; \ {a;}, according to property 4.

To continue our inductive construction, we partition the elements z € {U; \ {a;}} based

on the value of Pj(ao,...,a;j,x). If one side of this partition is empty, that means that there
exists a bit ¢ € {0,1} such that there are no elements « € {U; \ {a;}} where ag,a1,...,z is
a subcertificate and Pj(ao, ...,aj,x) = c. In this case, we are done: the sequence ay,...,a;

along with the bit value ¢, serves as a certificate to the problem.

Otherwise, both sides of this partition are nonempty. In this case, we can continue
the inductive construction: we pick the minority side of the partition of the elements
xz € {U; \ {a;}}. We then define U;;; to be all of the elements on the minority side of the
partition, and pick an arbitrary element aj11 € Uj41 to extend the subcertificate. We know
by the inductive hypothesis that |U;| < 27~J — 2. and by the same Pigeonhole argument used

in the base case, we know that |U;i;| < 273 — 2. as desired. Thus properties 1 and 2 hold.
To see why property 3 holds, note that a1 € U;11. Furthermore, ao,...,a;-1 € U; D Uj11.

Finally, a; & Uj, as stated above. To see why property 4 must hold, consider any candidate
element a;42 which may extend the Long Choice subcertificate. We know from the inductive
hypothesis that a;4+2 must belong to U; \ a;. Additionally, we must also now have that

Pj(a07' "aajaaj-‘rl) = Pj(aoa"'aajaaj-‘rQ)

88:15

ITCS 2023

88:16

Extremal Combinatorics, Iterated Pigeonhole Arguments & Generalizations of PPP

By the definition of P;, this means that a;+1 and a;12 both belong to U;11, and since
aj+1 and aj42 must be distinct in order to be in the same subcertificate, we conclude
ajt2 € Ujy1 \ aj41. This argument also shows that property 5 continues to hold as well.

Note that our construction can only proceed until j = n — 2. To see why, suppose that
j =n — 2. Then, by our inductive hypotheses, |U;| < 2"~("=2) — 2 = 2. Furthermore, since
a; € U; by our assumption, we know that U; \ {a;} has at most 1 other element. Denote this

element (if it even exists) by a,_1, and consider the value cpq = Pr—2(ag, - --,0n—2,0n_1).
It is clear that if we consider ¢ to be the opposite bit of ¢p.q, there are no elements z which
extend this subcertificate with P,,_s(ag,. .., an—2,2) = ¢. Thus, we can return ag, ..., a,_2
and ¢ and we are done.

Therefore, our construction is guaranteed to terminate with a subcertificate ag, ..., a;
of the appropriate length, as well as a bit ¢, which provide us with a solution to the Short
Choice problem. <

» Theorem 13. SHORT CHOICE is PEPP-hard

Proof. Consider an instance of the PEPP-complete problem, EMPTY, which is given by
a poly(n)-sized circuit C' : [2" — 2] — [2" — 1], where the challenge is to find an element,
e € [2" — 1] such that for all i € [2" — 2], C(i) # e.

We now define a SHORT CHOICE instance whose solution allows us to recover a solution
to the EMPTY problem.

The universe, U, of this instance consists of the elements in the set 2" — 2] (the domain
of C). It now suffices to define a sequence of predicate functions, Py, ..., P,_s.

Each predicate function P; takes as input the distinct elements ag,aq,...,a;,z and
follows a similar procedure to the proof of PPP-hardness of LoNG CHOICE,. First, it
calculates a set H; of elements belonging to the range of C. This set H; has the form
[, vi) \ {C(ao),C(a1),...,C(a;)}. P; then calculates the midpoint of H;, defined as the
smallest value k € H; such that half of the elements of H; are less than or equal to k. P;
returns 1 if C'(z) is less than or equal to the midpoint of H; and 0 otherwise.

It now remains to define the sets H;. The sets H; are defined inductively with the
following two key properties:

1. |Hy| >2"71 -2
2. If ag,as,...,a; is a Long Choice subcertificate, then for every k € {0,1,...,i — 1},
C(a;) € Hy|J{C(aop),C(a1),C(az),...,C(ar)} whenever j > k.

As a base case, given a first input of ag, Py defines Hy := [2" — 1]\ {C(ag)}. This satisfies
the first inductive property: [2" — 1]\ {C(ag)} has 2"7% — 2 elements.

To see why Hj satisfies the second inductive property, note that Hy|JC/(ag) is actually
the set [2™ — 1] - the range of C! Therefore, for any subcertificate, ag, a1, ..., a;, we will have,
for all k € {1,...,4}, that C(ax) € HoJC(ap), as desired.

