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Abstract—Accurate knowledge of transmission line parameters
is essential for a variety of power system monitoring, protection,
and control applications. The use of phasor measurement unit
(PMU) data for transmission line parameter estimation (TLPE)
is well-documented. However, existing literature on PMU-based
TLPE implicitly assumes the measurement noise to be Gaussian.
Recently, it has been shown that the noise in PMU measurements
(especially in the current phasors) is better represented by Gaus-
sian mixture models (GMMs), i.e., the noises are non-Gaussian.
We present a novel approach for TLPE that can handle non-
Gaussian noise in the PMU measurements. The measurement noise
is expressed as a GMM, whose components are identified using
the expectation-maximization (EM) algorithm. Subsequently, noise
and parameter estimation is carried out by solving a maximum
likelihood estimation problem iteratively until convergence. The
superior performance of the proposed approach over traditional
approaches such as least squares and total least squares as well as
the more recently proposed minimum total error entropy approach
is demonstrated by performing simulations using the IEEE 118-bus
system as well as proprietary PMU data obtained from a U.S. power
utility.

Index Terms—Expectation maximization, Gaussian mixture
model, non-Gaussian noise, parameter estimation.

I. INTRODUCTION

ACCURATE knowledge of transmission line parameters is
critical to the success of power system applications such

as state estimation, optimal power flow, dynamic line rating,
protection relay settings, and post-event fault location [1], [2],
[3]. However, the transmission line parameters change because
of variations in temperature, humidity, and operating conditions
(in the short-term), as well as due to aging and structural
changes associated with sag, addition of new equipment, and
reconductoring (in the long-term) [3], [4], [5], [6]. As such, the
line parameters must be estimated periodically (e.g., every few
months [7]). The use of phasor measurement unit (PMU) data for
transmission line parameter estimation (TLPE) has particularly
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found prominence as the numbers of PMUs have grown in the
transmission system [1], [2], [3], [8], [9], [10].

PMU-based TLPE is a linear regression problem in which the
regressand (henceforth called the dependent variable) and the
regressor (henceforth called the independent variable) are com-
posed of PMU measurements. When Gaussian noise is present
in the dependent variables and the independent variables are
noise-free, the optimal solution to the linear regression problem
is obtained using the least squares (LS) method. When Gaussian
noise is present in both the dependent and the independent
variables, the total least squares (TLS) method is employed to
obtain the optimal solution. However, prior research has shown
that the noise in PMU measurements is non-Gaussian [11], [12]
(see Appendix A for a detailed explanation regarding the nature
and source of noise in PMU measurements). It has also been
demonstrated that the performance of LS and TLS degrade
when non-Gaussian noise is present in the dependent and/or
independent variables [13]. The research focus of this paper is
to perform linear regression in presence of non-Gaussian noise
in both the variables.

The primary challenge in handling non-Gaussian noise in
linear regression problems is that as the noise may not have
an analytically tractable probability density function (PDF), a
closed-form solution to the problem may be difficult (or even
impossible) to obtain. One way in which this problem can be
tackled is by approximating the non-Gaussian distribution using
a finite weighted sum of known Gaussian densities, called a
Gaussian mixture model (GMM) [14], [15] (see Appendix B for
a mathematical explanation of how an arbitrary distribution can
be approximated by a GMM). In practice, however, one does not
know the Gaussian densities a priori. Therefore, in this paper we
formulate a joint parameter and noise estimation problem, where
in addition to estimating the parameters, the characteristics of
the non-Gaussian noise, expressed as GMMs, are also estimated.
The knowledge about the noise characteristics of a PMU’s
measurements provides the additional advantage that by tracking
their variations, one can decide the right time to calibrate the
PMU [16].

The key contributions of this paper are as follows:! A novel technique to optimally estimate parameters of lin-
ear regression problems in which the dependent variables
have non-Gaussian noise.! The technique is robust enough to estimate the charac-
teristics of the GMM that approximates the non-Gaussian
noise.
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! The technique is extended to solve an errors-in-variables
(EIV) problem in which both the dependent and the inde-
pendent variables have non-Gaussian noise.! Successfully estimating line parameters of the IEEE 118-
bus system and an actual power system in presence of
Gaussian/non-Gaussian noise in the PMU measurements.

II. STATE-OF-THE-ART

Prior research on TLPE can be grouped into two categories.
The first category considered noise in only the dependent vari-
ables (e.g., [8], [17], [18]), while the second category consid-
ered noise in both the dependent and the independent variables
(e.g., [4], [6], [9], [10], [19], [20], [21], [22], [23]). Ref. [8]
studied the effect of phase angle difference errors on line pa-
rameter calculations. An LS-based line parameter estimation
technique was proposed in [17] to handle noise in dependent
variables. A robust-M estimator for three-phase line parameter
estimation was proposed in [18]. Since TLPE requires the inde-
pendent variables to also be composed of PMU measurements,
the assumption of these variables being noise-free, limits the
accuracy of the algorithms falling under the first category.

