
Ellipsoid Fitting Up to a Constant

Jun-Ting Hsieh* Pravesh K. Kothari† Aaron Potechin‡ Jeff Xu§

July 13, 2023

Abstract

In [Sau11, SPW13], Saunderson, Parrilo and Willsky asked the following elegant geometric
question: what is the largest m = m(d) such that there is an ellipsoid inRd that passes through
v1, v2, . . . , vm with high probability when the vis are chosen independently from the standard
Gaussian distribution N(0, Id). The existence of such an ellipsoid is equivalent to the existence
of a positive semidefinite matrix X such that v⊤i Xvi = 1 for every 1 ⩽ i ⩽ m — a natural
example of a random semidefinite program. SPW conjectured that m = (1 − o(1))d2/4 with
high probability. Very recently, Potechin, Turner, Venkat and Wein [PTVW22] and Kane and
Diakonikolas [KD22] proved that m ⩾ d2/ logO(1)(d) via certain explicit constructions.

In this work, we give a substantially tighter analysis of their construction to prove that
m ⩾ d2/C for an absolute constant C > 0. This resolves one direction of the SPW conjecture up
to a constant. Our analysis proceeds via the method of Graphical Matrix Decomposition that has
recently been used to analyze correlated random matrices arising in various areas [BHK+19].
Our key new technical tool is a refined method to prove singular value upper bounds on certain
correlated random matrices that are tight up to absolute dimension-independent constants.
In contrast, all previous methods that analyze such matrices lose logarithmic factors in the
dimension.

*Carnegie Mellon University. juntingh@cs.cmu.edu. Supported by NSF CAREER Award #2047933.
†Carnegie Mellon University, praveshk@cs.cmu.edu. Supported by NSF CAREER Award #2047933, Alfred P. Sloan

Fellowship and a Google Research Scholar Award.
‡The University of Chicago, potechin@uchicago.edu. Supported in part by NSF grant CCF-2008920.
§Carnegie Mellon University, jeffxusichao@cmu.edu. Supported in part by NSF CAREER Award #2047933, and a

Cylab Presidential Fellowship.

ar
X

iv
:2

30
7.

05
95

4v
1

 [
m

at
h.

PR
]

 1
2

Ju
l 2

02
3

Contents

1 Introduction 1
1.1 Technical overview . 2
1.2 Comparison to prior works . 5

2 Proof of main result 5
2.1 Candidate construction . 5
2.2 Decomposition of M . 6
2.3 Inverse of M . 7
2.4 Finishing the proof of Theorem 1.2 . 9

3 Machinery for tight norm bounds of graph matrices 10
3.1 Preliminaries . 10
3.2 Global bounds via a local analysis . 12
3.3 Vertex factor assignment scheme . 14
3.4 Bounding edge-factors . 16
3.5 Bounding return cost (Pur factors) . 17

3.5.1 Pur bound for circle vertices . 18
3.5.2 Pur bound for square vertices . 19

3.6 Wrapping up with examples . 20
3.6.1 Warm-up: tight bound for GOE . 20
3.6.2 Bound for Mβ . 21
3.6.3 Bound for Mα . 21

4 Matrix decomposition of R 22
4.1 Inverse of A: Neumann series and truncation . 23
4.2 Decomposition of R via truncated A−1 . 24
4.3 Overview: each term is a dangling path of injective gadgets 25

4.3.1 Further set-up for step-labeling and edge factor scheme 27
4.4 Local Analysis for R . 28
4.5 Illustration via diagrams . 35
4.6 Pur bound for square vertices in R . 36
4.7 Wrapping up . 40

A Deferred calculations 44

B Analysis of MD 46

C Sketch of an Alternative Analysis 47

1 Introduction

What’s the largest m so that for m points v1, v2, . . . , vm ∈ Rd sampled independently from the d-
dimensional standard Gaussian distribution N (0, Id), there exists an ellipsoid that passes through
each of the vis with high probability? This latter condition is equivalent to asking for a positive
semidefinite matrix Λ such that v⊤i Λvi = 1 for 1 ⩽ i ⩽ m and thus, equivalently, the question asks
for the largest m such that the basic stochastic semidefinite program above remains feasible with
high probability.

It is not hard to prove that for any m ⩽ d + 1, an ellipsoid as above exists with high probability
over the vis [SCPW12]. On the other hand, since the dimension of the smallest linear subspace
that contains the positive semidefinite cone of d × d matrices is (d+1

2) ∼ d2/2, it is easy to prove
that for m ≫ d2/2, there cannot be an ellipsoid passing through vis with high probability.

In 2013, Saunderson, Parrilo and Willsky [SPW13] studied this basic geometric question and
conjectured that there is a sharp phase transition for the problem (from feasibility/existence of an
ellipsoid to non-existence of an ellipsoid) as m crosses d2/4.

Conjecture 1.1 (SCPW conjecture). Let ε > 0 be a constant and v1, . . . , vm ∼ N (0, Id) be i.i.d. standard
Gaussian vectors in Rd. Then,

1. If m ⩽ (1 − ε) d2

4 , then v1, . . . , vm have the ellipsoid fitting property with probability 1 − od(1).

2. If m ⩾ (1 + ε) d2

4 , then v1, . . . , vm have the ellipsoid fitting property with probability od(1).

This bound is 1/2 of the dimension of the smallest linear subspace containing the positive
semidefinite cone of d × d matrices. Said differently, the SCPW conjecture (developed in a se-
quence of works [Sau11, SCPW12, SPW13]) posits that the positive semidefiniteness constraint
“forces” a drop of a factor 2 in the threshold m for infeasibility. The SCPW conjecture was moti-
vated by results of numerical experiments (see also the experiments presented in [PTVW22]).

Early on, [Sau11, SPW13] established the existence of a feasible ellipsoid for any m ⩽ O(d6/5−ε)

whp. Recently, there has been a new wave of progress on this bound. A recent result [GJJ+20] on
establishing Sum-of-Squares lower bounds for the Sherringtin-Kirkpatrick model, as a corollary
yields an estimate of m ⩽ O(d3/2−ε). In fact, though not explicitly stated, their work already
contains ideas that imply a significantly stronger bound of m ⩽ d2/ polylog(d). Very recently, two
independent works [PTVW22] and [KD22] analyzed two slightly different explicit constructions
for Λ to recover a similar bound of m ⩽ d2/ polylog(d). In their works [PTVW22, KD22], the
authors ask the question of analyzing their construction (or a different one) to obtain an improved
and almost optimal estimate of m = d2/C for some absolute constant C > 0.

The main result of this work achieves this goal. Specifically, we prove:

Theorem 1.2 (Main result). For m ⩽ cd2 for some universal constant c > 0 and v1, . . . , vm ∼ N (0, Id)

drawn independently, with probability at least 1 − od(1), there exists an ellipsoid passing through each vi.

Remark 1.3. We note that the failure probability is in fact 2−dε
for some small constant ε due to the

nature of our proof for matrix norm bounds.

We establish Theorem 1.2 by analyzing the construction of Kane and Diakonikolas [KD22]
(which is a variant of the construction proposed in [PTVW22]). Our argument can be used to

1

recover a bound of c ∼ 1/108. We have not tried to optimize this bound. Numerical experiments
suggest that the [KD22] construction we analyze cannot approach c = 1/4, so establishing the
sharp constant in the SCPW conjecture will likely need new ideas. Table 1 shows a summary of
our result compared to prior work.

Our key idea departs from the analysis technique of [KD22] and instead relies on the method
of graphical matrix decomposition. This method decomposes a random matrix with correlated en-
tries into a sum of structured random matrices called graph matrices. Graph matrices can be
thought of as an analog of the Fourier basis in the analysis of functions over product spaces. This
method was first employed in the works establishing tight sum-of-squares lower bound on the
planted clique problem [BHK+19, HKP19, AMP16, JPR+22] and has since then been employed in
several follow-up works on proving sum-of-squares lower bounds and more recently in analyz-
ing well-conditionedness of linear algebraic algorithms for generalizations of tensor decomposi-
tion [BHKX22]).

The key technical work in the analysis then becomes understanding the smallest and the
largest singular values of graph matrices. All prior works rely on arguments that establish bounds
on the largest singular values that are accurate up to polylogarithmic factors in the underlying di-
mension of the matrices. The work of [BHKX22] recently showed how to use such bounds to also
obtain estimates of the smallest singular values of graph matrices (which, otherwise are signifi-
cantly more challenging to prove). Our analysis builds on their conceptual framework but with
significant technical upgrades. This is because the quantitative bounds proved in [BHKX22] do
not allow us to directly obtain an improvement on the previous estimates [KD22].

Our main technical contribution is a new method to establish bounds on the largest singular
values of graph matrices that are tight up to dimension-independent absolute constants. This
allows us to obtain substantially improved estimates for the SCPW conjecture. Given the host of
previous applications of such bounds, we expect that our results will have many more applications
down the line.

Concurrent Work We note that a concurrent work of Bandeira et. al. [BMMP23] also obtains a
sharper analysis of [KD22] to establish a similar result as this work. They analyze the same con-
struction of identity perturbation as us. In their work, [BMMP23] ask the question of obtaining
estimates that hold with inverse exponential failure probability (as opposed to inverse polyno-
mial failure probability that their work establishes). They also outline a proof strategy that could
potentially achieve this goal. We note that our proof does indeed recover an inverse exponential
failure probability naturally.

1.1 Technical overview

Following the convention of [KD22], for the rest of the paper we will assume that v1, . . . , vm ∼
N (0, 1

d Id) such that each vector has expected norm 1. Note that this does not change the problem
as we can simply scale Λ.

Our construction of Λ is the “identity perturbation construction”, which is the same one an-
alyzed in [KD22] and was proposed in [PTVW22]. As an intuition, observe that Λ = Id al-
most works: vT

i Idvi = ∥vi∥2
2 ≈ 1. Thus, the idea is to define Λ as a perturbation of Id: Λ =

Id − ∑m
i=1 wivivT

i , where w = (w1, . . . , wm) ∈ Rm. To determine w, observe that the constraints

2

Construction Bound on m

Conjectured d2/4
[Sau11, SPW13] O(d6/5−ε)

[GJJ+20] O(d3/2−ε) ∗

[PTVW22] O(d2/ polylog(d))
[KD22] O(d2/ log4(d))
this paper O(d2)

∗The bound O(d2/ polylog(d)) is implicit in their work.

Table 1: Comparison of our result with prior work.

vT
i Λvi = 1 give m linear constraints on w, and this can be written as a linear system represented by

a matrix M ∈ Rm×m with entries M[i, j] = ⟨vi, vj⟩2. Thus, given that M is full rank, w is uniquely
determined by w = M−1η for some vector η (see Eq. (2)). This construction satisfies vT

i Λvi = 1
automatically, so the next thing is to prove that Λ ⪰ 0. Therefore, we have two high-level goals:

1. Prove that M is full rank and analyze M−1.

2. Prove that R := ∑n
i=1 wivivT

i has spectral norm bounded by 1.

These two immediately imply that Λ is a valid construction.
To achieve the first goal, we decompose M into several components. Roughly, we write M =

A+ B where A is a perturbed identity matrix A = Im − T and B is a rank-2 matrix (see Section 2.2).
We first show that ∥T∥op ⩽ O(

√
m

d) < 0.5 with m ⩽ cd2 (Lemma 2.7), hence A is well-conditioned.
Then, using the fact that B has rank 2, we can apply the Woodbury matrix identity (Fact 2.5 and
Fact 2.6) — a statement on the inverse of low-rank corrections of matrices — to conclude that M is
invertible and obtain an expression for M−1 (Eq. (11)). This is carried out in Section 2.3.

Next, for the second goal, we need to further expand A−1. Since ∥T∥op < 1, we can apply
the Neumann series and write A−1 = (Im − T)−1 = ∑∞

k=0 Tk. For the analysis, we select certain
thresholds to truncate this series such that the truncation error is small. Then, we write M−1 in
terms of the truncated series plus a small error, which will be useful later for the analysis of R.
This is carried out in Section 4.1.

Finally, given the expression of M−1, we are able to express R using the terms that show up
for M−1, and the bulk of our work culminates in bounding the spectral norm of R in Section 4.4.
Bounding ∥R∥op ⩽ 1 implies that Λ ⪰ 0, completing the proof.

Requiring tight norm bounds Our main technical lemmas are the spectral norm bounds of T
(Lemma 2.7) and the matrices in the decomposition of R at Section 4.4. Clearly, we need our
norm bound ∥T∥op ⩽ O(

√
m

d) to be tight without polylog factors so that m ⩽ O(d2) suffices, and
similarly for matrices from R.

The standard starting point is the trace moment method: for any symmetric matrix M ∈ Rn×n

and q ∈N (usually taking q = polylog(n) suffices),

∥M∥2q
op ⩽ tr(M2q) = ∑

i1,i2,...,i2q∈[n]
M[i1, i2]M[i2, i3] · · · M[i2q, i1] .

3

We view the summand as a closed walk i1 → i2 → · · · → i2q → i1 on n vertices. For a random
matrix, we study the expected trace E tr(M2q). In the simple case when M is a Gaussian matrix
(GOE), we see that after taking the expectation, the non-vanishing terms are closed walks where
each edge (u, v) is traversed even number of times. This is in fact true for any M as long as the
odd moments are zero. Thus, a precise upper bound on E tr(M2q) can be obtained by carefully
counting such closed walks (see [Tao12]).

Our matrices are more complicated; each entry is a mean-zero polynomial of Gaussian random
variables. To carry out the trace method, we represent the matrices as graphs, hence the term graph
matrices. The framework of graph matrices was first introduced by [BHK+19], and over the years,
off-the-shelf norm bounds (e.g. [AMP16]) for graph matrices have been developed and success-
fully used in several works [MRX20, GJJ+20, HK22, JPR+22, BHKX22]. However, the currently
known norm bounds are only tight up to polylog factors, hence not sufficient for us. Therefore,
the bulk of our paper is to prove norm bounds for these matrices that are tight up to constant
factors. In fact, our bounds are even tight in the constant when the matrices are explicitly written
down following the graph matrix language. That said, we do not pursue the tight constant-factor
dependence in this work: we believe that an analysis of our candidate matrix following the current
road-map but with norm bounds tight-to-constant would still fall short of reaching the conjectured
threshold of d2

4 .
In the context of a fine-grained understanding for graph matrices, Potechin and Cai [CP20,

CP22] determined the limiting distribution of the spectrum of the singular values of Z-shaped
and multi-Z-shaped graph matrices. However, their results are only for these specific graph ma-
trices, and their analysis does not technically give norm bounds as they do not rule out having a
negligible proportion of larger singular values.

Key idea towards tight norm bounds Here, we briefly discuss the high-level ideas for proving
tight norm bounds. To illustrate our techniques, in Section 3 we will give a full proof for a matrix
that arises in our analysis as an example, and also discuss key ideas that allow us to analyze more
complicated matrices.

The key to counting walks is to specify an encoding, which we view as information required for
a walker to complete a walk. If we can show that such an encoding uniquely identifies a walk,
then we can simply bound the walks by bounding the number of possible encodings. Thus, all
we need to do is to come up with an (efficient) encoding scheme and prove that the walker is able
to complete a walk. Using standard encoding schemes, we quickly realize that the walker may be
confused during the walk, i.e., the walker does not have enough information to perform the next
step. Thus, we need to pay for additional information in the encoding to resolve confusions. So
far, this is the same high-level strategy that was used in prior work [Tao12, AMP16, JPR+22], and
this extra pay is often the source of extra log factors in the norm bounds.

Our key innovation is to pay for the extra information during steps that require much less
information than normal. Roughly speaking, we label each step of the walk as either (1) visiting a
new vertex, (2) visiting an old vertex via a new edge, (3) using an old edge but not the last time, (4)
using an old edge the last time (see Definition 3.7). The high level idea is that the dominating walks
in the trace are the ones that use only the 1st and 4th types, while the 2nd and 3rd types require
less information (which we call gaps). The main observation is that the walker will be confused
only when there are steps of the 2nd and 3rd type involved, but we can pay extra information

4

during these steps to resolve potential (future) confusions. This is illustrated in Section 3.5.

1.2 Comparison to prior works

Our candidate matrix construction of Λ is essentially same as [KD22], while we adopt different
techniques to bound the spectral norm of the non-Identity component. In particular, they use an
elegant cover (or ε-net) argument which is significantly different than ours. That said, though a
major obstacle being the norm bound for the invertibility, their argument suffers an additional
polylog gap from the epsilon-net argument, and this is partially why we adopt the proof strategy
via graph matrix decomposition that is seemingly more complicated.