Now, suppose that the Hy, ..., H; have been defined in such a way that they satisfy the
two inductive properties. Suppose P; takes as input a valid subcertificate ay, ..., a;, along
with a final element a;1. Then, P; first uses the elements ay, ..., a; to define H;. Next, it
calculates the midpoint of H;. Then, P;(ag,a1,...,a;, a;+1 returns 1 if C'(x) is less than or
equal to the midpoint and 0 otherwise. Accordingly, we define H;., as follows:

1. If P;(ao,-..,a;,a;+1) is 1, then we define H; 1 to be the elements of H; \ C(a;+1) which

are less than or equal to the midpoint of H;

2. Otherwise, we define H;y; to be the elements of H; \ C(a;4+1) which are greater than the

midpoint of H;

A. Pasarkar, C. Papadimitriou, and M. Yannakakis

To prove that the first inductive property holds for H,,1, recall that by our inductive
assumption, H; contains at least 2% — 2 elements. By definition, the midpoint will split
this set into two sets, A and B, each of size at least 2"~*~1 — 1. H;,; is defined as either
A\ C(a;y1) or B\ C(a;y1). Thus, in either case, H; has at least 2"~ — 2 elements, as
desired.

To prove that the second property holds, assume without loss of generality that C(a;) is
greater than the midpoint of H; ;. Then, as described above, we define H; to be the subset
of H;_1 \ C(a;) containing elements greater than the midpoint of H,;_;.

Now, in order for P;_1(ag,a1,--.,a;—1,a;) to be constant for all j > 4, we must have
that C'(a;) is also greater than the midpoint of H;_;. However, by the second inductive
assumption, we know that C(a;) must belong to H;_1 | J{C(ao),-..,C(a;—1)}. If we apply

these two facts together, we conclude that C(a;) must belong to the set H; | J{ao, ..., ai—1,a;}.

Letting j =7+ 1 in our case proves that the second inductive property holds.

Finally, consider any certificate to this instance. It consists of a subcertificate aq, ..., a;
(j <n—2) and a bit, ¢. As we know, this bit ¢ has the following property: there is no object
a;+1 which both extends the certificate and also has Pj(aq, ..., a;,a;4+1) = c.

Consider the set Hj; it has size at least 2"~0=2) — 2 > 27=("=2) _ 2 = 2. Thus, the
midpoint of H; splits H; into two nonempty subsets of size at least 1. Let A denote the
subset of H; containing elements less than or equal to its midpoint, and let B denote the
subset of H; containing elements greater than its midpoint. Suppose that ¢ = 0. Then we
can conclude that there are no elements C(a;41) € B. If there were, we could pick such an
element to extend the Long Choice sequence. Thus any element of B would be a solution to
our problem. Similarly, if ¢ = 1; then we can similarly conclude that there are no elements
C(aj4+1) € A; thus any element of A would be a solution to our problem. Finally, note that
we can easily identify which elements belong to the set A and B; as mentioned earlier, they
take the form [z;,y;] \ {C(a0),C(a1),...,C(a;)}. This completes the proof. <

C Missing material from Section 6 (Konig, Erdos-Ko-Rado)

C.1 Konig
The proof that KONIG is PPP-complete (Theorem 15) follows from the next two lemmas.
» Lemma 25. KONIG is PPP-hard

Proof. We provide a reduction from COLLISION. Suppose we are given a circuit C' that
defines a COLLISION instance:

C:{0,1}" —{0,1}"
We define a KONIG problem instance on 2"*! nodes, by a parent mapping :
P:{0,1}"" — {0, 1} x {0,1}

Note that P implicitly defines a graph on 2"*' nodes. The nodes are supposed to be
arranged in a binary tree with root 0. We start by defining the positions of nodes whose

binary encodings are in the range [0,2" — 1], and we do so recursively. First, 0 is the root.

Next, consider any node s in this range. If the binary encoding of s is odd, we define
P(s) = (| #5],0); that is, s is the left child of a node with binary encoding |25 |. Similarly,
if the binary encoding of s is even, we define P(s) = (| £5%],1). (This arrangement is similar
to the indexing of a heap.) Note that so far, our definition of P has absolutely no dependence
on the circuit C.

88:17

ITCS 2023

88:18

Extremal Combinatorics, Iterated Pigeonhole Arguments & Generalizations of PPP

To finish the definition of P, it remains to consider the nodes whose binary encodings are
in the range A = [27,2"T1 —1]. Consider a given node s whose encoding lies in the range given
by A. Then s — 2™ lies in the domain of C. Furthermore, for each s € A, s — 2™ corresponds
to a unique element in the domain of C. For each s € 4, we let r = C(s —2™) + 2" — 1 and
we define

P(s) = (|5, parity(C(s = 2")))

where the parity function returns 0 if the input is even and 1 if it is odd.