The algorithms proposed in the papers belonging to the second
category considered noise in both dependent and independent
variables. Ritzmann et al. proposed a set of correction constants
to represent the noise in voltage and current measurements ob-
tained from PMUs [4]. A recursive LS-based method for line pa-
rameter estimation with focus on energy management was pro-
posed in [6]. Weighted TLS, ordinary LS, and ordinary TLS were
used for estimating line parameters of a three-phase transmission
line in [9]. A combination of clustering and TLS was used for
three-phase admittance matrix estimation in [10]. Ding et al.
proposed a TLS-based parameter estimation method in which
both dependent and independent variables were noisy [19]. A
method for calibrating instrument transformers and simultane-
ously estimating three-phase line parameters considering noise
in both sets of variables was proposed in [20]. A recursive
regression based on Kalman filtering was used for estimating
the three-phase line parameters in [21]. Ref. [22] presented a
joint parameter and topology estimation framework using max-
imum likelihood estimation. Line parameter estimation using
an LS-based method and focusing on dynamic line rating was
discussed in [23]. However, all the above-mentioned papers
assumed Gaussian noise in the PMU measurements, which has
been disproved recently [11], [12]. To the best of the authors’
knowledge, this is the first paper that accounts for the presence
of non-Gaussian noise in PMU measurements when performing
PMU-based TLPE.

III. PROBLEM FORMULATION

A. TLPE Model and Its Abstraction

A medium-length positive sequence transmission line model
has been considered for the analysis conducted here. However,
with appropriate modifications, the proposed formulation can
also be applied to other line models. The line segment is modeled

Fig. 1. π-model of a medium length transmission line.

as a π-section (see Fig. 1), where p and q denote its sending and
receiving ends, respectively.

Applying Kirchhoff’s circuit laws to the transmission line
model shown in Fig. 1, the following equation can be written.

Ip = bpqVp + (Vp − Vq)ypq

Iq = bpqVq − (Vp − Vq)ypq. (1)

In (1), I and V denote the complex current and voltage measure-
ments obtained from PMUs placed at the two ends of the line
(represented by p and q), bpq ∈ R denotes the shunt admittance
(susceptance) present at each end, and ypq ∈ C denotes the
series admittance, which is inverse of the series impedance,
zpq ∈ C. The real and imaginary parts of zpq are the resistance,
rpq ∈ R, and reactance, xpq ∈ R, of the line. The objective
of this work is to estimate rpq , xpq , and bpq from the PMU
measurements. Expressing the complex currents, voltages, and
line parameters of (1) in their Cartesian form and rearranging
the terms, we get




Ipr

Ipi

Iqr
Iqi




=





−Vpi (Vpr − Vqr ) −(Vpi − Vqi)

Vpr (Vpi − Vqi) (Vpr − Vqr )

−Vqi −(Vpr − Vqr ) (Vpi − Vqi)

Vqr −(Vpi − Vqi) −(Vpr − Vqr )








bpq
ypqr
ypqi





(2)

where, ypqr ∈ R and ypqi ∈ R denote the real and imaginary
parts of ypq . It can be observed from (2) that there is a summation
of voltages in the right-hand side. This is a concern when non-
Gaussian noise is present in the voltage measurements because
it might be more difficult to approximate summation of two
non-Gaussian noises by a GMM in comparison to approximating
the individual noises (by GMMs). To alleviate this concern,
linear algebra is used to express the voltages independently. This
results in the following equation, where t denotes the time instant
at which the phasor measurements are taken.




Ipr (t)

Ipi(t)

Iqr (t)

Iqi(t)




=





Vpr (t) Vpi(t) Vqr (t) Vqi(t)

Vpi(t) −Vpr (t) Vqi(t) −Vqr (t)

Vqr (t) Vqi(t) Vpr (t) Vpi(t)

Vqi(t) −Vqr (t) Vpi(t) −Vpr (t)









Y1

Y2

Y3

Y4





(3)

In (3), Y1 = ypqr ∈ R, Y2 = −(bpq + ypqi) ∈ R,
Y3 = −ypqr ∈ R, and Y4 = ypqi ∈ R, respectively. Once
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[
Y1 Y2 Y3 Y4

]T
are estimated, the line parameters,

namely, rpq , xpq , and bpq , can be calculated using (4).

rpq =
2(Y1 − Y3)

(Y1 − Y3)2 + (2Y4)2

xpq =
−4Y4

(Y1 − Y3)2 + (2Y4)2

bpq = −(Y2 + Y4). (4)

However, in presence of noisy data, measurements obtained
at a single time instant are not able to give accurate estimates

of
[
Y1 Y2 Y3 Y4

]T
. Therefore, the goal is to estimate the

optimal values of the line parameters from noisy measurements
available from distinct time instants. Based on (3), the mea-
surements from s time instants can be concatenated to obtain a
system of equation as




Ipr (1)

Ipi(1)

Iqr (1)

Iqi(1)
...