Closer to our analysis is the work of [PTVW22]. They study a construction of “least-square
minimization” proposed by [Sau11], which is equivalent to projecting out the identity mass onto
the subspace of matrices satisfying the constraints. In particular, their matrix analysis proceed-
ing via Woodbury expansion and Neumann series using graph matrices serves as a road-map for
our current work. In this work, we develop a more refined understanding of the structured ran-
dom matrices that we believe would be useful in further and more fine-grained investigations of
problems in average-case complexity.

In the context of Planted Affine Plane problem, [GJJ+20] reaches the threshold of Õ(d2) implic-
itly. They adopt the framework of pseudo-calibration [BHK+19] to obtain a candidate matrix, and
follow a similar recipe as ours via graph matrix decompositions and spectral analysis. That said,
it is an interesting question whether solutions coming from a pseudo-calibration type of construc-
tion might give us some extra mileage in ultimately closing the constant gap.

Remark 1.4 (A ”quieter” planted distribution?). A natural idea is to analyze the planted distri-
bution pioneered in [MRX20, GJJ+20]: unfortunately, it can be easily verified that the low-degree
polynomial hardness for the particular planted distribution actually falls apart even if we assume
an arbitrary constant gap.

2 Proof of main result

Given v1, v2, . . . , vm that are i.i.d. samples from N (0, 1
d Id), recall that we must construct a matrix

Λ such that (1) vT
i Λvi = 1 for any i ∈ [m], and (2) Λ ⪰ 0.

In this section, we describe our candidate matrix (Definition 2.1). To prove that it satisfies the
two conditions above, we need to analyze certain random matrices (and their inverses) that arise
in the construction, which involves decomposing the matrices into simpler components. We will
state our key spectral norm bounds (Lemma 2.7 and Lemma 2.11) whose proofs are deferred to
later sections, and complete the proof of Theorem 1.2 in Section 2.4.

2.1 Candidate construction

The following is our candidate matrix Λ, which is the same one as [KD22].

Definition 2.1 (Candidate matrix). Given v1, . . . , vm ∼ N (0, 1
d Id), we define the matrix Λ ∈ Rd×d

to be

Λ := Id −
m

∑
i=1

wivivT
i (1)

5

where we take w = (w1, w2, . . . , wm) to be the solution to the following linear system,

Mw = η

for η ∈ Rm given by
ηi := ∥vi∥2

2 − 1, ∀i ∈ [m] , (2)

and M ∈ Rm×m with entries given by

M[i, j] := ⟨vi, vj⟩2, ∀i, j ∈ [m] . (3)

We first make the following simple observation.

Observation 2.2. For any i ∈ [m], the constraint vT
i Λvi = 1 is satisfied.

Proof. For any i ∈ [m],

vT
i Λvi = vT

i Idvi − ∑
j∈[m]

wj⟨vi, vj⟩2 = ∥vi∥2
2 − ⟨M[i], w⟩ = ∥vi∥2

2 − ηi = 1 .

Here M[i] is the i-th row of M, and the equality above follows from Mw = η and ηi = ∥vi∥2
2 − 1

from Eq. (2).

Structure of subsequent sections For Λ to be well-defined, we require that M is full rank (hence
invertible). Note that it is easy to see that M is positive semidefinite, since M is a Gram matrix
with M[i, j] = ⟨v⊗2

i , v⊗2
j ⟩. To analyze M, we will show a decomposition of M in Section 2.2 that

allows us to more easily analyze its inverse. In Section 2.3, we will prove that M is in fact positive
definite (Lemma 2.10).

Next, to prove that Λ ⪰ 0, we will write Λ = Id −R where

R :=
m

∑
i=1

wivivT
i =

m

∑
i=1

(
M−1η

)
[i] · vivT

i , (4)

and prove that ∥R∥op is bounded by 1. This is done in Section 4. Finally, combining the analyses,
we finish the proof of Theorem 1.2 in Section 2.4.

2.2 Decomposition of M

The proof of Theorem 1.2 requires careful analysis of the matrix M from Eq. (3) and its inverse. To
this end, we first decompose M as M = A + B such that intuitively, A is perturbation of a (scaled)
identity matrix and B has rank 2. We will later see how this decomposition allows us to analyze
M−1 more conveniently.

Proposition 2.3 (Decomposition of M).

M = Mα + Mβ + MD +

(
1 +

1
d

)
Im︸ ︷︷ ︸

:=A

+
1
d

Jm +
1
d

(
1m · ηT + η · 1T

m

)
︸ ︷︷ ︸

:=B

(5)

where Jm is the all-ones matrix, Mα, Mβ ∈ Rm×m are matrices with zeros on the diagonal and MD ∈ Rm×m

is a diagonal matrix, defined as follows:

6

• Mα[i, j] := ∑a ̸=b∈[d] vi[a] · vi[b] · vj[a] · vj[b] for i ̸= j ∈ [m],

• Mβ[i, j] := ∑a∈[d]
(
vi[a]2 − 1

d

) (
vj[a]2 − 1

d

)
for i ̸= j ∈ [m],

• MD[i, i] := ∥vi∥4
2 − 2

d∥vi∥2
2 − 1 for i ∈ [m].

Proof. For any off-diagonal entry i ̸= j ∈ [m], on the right-hand side we have

M[i, j] = ⟨vi, vj⟩2 =

(
∑

a∈[d]
vi[a]vj[a]

)2

= ∑
a ̸=b∈[d]

vi[a] · vi[b] · vj[a] · vj[b] + ∑
a∈[d]

vi[a]2 · vj[a]2 .

The first term is exactly Mα[i, j]. For the second term,

∑
a∈[d]

vi[a]2 · vj[a]2 = ∑
a∈[d]

(
vi[a]2 −

1
d

)(
vj[a]2 −

1
d

)
+

1
d
(
∥vi∥2

2 + ∥vj∥2
2
)
− 1

d

= ∑
a∈[d]

(
vi[a]2 −

1
d

)(
vj[a]2 −

1
d

)
︸ ︷︷ ︸

Mβ[i,j]

+
∥vi∥2

2 − 1
d︸ ︷︷ ︸

1
d ηi

+
∥vj∥2

2 − 1
d︸ ︷︷ ︸

1
d ηj

+
1
d

.

Thus, M[i, j] = Mα[i, j] + Mβ[i, j] + 1
d +

1
d

(
1m · ηT + η · 1T

m
)
[i, j].

For the diagonal entries, the right-hand side of the (i, i) entry is

MD[i, i] +
(

1 +
1
d

)
+

1
d
+

2
d

ηi =

(
∥vi∥4

2 −
2
d
∥vi∥2

2 − 1
)
+ 1 +

2
d
+

2
d
(∥vi∥2

2 − 1)

= ∥vi∥4
2 = M[i, i] .

This completes the proof.

Remark 2.4. The intention behind this decomposition is so that for vi ∼ N (0, 1
d Id), Mα, Mβ, MD

are all mean 0 (while not the same variance) since E∥vi∥2
2 = 1 and E∥vi∥4

2 = 1 + 2
d . Therefore,

we expect ∥Mα + Mβ + MD∥op to be small, which implies that A is positive definite and well-
conditioned. Furthermore, observe that B has rank 2:

B =
1
d

Jm +
1
d

(
1m · ηT + η · 1T

m

)
=

1
d

[
1m η

]
·
[

1 1
1 0

]
·
[

1m

η

]
. (6)

2.3 Inverse of M

The decomposition of M into A and a rank-2 matrix B (Eq. (5)) allows us to apply the Woodbury
matrix identity about the inverse of low-rank corrections of invertible matrices.

Fact 2.5 (Matrix Invertibility). Suppose A ∈ Rn1×n1 and C ∈ Rn2×n2 are both invertible matrices, and
U ∈ Rn1×n2 and V ∈ Rn2×n1 are arbitrary. Then, A + UCV is invertible if and only if C−1 + VA−1U is
invertible.

7

Fact 2.6 (Woodbury matrix identity [Woo50]). Suppose A ∈ Rn1×n1 and C ∈ Rn2×n2 are both invertible
matrices, and U ∈ Rn1×n2 and V ∈ Rn2×n1 are arbitrary. Then

(A + UCV)−1 = A−1 − A−1U
(

C−1 + VA−1U
)−1

VA−1 .

In light of Fact 2.6, we can write B in Eq. (6) as B = UCUT where U = VT = 1√
d

[
1m η

]
∈

Rm×2 and C =

[
1 1
1 0

]
, and M = A + UCUT. Note that C−1 =

[
0 1
1 −1

]
, and we have

C−1 + UT A−1U =

[
1T

m A−11m
d 1 + ηT A−11m

d

1 + ηT A−11m
d −1 + ηT A−1η

d

]
=:

[
r s
s u

]
. (7)

We first need to show that A is invertible. Recall from Eq. (5) that A = (1+ 1
d)Im + Mα + Mβ +

MD. We will prove the following lemma, whose proof is deferred to Section 3.6.

Lemma 2.7 (Mα, Mβ, MD are bounded). Suppose m ⩽ cd2 for a small enough constant c. With proba-
bility 1 − od(1), we have

1. ∥Mα∥op ⩽ 0.1,

2. ∥Mβ∥op ⩽ 0.1,

3. ∥MD∥op ⩽ O
(√ log d

d

)
.

As an immediate consequence, we get the following:

Lemma 2.8 (A is well-conditioned). With probability 1 − od(1), the matrix A from Eq. (5) is positive
definite (hence full rank), and

0.5Im ⪯ A ⪯ 1.5Im .

Proof. Since A = (1 + 1
d)Im + Mα + Mβ + MD, by Lemma 2.7 the eigenvalues of A must lie within

1 ± 0.2 ± Õ(1/
√

d) ∈ (0.5, 1.5) (we assume d is large).

Next, from Fact 2.5, we can prove that M is invertible (Lemma 2.10) by showing that the 2 × 2
matrix C−1 + UT A−1U is invertible, which is in fact equivalent to ru − s2 ̸= 0. We first need the
following bound on the norm of η, whose proof is deferred to Appendix A.

Claim 2.9. With probability at least 1 − od(1),

∥η∥2
2 ⩽ (1 + od(1))

2m
d

.

Lemma 2.10 (Bounds on r, s, u; M is invertible). Suppose m ⩽ cd2 for a small enough constant c. Let
r, s, u ∈ R be defined as in Eq. (7). With probability at least 1 − od(1), we have

1. r ∈ m
d · [2/3, 2],

2. |s| ⩽ 1 + od(1),

3. u ∈ [−1,−1/2].

8

Thus, we have

s2 − ru ⩾ Ω
(m

d

)
.

As a consequence, M is invertible.

Proof. By Lemma 2.8, we know that 2
3 Im ⪯ A−1 ⪯ 2Im. Thus, r = 1

d 1T
m A−11m ∈ 1

d∥1m∥2
2 · [2/3, 2],

hence r ∈ m
d · [2/3, 2].

For u, we have

1
d

∣∣∣ηT A−1η
∣∣∣ ⩽ 1

d
∥A−1∥op · ∥η∥2

2 < (1 + od(1)) ·
4m
d2 <

1
2

,

where the last inequality follows for some m < cd2 for small enough c. Thus, u = −1 + ηT A−1η
d ∈

[−1,−1/2].
We defer the proof for s to Claim A.2 in the appendix. With the bounds on r, s and u, we

immediatley get s2 − ru ⩾ Ω(m
d).

To prove that M is invertible, let us first recall that we write M = A + UCUT where A is

defined in Eq. (5) and U = VT = 1√
d

[
1m η

]
∈ Rm×2 and C =

[
1 1
1 0

]
.

By Lemma 2.8, A is invertible. Then by Fact 2.5, we know that M is invertible if and only if

C−1 + UT A−1U :=

[
r s
s u

]
(see Eq. (7)) is invertible, which is equivalent to ru − s2 ̸= 0. Thus,

s2 − ru ⩾ Ω(m
d) suffices to conclude that M is invertible.

2.4 Finishing the proof of Theorem 1.2

The final piece of proving Theorem 1.2 is to show that R = ∑m
i=1 wivivT

i has spectral norm bounded
by 1, which immediately implies that the candidate matrix Λ = Id −R ⪰ 0.

Lemma 2.11 (R is bounded). There exists some absolute constant CR such that for m ⩽ d2

CR
,

∥R∥op ⩽
1
2

.

The proof is deferred to Section 4. In particular, we will write an expanded expression of M−1

and obtain a decomposition of R (Proposition 4.4). Then, in Section 4.2, we prove tight spectral
norm bounds for matrices in the decomposition, which then completes the proof of Lemma 2.11.

Combining Lemma 2.10 and Lemma 2.11 we can finish the proof of Theorem 1.2.

Proof of Theorem 1.2. The matrix M (recall Eq. (3)) is invertible due to Lemma 2.10, thus our can-
didate matrix Λ = Id − R matrix defined in Definition 2.1 is well-defined. Furthermore, by
Lemma 2.11 we have that ∥R∥op < 1. This proves that Λ ≻ 0.

9

3 Machinery for tight norm bounds of graph matrices

One of the main technical contributions of this paper is providing tight spectral norm bounds
(up to constants per vertex/edge) for structured random matrices with correlated entries (a.k.a. graph
matrices). We note that prior to this work, most known norm bounds for such matrices are only
tight up to some logarithmic factors [AMP16], while not much is known in terms of precise bounds
without log factors except for several specific cases (see e.g. [Tao12]).

3.1 Preliminaries

We first give a lightweight introduction to the theory of graph matrices. For interested readers who
seek a thorough introduction or a more formal treatment, we refer them to its origin in a sequence
of works in Sum-of-Squares lower bounds [BHK+19, AMP16]. We will follow the notations used
in [AMP16]. Throughout this section, we assume that there is an underlying (random) input
matrix G and a Fourier basis {χt}t∈N.

We first define shapes, which are representations of structured matrices whose entries depend
on G.

Definition 3.1 (Shape). A shape τ is a tuple (V(τ), Uτ, Vτ, E(τ)) associated with a (multi) graph
(V(τ), E(τ)). Each vertex in V(τ) is associated with a vertex-type that indicates the range of
the labels for the particular vertex. Each edge e ∈ E(τ) is also associated with a Fourier index
t(e) ∈N. Moreover, we have Uτ, Vτ ⊆ V(τ) as the left and right boundary of the shape.

We remind the reader that Vτ should be distinguished from V(τ), where Vτ is the right bound-
ary set, while V(τ) is the set of all vertices in the graph.

Figure 1 show the shapes for matrices Mα and Mβ defined in Proposition 2.3. For these shapes,
there are two vertex-types (square and circle). The two ovals in each shape indicate the left and
right boundaries Uτ and Vτ.

We next describe how to associate a shape to a matrix (given the underlying matrix G).

Uτ Vτ

(a) GOE, zero diagonal.

Uτ Vτ

(b) Mα.

2 2

Uτ Vτ

(c) Mβ.

Figure 1: Graph matrix representation of a d × d GOE matrix with zero diagonal, and
the m × m matrices Mα and Mβ as defined in Proposition 2.3. Square vertices take labels
in [m] and circle vertices take labels in [d]. The two ovals indicate the left and right
boundaries Uτ, Vτ of the shapes. If an edge e is not labeled with an index, then t(e) = 1
by default.

Definition 3.2 (Mapping of a shape). Given a shape τ, we call a function σ : V(τ) →N a mapping
of the shape if

10

1. σ assigns a label for each vertex according to its specified vertex-type;

2. σ is an injective mapping for vertices of the same type.

Definition 3.3 (Graph matrix for shape). Given a shape τ, we define its graphical matrix Mτ to be
the matrix indexed by all possible boundary labelings of S, T, and for each of its entry, we define

Mτ[S, T] = ∑
σ:V(τ)→N

σ(Uτ)=S, σ(Vτ)=T

∏
e∈E(τ)

χt(e)(G[σ(e)]) .

Observe that for each entry Mτ[S, T], since σ must map Uτ and Vτ to S and T, Mτ[S, T] is
simply a sum over labelings of the “middle” vertices V(τ) \ (Uτ ∪ Vτ). Take Figure 1 for example.
Suppose G ∈ Rm×d and square and circle vertices take labels in [m] and [d] respectively, then we
can write out the entries of the matrix: for i ̸= j ∈ [m],

Mα[i, j] = ∑
a ̸=b∈[d]

χ1(G[i, a]) · χ1(G[i, b]) · χ1(G[j, a]) · χ1(G[j, b]) ,

Mβ[i, j] = ∑
a∈[d]

χ2(G[i, a]) · χ2(G[j, a]) .