Because the circuit C' has range [0,2" — 1], r must lie in the interval [2" — 1,27+ —1].
Then, based on the definition of P(s), the parent of each s € A must lie in the interval
B =[2""1 —1,2" — 1]. There are 2"~! nodes in the interval B, and each of these nodes can
have at most 2 children. Thus, a total of 2" nodes can have parent nodes in the interval B.

On the other hand, every node of A must have a parent in the interval B, and we know
there are 2™ nodes in the interval A. In addition to the nodes of A, we know that the node
2" — 1, which does not belong to A, also has a parent in B: P(2" — 1) = 2"~1 — 1. This
implies that a total of 2™ + 1 elements must have a parent belonging to the interval B.

Since B can only have 2™ children, by the pigeonhole principle, there must exist a node
in B with two left children or two right children. By the definition of the KONIG problem,
these two left or right children form a valid certificate to the KONIG problem. It remains to
show that these two nodes also provide a certificate for the COLLISION problem.

There are two cases to consider. In the first case, suppose that parent node 27! — 1 has
two left children. We know that one of these children is the node 2™ — 1, and the other child
must be a node s € A. In this case, if P(s) = ([%5%] =2""! —1,0), we can conclude that
r = 2" — 1. However, this would in turn imply that C'(s —2") = 0, which means s — 2" is a
zero element to our original COLLISION problem!

In the second case, suppose that a parent node i > 2"~! —1 has two left (or right) children.
This would imply that there are two distinct nodes s1,s2 € A with P(s1) = P(s2). By the
definition of P, this in turn implies that C'(s; — 2™) = C(s2 — 2™). Since s1 # s2, we can
conclude that s; —2™ and s — 2™ provide us with a collision in our COLLISION certificate. <«

» Lemma 26. KONIG is in PPP

Proof. We are given an instance of the KONIG problem, which is defined by a root node,
r, and a circuit P :{0,1}" — {0,1}™ x {0,1} As described above, P implicitly describes a
graph on 2" nodes. We wish to reduce it to an instance of Pigeonhole Circuit in polynomial
time. To do this, we define a circuit, C":

C:{0,1}" s {0,1}"

where the domain of C' will be the nodes of the graph defined by P.

In any binary tree, we can assign every node a unique “index” based on its position
relative to the root. This indexing scheme is defined in an inductive fashion. First, the root
is given index 0. Next, suppose a given node a; has index i. Then, we say that its left child
has index 2 % ¢ + 1 and its right child has index 2 x i + 2;

Consider any node of the graph, g. Suppose that g is neither a Far away node nor a Long
path certificate nor a Non-unique root. (Note that all of these conditions are easy to verify).
Under these assumptions, we show how to efficiently find the index of g. To do this, we
repeatedly apply the parent operator, P, to the node g until we reach the root node. Based
on the assumptions we have made, this is always possible. Furthermore, it will require at

A. Pasarkar, C. Papadimitriou, and M. Yannakakis

most n — 1 applications of the parent operator. Every time we apply the parent operator to
a node, we receive two pieces of information: the node’s parent and whether the node is a
left or right child of its parent. Thus, once we reach the root node in this process, we have a
sequence of nodes ag, a1, as,...,a, where ap = r and ag = g. Furthermore, for each a; and
a;+1, we know whether a; is the left or right child of a;;. We therefore have a path from r
to g. Using this path, we can use the indexing scheme mentioned above to find the indices of
the nodes r = ag,ag—_1,...,a9 = ¢ in that order to finally arrive at the index of node g.
We are now in a position to fully define the circuit C. On input i, C(i) outputs:

0 if r is an invalid root

0if 7 # r and 7 is a root (in this case, there is a non-unique root).

0 if 4 is a Far Away Node

0 if 4 provides a certificate for a Long Path.

4 A

If none of the above conditions are met, then let = be the index of node ¢ in the binary
tree. C(4) returns x + 1.

It now remains to show that a certificate to the KONIG problem can be recovered from a
certificate to the COLLISION problem we have just defined. There are two cases to consider.

In the first case, suppose our certificate to the COLLISION problem is a zero element. In
this case, there are four possibilities. Either r is an invalid root, or i # r is a root, or i is a
Far Away Node or i is a certificate for a Long Path. We can polynomially verify all of these
conditions, and they all represent valid certificates to the KONIG problem.

In the second case, suppose our certificate to the COLLISION problem is a collision of two
elements in which neither element is a zero element: i # j with C(i) = C(j) # 0. Then, we
know that ¢ and j are not Long Path certificates and are not Far Away nodes. Furthermore,
we know that their indices must be equal to each other, which in turn implies that they are
left (or right) children of the same parent node. Thus, ¢ and j are identical children and
provide us with a valid certificate. <

C.2 Erdods-Ko-Rado

» Theorem 18. ERDOs-K0-RADO is PPP-complete.