Ipr (s)

Ipi(s)

Iqr (s)

Iqi(s)





=





Vpr (1) Vpi(1) Vqr (1) Vqi(1)

Vpi(1) −Vpr (1) Vqi(1) −Vqr (1)

Vqr (1) Vqi(1) Vpr (1) Vpi(1)

Vqi(1) −Vqr (1) Vpi(1) −Vpr (1)
...

...
...

...
Vpr (s) Vpi(s) Vqr (s) Vqi(s)

Vpi(s) −Vpr (s) Vqi(s) −Vqr (s)

Vqr (s) Vqi(s) Vpr (s) Vpi(s)

Vqi(s) −Vqr (s) Vpi(s) −Vpr (s)









Y1

Y2

Y3

Y4




.

(5)

Essentially, (5) takes advantage of the fact that the line pa-
rameters change at a much slower rate than the speed at which
the PMU measurements become available [24]. In (5) can now
be expressed as a classical parameter estimation problem of the
form shown below

c∗ = D∗x∗ (6)

where, c ∈ Rn×1 denotes the dependent variables (current mea-
surements), D ∈ Rn×p denotes the independent variables (volt-
age measurements), and x ∈ Rp×1 is the unknown parameter to
be estimated (function of line parameters); the symbol ∗ in the
superscript indicates true values. It can be realized from (5) and
(6), thatn = 4 s and p, the number of parameters to be estimated,
is 4.

B. Noise Modeling

In presence of Gaussian noise in PMU measurements, two
scenarios arise. If the noise in the voltage measurements (in-
dependent variables) is ignored (i.e., Gaussian noise is only
present in the current measurements (dependent variables)), the
optimal estimate of the parameters can be obtained using LS.
This scenario can be mathematically represented as

c = c∗ + ce

D = D∗, (7)

where, ce ∈ Rn×1 is the noise in c. For the linear system de-
scribed by (6) and (7), the LS parameter estimate, x̂LS , is given
by

x̂LS =
(
DTD

)−1 (
DT c

)
(8)

In the second scenario, Gaussian noise is present in both the
dependent as well as the independent variables, and the optimal
parameter estimate is obtained using TLS. This scenario can be
mathematically represented as

c = c∗ + ce

D = D∗ +De, (9)

where, De ∈ Rn×p is the noise in D. To obtain the TLS solution
of the linear system described by (6) and (9), the concatenated
noisy measurement matrix, [D c], is factorized using singular
value decomposition (SVD) into a matrix of singular values and
left and right singular vectors. Then, using the Eckhart-Young
Theorem, the TLS solution can be obtained as [25]

x̂TLS = v−1qq vpq (10)

where,vpq is the vector of firstp elements andvqq is the (p+ 1)th

element, respectively, of the (p+ 1)th column of the matrix of
right singular vectors of the SVD of [D c].

In this paper, we investigate both of the scenarios mentioned
above under the condition that the PMU measurements have non-
Gaussian noise. That is, in the analysis conducted henceforth,
ce and De will have non-Gaussian distributions. The proposed
approach for solving the resulting problems is composed of
two steps: a noise estimation step and a parameter estimation
step. In the noise estimation step, the non-Gaussian noise is
approximated by an appropriate GMM. The GMM parameters
are obtained using expectation-maximization (EM). More details
about this step are provided in Section III-C. The parameter
estimation step is explained for the first scenario in Section III-D
and for the second scenario in Section III-E.

C. Noise Estimation

We use ce to demonstrate the noise estimation step. If an
m component GMM is suitable for approximating ce, then the
following equation holds true.

P (ce; θ) =
m∑

g=1

wgN (ce;µg,Σg). (11)

In (11), wg ≥ 0,
∑m

g=1 wg = 1, and N (ce;µ,Σ) =
1√

(2π)d|Σ|
exp(− 1

2 (ce − µ)TΣ−1(ce − µ)). Here, wg, µg ,

and Σg denotes the weight, mean vector, and covariance matrix
of the gth Gaussian component of the GMM, respectively.
These three variables are known as the GMM parameters. A
set of these GMM parameters for the gth Gaussian component
is denoted by φg ! {wg, µg,Σg}, and the entire set of GMM
parameters to be estimated is denoted by θ = {φg}mg=1.
Ideally, the optimal GMM parameters can be estimated by
maximizing the log-likelihood of (11) with respect to the GMM
parameters. However, the log-likelihood has summation inside
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the logarithm, which makes the problem of directly maximizing
the log-likelihood hard. EM overcomes this problem by
introducing a new variable, z, and maximizing the complete
data log-likelihood, as explained below.