Note also that since σ must be injective for vertices of the same type and Uτ ̸= Vτ in both
examples, there is no mapping such that σ(Uτ) = σ(Vτ). Thus, by Definition 3.3, both matrices
have zeros on the diagonal.

Adaptation to our setting The above is a general introduction for graph matrices. In this work,
we specialize to the following setting:

• G ∈ Rm×d is a random Gaussian matrix whose rows are v1, . . . , vm ∼ N (0, 1
d Id).

• The Fourier characters {χt}t∈N are the (scaled) Hermite polynomials.

• For all graph matrices that arise in our analysis,

– |S| = |T| = 1,

– There are two vertex-types: square vertices take labels in [m] and circle vertices take
labels in [d].

Remark 3.4. For our technical analysis, we may also employ this machinery on a broader range of
graph matrices for shape in which we relax the local injectivity condition within each block. That
said, for illustration purpose, it suffices to consider the vanilla setting of graph matrix.

Definition 3.5 (DV size constraint). For each graph matrix τ considered in this work, let DV be the
size constraint such that |V(τ)| ⩽ DV .

For concreteness, we will take DV = polylog(d) throughout this work.

11

Trace moment method For all our norm bounds, we will use the trace moment method: for any
graph matrix Mτ with underlying random matrix G and any q ∈N,

E∥Mτ∥2q
op ⩽ E tr

(
(Mτ MT

τ)
q
)
= E ∑

S1,T1,S2,T2,...Sq−1,Tq−1:
boundaries

Mτ[S1, T1]MT
τ [T1, S2] · · · MT

τ [Tq−1, S1] .

where the expectation is taken over G.
Notice that the summation is over closed walks across the boundaries: S1 → T1 → S2 → T2 →

· · · → S1, where S1, T1, . . . are boundary labelings of Mτ. In particular, the walk is consist of 2q-
steps of “block walk”, with the (2t− 1)-th step across a block described by Mτ and the (2t)-th step
across a block described by MT

τ .
The crucial observation is that after taking expectation, all closed walks must walk on each

labeled edge (i.e., Fourier character) an even number of times, since all odd moments of the Fourier
characters are zero. Therefore, bounding the matrix norm is reduced to bounding the contribution
of all such walks.

E∥Mτ∥2q
op ⩽ ∑

P : closed walk
∏

e∈E(P)

E
[
χt(e)(G[e])mulP (e)

]
, (8)

where E(P) denotes the set of labeled edges used by the walk P , mulP (e) denotes the number
of times e appears in the walk, and t(e) denotes the Fourier index (with slight abuse of notation).

Remark 3.6 (Labeled vertex/edge). We remind the reader not to confuse vertices/edges in the
walk with vertices/edges in the shape. The vertices in a walk are “labeled” by elements in [m]

or [d] (depending on the vertex-type). Similarly, each edge e ∈ E(P) in a walk is labeled by an
element in [m]× [d]. We will use the terms “labeled vertex” and “labeled edge” unless it is clear
from context.

3.2 Global bounds via a local analysis

Observe that Eq. (8) is a weighted sum of closed walks of length 2q. To obtain an upper bound,
the standard approach is to specify an efficient encoding scheme that uniquely identifies each closed
walk, and then upper bound the total number of such encodings.

We begin by defining a step-labeling — a categorization of each step in the closed walk.

Definition 3.7 (Step-labeling). For each step throughout the walk, we assign it the following label,

1. F (a fresh step): it uses a new labeled edge making the first appearance and leads to a desti-
nation not seen before;

2. S (a surprise step): it uses a new labeled edge to arrive at a vertex previously visited in the
walk;

3. H (a high-mul step): it uses a labeled edge that appears before, and the edge is making a
middle appearance (i.e., it will appear again in the subsequent walk);

4. R (a return step): it uses a labeled edge that appears before, and the edge is making its last
appearance.

12

Analogously, for any shape τ , we call Lτ : E(τ) → {F, R, S, H} a step-labeling of the block. The
subscript τ is ignored when it is clear.

We note that the terms “fresh”, “high-mul” and “return” are adopted from the GOE matrix
analysis in [Tao12]. Next, to obtain a final bound for Eq. (8), we consider two factors for each step
(which depend on the step-label):

1. Vertex factor: a combinatorial factor that specifies the destination of the step;

2. Edge factor: an analytical factor from the edge which accounts for the E[χt(e)(G[e])mul(e)]

term in Eq. (8).

For example, a vertex factor for an F step to a circle vertex can be d, an upper bound on the
number of possible destinations. One can think of vertex factors as the information needed for
a decoder to complete a closed walk. Essentially, the step-labeling and appropriate vertex factors
should uniquely identify a closed walk, and combined with edge factors, we can obtain an upper
bound for Eq. (8).

We note that the approach stated above is a global encoding scheme. One may proceed via a
global analysis — carefully bounding the number of step-labelings allowed (e.g., using the fact
that the F and R steps must form a Dyck word [Tao12]), and then combining all vertex and edge
factors to obtain a final bound. However, to get tight norm bounds for complicated graph matrices
(like Mα), the global analysis becomes unwieldy.

Local analysis One of our main insights is to use a local analysis. We now give a high-level
overview of our strategy while deferring the specific details of our vertex/edge factor assignment
scheme to subsequent sections. Recall that a closed walk consists of “block-steps” described by
the shape τ. Thus, we treat each walk as a “block walk” and bound the contributions of a walk
block by block. This prompts us to bound the contribution of the walk at a given block-step to the
final trace in Eq. (8) by

vtxcost · edgeval ⩽ Bq(τ)

where Bq(τ) is some desired upper bound that depends on the vertex/edge factor assignment
scheme. We define it formally in the following.

Definition 3.8 (Block value function). Fix q ∈ N and a shape τ. For any vertex/edge factor
assignment scheme, we call Bq(τ) a valid block-value function for τ of the given scheme if

E
[
tr
(
(Mτ MT

τ)
q
)]

⩽ (matrix dimension) · Bq(τ)
2q ,

and for each block-step BlockStepi throughout the walk,

vtxcost(BlockStepi) · edgeval(BlockStepi) ⩽ Bq(τ) .

We point out that the block-value function B should be considered as a function of both the
shape τ and the length of the walk q (we will drop the subscript when it is clear throughout this
work), and it also depends on the assignment scheme. Thus, our task is to find a vertex/edge
factor assignment scheme such that Bq(τ) is as small as possible. Moreover, the matrix dimension,
which is at most poly(d) in our case, is the factor that comes up in the start of the walk to specify

13

the original vertex, and can be ignored as it is ultimately an 1 + o(1) factor once we take a long
enough walk.

Given Definition 3.8, the norm bound follows immediately from Markov’s inequality.

Proposition 3.9. Let Mτ be a graph matrix with dimension poly(d), and let q ⩾ Ω(log2 d). Suppose
Bq(τ) is a valid block-value function, Then, with probability 1 − 2−q/ log d,

∥Mτ∥op ⩽ (1 + od(1)) · Bq(τ) .

Proof. We apply Markov’s inequality: for any ε > 0,

Pr
[
∥Mτ∥op > (1 + ε)Bq(τ)

]
⩽ Pr

[
tr
(
(Mτ MT

τ)
q
)
> (1 + ε)2qBq(τ)

2q
]

⩽ (1 + ε)−2q poly(d) ⩽ e−2εq poly(d)

since E[tr((Mτ MT
τ)

q)] ⩽ poly(d) · Bq(τ)2q by Definition 3.8. Setting ε = 1
log d and q ⩾ Ω(log2 d),

we have that the probability is at most 2−q/ log d. Thus, we can conclude that ∥Mτ∥op ⩽ (1 +

od(1)) · Bq(τ) with probability 1 − 2−q/ log d.

The next proposition shows that we can easily obtain a valid Bq(τ) once we have an appropri-
ate factor assignment scheme.

Proposition 3.10. For any graph matrix Mτ and any valid factor assignment scheme,

Bq(τ) = ∑
L: step-labelings for E(τ)

vtxcost(L) · edgeval(L)

is a valid block-value function for τ.

Proof. It is clear that the second requirement in Definition 3.8 is satisfied. For the first requirement,
observe that the trace can be bounded by the matrix dimension (specifying the start of the walk)
times

∑
L1,...,L2q :

step-labelings for E(τ)

2q

∏
i=1

vtxcost(Li) · edgeval(Li) ⩽

 ∑
L:step-labelings for E(τ)

vtxcost(L) · edgeval(L)

2q

.

With this set-up, the main task is then to find an appropriate vertex/edge factor assignment
scheme and obtain a good upper bound on Bq(τ).

3.3 Vertex factor assignment scheme

We now proceed to bound the vertex factors for each step-label. We note that in this section,
“vertices” refer to “labeled vertices” in the walk (having labels in [m] or [d]; recall Remark 3.6).
First, we define the weight of a square (resp. circle) vertex to be m (resp. d), since we need an
element in [m] (resp. [d]) to specify which vertex to go to in the walk.

We first show a “naive” vertex factor assignment scheme. In the following scheme, we use a
potential unforced return factor, denoted Pur, to specify the destination of any R step. We will defer
the specific details of Pur to Section 3.5.

14

Vanilla vertex factor assignment scheme

1. For each vertex i that first appears via an F step, a label in weight(i) is required;

2. For each vertex i that appears beyond the first time:

• If it is arrived via an R step, the destination may need to be specified, and this is
captured by the Pur factor.

• If it is not arrived via an R step, then it must be an S or H step. A vertex cost in
2q · DV is sufficient to identify the destination, where we recall 2q is the length of
our walk, and DV the size upper bound of each block.

The first thing to check is that this scheme combined with an step-labeling uniquely identifies
a closed walk (given the start of the walk). This is immediate for F and R steps by definition. For
S and H steps, since the destination is visited before in the walk, 2q · DV is sufficient as it is an
upper bound on the number of vertices in the walk.

A potential complication with analyzing the above assignment scheme directly is that it ex-
hibits a significant difference in the vertex factors. For example, consider a vertex that appears
only twice in the walk on a tree. Its first appearance requires a label in [n], while its subsequent
appearance does not require any cost if it is reached using an R step because backtracking from a
tree is fixed (since there is only one parent). This disparity can result in a very loose upper bound
for the trace when applying Proposition 3.10; in fact, the norm bound for Mτ obtained in this
manner is equivalent to using the naive row-sum bound.

Redistribution One of our main technical insights is to split the factors such that both first and
last appearance contributes a factor of comparable magnitude; we call this redistribution.

We first formally define “appearance” in a block-step to clarify our terminology,

Definition 3.11 (Vertex appearance in block-step). Each labeled vertex appearance can be “first”,
“middle” and “last”. Moreover, each vertex on the block-step boundary (Uτ or Vτ) appears in both
adjacent blocks.

For example, suppose a vertex first appears in the right-boundary of block i and last appears
in the left-boundary of block j, then it will make middle appearances in the left-boundary of block
i + 1 and right-boundary of block j − 1 as well.

We are now ready to introduce the following vertex-factor assignment scheme with redistri-
bution that assigns vertex-factor to each vertex’s appearance to handle the disparity.

Vertex factor assignment scheme with redistribution

1. For each vertex i that makes its first appearance, assign a cost of
√

weight(i);

2. For any vertex’s middle appearance, if it is not arrived at via an R step, assign a cost of
2q · DV (where we recall 2q is the length of our walk, and DV the size constraint of each
block);

3. For any vertex’s middle appearance, if it is arrived at via an R step, its cost is captured

15

by Pur;

4. For each vertex i that makes its last appearance, assign a cost of
√

weight(i) that serves
as a backpay.

Deducing vertex factor from local step-labeling As presented, the vertex factor assignment
scheme requires knowing which vertex is making first/middle/last appearance. We further show
that the vertex appearances, or more accurately, an upper bound of the vertex factors, can be
deduced by a given step-labeling of the block. Fix traversal direction from U to V,

Localized vertex factor assignment from step-labeling

1. For any vertex v that is on the left-boundary U, it cannot be making the first appearance
since it necessarily appears in the previous block;

2. For any vertex v that is on the right-boundary V, it cannot be making the last appearance
since it necessarily appears in the subsequent block;

3. For any vertex v reached via some S/R/H step, it cannot be making its first appearance;

4. For any vertex v that incident to some F/S/H step, it cannot be making its last appear-
ance since the edge necessarily appears again.

The first two points are due to Definition 3.11. The last point is because each labeled edge (i.e.,
Fourier character) must be traversed by an R step to close it.

3.4 Bounding edge-factors

To bound the contribution of the walks, we need to consider factors coming from the edges tra-
versed by the walk. Recall from Eq. (8) that each edge e in a closed walk P gets a factorE[χmulP(e)

t(e)],
where t(e) is the Fourier index associated with the edge.

In our case, the Fourier characters are the scaled Hermite polynomials. Recall that we assume
that our vectors are sampled as vi ∼ N (0, 1

d Id). Thus, we define the polynomials {ht}t∈N such
that they are orthogonal and Ex∼N (0,1/d)[ht(x)2] = t! · d−t. Specifically,

1. h1(x) = x,

2. h2(x) = x2 − 1
d .

We first state the following bound on the moments of ht, which follows directly from standard
bounds on the moments of Hermite polynomials:

Fact 3.12 (Moments of Hermite polynomials). Let d ∈N. For any t ∈N and even k ∈N,

Ex∼N (0,1/d)

[
ht(x)k

]
⩽

1
dkt/2 (k − 1)kt/2(t!)k/2 ⩽ (t!)k/2

(
k
d

)kt/2

.

For now, we consider matrices that either contain only h1 or only h2 edges (the edge factors
for graph matrices with “mixed” edges will be handled in Section 4.3.1). The following is our
edge-factor assignment scheme to account for contributions from the Fourier characters.

16

Edge-factor assignment scheme

For an h1 edge,

1. F/S: assign a factor of 1√
d

for its first appearance;

2. H: assign a factor of 2q√
d

for its middle appearance;

3. R: assign a factor of 1√
d

for its last appearance.

For an h2 edge,

1. F/S: assign a factor of
√

2
d for its first appearance (alternatively, we can view a single

h2 edge as two edge-copies of h1 and assign each a factor of
√

2√
d
, which is a valid upper

bound);

2. H: assign a factor of 8q2

d for its middle appearance;

3. R: assign a factor of
√

2
d for its last appearance (alternatively, we can view a single h2

edge as two edge-copies of h1 and assign each a factor of
√

2√
d

which is a valid upper
bound).

Proposition 3.13. The above scheme correctly accounts for the edge factors from h1 and h2 edges.

Proof. If an edge has multiplicity 2 then it must be traversed by one F/S step and one R step.

• If it is an h1 edge, then the scheme assigns a factor 1
d , which equals Ex∼N (0,1/d)[h1(x)2].

• If it is an h2 edge, then the scheme assigns a factor 2
d2 , which equals Ex∼N (0,1/d)[h2(x)2].

For an edge with multiplicity k > 2, it must be traversed by one F step (including S), one R step
and k − 2 H steps. Moreover, since k is even and 2q is the length of the walk, we have 4 ⩽ k ⩽ 2q.

• If it is an h1 edge, then the scheme assigns a factor 1
d · (2q√

d
)k−2 ⩾ d−k/2(2q)k/2 ⩾ (k

d)
k/2. By

Fact 3.12, it is an upper bound on Ex∼N (0,1/d)[h1(x)k].

• If it is an h2 edge, then the scheme assigns a factor 2
d2 · (8q2

d)k−2 ⩾ d−k2k/2(2q)k ⩾ 2k/2(k
d)

k.
By Fact 3.12, it is an upper bound on Ex∼N (0,1/d)[h2(x)k].

This shows that the edge factor assignment scheme above is correct.

3.5 Bounding return cost (Pur factors)

In our vertex factor assignment scheme described in Section 3.3, we use a potential unforced return
factor, denoted Pur, to specify the destination of any return (R) step. Note that the term “unforced
return” is adopted from [Tao12] as well. In this section, we complete the bound of vertex factors
by bounding the Pur factor.

For starters, we will define a potential function for each vertex at time t, which measures the
number of returns R pushed out from the particular vertex by time t that may require a label in

17

2q · DV . Notice that a label in 2q · DV is sufficient for any destination vertex arrived via an R step
because the vertex appears before; however, this may be a loose bound.