Proof. We first prove that ERDOS-K0-RADO is PPP-hard. Accordingly, suppose we are given
some instance of COLLISION, defined by a circuit C : {0,1}" — {0,1}", and the challenge is
to find an input that maps to 0 or find two distinct inputs which map to the same value.
We construct a circuit, F', which implicitly defines a 2-set system of size 2". Our circuit
F takes, as input, an n-bit string, and outputs a ({0, 1}")%-bit string: F(z) = (0?, C(x)).
It remains to show that any solution to this instance of the ERDOs-K0-RADO problem
allows us to recover a solution to the original COLLISION problem. There are 3 possible types
of certificates that we can find in the ERDOS-K0-RADO problem instance. First, consider
a certificate providing two disjoint sets. This is impossible from the above definition of F,
since every set contains the element 0". Second, consider a certificate x providing an invalid

set F'(x). This means that C(z) = 0", i.e. we find a zero element in the COLLISION problem.

Third, consider a certificate which defines a repeat set. That is, we have two indices a and b
with F'(a) and F(b) defining the same set. As we see in the above definition of F', this implies

that C'(a) = C(b), which provides us with a collision for our original COLLISION problem.

Thus, any certificate for the ERDOS-K0-RADO problem provides us with a certificate for the
COLLISION problem above.

88:19

ITCS 2023

88:20

Extremal Combinatorics, Iterated Pigeonhole Arguments & Generalizations of PPP

We now reduce ERDOS-K0-RADO to COLLISION. Consider an ERDOs-K0-RADO problem
instance, defined by a circuit F' which implicitly provides us with a 2-set system of size 2.
We construct a circuit C': {0,1}" — {0,1}™ as follows. We first examine two arbitrary sets
from the set system, F'. Without loss of generality, we examine F'(0) and F(1). If these two
sets are disjoint, identical, or invalid, we are done. Otherwise, they have an intersection of
exactly 1 element. Let F(0) = (a,b) and F(1) = (b,¢), such that their intersection is {b}.
For any given index 4, define C(4), as follows:

1. If F(i) outputs an invalid set, set C(i) =0
2. If F(i) contains both b and d (where d # b), then we let C'(i) = d.
3. If F(i) does not contain b, then set C(i) = 0.

There are two cases to consider here. We start by considering the case in which we
recover a zero element. That is, we find an element & with C(xz) = 0. This can only happen
in 2 cases, based on the above definition of C'. First, F/(x) might generate an invalid set. In
this case, x is a valid certificate. Second, F'(x) might not contain b. In this case, suppose
F(x) = (p,q). We note that z is distinct from 1 and 0, because 0 and 1 are not zero elements,
based on the above definition. If F(x) is disjoint from either F(1) or F'(0), then we are
done. If, instead, F(z) does not contain b and has nonempty intersection with F(1) and
F(0), then F(z) must contain a and c¢. Then, consider any index y that is distinct from
0,1,z. If F(y) is invalid, we are done. If F(y) is identical to one of F(0), F'(1), F(x), we have
found a repeated set certificate, and we are done. Otherwise, F'(y) must be fully disjoint
from at least one of F'(0), F'(1), F(x), and we can recover two disjoint sets. That is, the only
way a set F'(y) of size 2 intersects each of {a, b}, {a,c},{b,c} is if F'(y) is identical to one of
{a,b},{a,c}, {b,c}.

Now, suppose that we recover a collision from C. That is, we find two distinct n-bit
strings « and y with C(x) = C(y). First, suppose C(x) = C(y) # 0. Based on the above
definition of C, this can only happen if F'(z) and F(y) both contain the element b as well
as the element C(z). In this case, F(z) and F(y) both describe the set {b, C'(z)}, which
means that we have recovered a “repeated set” certificate. In the second case, suppose
C(z) = C(y) = 0. That is, suppose we have found two zero certificates. In this case, the
argument from above tells us that we can recover the desired certificate using any one of
these zero certificates. In this case, F/(x) and F(y) are each either invalid sets or they do not
contain b. In the case that they are invalid sets, we are done. If these indices both do not
contain b, then F(x) and F(y) must each contain both a and ¢ in order to have nonempty
intersection with F(1) and F(2). <

	1 Introduction
	2 Long Choice
	3 Long Choice and r-Color Ramsey
	4 Sunflowers
	5 Short Choice
	6 König and Erdős-Ko-Rado
	6.1 König
	6.2 Erdős-Ko-Rado

	7 Mantel, Turán, and Bad Colorings
	8 Discussion and Future Work
	A Missing material from Section 2 (Long Choice)
	B Missing material from Section 5 (Short Choice)
	C Missing material from Section 6 (König, Erdős-Ko-Rado)
	C.1 König
	C.2 Erdős-Ko-Rado