Let the n independent and identically distributed samples of
ce be denoted by S , i.e., S = {ce1 , ce2 , . . . , cen}. The iden-
tity of the Gaussian component to which each of these data
points belong (out of m possible Gaussian components) is
defined as the cluster membership of those data points. Let
z = [z1, z2, . . . , zm]T be anm-dimensional binary random vari-
able. The m possible values that z can take can be denoted by
{ζg}mg=1, where ζg denotes an m-dimensional vector of zeros
with one in the gth place. The probability of z taking value ζg is
wg . In other words, P (z = ζg) = wg . Thus, the distribution of
z can be written as

P (z) =
m∏

g=1

w
zg
g . (12)

The joint distribution of ce and z can now be expressed as

P (ce, z) = P (ce)P (ce|z) =
m∏

g=1

w
zg
g N (ce;µg,Σg)

zg , (13)

while the conditional probability of z given ce is given by

P (zg = 1|ce) = P (z = ζg|ce)

=
P (z = ζg)P (ce|z = ζg)∑m
g=1 P (z = ζg)P (ce|z = ζg)

=
wgN (ce;µg,Σg)∑m

g′=1 wg′N (ce;µg′ ,Σg′)
. (14)

Let Sc = {(cei , zi)}ni=1. Now, EM maximizes Sc instead of
S , where the likelihood of Sc can be written as [26]

Lc(θ;Sc) =
n∏

i=1

P (cei , zi) =
n∏

i=1

m∏

g=1

w
zi
g

g N (ce;µg,Σg)
zi
g

=
n∏

i=1

m∏

g=1

(wgN (ce;µg,Σg))
zi
g .

(15)
In (15), zig represents gthelement of z for the ith data sample.

The complete data log-likelihood can be obtained by taking
logarithm on both sides of (15), as shown below.

lc(θ;Sc) =
n∑

i=1

m∑

g=1

zig log(wgN (ce;µg,Σg)). (16)

From (16), EM can learn the GMM parameters for a given
noise vector. EM has two main steps - expectation and maximiza-
tion - which are repeated until convergence. The expectation
step computes the conditional expectation of the complete data
log-likelihood using given GMM parameters. In the maximiza-
tion step, this conditional expectation of the complete data log-
likelihood is maximized to obtain updated GMM parameters.
After EM converges, the noise vector is clustered into different
bins based on the cluster membership. These three processes are
described below.

1) Expectation Step: The conditional expectation of the
complete data log-likelihood can be defined as

Q(θ|θ(j)) = E[lc(θ;Sc)|S, θ(j)] (17)

where t denotes the iteration number, θ(j) denotes the GMM
parameter values at iteration j, and Q is the auxiliary func-
tion [27]. Substituting (16) in (17), the conditional expec-
tation of the complete data log-likelihood can be expressed
as

Q(θ|θ(j)) = E[lc(θ;Sc)|S, θ(j)]

=
n∑

i=1

m∑

g=1

E[zig|S, θ(j)] log(w(j)
g N (cei ;µ

(j)
g ,Σ(j)

g ))

=
n∑

i=1

m∑

g=1

P [zig = 1|cei , θ(j)] log(w(j)
g N (cei ;µ

(j)
g ,Σ(j)

g ))

=
n∑

i=1

m∑

g=1

γ(j)
ig log(w(j)

g N (cei ;µ
(j)
g ,Σ(j)

g )) (18)

where

γ(j)
ig ! w(j)

g N (cei ;µ
(j)
g ,Σ(j)

g )
∑m

g′=1 w
(j)
g′ N (ce;µ

(j)
g′ ,Σ

(j)
g′ )

. (19)

Using this information, the updated θ estimates are calculated
in the Maximization step.

2) Maximization Step: The new parameter update θ(j+1) is
obtained by maximizing Q(θ|θ(j)) with respect to θ as shown
below,

θ(j+1) = argmax
θ

Q(θ|θ(j)). (20)

The updated GMM parameters using this procedure can be
computed as follows. The updated weight is given by

w(j+1)
g =

∑m
g=1 γ

(j)
ig

n
. (21)

The updated mean is given by

µ(j+1)
g =

∑m
g=1 γ

(j)
ig cei

∑m
g=1 γ

(j)
ig

. (22)

The updated covariance matrix is given by

Σj+1
g =

1
∑m

g=1 γ
(j)
ig

n∑

i=1

γ(j)
ig (cei − µ(j)

g )(cei − µ(j)
g )T . (23)

After EM converges, the cluster membership, z, given by zi =
argmaxg P (zi = ζg|cei , θ), is used to cluster the variables into
different Gaussian components.

3) Clustering Step: Let ρg denote the set of indices of data
points of ce that are classified into the gth Gaussian component
and let ng denote the cardinality of this set. Then, the data
points of ce which belong to the gth Gaussian component can
be denoted by ceg = {cegi }i∈ρg , ceg ∈ Rng×1. As the parameter
estimation is carried out using noisy measurements, both c and
D are also clustered into m different bins. This results in cg =
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{cgi}i∈ρg , cg ∈ Rng×1 and Dg = {Dgi}i∈ρg , Dg ∈ Rng×p. Af-
ter clustering the data points into different Gaussian com-
ponents, the following logic is used to set-up the parame-
ter estimation problem. Substituting zig into (16), a modi-
fied log-likelihood function can be computed for the GMM
as

log(L(ce;µ,Σ)) =
m∑

g=1

n∑

i=1

zig log(wgN (cei ;µg,Σg))