We observe the following: a label in 2q · DV may be spared if the vertex is incident to only one
unclosed F/S edge; we call this a forced return. Formally, we define a return step as unforced if it
does not fall into the above categories,

Definition 3.14 (Unforced return). We call a return (R) step an unforced return if the source vertex
is incident to more than 1 (or 2 in the case of a square vertex) unclosed edge.

We now proceed to formalize the above two observations by introducing a potential function
to help us bound the number of unforced returns from any given vertex throughout the walk. The
number of unforced returns throughout the walk would then be immediately given once we sum
over all vertices in the walk.

Definition 3.15 (Potential-unforced-return factor Pur). For any time t and vertex v, let Purt(v) be
defined as the number of potential unforced return from v throughout the walk until time t.

3.5.1 Pur bound for circle vertices

In our setting, each circle vertex pushes out at most 1 edge during the walk, analogous to the case
of typical adjacency matrix. This serves as a starting point for our Pur bound for circle vertices.

Lemma 3.16 (Bounding Purt for circle vertices). For any time t, suppose the walker is currently at a
circle vertex v, then

Purt(v) ⩽ #(R steps closed from v) + #(unclosed edges incident to v at time t) − 1

⩽ 2 · st(v) + ht(v) ,

where we define the following counter functions:

1. st(v) is the number of S steps arriving at v by time t;

2. ht(v) is the number of H steps arriving at v by time t.

Proof. We first prove the first inequality. The R steps closed from v may all be unforced returns,
and the unclosed edges incident to v may be closed by unforced returns in the future. Note that
we have a −1 in the above bound because for each vertex we may by default assume the return is
using a particular edge, hence at each time we know there is an edge presumed-to-be forced.

We prove the second inequality by induction. Define Pt(v) := #(R steps closed from v) +
#(unclosed edges incident to v at time t) − 1 for convenience. At the time when v is first created
by an F step, Pt(v) = 0 (1 open edge minus 1) and st(v) = ht(v) = 0.

At time t, suppose the last time v was visited was at time t′ < t, and suppose that the inequality
holds true for t′. Note that at time t′ + 1, Pt′+1(v) = Pt′(v) + 1 if a new edge was created by an F
or N step leaving v, otherwise Pt′+1(v) = Pt′(v) (for R step it adds 1 to the number of closed edges
closed from v, but decreases 1 open edge). On the other hand, st′(v) and ht′(v) remain the same
(we don’t count out-going steps for st(v), ht(v)).

When we reach v at time t, we case on the type of steps:

18

• Arriving by an R step: the edge is now closed, but the R step was not from v. So Pt(v) =

Pt′+1(v)− 1 ⩽ Pt′(v), while st(v) = st′(v) and ht(v) = ht′(v).

• Arriving by an S step: the edge is new, so Pt(v) = Pt′+1(v) + 1 ⩽ Pt′(v) + 2, and we have
st(v) = st′(v) + 1.

• Arriving by an H step: Pt(v) = Pt′+1(v) ⩽ Pt′(v) + 1, and ht(v) = ht′(v) + 1.

In all three cases, assuming Pt′(v) ⩽ 2 · st′(v)+ ht′(v), we have Pt(v) ⩽ 2 · st(v)+ ht(v), completing
the induction.

3.5.2 Pur bound for square vertices

The argument of Lemma 3.16 does not apply well for vertices incident to multiple edges in a single
step. In particular, this may happen for square vertices in Mα as each is arrived via 2 edges and
each pushes out 2 edges (recall Figure 1). This is not an issue for Mβ, but we will treat square
vertices in Mβ the same way to unify the analysis; in the context of Pur for square vertices, one
may think of Mβ as collapsing the two circle vertices in Mα.

To handle this issue, we observe that it suffices for us to pay an extra cost of [2] for each square
vertex, which would allow us to further presume 2 edges being forced. We then generalize the
prior argument to capture this change.

Lemma 3.17 (Bounding Purt for square vertices). For any time t, suppose the walker is currently at a
square vertex v, then

Purt(v) ⩽ #(R steps closed from v) + #(unclosed edges incident to v at time t) − 2

⩽ 2(st(v) + ht(v)) .

where st(v) and ht(v) are the number of S and H steps arriving at v by time t, respectively.

Proof. We prove this by induction. Note that this is immediate for the base case when v first
appears since a square vertex is incident to 2 edges. Define Pt(v) := #(R steps closed from v) +
#(unclosed edges incident to v at time t) − 2 for convenience. Suppose the inequality is true at
time t′, and assume vertex v appears again at time t. The departure at time t′ + 1 from v may open
up at most 2 edges, hence Pt′+1(v) ⩽ Pt′(v) + 2.

When we reach v at time t (via 2 edges), we case on the type of steps:

• Arriving by two R steps: the two edges closed by the R steps are not closed from v. So
Pt(v) = Pt′+1 − 2 ⩽ Pt′(v), while st(v) = st′(v) and ht(v) = ht′(v).

• Arriving by one S/H and one R step: in this case, Pt(v) = Pt′+1(v) ⩽ Pt′(v) + 2 and st(v) +
ht(v) = st′(v) + ht′(v) + 1.

• Arriving by two S/H steps: in this case, Pt(v) = Pt′+1(v) + 2 ⩽ Pt′(v) + 4, whereas st(v) +
ht(v) = st′(v) + ht′(v) + 2.

In all three cases, we have Pt(v) ⩽ 2(st(v) + ht(v)), completing the induction.

Corollary 3.18. For each surprise/high-mul step, it suffices for us to assign 2 Pur factors, which is a cost
of (2q · DV)

2 so that each Pur factor throughout the walk is assigned. Moreover, for Mα, we pay a cost of 2
for any R step leaving a square vertex so that we can presume 2 edges being forced in Lemma 3.17.

19

3.6 Wrapping up with examples

Recall Proposition 3.10 that for a graph matrix of shape τ,

Bq(τ) = ∑
L: step-labelings for E(τ)

vtxcost(L) · edgeval(L) (9)

is a valid block-value function for τ (Definition 3.8). Moreover, by Proposition 3.9, we can take
q ⩾ dε and conclude that with probability 1 − 2−dε

,

∥Mτ∥op ⩽ (1 + o(1)) · Bq(τ) .

For each given shape, it suffices for us to bound the block-value for each edge-labeling. And
we demonstrate how this may be readily done given the above bounds.

3.6.1 Warm-up: tight bound for GOE

As a warm-up, we first see how the above framework allows us to readily deduce a tight norm
bound for G ∼ GOE(0, 1

d), where G is a d × d symmetric matrix with each (off-diagonal) entry
sampled from N (0, 1

d). It is well-known that the correct norm of G is 2 + od(1) [Tao12]. Figure 1a
shows the shape τ associated with G, which simply consists of one edge. We now proceed to
bound Eq. (9).

Edge factor. According to our edge factor scheme described in Section 3.4 (for h1 edges), an
F/R/S step-label gets a factor of 1√

d
while an H step-label gets 2q√

d
.

Pur factor. By Lemma 3.16, there is no Pur factor for F/R, while S and H get 2 and 1 Pur factors
respectively.

Vertex factor. The weight of a circle vertex is d, thus any vertex making a first or last appearance
gets a factor of

√
d. We now case on the step-label and apply the vertex factor assignment scheme

described in Section 3.3.

• F: the vertex in Uτ must be making a middle appearance; it is not first due to Definition 3.11,
and it is not last as otherwise the edge appears only once throughout the walk. The vertex
in Vτ is making a first appearance, so it gets a factor of

√
d;

• R: the vertex in Vτ is making a middle appearance, since it is incident to an R edge (hence
not first appearance), and it is on the boundary hence bound to appear again the next block.
The vertex in Uτ may be making its last appearance, so it gets a factor of

√
d;

• S: the vertex in Uτ is making a middle appearance (same as F), and the vertex in Vτ is
making a middle appearance since it cannot be first and must appear again. In addition, it
gets 2 factors of Pur, which gives a bound of (2q · DV)

2;

• H: analogous to the above, both vertices are making middle appearance, and it gets 1 factor
of Pur, giving a bound of 2q · DV .

Combining the vertex and edge factors, we can bound Eq. (9):

Bq(τ) =
√

d · 1√
d
+
√

d · 1√
d
+ (2q · DV)

2 · 1√
d
+ (2q · DV) ·

2q√
d
⩽ 2 + od(1) ,

since q and DV are both polylog(d). Therefore, by Proposition 3.9, we can conclude that ∥G∥op ⩽
2 + od(1) with high probability, which is the correct bound.

20

3.6.2 Bound for Mβ

We now prove a bound on ∥Mβ∥op. Figure 1c shows the associated shape.

Lemma 3.19 (Norm bound for Mβ). Let m ⩾ ω(d) and q = Ω(log2 d). Then with probability 1 −
2−q/ log d,

∥Mβ∥op ⩽ (1 + od(1))
2m
d2 .

Proof. Let β be the shape associated with the matrix Mβ. We bound Bq(β) via our vertex/edge
factor assignment schemes combined with Pur factors. Recall that each square vertex has weight
m and each circle vertex has weight d. We case on the step-labels of the two edges,

1. F → F: we have an F edge leading to a square vertex and circle vertex each. The first square
vertex must be making a middle appearance (Definition 3.11), while the circle and the other
square vertex make first appearances, giving a vertex factor of

√
m ·

√
d. Furthermore, there

is no Pur factor incurred. Finally, the edge factor is 2
d2 .

2. R → R: we have both R edges departing from a square and circle vertex. There is no
vertex making first appearance and the square vertex on the right must be making middle
appearance. The other two vertices may be making last appearances. Furthermore, there is
no Pur factor incurred, while we assume each R edge from a square vertex can be identified
at a cost of [2] modulo the ones with assigned Pur factor, giving a total vertex factor of
2
√

m ·
√

d. Finally, the edge factor is 2
d2 .

3. R → F: the circle vertex must be making a middle appearance, since the F edge must be
closed later. The square vertex on the left may be making a last appearance, and the square
vertex on the right must be making a first appearance. This gives a vertex factor of

√
m ·√

m = m. There is no Pur factor, and the edge factor is 2
d2 .

4. F → R: this cannot happen. The F step means that the circle vertex is making its first
appearance, but the R step means that it must have appeared before.

5. For any other step-labelings involving S and H step-labels, both vertices of the S/H edge
must be making middle appearances. Thus, the vertex factor is at most

√
m. By Lemmas 3.16

and 3.17, the Pur factor is at most (2q)4. Finally, the edge factor is at most O(q4

d2).

Summing over all possible step-labelings, by Proposition 3.10 we get

Bq(β) ⩽
√

md · 2
d2 + 2

√
md · 2

d2 + m · 2
d2 +

qO(1)

d2 ⩽
2m
d2 (1 + od(1)) ,

provided that m ≫ d. Therefore, by Proposition 3.9, we have that with probability 1 − 2−q/ log d,
∥Mβ∥op ⩽ (1 + od(1)) 2m

d2 .

3.6.3 Bound for Mα

We now prove a bound on ∥Mα∥op. Figure 1b shows the associated shape.

21

Lemma 3.20 (Norm bound for Mα). Let m ⩾ ω(d) and q = Ω(log2 d). Then with probability 1 −
2−q/ log d,

∥Mα∥op ⩽ (1 + od(1)) ·
1
d2 (3d

√
m + 2m) .

Proof. Let α be the shape associated with the matrix Mα. Similar to the proof of Lemma 3.19, we
bound Bq(α) by casing on the step-labelings. There are two paths from Uα to Vα, 4 edges in total. t

1. In the case of all F or all R, one of the square vertices must be making middle appearance,
hence we get a vertex factor of

√
m · (

√
d)2 = d

√
m. There is no Pur factor, and the edge

factor is (1√
d
)4 = 1

d2 . For the case of all R, by Corollary 3.18 we pick up an additional factor
of [2] since we assume each R edge from a square vertex can be identified at a cost [2] modulo
those with assigned Pur factor.

2. If both paths are R → F, then both circle vertices are making middle appearances, hence we
get a vertex factor of

√
m ·

√
m = m. There is no Pur factor while we pick up a factor [2] for

the return from the square vertex. Finally, the edge factor is (1√
d
)4 = 1

d2 .

3. Analogous to Mβ, an F → R path cannot happen.

4. For any other step-labelings involving S and H step-labels, there must be at least one square
and one circle vertex making middle appearances, so the vertex factor is at most

√
m ·

√
d.

The Pur factor is (2q · DV)
O(1) = polylog(d), and the edge factor is (2q√

d
)4.

Summing over all possible step-labelings, by Proposition 3.10 we get

Bq(α) ⩽ d
√

m · 1
d2 + 2d

√
m · 1

d2 + 2m · 1
d2 +

√
md · qO(1)

d2 ⩽ (1 + od(1)) ·
1
d2 (3d

√
m + 2m) .

Therefore, by Proposition 3.9, we have that with probability 1 − 2−q/ log d, ∥Mα∥op ⩽ (1 + od(1)) ·
1
d2 (3d

√
m + 2m).

4 Matrix decomposition of R

In this section, we work towards analyzing R and proving Lemma 2.11. Recall our candidate
matrix Λ = Id −R ∈ Rd×d from Definition 2.1, where

R :=
m

∑
i=1

wivivT
i =

m

∑
i=1

(
M−1η

)
[i] · vivT

i .

See Eq. (2) and (3) for a reminder of the definitions of M ∈ Rm×m and η ∈ Rm.
To analyze R, we begin by obtaining an explicit expression for M−1 using the Woodbury ma-

trix identity (Fact 2.6), as discussed in Section 2.3. Recall that we write M = A + UCUT where
A is positive definite with high probability by Lemma 2.8, and U = 1√

d

[
1m η

]
∈ Rm×2 and

C =

[
1 1
1 0

]
. Restating Eq. (7), the scalars r, s, u ∈ R are defined as follows,

[
r s
s u

]
:= C−1 + UT A−1U =

[
1T

m A−11m
d 1 + ηT A−11m

d

1 + ηT A−11m
d −1 + ηT A−1η

d

]
. (10)

Our next step is to show the following expansion of M−1η.

22

Proposition 4.1 (Expansion of M−1η). Let r, s, u ∈ R be defined as in Eq. (10). Then,

M−1η =
r + s

s2 − ru
· A−1η − u + s

s2 − ru
· A−11m . (11)

Proof. The inverse of Eq. (10) is as follows,

(
C−1 + UT A−1U

)−1
=

[
r s
s u

]−1

=
1

ru − s2

[
u −s
−s r

]
.

Then, applying the Woodbury matrix identity (Fact 2.6), we have

M−1 = A−1 − 1
ru − s2 A−1U

[
u −s
−s r

]
UT A−1

= A−1 +
1

s2 − ru
A−1

(
u · 1m1T

m
d

− s · η1T
m + 1mηT

d
+ r · ηηT

d

)
A−1 .

Next, using the above, we have

M−1η = A−1η +
1

s2 − ru

((
u · 1T

m A−1η

d
− s · ηT A−1η

d

)
· A−11m

+

(
−s · 1T

m A−1η

d
+ r · ηT A−1η

d

)
· A−1η

)
.

Plugging in the definition of r, s, u in Eq. (10), we get

M−1η = A−1η +
1

s2 − ru
(u(s − 1)− s(u + 1))A−11m +

1
s2 − ru

(−s(s − 1) + r(u + 1))A−1η

= A−1η − u + s
s2 − ru

· A−11m +
−s2 + ru + r + s

s2 − ru
· A−1η

=
r + s

s2 − ru
· A−1η − u + s

s2 − ru
· A−11m ,

finishing the proof.

4.1 Inverse of A: Neumann series and truncation

In light of Proposition 4.1, we proceed to analyze A−1. Recall from Proposition 2.3 that A =

Im + Mα + Mβ + MD + 1
d Im. A useful tool to obtain inverses is to apply Neumann series (a.k.a.

matrix Taylor expansion of 1
1−x), which allows us to write

(I − T)−1 =
∞

∑
k=0

Tk

for ∥T∥op < 1. In our case, let T := −(Mα + Mβ + MD + 1
d Im), then ∥T∥op < 1 is guaranteed by

Lemma 2.7. Thus, we can write

A−1 =
∞

∑
k=0

Tk =
∞

∑
k=0

(−1)k ∑
(Q1,...,Qk)∈{Mα,Mβ,MD , 1

d Im}k

Q1Q2 · · · Qk .

With the norm bounds from Lemma 2.7, we can truncate the series, i.e., capping the number of
occurrences of Mα, Mβ, MD and 1

d Im by certain thresholds, such that the error is small.