=
m∑

g=1

∑

i∈ρg

log(wgN (cei ;µg,Σg)). (24)

In turn, (24) can be expressed as

log(L(ce;µ,Σ)) = K −
m∑

g=1

(ceg − µg)
TΣ−1g (ceg − µg),

(25)

where, K =
∑m

g=1

∑
i∈ρg

log(wg)− d
2 log(2π)−

1
2 log(|Σg|). The variable Σg here denotes the covariance
matrix of gth Gaussian component of ce, and the variable
µg denotes the mean vector of gth Gaussian component
of ce. For optimal parameter estimation, the log-likelihood
has to be maximized with respect to the parameters. It can
be observed that maximizing the log-likelihood in (25) is
equivalent to minimizing

∑m
g=1(ceg − µg)TΣ−1g (ceg − µg).

This implies that the optimal parameter estimate under GMM
noise environment can be obtained when the sum of squares
of standardized errors (SSSE) is minimized, where the
standardization is done with respect to the individual Gaussian
component to which the noise data sample belongs. This
becomes the functional basis for the optimization problems
for the parameter estimation step as explained in the next two
sub-sections.

D. Parameter Estimation When Non-Gaussian Noise is Only
Present in Dependent Variables

For the scenario in which non-Gaussian noise (expressed as a
GMM) is present only in the dependent variables, the parameter
estimation can be formulated as a minimization problem whose
objective is to minimize the SSSE of the noise variable and
the constraints are the error definitions. This is mathematically
described by

φ = argmin
x,ce

m∑

g=1

1

2
[Σ
− 1

2
g (ceg − µg)]

T [Σ
− 1

2
g (ceg − µg)]

such that [cg −Dgx− ceg ] = 0 ∀g ∈ [m]. (26)

Using a vector of Lagrange multipliers, λg ∈ Rng×1, for each
Gaussian component, (26) is expressed as an unconstrained
optimization problem as shown below

φ = argmin
x,ce

m∑

g=1

1

2
[Σ
− 1

2
g (ceg − µg)]

T [Σ
− 1

2
g (ceg − µg)]

+
m∑

g=1

[cg −Dgx− ceg ]
Tλg. (27)

The optimal parameter estimate is found by computing the
x̂ that minimizes (27). This is done by simultaneously solving
∂φ
∂ceg

= 0, g ∈ [m], ∂φ
∂λg

= 0, g ∈ [m], and ∂φ
∂x = 0, to yield the

following equation for the parameter estimate:

x̂ =

(
m∑

g=1

Σ−1g DT
g Dg

)−1( m∑

g=1

Σ−1g DT
g (cg − µg)

)
. (28)

Equation (28) can be directly used to compute the optimal
parameter estimate when the noise characteristics and cluster
membership of data points of the GMM is available. In the actual
setting where the measurement noise characteristics are un-
known, the noise estimation procedure explained in Section III-
C must be used in conjunction with this parameter estimation
step and iterated until convergence, leading to a joint estimation
of noise and parameters. However, Section III-C assumes prior
knowledge of m. For instance, Ahmad et al. have shown in [12]
that PMU measurement noise (particularly the noise in the
current phasors) can be represented using a three component
GMM. However, as the power system is non-stationary, there is
no guarantee that m will always be equal to three. A strategy to
circumvent the need for the a priori knowledge of m is proposed
below.

In absence of the prior knowledge ofm, the proposed method-
ology for joint estimation of noise and parameters must be
repeated for a range of values of m, say, m = 1 to m = mmax.
A reasonable value of mmax could be ten. Then, an informa-
tion theory-based model selection criterion called the Bayesian
information criterion (BIC) can be used to identify the most
appropriate value for m [28]. The BIC has two components -
one component rewards the goodness of fit of the model, while
the other component penalizes the model complexity. Thus, the
optimal number of GMM components will be the m for which
the lowest value of BIC is obtained. Note that by removing
the need for the a priori knowledge of m, this strategy further
improves the robustness of the proposed approach. The flowchart
describing the overall procedure is presented in Fig. 2.

In Fig. 2, for each value of m, the expectation and maximiza-
tion steps learn the characteristics of the GMM that approximates
the noise vector. The cluster membership is used to cluster the
data points in the noise vector into m Gaussian components.
These, then become inputs to the parameter estimation step,
which is carried out using (28). For each value of m, noise and
parameters estimates in presence of non-Gaussian noise in the
dependent variables are obtained in an iterative manner. The
optimal estimates of noise and parameters correspond to the
value of m that gives the lowest value of BIC. This concludes
the flowchart.
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Fig. 2. Iterative method for parameter estimation in presence of non-Gaussian
noise in dependent variable.

E. Parameter Estimation When Non-Gaussian Noise is
Present in Dependent and Independent Variables

The second scenario accounts for measurement noise in both
the dependent as well as the independent variables, and are
known as EIV problems [29]. The measurement model for this
scenario is mathematically described by (6) and (9). The noise
estimation methodology described in Section III-C is leveraged
here to solve the EIV problem in presence of non-Gaussian noise

in both dependent and independent variables. The gth Gaussian
component of the standardized dependent variable noise vector
is denoted as

cegN = [Σ
− 1

2
cg (ceg − µcg )]. (29)

Similarly, the gth Gaussian component of the standardized
independent variable noise vector can be denoted as

DegN
= [Σ

− 1
2

Dg
(Deg − µDg )]. (30)

Note that cTegN cegN denotes the SSSE in ceg . However, as
DegN

is a matrix, it has to be first converted to a column vector
form before it can be converted to an SSSE form. Let vec(DegN

)
denote the vectorization operation of the matrixDegN

, where the
matrix is converted to a column vector by stacking the columns
of the matrix on top of each other. Then, using the properties of
the Kronecker product, ⊗, the resulting minimization problem
for optimal parameter estimation for the EIV problem can be
mathematically described by:

φ = argmin
x

m∑

g=1

1

2
(cegN )T (cegN )

+
m∑

j=1

1

2
(vec(DegN

))T (vec(DegN
))

s.t. [cg − (xT ⊗ Ing )(vec(Dg)− vec(Deg ))− ceg ]

∀g ∈ [1, . . . ,m]. (31)

Using the method of Lagrange multipliers, (31) can be written
as an unconstrained objective function as

φ = argmin
x

m∑

g=1

1

2
(cegN )T (cegN )

+
m∑

j=1

1

2
(vec(DegN

))T (vec(DegN
))

+
m∑

g=1

[cg − (xT ⊗ Ing )(vec(Dg)− vec(Deg ))− ceg ]
Tλg

(32)
The optimal parameter estimate for this objective function is

the solution to the following non-linear system of equations:

f(x) =
m∑

g=1

(Dg −Deg )
Tλg = 0. (33)

where,

λg = (Σnetg)
−1(cg −Dgx− µnetg) (34a)

µnetg = µcg −
p∑

j=1

µDg × xj (34b)

Σnetg = Σcg +
p∑

j=1

ΣDg × x2
j . (34c)
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In (34), j denotes the jth column for D and jth parameter
for x. The optimal parameters are found by solving (33) using
Newton’s method:

[
x(k+1)

]
=
[
x(k)

]
−
[
Jac(f(x(k)))

]−1 [
f(x(k))

]
(35)

where, Jac(f(x(k))) denotes the Jacobian of f(x(k)). The com-
ponents of the optimal noise estimates of ce and De can be
obtained from the following equation,

ĉeg = Σcgλg + µcg (36a)

D̂ejg = −xjΣDgλg + µDg . (36b)

The GMM noise characteristics and cluster membership can
be obtained by applying EM to the noise estimates. Since the pa-
rameter estimation step uses the results from the noise estimation
step and vice-versa, they are repeated until convergence. Lastly,
the noise and parameter estimation is performed iteratively for
∀m ∈ [1,mmax], and BIC is used to select the optimal m, and
noise and parameter estimates. The overall process is described
as an Algorithm 1 below. As this algorithm solves an EIV
problem using a combination of GMMs, Lagrange multipliers,
and EM, it is henceforth called the EGLE Algorithm.

The inputs for the EGLE Algorithm 1 are the noisy mea-
surements, an initial guess for the parameters, the tolerances
(ε0, ε1, ε2), andmmax. The tolerance values can be chosen based
on the desired estimation accuracy and speed requirements. The
outermost loop finds the optimal number of Gaussian compo-
nents (m∗). The loop in the middle performs noise estimation
using EM (see Section III-C) and provides inputs to the inner-
most loop. The innermost loop performs parameter estimation
by solving (33) using Newton’s method. The parameter estimate
obtained from the innermost loop serves as an input to the loop
in the middle. The tolerance ε2 determines the termination of
the parameter estimation loop, whereas ε1 determines when
the joint noise and parameter estimation is completed for each
value of m. The value of BIC corresponding to every value of
m is also calculated. Finally, the optimal value of m is found
using the index of the minimum value of BIC(m). The m∗ thus
obtained gives the optimal number of GMM components that
must be used to approximate the non-Gaussian noise, while the
parameter estimate corresponding to that m∗ (namely, xm(m∗))
is the optimal parameter estimate, x∗.

Note that when D is noise-free, then the EGLE Algorithm
1 simplifies to the flowchart shown in Fig. 2. As such, EGLE
can be used when non-Gaussian noise is only present in the
dependent variables as well as when non-Gaussian noise is
present in both the dependent and the independent variables.
The results obtained using EGLE for simulated and actual PMU
data are described in the following sections.

IV. RESULTS: TLPE USING SIMULATED PMU DATA

The IEEE 118-bus system was used as the test system for
the analysis conducted in this section. The system was solved
using MATPOWER [30], an open-source package in MATLAB,
to generate the true (noise-free) voltage and current phasor
measurements. The system loading was varied by 40% over

Algorithm 1: EGLE Algorithm for Robust Parameter Esti-
mation for EIV Problem with Non-Gaussian Noise.