23

Definition 4.2 (Truncated A−1). We define thresholds τ1 = τ2 = O(log d), τ3 = 3, and τ4 = 1, and
define the truncation of A−1 as

T0 := ∑
k1,k2,k3,k4∈N

ki⩽τi , ∀i

(−1)k1+···+k4 ∑
(Q1,...,Qk)∈{Mα,Mβ,MD , 1

d Im}k

i-th matrix occurring ki times

Q1Q2 · · · Qk . (12)

In the next lemma, we upper bound the truncation error.

Lemma 4.3 (Truncation error of A−1). Suppose m ⩽ cd2 for a small enough constant c. Let T0 be the
truncated series defined in Definition 4.2 with thresholds τ1 = τ2 = O(log d), τ3 = 3 and τ4 = 1. Then,
with probability 1 − od(1), the truncation error E = A−1 − T0 satisfies ∥E∥op ⩽ O(log d

d)2.

Proof. From Lemma 2.7, we know that ∥Mα∥op, ∥Mβ∥op ⩽ 0.1, ∥MD∥op ⩽ O(
√

log d/d), and
∥ 1

d Im∥op = 1
d with high probability. We can bound the contribution of ∥Mα∥op in the truncation

error by

∞

∑
i=τ1+1

∞

∑
j=0

(
i + j

i

)
· ∥Mα∥i

op ·
(
∥Mβ∥op + ∥MD∥op +

1
d

)j

⩽
∞

∑
i=τ1+1

∞

∑
j=0

2i+j · ∥Mα∥i
op · (0.1 + o(1))j

⩽
(
2∥Mα∥op

)τ1+1 · O(1) .

Similarly for Mβ, MD and 1
d Im. Therefore, we can bound the total truncation error:

∥E∥op ⩽
((

2∥Mα∥op
)τ1+1

+
(
2∥Mβ∥op

)τ2+1
+
(
2∥MD∥op

)τ3+1
+ (2/d)τ4+1

)
· O(1)

⩽ O
(

log d
d

)2

by our choice of thresholds τ1, τ2, τ3, τ4.

4.2 Decomposition of R via truncated A−1

We shift our attention back to R = ∑m
i=1 wivivT

i . Using the expansion of M−1η in Proposition 4.1
(Eq. (11)) and the truncation of A−1, we decompose R as follows.

Proposition 4.4 (Decomposition of R). Suppose m ⩽ cd2 for a small enough constant c. Let T0 be the
truncated series of A−1 defined in Definition 4.2. Then,

R = R1 +R2 + ER ,

where

R1 :=
r + s

s2 − ru ∑
i∈[m]

(T0η)[i] · vivT
i ,

R2 :=
−u − s
s2 − ru ∑

i∈[m]

(T01m)[i] · vivT
i ,

and ∥ER∥op ⩽ o(1) with probability 1 − od(1).

24

We first state the following claim which is needed for the error analysis.

Claim 4.5. With probability 1 − e−d,
∥∥∑m

i=1 vivT
i

∥∥
op ⩽ (1 + od(1))m

d .

Proof. We can write ∑m
i=1 vivT

i = VVT where V ∈ Rd×m has i.i.d. N (0, 1
d) entries, and note that

∥∑m
i=1 vivT

i ∥op = σmax(V)2. Since we assume m ⩾ ω(d), by standard concentration of the largest
singular value of rectangular Gaussian matrices [Tro15], we have that σmax(V) ⩽ (1 + od(1))

√m
d

with probability at least 1 − e−d.

Proof of Proposition 4.4. Recall that R = ∑i∈[m](M−1η)[i] · vivT
i . Unpacking the expression of M−1η

in Proposition 4.1 and plugging in A−1 = T0 + E, we have R = R1 +R2 + ER where

ER = ∑
i∈[m]

δivivT
i , δi :=

r + s
s2 − ru

⟨E[i], η⟩ − u + s
s2 − ru

⟨E[i], 1m⟩ .

We first upper bound |δi| for all i ∈ [m]. First, observe that |⟨E[i], η⟩| ⩽ ∥E∥op · ∥η∥2 and
|⟨E[i], 1m⟩| ⩽ ∥E∥op · ∥1m∥2. By Claim 2.9 and Lemma 4.3, we have ∥E∥op ⩽ O(log d

d)2 and ∥η∥2 ⩽
O(
√m

d) with high probability. Moreover, by Lemma 2.10, we have that r = Θ(m
d), |s| ⩽ O(

√
d)

and −1 ⩽ u ⩽ −1/2, hence s2 − ru ⩾ Ω(m
d). Thus,

|δi| ⩽ O
(

log d
d

)2

·
(√

m
d
+

d3/2
√

m

)
⩽ O

(
log2 d√

md

)

as we assume that m ⩽ O(d2).
Finally, Claim 4.5 states that ∥∑m

i=1 vivT
i ∥op ⩽ O(m

d). Since

− ∑
i∈[m]

|δi|vivT
i ⪯ ER ⪯ ∑

i∈[m]

|δi|vivT
i ,

we may conclude that ∥ER∥op ⩽ O(log2 d√
md

) · O(m
d) ⩽ O(log2 d√

d
) as m ⩽ O(d2).

4.3 Overview: each term is a dangling path of injective gadgets

By writing A−1 as a truncated series (Definition 4.2) and the decomposition of R (Proposition 4.4),
we may view R1 and R2 as linear combinations of d × d matrices of the forms

∑
i∈[m]

(Q1Q2 · · · Qkη) [i] · vivT
i and ∑

i∈[m]

(Q1Q2 · · · Qk1m) [i] · vivT
i (13)

respectively, where Q1, . . . , Qk ∈ {Mα, Mβ, MD, 1
d Im} are m × m matrices.

Using the machinery of graph matrices described in Section 3.1, we can systematically rep-
resent these matrices as shapes (with underlying input {v1, . . . , vm} ⊆ Rd). For starters, the off-
diagonal part of the matrix ∑m

i=1 vivT
i is represented by the shape in Figure 2a; it serves as the

“base” for other matrices in Eq. (13). Each matrix in Eq. (13) can be represented by attaching “gad-
gets” (Figure 2b) to the square vertex in the middle. For the case of R1, since ηj = ∥vj∥2

2 − 1 =

∑d
a=1 h2(vj[a]) for j ∈ [m] (see Eq. (2)), each shape has an extra h2 attached at the end. Figure 2c

shows an example of such a shape.
In the following, we formally define such shapes which we call dangling shapes.

25

(a) Off-diagonal part of
∑m

i=1 vivT
i .

2

2
2

(b) Left: Mα gadget. Middle: Mβ

gadget. Right: final h2 gadget.

2

2

2

(c) Off-diagonal part of
∑m

i=1(Mα Mβη)[i] · vivT
i .

Figure 2: Examples of graph matrices in the decomposition of R. Recall that square
vertices take labels in [m] and circle vertices take labels in [d]. Unlabeled edges have
Hermite index 1.

Definition 4.6 (Injective gadgets). We call each shape in {Mα, Mβ, MD, 1
d Im} an injective gadget in

the dangling shape.

Definition 4.7 (Dangling shapes). We further separate the matrices in the decomposition of R
(Eq. (13)) into diagonal and off-diagonal terms:

1. For the off-diagonal terms, we start with a path from U to V (each containing a circle vertex
receiving labels in [d]) passing through a middle square vertex that receives a label in [m].

2. For diagonal terms, we have a double edge (that shall be distinguished from an h2 edge as
the double edge here stands for vi[a]2) connected to a middle square vertex that receives a
label in [m].

For each term, we specify a length-k ⩾ 0 dangling path that starts from the middle square
vertex such that

• for any k > 0, each step comes from one of the following gadgets in {Mα, Mβ, MD, 1
d Im};

• The dangling path is not necessarily injective, that we may have each vertex appearing at
multiple locations along the path. However, since it is a walk along the above gadgets, the
path is locally injective within each gadget.

For matrices from R1, there is an additional η factor. Thus, we attach an h2 gadget (Figure 2b) to
the end of the dangling path. We call this the “final h2 gadget”.

Definition 4.8 (Gadget incursion). Let A, B be two gadgets along the dangling path. We call it a
gadget-incursion if there are unnecessary vertex intersections between V(A) and V(B) beyond the
“necessary intersection”: when A, B are adjacent, VA = UB is the necessary boundary intersection,
any intersection in V(A) \ VA and V(B) \ UB is a gadget incursion; similarly, when A, B are not
adjacent, any intersection in V(A) and V(B) is a gadget incursion.

26

Vertex and edge appearance Recall from Section 3.2 that we bound the norm of a graph matrix
by analyzing length-2q “block-walks” of the shape and bounding the vertex/edge factor of each
“block-step”. To this end, we need to consider both global and local appearances of a labeled vertex.
We remind the reader that a labeled square (resp. circle) vertex is an element in [m] (resp. [d]), and
a labeled edge is an element in [m]× [d] (see Remark 3.6).

Definition 4.9 (Local versus global appearance). Given a block-walk, we call each labeled vertex’s
appearance within the given block a local appearance, and each vertex’s appearance throughout
the walk a global appearance.

Moreover, we say that a labeled vertex/edge is making its global first/last appearance if it is
the first/last appearance of that labeled vertex throughout the walk. Similarly, we say it is making
its local first/last appearance if it is the first/last appearance within the given block in the walk.

We also need the following definition, which is a special case that we need to handle. The term
“reverse-charging” will be clear once we describe our edge charging scheme in Section 4.4.

Definition 4.10 (Reverse-charging step/edge). For a given walk, and a block in the walk, we call
a step u → v reverse-charging if

1. the underlying edge is making its last global appearance throughout the walk;

2. the underlying edge’s first global appearance is also in the current block;

3. (Reverse) the first appearance of the underlying edge goes from v to u.

4.3.1 Further set-up for step-labeling and edge factor scheme

Our argument for tight matrix norm bounds requires assigning each edge (or step) a step-label
(Definition 3.7) that represents whether it is making first/middle/last appearance, and assigning
edge factors based on the edge type (recall our edge factor scheme in Section 3.4). However, fur-
ther care is warranted for dangling shapes when an edge appears with different Hermite indices
in the walk (e.g., appears both as an h1 and h2 edge). In this case, it is no longer true that an
hk edge needs to appear at least twice in the walk for the random variable to be non-vanishing.
For example, suppose an edge appears as h1, h1, and h2 in the walk. Then, even though h2 only
appears once, this term is non-vanishing under expectation:

Ex∼N (0,1/d)
[
h1(x)2h2(x)

]
= E

[
x2(x2 − 1

d
)

]
= E

[
x4
]
−E

[
x2

d

]
=

2
d2 . (14)

The matrices that arise in our analysis may contain h1, h2, h3, h4 edges. For i ⩽ 4, we treat an hi

edge as i edge-copies in our edge factor assignment scheme.

Definition 4.11 (Step-labeling scheme for mixed edges). For each step regardless of the Hermite
index, assign a step-label to all its edge-copies as follows,

1. Assign an F step if it is making its first appearance;

2. Assign an H step if it is making its middle appearance

3. Assign an R step if it is making its last appearance.

27

We next describe our edge factor assignment scheme.

Lemma 4.12 (Edge factor assignment scheme). For any graph matrix of size at most DV that contains
h1, h2, h3, h4 edges and walks of length 2q ⩾ Ω(log d), we can assign values to each edge-copy among the
edge’s appearance throughout the walk such that

1. Each edge-copy of an h1, h2 edge with F/R step-label gets assigned a value 21/4
√

d
.

2. Each edge-copy of an edge with step-label H and any edge-copy of an h3, h4 edge gets assigned a value
32qDV√

d
.

3. In the case of a random variable appearing as h1, h1, h2 (in an arbitrary order), it gets assigned value
of 2

d2 in total, in particular, each edge-copy of the h2 edge gets assigned a value
√

2√
d
.

Proof. We first note that Ex∼N (0,1/d)[hk(x)2] = k!
dk . For k = 1, 2, if an hk edge only appears twice

and no other Hermite index occurs, then it must have 2k edge-copies with step-labels F and R,
giving an edge factor of (21/4

√
d
)2k = 2k/2

dk , which is larger than k!
dk for k = 1, 2.

Next, we consider the case when h3, h4 edges are involved or when an edge appears more than
twice, i.e., some edge-copies are assigned step-label H. Let ak be the number of times hk appears
in the walk, and let t := ∑k⩽4 k · ak be the total number of edge-copies. Applying Cauchy-Schwarz
twice and Fact 3.12,∣∣∣∣∣Ex∼N (0,1/d)

[
∏
k⩽4

hk(x)ak

]∣∣∣∣∣ ⩽ E [h1(x)2a1 h2(x)2a2
]1/2

E
[
h3(x)2a3 h4(x)2a4

]1/2

⩽ ∏
k⩽4
E
[

hk(x)4ak
]1/4

⩽ ∏
k⩽4

(
4kak

d

)k·ak/2

.

⩽
(

4t
d

)t/2

.

We next show that the edge factors assigned to the t edge-copies upper bound the above. Let t0

be the number of edge-copies that get assigned 21/4
√

d
. We must have 0 ⩽ t0 < t and t0 ⩽ 4. Then,

the assignment scheme gives(
21/4
√

d

)t0

·
(

32qDV√
d

)t−t0

⩾ d−t/2(32qDV)
t−t0 .

Since the length of the walk is 2q and the size of the graph matrix (shape) is ⩽ DV , we have
t ⩽ 8qDV . Thus, if t ⩽ 8, then clearly (32qDV)

t−t0 ⩾ (4t)t/2; otherwise, t − t0 ⩾ t/2 and
(32qDV)

t−t0 ⩾ (4t)t/2. This shows that the edge factors correctly account for the values from
the Hermite characters.

For the special case when an edge appears as h1, h1, h2, the factor 2
d2 follows from Eq. (14). This

completes the proof.

4.4 Local Analysis for R

Lemma 4.13. For some constant ε > 0, for any q < dε, the block-value function for R is bounded by

Bq(R) ⩽
1
10

.

28

We first state our vertex factor assignment scheme (with redistribution) which assigns vertex
factors to labeled vertices according to their global appearances. It is the same one as described in
Section 3.3.

Vertex factor assignment scheme

1. For each labeled vertex i making its first or last global appearance, assign a factor of√
weight(i);

2. For each labeled vertex i making its middle global appearance, assign a factor of 1 if it
is reached via an R step, otherwise assign a factor 2q · DV as well as its corresponding
O(1) Pur factors.

We next describe the scheme that assigns edge-copies to vertices. In most cases, we charge
edge-copies (on the dangling path) to the vertex it leads to, unless it is a reverse-charging edge
(Definition 4.10). Recall that we define a step u → v to be reverse-charging if it is making its last
global appearance and if its first global appearance is also in the current block going from v → u.

”Top-down” edge-copy charging primitive

1. Assign both edges on the U − V path to the first square vertex in the middle;

2. For any step u → v before the final h2 gadget, assign the edge to v unless this is a
reverse-charging edge (Definition 4.10), in which case we assign to u;

3. For the final h2 gadget (if any), we reserve its assignment from the current scheme.

See Section 4.5 for an illustration of the above scheme. We next show the following invariant
throughout the walk,

Proposition 4.14. We can assign each edge-copy to at most one vertex,

1. for a circle vertex, it is assigned 1 edge-copy if it is making first/last global appearance, and 2 edge-
copies if both;

2. for a square vertex on the dangling path, it is assigned 2 edge-copies if it is making first/last global
appearance, and 4 edge-copies if both;

3. for any square vertex’s global middle appearance yet local first appearance in the block, it is assigned
at least 1 edge-copy;

4. no surprise/high-mul step is assigned to any vertex’s global first/last appearance.

Proof. We start by giving the argument when U ̸= V, and then show it can be modified into an
argument for U = V.

Charging vertices outside U ∪V and the final h2 gadget. The above scheme applies immediately
to vertices that appear in the current block while not in U ∪ V or the last square vertex as well as
the final circle vertex it connects to in the h2 gadget.

It follows by observing that any circle (resp. square) vertex that makes its first global appearance
is the destination of 1 (resp. 2) edge-copies that are not reverse-charging, in which case the edge-
copies are assigned to the particular vertex. This holds analogously for vertices making the last

29

global appearance but not the first global appearance in the block, since the edges are not reverse-
charging. We note that this is true for the first square vertex as well since we assign both edges on
the U − V path to the first square vertex.