Input: Noisy Measurements (c, D), x(0), ε0, ε1, ε2,mmax

Output: Optimal Parameter (x̂), Noise Estimate (ĉe, D̂e)
1: procedure
2: for m = 1 to mmaxdo
3: Initialize x, ce, De

4: µc,Σc, wc ← EM(ĉe) (See Section III-C)
5: µD,ΣD, wD ← EM(D̂e) (See Section III-C)
6: for i = 1 to imaxdo
7: Compute ĉeg using (36 a)
8: Compute D̂ejg using (36 b)
9: ĉe ← Concatenate(ĉeg ), ∀g ∈ [m]

10: D̂e ← Concatenate(D̂eg ), ∀g ∈ [m]
11: µc,Σc, wc ← EM(ĉe) (See Section III-C)
12: µD,ΣD, wD ← EM(D̂e) (See Section III-C)
13: for k = 1 to kmaxdo
14: Compute µnetg using (34 a)
15: Compute Σnetg using (34 b)
16: Compute λnetg using (34 c)
17: Compute f(x) using (33)
18: Find x(k+1) using (35)
19: if ‖x(k+1) − x(k)‖2 < ε2then
20: break.
21: k ← k + 1.
22: x(i+1) = x(k+1)

23: if ‖x(i+1) − x(i)‖2 < ε1then
24: xm(m) = x(i+1)

25: break.
26: i← i+ 1.
27: Calculate BIC(m)
28: m← m+ 1.
29: m∗ = arg min(BIC(m))
30: x∗ = xm(m∗)

multiple time instants to create linearly independent sets of
measurements; note that this type of variation naturally occurs
in a power system during the morning load pick-up [31]. The
noisy measurements were generated by adding a suitable noise
(depending on the scenario considered) to the true values. The
proposed algorithm requires an initial guess for x, ce, and De. It
has been observed in [32], [33] that although the line parameters
vary during regular operation, they lie within 30% of their values
mentioned in a power utility’s database. Therefore, the values
of the line parameters in a utility’s database are suitable initial
values of x. A zero-mean Gaussian distribution was assumed as
the initial guess for ce and De.

For comparing the performance of the EGLE with other
methods, the absolute relative error (ARE) index was used. It
is mathematically defined as

ARE =
|xest − xtrue|

xtrue
, (37)

where, xest is the estimated parameter, and xtrue is the true
parameter. For comparing the performance for a given parameter
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over many Monte Carlo (MC) runs, the mean value of ARE,
(MARE), and the standard deviation of the ARE, (SDARE),
were computed. Similarly, to compare performance across all
the parameters, the mean value of the net ARE (MAREnet)
and its standard deviation (SDAREnet) were computed. All the
analyses performed in this paper were conducted using Python
programming language.

A. Non-Gaussian Noise Only in Dependent Variables

In this sub-section, a two component GMM mea-
surement noise of mean ([0 0.005]), standard deviation
([0.0015 0.0015]), and weight ([0.3 0.7]) was added to the cur-
rents to create the noisy dependent variables, while the indepen-
dent variables (voltages) were kept noise-free. The convergence
of EGLE for the line which connects buses 38 and 65 (L38−65) of
the IEEE 118-bus system is shown in Fig. 3(a)–(d). The figures
also compare the performance of the proposed method with LS
for all four Y parameters. The colors magenta, red, and blue
correspond to the true value, and estimates obtained from EGLE
and LS, respectively. It can be observed from the figures that for
each of the parameters, the estimate obtained using EGLE is:
(a) very close to the true value, and (b) better than the LS
estimate. It is also obvious that the superior performance in
estimating the Y parameters will lead to better performance in
the estimation of the actual line parameters from the Y values.

B. Non-Gaussian Noise in Dependent and Independent
Variables

This sub-section corresponds to the most general setting in
which both dependent and independent variables have non-
Gaussian noise. The two component GMM noise that was
defined in Section IV-A was also used here, except that this time
it was added to both current and voltage measurements. The
results corresponding to two 345 kV lines and two 138 kV lines
of the IEEE 118-bus system are analyzed below. The 345 kV
lines are between buses 38 and 65, and between buses 8 and 9.
The 138 kV lines are between buses 47 and 69, and between
buses 75 and 69. The comparison of the resistance, reactance,
and susceptance estimates obtained using LS, TLS, and EGLE
for these four lines is shown in Figs. 4, 5, and 6, respectively.

To draw reliable statistical inferences, the experiment was
repeated 1,000 times by randomly generating noise based on
the specified GMM characteristics and a random initial guess
for the parameter estimates that was within ±30% of the true
value. The MARE for LS, TLS, and EGLE for all the MC runs are
shown as bar plots in Fig. 4–6. The SDARE are also calculated,
a low value of which is an indication of the consistency of the
results. The SDARE is displayed as black colored error bars in
Fig. 4–6.