On the other hand, for vertices making both the first and the last global appearances, consider
the assignment until the final h2 gadget, the charging above gives us 1 and 2 edges for each such
vertex when it first appears locally. Furthermore, notice that each of these edges need to be closed,
and they are assigned to the destination vertex, i.e., the particular vertex in inspection, and this
completes the proof of our assignment restricted to vertices outside U ∪ V and the final h2 gadget.

Charging the final gadget and finding ”block-reserve”. The goal is to identify an edge-copy
as block-reserve, and assign vertex factors to corresponding edges in the final h2 gadget (if any).
We first consider the case when there is no final h2 attachment, i.e. the term from u+s

s2−ru A−11m.
Recalling our bounds from Lemma 2.10 that s2 − ru = Ω

(m
d

)
, and s = O(

√
d), |u| = O(1) (here

the weaker bound on s suffices), we observe that∣∣∣∣ u + s
s2 − ru

∣∣∣∣ = O

(√
d

m/d

)
= O

(
1√
d

)
,

and the normalizing constant can be regarded as an edge-copy. This is assigned as the block-
reserve factor if there is no final h2 gadget, and there is no vertex factor involved when there is no
final h2 gadget since this may be the last appearance of a square vertex while its factor has already
been assigned to the edges that first lead to this vertex in the current block.

We now proceed to assign edges from the final h2 gadget to vertex factors involved in the
final h2 gadget, moreover, we will identify one edge-copy of assigned factor at most

√
2√
d

as ”block-
reserve” that allows us to further charge vertices in U ∪ V.

For the vertices in the final h2 gadget, we observe the following,

1. in the final gadget, the last square vertex cannot be making its first global appearance yet it
may be making its last appearance (since it is on the gadget boundary, we consider it appears
in both the final h2 attachment gadget and the gadget that precedes it);

2. the last circle vertex may be making either its first or last global appearance but it cannot be
both;

3. the h2 edge in-between has not yet been assigned, and we can split it as two edge-copies,
each of weight 21/4

√
d

if F/R under the global step-labeling.

We now observe the following,

1. If the final h2 attachment is not a reverse-charging edge assigned to the source square vertex,
the square vertex has also been assigned by 2 factors if making its first/last global appear-
ance, and 4 if both, in the current block by the previous charging. In this case, note that we
can reserve one of the two edge-copies, that is a factor of at most 21/4

√
d

,

• If the circle vertex is making first/last appearance, we either have both edge-copies re-
ceiving F/R labeling, or a mix of H, R labeling. In the first case, we have two assigned
factors of 21/4

√
d

. Assign one to the circle vertex’s first/last appearance, and another to the
block-reserve. In the second case, we have a mix of H, R edges, that we at least have

30

the underlying random variable appears twice as h1 edges and at least once as an h2

edge, by moving Õ(1) polylog factors to the second appearance of the underlying ran-
dom variable locally, we have again two edge copies of value 21/4

√
d

, and the assignment
follows from above.

• If the circle vertex is making a middle appearance, we may assign related Pur factors
and vertex-factor cost to one edge-copy such that one edge-copy is of value Õ(1√

d
)

while the other is still at most 21/4
√

d
; assign the edge-copy with Õ(1√

d
) to the middle

appearance factor and assign the edge-copy with factor 21/4
√

d
for block-reserve.

2. If the final attachment h2 edge is a reverse-charging step that corresponds to an edge whose
F copy leads to the final square vertex, we assign both h2 edges to the final square vertex as
the square vertex may be making its last global appearance. Note that if the square vertex
makes its first global appearance in the current block, it has already been assigned 2 edges.

This leaves the last circle vertex potentially uncharged as it may be making its last appear-
ance as well. Furthermore, we need to find one more ”reserve” edge-copy for the block
which would then be used to charge U ∪ V.

3. Finding critical edge: we now give a procedure to identify the critical edge, that is, an h2

edge assigned to a circle vertex in the above top-down charging process. The process main-
tains a current circle vertex and its current gadget along the top-down path. In particular,
the gadget considered is an Mβ gadget throughout. The process starts from vertex s, that is
the circle vertex involved in the final h2 attachment, and the gadget considered is the one in
which s opens up the F step of the current edge e∗, the h2 edge in the final gadget. Note that
this is an Mβ gadget. We now case on the step-labeling of the top half of the Mβ gadget in
inspection, in particular, the edges leading to the circle vertex s in that particular gadget,

• This is an F, non-reverse-charging R, or H step assigned to s, this is the critical edge
we aim to find, as we have two edge-copies assigned to a circle vertex, and the process
terminates.

• This is a reverse-charging R edge: update the circle vertex to be the top vertex of the
current Mβ gadget s, and update the edge e∗ to be the h2 edge in the top half of the cur-
rent gadget, and repeat the above process. Note that the updated gadget must appear,
and additionally, on top of the current gadget in the dangling path.

We now observe that this process ultimately terminates since each time we move up towards
the top of the dangling path. Once the critical edge is found, note that it contains two edge-
copies, assign one to the vertex’s factor, and another to the block-reserve. In the case of H
edges involved, locally assign the edge-value as 1√

d
and Õ(1√

d
), and assign the copy with 1√

d
for block-reserve, while the other for vertex’s factor.

Reserving surprise/high-mul step from vertex-factor assignment outside U ∪ V We first ob-
serve that in the above assignment, it is clear that the edges assigned to vertex’s first appearance
cannot be surprise-visit nor high-mul step. That said, it suffices for us to consider the assignment
for vertex’s last appearance factor (whose first appearance is not in the same block). Consider

31

such vertex’s first local appearance, they may either be H/S edges if not R under the global
edge-labeling. If so, since the vertex is making the last appearance in the current block, each
corresponds to an R-step in this block. Moreover, observe that any such R-step is intended for
”reverse-charging” if the vertex in inspection is making both first and last global appearance in
the block, and thus it is not assigned to the vertex factor of the source vertex. That said, it suf-
fices for us to swap the H/S step with the R step so that no surprise/high-mul step is assigned to
vertex’s (polynomial) factor.

At this point, for a block with U ̸= V, we have assigned

1. 1 or 2 edge for each vertex’s first/last appearance in the current block outside Uα ∪ Vα de-
pending on the vertex’s type;

2. 1 edge-copy of value O(1√
d
) has been identified as the block-reserve.

3. it is also straightforward to observe that any edge assigned for vertex’s first/last appearance
cannot be a surprise visit nor high-mul visit.

Charging circle vertices in U ∪ V

Proposition 4.15 (Unbreakable U − V path). There is always a U − V path such that each edge along
the path is of odd multiplicity. Call this path Psafe.

Proof. It suffices for us to restrict our attention to paths of only h1 edges. By our gadget property,
each vertex except Uα ∪ Vα is incident to an even number of h1 edges, while only vertex copy
in Uα ∪ Vα is of odd degree. Suppose the path is broken, consider the (maximal) component CU

connected to Uα (but not Vα), we first observe that the edge-multiplicity of E(CU , V(α) \ CU) must
be even, as otherwise, some edge is of odd multiplicity, and the edge is included inside CU as
opposed to be across the cut. That said,

∑
v∈CU

deg(v) = 2 · mul(E(CU)) + mul(E(CU , V(α) \ CU)) .

Observe that the LHS is odd as any vertex copy except Uα has even degree, and we have exactly
1 odd-degree vertex copy. On the other hand, RHS follows as each edge-multiplicity in E(CU)

contributes a factor 2 to degree of vertices in CU while edges across the cut contribute 1 for each
multiplicity; since E(CU , V(α) \ CU) is even by connectivity argument above, the RHS is also even
and we have a contradiction.

Corollary 4.16. There is at least one vertex v∗ making middle-block appearance, i.e. it is a vertex that
appears in previous blocks, and is appearing again in future blocks.

We recall our charging so far that we have one edge-copy reserved, while we have two circle
vertices in U ∪ V uncharged. And we now show that the single-edge copy is sufficient. i.e., at
most one vertex factor is picked up among these two vertices.

Consider the path Psafe, and observe that it passes through both vertices in U ∪ V. Take v∗ to
be the first vertex on the path that pushes out an F/H/S edge. In the case v∗ = U, note that it
suffices for us to assign the reserve factor for the vertex in V; similarly, assign the reserve factor
for U for v∗ = V. In the case v∗ /∈ U ∪ V, note that the previous scheme assigns at least one edge

32

for v∗ if it is a circle, and 2 if it is a square when v∗ first appears in the current block, and this is
in fact not needed since v∗ is making a middle appearance. That said, we have at least 2 factors,
1 from the reserve factor, and 1 from the edge-assignment for v∗ in the previous scheme, we now
assign these two factors for U ∪ V.

Remark 4.17. v∗ is picked such that it is either reached by an R edge, or it is the boundary vertex
Uα. In other words, no factor is needed for specifying v∗ of the block.

and this completes the proof to our proposition when U ̸= V.

Analysis for U = V We now consider the case when U = V.

Definition 4.18 (SQ1: first square vertex in R term). For each R term, call the first square vertex on
top of the dangling path the SQ1 vertex.

Remark 4.19. This vertex is an exception from any other square vertex as its first appearance might
be the destination of two edge-copies that correspond to the same underlying random variable.
This happens when an edge making its first and last appearance at the same time for the U = V
term.

For U = V, the charging for vertices outside is identical except for the first square vertex SQ1:
since the two edges assigned to it now correspond to the same underlying edge-copy, and may
now receive F, R-labeling. That said, both edges are now assigned to the first square vertex. If the
square vertex is making either first/last appearance but not both in the current block, the current
assignment is sufficient. However, there are no reverse-charging edge copies protecting SQ1, and
that warrants a further analysis.

We follow the previous strategy in identifying block-reserve: even though for U = V, the
vertex U = V is by definition not contributing any vertex-appearance factor, we now intend the
block-reserve factor to pay for either additional Pur factor due to the dormant step stemming from
U = V, or the last appearance factor of SQ1 but not both.

1. SQ1 makes both first and last appearance in the current block: in this case, the edges assigned
to SQ1 in the beginning of the top-down charging process are assigned to the first appearance
of SQ1. That said, it remains for us to identify two extra edge-copies for the last appearance
factor.

Charging for terms without final h2 attachment: these terms come with a normalization of
| u+s

s2−ru | = O(1
d), and these are two edge copies that we assign to the last appearance of SQ1.

Charging for terms with final h2 attachment: we first note that any edge incident to SQ1

must be closed, and further case in whether there is any surprise visit arriving at SQ1 through-
out the dangling path.

(a) Suppose that there is no surprise visit arriving at SQ1 throughout the dangling path.
Consider the final departure from SQ1, and note that it pushes out at least two edge-
copies.

• If this is an Mβ gadget, let r be the circle vertex it connects to via an h2 edge. Sup-
pose the random variable corresponding to (SQ1, r) first appears as an h2 edge, in

33

this case, the circle vertex has been assigned two edge-copies the first time it ap-
pears as it is reached using h2 edge, that said, we can reserve the other two edge
copies from the final attachment for the missing last appearance factor of SQ1;

• If this is an Mβ gadget, yet the random variable (SQ1, r) first appears as an h1 edge
in the current block. Note that there is at least one more edge-copy of h1 edge that
is currently assigned an H-label, observe that we can replace its label to be R, and
assign both F/R copies to the vertex factor of the circle vertices. We now relabel the
final h2 step to be H∗, and note that these two edges get assigned a value at most 2

d ,
and assign them both to the missing last appearance factor of SQ1.

• To see that H∗ does not require extra DV · q factor, we observe that this is a circle
vertex traversed before in the block, and for each block, H∗ is unique. That said,
it suffices for us to use a special label in [2] when H∗ first appears in the block to
identify the edge. Moreover, note that swapping H∗ with the R step does not add
to Pur factor of the destination circle vertex as this edge no longer appears;

• If this is an Mα gadget, let r1, r2 be the circle vertices the square vertex is connected
to. Note that for each ri, there must be at least two more edge-copies of random
variable of (SQ1, ri) that receive H label, i.e., we have a factor of Õ(1

d). That said,
we may reassign the factors and extract one full factor of 1√

d
(with the remaining

being Õ(1√
d
), and since we have two of them that combine to a factor of 1

d , assign
it to the missing last appearance factor of SQ1.

(b) There is a surprise visit arriving at SQ1. We first observe this must be either an h2

edge, or a pair of distinct h1 edges. The surprise visit must be closed already, and
their underlying R copies are intended for reverse-charging in the top-down charging
scheme for the last appearance of SQ1. In this case, the factor for the last appearance
has already been assigned edges.

2. Finding ”block-reserve” for U = V: SQ1 is not making both first and last appearance in the
current block, we first note that the departure from U ∪ V is special as this is the only vertex
that can appear on the boundary again without being reached by any edge, and this is not a
dormant gadget MD. That said, the most recent departure may contribute Pur factor to the
vertex in U ∪ V, and we now identify an edge-copy for this factor.

(a) Charging for terms without final h2 attachment: for A−11m term where the final h2

gadget is missing, we pick up a normalization constant of O(1
d) and we designate this

as the block-reserve.

(b) Charging for terms with final h2 attachment: for terms with the final h2 gadget, the
analysis of finding block-reserve from the case U ̸= V applies identically for finding
an h2 edge that gets assigned to a circle vertex in the top-down traversal process. In
particular, we may designate one edge-copy among the two copies of the identified h2

edge as a block-reserve to charge the corresponding Õ(1) factors from Pur.

Remark 4.20. Note that the edge identified from the above process is in fact stronger,
as it carries a factor of O(1√

d
) as opposed to Õ(1√

d
). That said, since for U ̸= V terms,

the block-reserve is only assigned for Õ(1) factors from Pur, either is sufficient.

34

4.5 Illustration via diagrams

u v

a

b c

d

b c

a

t

u

a

b′ c′

d′

b′ c′

a

t

2 2

This figure illustrates the charging scheme. The light blue edges are F edges and we assign
their factor to their destination. The dark blue edges are R edges whose first appearance is in a
different block. We also assign these edges to their destination. The red edges are reverse-charging
R edges whose first appearance is in the current block. We assign these edges to the destination of
the corresponding F edge (which is generally the source for this edge).

Note that two edge factors are missing from v. We obtain these factors from the two green
edges pointing towards t.

35

u

a

b c

d

b c

a

c

2

u′

a′ b′

b′

2

2

u v

a

b

c

b

2

2

2

4.6 Pur bound for square vertices in R

The prior Pur bound does not apply well for square vertices in R, in particular, it should be pointed
out that even before non-trivial intersection within each block along the dangling path, the Pur

argument based on 1-in-1-out (or its slightly generalized version of 2-in-2-out) falls apart in the
analysis for R.

In particular, one may consider a walk on RS with the square vertex along the U −V path fixed
throughout the walk. It is easy to verify the the fixed square vertex may have growing unclosed F

36

edges without any surprise visit/high-mul step. That said, it is not sufficient to use the slack from
such factors to offset the potential confusion due to R edges.

In this section, we give a new argument to handle the Pur factor in the vanilla setting of R
when there is no non-trivial intersection along the dangling gadget-path, and then extend it for the
general cases of R where each block is not necessarily injective due to intersection across gadgets.

Gap from square middle appearance For starters, we observe that a vertex may only push out
unforced returns if it is making a middle appearance given that it maintains a list of incident edges,
including the additional information which are closed. When it is making the last appearance, any
currently unclosed edge needs to be closed, and therefore shall be pushed out, giving us a fixed
set of edges being pushed-out (where we momentarily ignore the question whether one needs to
distinguish among the edges in the edge-set). This immediately renders us the following bound
on Pur readily,

Lemma 4.21 (Pur factor via middle appearance: beginner version). For any vertex v, let MidApp(v)
be the number of middle appearances of v throughout the walk, we have

Pur(v) ⩽ 3 ·MidApp(v)

provided each square vertex pushes out at most 3 edges in each block throughout the walk, and each block is
vertex-injective.

With the above Pur bound, it may not be meaningful if we cannot obtain a slack from MidApp.
Fortunately, this is indeed the case for our setting, and we first observe this in the vanilla setting
where there is no gadget-incursion within each block, (in particular, this already applies immedi-
ately if the edges are injective witin each block),

1. We have assigned each square vertex at least 1 edge when it is making a middle appearance:
to see this, the top-down charging scheme assigns each square vertex 2 edges when the
square-vertex appears for the first time in the block; in the case of charging U ∪ V, 1 edge
may be re-routed from a square vertex making a global middle appearance. That said, at least
1 edge is assigned to each square vertex when it makes a middle appearance.

2. Note that for a fixed vertex v in a given block, its local first appearance at the given block
may be corresponding to a global middle appearance, and such mismatch is the source of our
slack;

3. Observe that each middle-appearance corresponds to a mismatch described above (provided
each block is injective), and each such mismatch of local-global first appearance assigns a
vertex making global middle appearance one edge-copy, that is a factor of O(1√

d
);

4. However, since each vertex’s middle appearance does not get assigned any vertex factor in
our scheme, we may use the 1√

d
gap to offset the 3 Pur factors corresponding to the particular

global middle appearance, that is

O(
1√
d
) · (q · DV)

3 = od(1) .

37

Extension to gadget intersections To handle dangling paths with potentially intersecting gad-
gets, it should be pointed out the Pur bound goes through as stated while we do not necessarily
have a gap from middle-appearance. In particular, it is possible now that in a given block, a square
vertex appears for various times and only has 2 edges assigned to it for its first local appearance,
as any of its subsequent appearance in the given block follow via closing some F edge that gets
opened up earlier in the work, and thus assigned to the destination as opposed to the given square
vertex.

Towards generalizing the prior argument, we consider a specific subclass of global middle ap-
pearance of a vertex through the block walk,

Definition 4.22 (Middle appearance for a square vertex). For a given walk and a given block-step
BlockStepi, we say a labeled vertex v ∈ [m] makes a middle appearance in BlockStepi if

1. v makes appearance at BlockStepi;

2. v makes appearance at some BlockStepj for j < i, and at some BlockStepj′ for j′ > i.

With some abuse of notation, we continue to let MidApp(v) denote the number of middle ap-
pearances of v. Note that this is clear when we are working with blocks that do not have block-
injectivity, while it is equivalent to the previous definition in vertex-injective blocks.

In particular, we emphasize that following the above definition, in the case of a labeled vertex
first appears at BlockStepi, and appears multiple times in various gadgets in the dangling-path of
BlockStepi, it is not considered as making a middle appearance at BlockStepi.

Lemma 4.23 (Pur bound for square vertices). For any square vertex v that does not push out dormant
gadgets, at any time-t,

Purt(v) ⩽ Pt(v) ⩽ 3 ·MidAppt(v) + 3(st(v) + ht(v))

where we define

Pt(v) := #(R steps closed from v by time t) + #((unclosed edges incident to v at t))− 4 .

In other words, by assuming at 4 possible return legs to be fixed each time a vertex is on the boundary, the
number of unforced returns from a vertex by time t is at most 3 ·MidAppt(v) + 3(st(v) + ht(v)).

Proof. The first inequality is definitional as we assume each vertex may have 4 edges being fixed,
which incurs a cost of [4] for each vertex each time it pushes out an R step. Analogous to previ-
ous Pur bounds, the base case is immediate when vertex first appears in the walk. In particular,
we note that the above bound can be strengthened for the BlockStepi in which vertex v makes
(globally) its first appearance.

Claim 4.24. For any square vertex v, for the BlockStepi, at any time-t within the BlockStepi ,

Pt(v) ⩽ 3(st(v) + ht(v))− 2 .

Proof. Notice this is immediate when vertex v first appears, as it is incident to 2 edges, and thus
we have P(1)

t = −2 (as we have a −2 term since we maintain 3 edges to be fixed instead of just 2).
The invariant holds as any subsequent departure opens up at most 2 F edges, and any subsequent
arrival either closes both edges, or either arrival is along a surprise/high-mul visit, and give a
net-gain of at most 3 in the number of unclosed F edges. This proves our claim.

38

It remains for us to consider the appearance of v in subsequent blocks, in particular, we start
with the locally first appearance of the subsequent block. Let t be the time-mark in which v is
making its first local appearance in the current-block. Notice at time t when the vertex first appears,
it may be arrived via a single edge (as opposed to 2 due to the U − V path), and therefore it may
push out at most 3 edges.

Appearance at the second block If not, this is currently the second block in which v appears:
applying the claim on the first block, and observe that the most recent departure opens up at most
2 F edges, while the current arrival closes 1 (unless H or S, in which case a net-gain of 3 suffices),
we have

Pt(v) ⩽ 3(st(v) + ht(v))− 2 + 2 − 1 = 3(st(v) + ht(v))− 1

where the +2 corresponds to the 2 F edges opened up at the most recent departure, and the −2
term corresponds to the term in the hypothesis on first-block, and the −1 comes from the current
arrival closing at least one R edge.

For any subsequent appearance of v in the current block, if any, the following is immediate,

Pt′(v)− Pt(v) ⩽ 3(st′(v)− st(v)) + 3(ht′(v)− ht(v)) + 1

as we observe that

1. The departure from the first vertex may open up at most 3 edges instead of 2;

2. Any subsequent departure and arrival closes 2 edges, and opens up at most 2 edges, hence
the previous argument applies, giving a net-gain of +1 due to the extra opening in the first
departure.

That said, for any appearance of v in the second block at time t′, we have

Pt′(v) = Pt(v) + (Pt′(v)− Pt(v)) ⩽ 3(st′(v) + ht′(v))

Appearance at the future blocks For any block, let t0 be the local first appearance, and t1 be the
local final appearance, applying the above argument gives

Pt1(v)− Pt0(v) ⩽ 3(st1(v)− st0(v)) + 3(ht1(v)− ht0(v)) + 1 .

That said, it suffices for us to bound Pt0(v). This is bounded by

Pt(v) ⩽ 3 ·MidAppt(v) + 3(st(v) + ht(v))

Consider the base case when v appears at the third block, the most recent departure opens up at
most 2 new F edges. To offset this, we use the gain in MidAppt(v), as the appearance of v in the
second block is now counted as a middle appearance once v appears in the third block, which
gives a +3 on the RHS. The bound extends to any subsequent block immediately. This completes
our proof of Pur bound.

39

Extension to dormant gadgets To capture the Pur change due to dormant gadget, we note that
for each square vertex at each block, we can assume one dormant edge it pushes out being fixed
while assign a Pur factor for any other dormant gadget it pushes out at that block. Notice this is a
cost at most 2 for each square vertex throughout the walk, as we may need to assume 1 dormant
edge for its first appearance, and another for its last appearance. For any middle appearance, it
suffices for us to assign a Pur factor for any dormant edge it pushes out, as opposed to all-but-one
in the case of first/last appearance. This prompts to define the following counter,

Definition 4.25 (Dormant-excess). For each square vertex v, at any block BlockStepi, let Di be the
number of dormant-gadgets it pushes out at this block, define Di(v) := Di − 1[first/last appearance at i],
and additionally, the counter function is defined for the whole walk by taking

D(v) = ∑
i:v appears in BlockStepi

Di(v) .

Remark 4.26. By using an extra additive constant of 2, each return using dormant leg is either
forced or accounted for in D(v).

Claim 4.27. Each dormant-excess gadget corresponds to a circle vertex reached using an h2 edge, and gets
assigned a factor of at most Õ(1√

d
) in the combinatorial charging argument.

Proof. Note that in the combinatorial charging argument, we have assigned both h2 edges to the
circle vertex’s vertex factor, unless the square vertex is potentially making its first and last appear-
ance at the same block, which is not ruled out by the definition of dormant excess. That said, for
the circle vertex, it gets assigned at most a factor of

√
d in our scheme, while both edges assigned

at least Õ(1√
d
) each, and combining the above yields the desired.

Corollary 4.28. By assuming at most 6 return legs to be forced, the number of unforced-return from v
throughout the walk is at most

Pur(v) ⩽ 3 ·MidAppt(v) + 3(st(v) + ht(v)) + D(v) .

This allows us to effectively ignore Pur factor in the block-value analysis, as each Pur factor
can be distributed among surprise visit, high-mul visit, or middle appearance such that each is
assigned at most 3 Pur factors. Moreover, since each comes with a O(1√

d
) factor, combining with

the assigned Pur factor contributes an od(1) term provided q3
√

d
= od(1), which is sufficient for us

as we set q = dε for a small enough constant ε.

4.7 Wrapping up

Given the edge-assignment scheme to vertex appearance, we now show why this immediately
gives the desired bound on B(R): we have the following factors,

1. Each circle vertex gives a factor of
√

d for their first/last appearance; the assignment gives
each vertex one global F/R edge-copy each, that is a factor of

√
2√
d
, giving a bound of

√
d ·

√
2√
d
=

√
2 ;

40

2. Each square vertex gives a factor of
√

m for their first/last appearance, and the assignment
above gives global F/R each two edge-copies each, that is a factor of

√
m · 2

d
⩽

2
√

m
d

;

3. Each square vertex that makes a global middle appearance gives a O(1) factors of Pur, while
each such vertex appearance is assigned one edge, that is a factor of

(2q · DV)
O(1) · O

(√
2q2
√

d

)
≪ 1 .

Corollary 4.29. For each vertex’s appearance and edges assigned to it, we have a factor of at most

(1 + od(1)) ·
√

d ·
√

2√
d
· 12 ⩽ (1 + od(1)) · 6

√
2

for a circle vertex, and

(1 + od(1)) · 6 ·
√

m · 2
d
⩽ (1 + od(1))

12
√

m
d

for a square vertex where the factor 6 for each vertex comes from our bound that each vertex arrived using a
forced R edge can be specified at a cost of [6].

Proof to Lemma 4.13. By our edge-copy charging scheme and Proposition 4.14, we observe the fol-
lowing,

1. Treat the U − V path as a gadget, and we have 2 choices depending on whether U = V for
the upcoming block;

2. For each gadget-step, we sum over the edge-labelings;

3. For each gadget along the dangling path, we pick up at most the following factor,

• Mα: it gives 2 circle vertices and 1 square vertex, which is a factor of at most

Bα := (1 + od(1)) · 34 · 4
d2 ·

√
md2 · 63 ;

• Mβ: it gives 1 circle vertex and 1 square vertex, which is a factor of at most

Bβ := (1 + od(1)) · 34 · 2
d2 ·

√
md · 62 ;

• MD: it gives 1 circle vertex, which is a factor of at most (1 + od(1)) · 32 if it is the first
MD gadget of the block with the factor 3 counting the step-label of the edge-copies in
the gadget, or a factor of at most BD := Õ(1√

d
) for any subsequent MD gadgets.

4. For the U − V path, the square vertex SQ1 gives a factor of at most

(1 + od(1)) · 6 ·
√

m
d2

and the circle vertex combined gives a factor of at most

(1 + od(1)) · (
√

2)2 · 6

where the factor of 6 comes from at most one circle vertex being reached using R edge.

41

Therefore, combining the above bounds, we have

B(R) ⩽ (1 + od(1)) · 6(
√

m
d2 · 6 ·

√
2

2
) · 32 · ∏

⩽polylog d gadgets
(Bα + Bβ + BD) <

1
2

provided

Bα, Bβ <
1
2

and

6(
√

m
d2 · 6 ·

√
2

2
) · 32 <

1
2

It can be verified that it suffices for us to take m < 1
7000000 · d2 though we do not emphasize upon

the particular constant as we believe a more careful argument by tracking our above bounds can
render an improved constant without much work.

Lemma 4.30 (Restatement of Lemma 2.11). With probability at least 1 − 2−dε
for some constant ε > 0,

∥R∥op <
1
2

.

Proof. This follows by setting q = dε for some constant ε > 0 in Proposition 3.9, and combines
with our block-value function for small enough constant c.

Acknowledgements

We would like to thank anonymous reviewers for their various suggestions in polishing our writ-
ing. J.H., P.K., and J.X. are grateful to Prayaag Venkat for bringing this problem to their attention
in his theory lunch talk at CMU.

References

[AMP16] Kwangjun Ahn, Dhruv Medarametla, and Aaron Potechin. Graph matrices: Norm
bounds and applications. arXiv preprint arXiv:1604.03423, 2016. 2, 4, 10

[BHK+19] Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and
Aaron Potechin. A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique
Problem. SIAM Journal on Computing, 48(2):687–735, 2019. 0, 2, 4, 5, 10

[BHKX22] Mitali Bafna, Jun-Ting Hsieh, Pravesh K Kothari, and Jeff Xu. Polynomial-Time
Power-Sum Decomposition of Polynomials. In 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS), pages 956–967. IEEE, 2022. 2, 4

[BMMP23] Afonso S. Bandeira, Antoine Maillard, Shahar Mendelson, and Elliot Paquette. Fitting
an ellipsoid to a quadratic number of random points. 2023. 2

[CP20] Wenjun Cai and Aaron Potechin. The spectrum of the singular values of z-shaped
graph matrices. ArXiv, abs/2006.14144, 2020. 4

42

[CP22] Wenjun Cai and Aaron Potechin. On mixing distributions via random orthogonal
matrices and the spectrum of the singular values of multi-z shaped graph matrices.
2022. 4

[GJJ+20] Mrinalkanti Ghosh, Fernando Granha Jeronimo, Chris Jones, Aaron Potechin, and
Goutham Rajendran. Sum-of-squares lower bounds for Sherrington-Kirkpatrick via
planted affine planes. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 954–965. IEEE, 2020. 1, 3, 4, 5

[HK22] Jun-Ting Hsieh and Pravesh K Kothari. Algorithmic Thresholds for Refuting Ran-
dom Polynomial Systems. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1154–1203. SIAM, 2022. 4

[HKP19] Christopher Hoffman, Matthew Kahle, and Elliot Paquette. Spectral gaps of random
graphs and applications. International Mathematics Research Notices, 2019. 2

[JPR+22] Chris Jones, Aaron Potechin, Goutham Rajendran, Madhur Tulsiani, and Jeff Xu. Sum-
of-squares lower bounds for sparse independent set. In 2021 IEEE 62nd Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 406–416. IEEE, 2022. 2, 4

[KD22] Daniel M Kane and Ilias Diakonikolas. A Nearly Tight Bound for Fitting an Ellipsoid
to Gaussian Random Points. arXiv preprint arXiv:2212.11221, 2022. 0, 1, 2, 3, 5

[MRX20] Sidhanth Mohanty, Prasad Raghavendra, and Jeff Xu. Lifting sum-of-squares lower
bounds: degree-2 to degree-4. In Proceedings of the 52nd Annual ACM SIGACT Sympo-
sium on Theory of Computing, pages 840–853, 2020. 4, 5

[PTVW22] Aaron Potechin, Paxton Turner, Prayaag Venkat, and Alexander S Wein. Near-optimal
fitting of ellipsoids to random points. arXiv preprint arXiv:2208.09493, 2022. 0, 1, 2, 3, 5

[Sau11] James Saunderson. Subspace identification via convex optimization. PhD thesis, Mas-
sachusetts Institute of Technology, 2011. 0, 1, 3, 5

[SCPW12] James Saunderson, Venkat Chandrasekaran, Pablo A Parrilo, and Alan S Willsky. Di-
agonal and low-rank matrix decompositions, correlation matrices, and ellipsoid fit-
ting. SIAM Journal on Matrix Analysis and Applications, 33(4):1395–1416, 2012. 1

[SPW13] James Saunderson, Pablo A Parrilo, and Alan S Willsky. Diagonal and low-rank de-
compositions and fitting ellipsoids to random points. In 52nd IEEE Conference on Deci-
sion and Control, pages 6031–6036. IEEE, 2013. 0, 1, 3

[Tao12] Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc.,
2012. 4, 10, 13, 17, 20

[Tro15] Joel A Tropp. An introduction to matrix concentration inequalities. arXiv preprint
arXiv:1501.01571, 2015. 25

[Woo50] Max A Woodbury. Inverting modified matrices. Memorandum Rept. 42, Statistical Re-
search Group, 1950. 8

43

A Deferred calculations

Claim A.1 (Restatement of Claim 2.9). With probability at least 1 − od(1),

∥η∥2
2 ⩽ (1 + od(1))

2m
d

.

Proof. We first unpack the inner product,

∥η∥2
2 = ∑

i∈[m]

η2
i = ∑

i∈[m]

∑
j∈[d]

(vi[j]2 −
1
d
)

2

= ∑
i∈[m]

∑
j1,j2∈[d]

(
vi[j1]2 −

1
d

)(
vi[j2]2 −

1
d

)
.

For any q > 0, we then have

E[∥η∥2q
2] = E

 ∑
s1,s2,...,sq∈[m]

∑
a1,a2,...,aq∈[d]
b1,b2,...,bq∈[d]

q

∏
i=1

(vsi [ai]
2 − 1

d
) · (vsi [bi]

2 − 1
d
)

 ⩽ (1 + od(1))
(

2md
d2

)q

where the final bound follows in a similar way to our norm bounds as

1. For each new si, we case on whether ai = bi, and if so, we pick a factor of d for ai = bi and a
factor of m for si;

2. Otherwise, if we have ai ̸= bi, since each edge is mean 0, we can assign a factor of
√

d · 2q to
each of the ai, bi for their first two appearances, and a factor of q for ai, bi making their third
appearances and onwards; similarly, we assign a factor of

√
m · q for the first two appear-

ances of si or q if si is not making the first two appearances;

3. Each H2 edge (vsi [ti]
2 − 1

d) gets assigned its standard deviation that is
√

2
d when it appears

for the first two times, otherwise a factor of O(q
d);

4. To see the final bound, notice we can case on whether each H2 edge is making their first two
appearances.

• In the case both edges making first two appearances, we pick up an edge-value of ex-
actly (

√
2

d)2 = 2
d2 ; otherwise, we pick up an edge-value at most (q

d)
2 = q2

d2 ;

• Assuming both edges making first two appearances, and if ai = bi matches, we pick up
a factor of

(1 + od(1))
2
d2 · md

• Assuming both edges making first two appearances while ai ̸= bi, we pick up a factor
of at most

(1 + od(1))
2
d2 ·

√
md2q3

• If some edge is making third appearance or beyond, we pick up a factor at most

(1 + od(1))
q2

d2 · O(q2
√

dq)

as we have at most one new ”circle” vertex that takes label in [d] and gets assigned
weight at most

√
dq.

44

• Summing over the above cases gives us a bound of

(1 + od(1))
2
d2 · md = (1 + od(1))

2m
d

Taking the 1
q -th root and apply Markov’s gives us the desired.

Claim A.2 (Bound of s). Recall that s = 1 + 1
d ηT A−11m, we have

|s| ⩽ 1 + od(1)

Proof. It suffices for us to bound | 1
d ηT A−11m| ⩽ od(1). We adopt the truncation strategy in our

main analysis of R, and split it as

1
d

ηT A−11m =
1
d

η(T0 + E)1m =
1
d

ηT01m +
1
d

ηE1m

where we focus on the analysis of the first term.

Lemma A.3.

B
(

1
d

ηT01m

)
⩽ Õ

(
1√
d

)
Proof. We mimic our analysis for the well-conditionedness of A−1, in particular, each term ηT01m is
a floating component and moreover, we apply our edge-assignment scheme from analysis of M by
traversing from the circle-vertex on one end (for concreteness, take it to be the one from ηT). With
some abuse of notation, let this vertex be circ1 again. Consider the following assignment-scheme,

1. Assign each F, H and non-reverse-charging R to the vertex it leads to;

2. Assign each reverse-charging R step to the destination vertex of the underlying F copy;

3. Assign the normalizing constant of 1
d to the starting circle vertex circ1.

The desired block-value bound then follows immediately by the following proposition.

Proposition A.4. Each vertex making first/last appearance outside circ1 is assigned the required (non-
surprise) F/R edge-copies. Moreover, there is either an extra edge-copy of factor Õ(1√

d
), or circ1 is making

first/last but not both appearances while it is assigned a factor of 1
d .

Proof. The first part follows immediately from our analysis of M, that we assign each vertex’s first
factor to the edge that discovers it, and if the vertex is making the last appearance in the same
block, the factor is assigned by the R step of the edge that discovers it. To see that the assignment
of last appearance is using R edge alone when the first, last appearances are not in the same block,
note that each vertex is assigned the first edge ”locally” that discovers the first vertex. In the case
that this edge is non-R, the edge must be closed later on and we can swap the assignment of the
underlying R copy of that edge. The swapping factor is valid as the R copy of the edge is intended
for protecting the vertex’s both first and last appearance in the current block, which is again not
needed in this case.

To see the second part of the claim, note that the traversal path of the floating component starts
from a circle vertex while ends at a square vertex. On the one hand, note that it is immediate if

45

the first circle vertex circ1 is making first/last but not both appearances in the current block as it
is assigned the normalizing constant of 1

d , giving a gap of 1√
d
. On the other hand, if the circ1 is

making both first and last appearances, there are two cases,

1. The final departure from circ1 is a reverse-charging step, in this case, there is a surprise visit
within this block, and it gives an extra copy of edge-value Õ(1√

d
);

2. The final departure from circ1 is not reverse-charging, this edge either makes a middle ap-
pearance before as an H-step, or its underlying F copy is a surprise visit arriving at circ1. In
either case, this gives an extra edge-copy of factor Õ(1√

d
).

B Analysis of MD

Recall from Proposition 2.3 that MD[i, i] = ∥vi∥4
2 − 2

d∥vi∥2
2 − 1. For ease of technical analysis, it is

helpful to note here that we can further decompose MD to be the following matrices:

Proposition B.1 (Decomposition of MD). We write

MD = MD,1 + MD,2 +

(
2 +

2
d

)
MD,3 ,

where for any i ∈ [m],

1. MD,1[i, i] = ∑a ̸=b∈[d]
(
vi[a]2 − 1

d

) (
vi[b]2 − 1

d

)
;

2. MD,2[i, i] = ∑a∈[d](vi[a]4 − 6
d vi[a]2 + 3

d2);

3. MD,3[i, i] = ∑a∈[d](vi[a]2 − 1
d).

Proof. MD[i, i] = ∥vi∥4
2 − 2

d∥vi∥2
2 − 1. We first unpack ∥vi∥4

2: ∥vi∥4
2 = (∑a∈[d] vi[a]2)2 = ∑a vi[a]4 +

∑a ̸=b vi[a]2vi[b]2. On the one hand, for any a ̸= b ∈ [d],

vi[a]2vi[b]2 =

(
(vi[a]2 −

1
d
) +

1
d

)
·
(
(vi[b]2 −

1
d
) +

1
d

)
,

thus,

∑
a ̸=b∈[d]

vi[a]2vi[b]2 = ∑
a ̸=b∈[d]

(
(vi[a]2 −

1
d
)(vi[b]2 −

1
d
)

)
︸ ︷︷ ︸

MD,1

+ 2 · d − 1
d ∑

a
(vi[a]2 −

1
d
)︸ ︷︷ ︸

(2− 2
d)MD,3

+
d(d − 1)

d2 .

On the other hand,

∑
a∈[d]

vi[a]4 = ∑
a∈[d]

(
(vi[a]4 −

6vi[a]2

d
+

3
d2) +

6
d
(vi[a]2 −

1
d
) +

3
d2

)

46

= ∑
a∈[d]

(vi[a]4 −
6vi[a]2

d
+

3
d2)︸ ︷︷ ︸

MD,2

+
6
d ∑

a∈[d]
(vi[a]2 −

1
d
)︸ ︷︷ ︸

6
d MD,3

+
3
d

.

Thus, ∥vi∥4
2 = MD,1 + MD,2 + (2 + 4

d)MD,3 + 1 + 2
d .

Next, observe that ∥vi∥2
2 = MD,3[i, i] + 1. Thus, we have

MD[i, i] = ∥vi∥4
2 −

2
d
∥vi∥2

2 − 1 = MD,1 + MD,2 + (2 +
2
d
)MD,3 ,

completing the proof.

Lemma B.2 (Norm bound for MD). For matrices MD,1, MD,2, MD,3 defined in Proposition B.1, we have
the following bounds

1. B(MD,1) ⩽ Õ(1
d2 ·

√
d2) = Õ(1

d);

2. B(MD,2) ⩽ Õ(
√

d√
d

8);

3. B(MD,3) ⩽ Õ(
√

d
d) = Õ(1√

d
).

As a consequence, ∥MD∥op ⩽ Õ(1√
d
) = od(1) with probability 1 − 2−q/ log d.

Proof. We observe the following,

1. The square vertex is in U ∩V and hence bound to be making a middle appearance (ignoring
the first and the last block of the walk as they are offset by long-path);

2. Each circle vertex is either making a first/middle/last appearance, and note that instead of
keeping track of Pur factor, it suffices for us to assign it a cost of at most

√
n · (q · DV);

3. For MD,1, each edge gets assigned a factor of at most q
d , and we have at most two circle

vertices outside making first/middle/last appearances, which give a bound of O(q2

d2 ·
√

d2(q ·
DV)

2).

4. MD,3 is identical to MD,1 except there is only one circle vertex outside, which gives a bound
of O(q

d ·
√

d · q · DV).

5. For MD,2, each edge gets assigned a factor of at most q
√

d
8 , and we have one single circle

vertex outside, which combines to a bound of O(q
√

d
8 ·

√
d · (q · DV)).

Finally, recalling that we set qO(1) · DV ≪
√

d completes the proof to our lemma.

C Sketch of an Alternative Analysis

Definition C.1. For each chain, we define local F, R, S, and H edges as follows. Here we traverse
the chain from top to bottom.

47

1. We say that an edge is a local F edge if it is appearing for the first time in the current chain
and its destination is appearing for the first time in the current chain.

2. We say that an edge is a local R edge if it is appearing for the last time in the current chain.

3. We say that an edge is a local H edge if it appears again both before and afterwards in the
current chain.

4. We say that an edge is a local S edge if it is appearing for the first time but its destination has
appeared before in the current chain.

For our local analysis, there are two circle vertices which we may need to be careful about.

Definition C.2. Let vle f t be the circle vertex which is at the top left, let vright be the circle vertex
which is at the top right (which may be equal to vle f t), and let vbottom be the circle vertex which is
at the bottom.

We can always take the minimum weight vertex separator to be vle f t, so we do not need to
worry about vle f t. However, as we will see, we have to be careful about vright and vbottom.

Definition C.3. We say that an edge is locally vanishing if we have that after the local intersections,
the product of it and the edges parallel to it has a nonzero constant term.

Example C.4. Some examples of locally vanishing edges are as follows.

1. Two parallel edges with label 1 are locally vanishing as x2 =
√

2 x2−1√
2
+ 1

2. Two parallel edges with label 2 are locally vanishing as(
x2 − 1√

2

)2

=
√

6
(

x4 − 6x2 + 3√
24

)
+ 2

√
2
(

x2 − 1√
2

)
+ 1

3. More generally, two parallel edges are locally vanishing if they have the same label k and are
not locally vanishing if they have different labels.

4. Three parallel edges with labels 1, 1, and 2 are locally vanishing as

x2
(

x2 − 1√
2

)
= 2

√
3

x4 − 6x2 + 3√
24

+ 5
x2 − 1√

2
+
√

2

Definition C.5. We say that a vertex v is locally isolated if v is not equal to the top left circle or the
top right circle and all edges incident to v are locally vanishing.

For all edges except for two special edges e∗r and e∗b which we describe below, we assign them
as follows.

1. For each local F edge, we assign it to its destination. For the edge at the top between vright

and its neighboring square vertex, we consider its destination to be the square vertex.

2. For each local R edge, we assign it to its origin unless it is a dangling edge with label 2. If it
is a dangling edge with label 2, we split it between its endpoints.

48

3. For each local S and H edge, we assign half of it as a bonus to its origin and half of it as a
bonus to its destination.

Lemma C.6. All vertices except vright and vbottom have the required edge factors.

Proof. For each circle vertex u except for vle f t (which we doesn’t need any edges), vright, and vbottom,
consider the first and last time u appears in the current chain. The first time u appears, there must
be a local F edge pointing to it which gives u one edge. If u only appears once, it cannot be locally
isolated, so it only needs one edge. Otherwise, the last time u appears, it can only be locally
isolated if all edges incident to it are R edges. In this case, u obtains a second edge.

Similarly, for each square vertex v, consider the first and last time v appears in the current
chain. The first time v appears, there must be two local F edges with label 1 or one local F edge
with label 2 pointing to it. The last time v appears, it can only be locally isolated if all edges
incident to it are R edges, in which case v obtains two additional edges.

Remark C.7. Note that vright is an exception because the first time it appears, it does not have a
local F edge pointing to it. Similarly, vbottom is an exception because the last time it appears, it may
be incident to an R edge with label 2 without gaining an additional edge.

Definition C.8. When vle f t ̸= vright and vright is not equal to the final circle vertex, we find/define
e∗r through the following iterative process. We start with the edge e between vright and its neighbor.
Note that this is a local F edge going down from a vertex v = vright which is not locally isolated
and which is not the final circle vertex. We now have the following cases

1. e does not appear again and the other endpoint of e is the final circle vertex. In this case, we
take e∗r = e and assign one edge factor from it to vright. If it has label 2, we keep one edge
factor in reserve in case e∗b = e∗r = e.

2. e does not appear again and its other endpoint is not the final circle vertex. In this case,
letting v′ be the other endpoint of e, we take e′ to be an edge going down from v′. If e′ is not
a local F edge, we take e∗r = e′ and assign it to vright. We can do this because v′ is not locally
isolated so it already has all of the edge factors it needs. If e′ is a local F edge, we again have
a local F edge e′ going down from a vertex which is not locally isolated and is not the final
circle vertex, so we repeat this process.

3. e appears again. In this case, let e′ be the next time e appears. If e′ is not a local R edge whose
destination is v, we take e∗r = e′ and assign it to vright. If e′ is a local R edge whose destination
is v, we let e′′ be an edge going down from v.

If e′′ is not a local F edge then we take e∗r = e′′ and assign it to vright. If e′′ is a local F edge then
we are still in the situation where we have a local F edge going down from a vertex which is
not locally isolated and is not equal to the final circle vertex, so we repeat this process.

Definition C.9. We find/define e∗b through the following iterative procedure. We start with the
edge e with label 2 between vbottom and its neighbor. Note that e must be a local R edge. We then
do the following.

1. If e is not a locally vanishing edge then we take e∗b = e. We assign half of e∗b = e to vbottom and
keep half in reserve in case e∗b = e∗r .

49

2. If e is a locally vanishing edge then e must appear above. Consider the previous time e
appears and let e′ be this copy of e. There are a few possibilities for e′.

(a) e′ is an edge with label 2 going from a copy of vbottom to the bottom square vertex of the
current block which is not equal to the top vertex of the current block. If e′ is not a local
F edge then we take e∗b = e′. We assign half of e∗b = e to vbottom and keep half in reserve
in case e∗b = e∗r . If e′ is a local F edge, let e′′ be the edge from the top square vertex of the
current block to the copy of vbottom. If e′′ is not a local R edge then we take e∗b = e′′. We
assign half of e∗b = e′′ to vbottom and keep half in reserve in case e∗b = e∗r . If e′′ is a local R
edge then we are in the same situation as before so we repeat this process.

(b) e′ is an edge with label 2 from the top square vertex in the current block which does not
equal the bottom square vertex of the current block to a copy of vbottom. In this case, we
take e∗b = e′. If e∗b = e′ is not a local F edge then we assign half of it to vbottom and keep
half in reserve in case e∗b = e∗r . If e∗b = e′ is a local F edge then we assign it to vbottom.
Note that in this case, we cannot have that e∗b = e∗r . The reason for this is that e∗r can
only be a local F edge in case 1, in which case it does not appear again (while e′ appears
again by definition).

(c) e′ is an edge with label 2 which hangs off of a square vertex which is both the top and
bottom square vertex for the current block. In this case, we take e∗ = e′ and assign all
of it to vbottom. Note that in this case, we cannot have that e∗b = e∗r .

(d) e′ is a local H edge with label 1. In this case, we take e∗b = e′ and assign it to vbottom. Here
we may have that e∗b = e∗r but if we do, one of the endpoints of e∗b = e′ is not locally
isolated so we can take an edge factor from it and give the edge factor to vright.

50

	Introduction
	Technical overview
	Comparison to prior works

	Proof of main result
	Candidate construction
	Decomposition of M
	Inverse of M
	Finishing the proof of Theorem 1.2

	Machinery for tight norm bounds of graph matrices
	Preliminaries
	Global bounds via a local analysis
	Vertex factor assignment scheme
	Bounding edge-factors
	Bounding return cost (Pur factors)
	Pur bound for circle vertices
	Pur bound for square vertices

	Wrapping up with examples
	Warm-up: tight bound for GOE
	Bound for M_beta
	Bound for M_alpha

	Matrix decomposition of R
	Inverse of A: Neumann series and truncation
	Decomposition of R via truncated A{-1}
	Overview: each term is a dangling path of injective gadgets
	Further set-up for step-labeling and edge factor scheme

	Local Analysis for R
	Illustration via diagrams
	Pur bound for square vertices in R
	Wrapping up

	Deferred calculations
	Analysis of M_D
	Sketch of an Alternative Analysis