From Fig. 4–6, it can be observed that EGLE consistently
performs better than LS and TLS when estimating line parame-
ters in presence of GMM noise. This also translates to superior
performance of EGLE in terms of the MAREnet. For exam-
ple, for L38−65, the MAREnet for LS and TLS methods were
1.55% and 1.33%, respectively, whereas the proposed method
had a MAREnet of only 0.40%. The SDAREnet for the three

Fig. 3. Convergence of the proposed method with GMM noise in dependent
variables for L38−65 of the IEEE 118-bus system.
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Fig. 4. MARE of the estimated resistance for four lines of the IEEE 118-bus
system.

Fig. 5. MARE of the estimated reactance for four lines of the IEEE 118-bus
system.

Fig. 6. MARE of the estimated susceptance for four lines of the IEEE 118-bus
system.

methods were 0.06%, 0.06%, and 0.10% respectively, indicating
consistency of the estimates. A similar trend was found for
the other lines as well. It was also observed that the relative
accuracies of the parameter estimates for the three algorithms
across all four lines was in accordance with the conditioning of
the DTD matrix.

C. Comparison of EGLE With a
Denoising-Followed-By-(conventional)-Estimation Approach

The results obtained in the previous two sub-sections demon-
strate the superior performance of EGLE over the conventional

Fig. 7. Performance comparison of EGLE and a denoising-followed-by-
(conventional)-estimation approach for TLPE of four lines of the IEEE 118-bus
system.

approaches in presence of non-Gaussian noise in the measure-
ments. However, as TLPE is an offline process, an alternate
strategy could be to first remove the non-Gaussian noise from the
measurements, and then perform estimation using conventional
approaches. This strategy, called the denoising-followed-by-
(conventional)-estimation approach, is compared with EGLE in
this sub-section.

The noisy data created in Section IV-B was used for this
analysis. The denoising was done for both voltage and current
phasor measurements using a moving window median absolute
deviation filter that was developed in [12] to detect non-Gaussian
noise in PMU measurements. Subsequently, the LS method was
employed for TLPE. The results that were obtained when this
approach was compared with EGLE are shown in Fig. 7. In
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TABLE I
PERFORMANCE COMPARISON OF MTEE AND EGLE (FOR FIXED NUMBER OF

ITERATIONS)

Fig. 7, the purple bars indicate the MARE obtained using the
denoising approach whereas the green bars show the MARE
obtained using EGLE. It is clear from the figure that EGLE
performs better than the denoising based approach, particularly
for the resistance and susceptance estimates. One reason for this
observation could be the sensitivity of the filter to the size of
the window that was considered for analysis (the window size
was set at 600 samples as mentioned in [12]). In summary, this
analysis demonstrated the superiority of an integrated approach
for noise and parameter estimation (EGLE) in comparison to a
denoising-followed-by-(conventional)-estimation approach.

D. Comparison of EGLE With the Minimum Total Error
Entropy (MTEE) Method

The PMU-based TLPE problem is a linear regression problem
in which the (line) parameters to be estimated change at a much
slower rate than the speed at which the (PMU) measurements
become available [24]. This, in turn, implies that TLPE is
a static linear estimation problem. Recently, an information
theoretic measure called total error entropy has been proposed
to perform parameter estimation for static linear estimation
problems in which the dependent and independent variables have
non-Gaussian noises [34]. The resulting technique is called the
MTEE method, and is also iterative; a brief overview of MTEE
is provided in Appendix C. As both MTEE and EGLE solve
the same type of estimation problems, in this sub-section, we
perform a comparison of the two for the TLPE problem. The
noisy data created in Section IV-B was used for this analysis.

To compare the performances of MTEE method with EGLE,
two types of simulations were conducted. In the first set of
simulations, the number of iterations were fixed at 200 and the
estimation accuracy of the two methods was compared in terms
of the MARE index. The initial guesses were kept the same for
both the approaches. The results obtained are shown in Table I.
For ease of comparison, the results of LS and TLS are also
provided. It can be observed from the table that even though the
MTEE method has lower MARE than the LS and TLS methods,
it could not outperform EGLE. The trend was consistent across
the resistance, reactance, and susceptance estimates as well as

TABLE II
COMPARING NUMBER OF ITERATIONS TAKEN BY MTEE AND EGLE FOR FOUR

LINES OF THE IEEE 118-BUS SYSTEM

across all four transmission lines of the IEEE-118 bus system
that were analyzed.

In the second set of simulations, the number of iterations re-
quired by MTEE and EGLE to reach the same level of tolerance
(ε1 = 0.0001) was compared. The initial guesses were kept the
same. The results obtained are displayed in Table II. It is clear
from the table that EGLE took fewer iterations to attain the
desired accuracy level. Furthermore, for the same number of
samples used, EGLE took just under a second for each iteration
(on a computer with 8 GB RAM and Intel 11th Gen Core i7
processor), while the MTEE method took approximately 30
seconds for each iteration. The slowness of the MTEE method
is due to the double summation involved in its implementation
(see Appendix C). Thus, it can be concluded from this empirical
analysis that EGLE is computationally superior to the informa-
tion theory-based MTEE method.

E. Comparison of EGLE With Constrained LS and TLS

In the previous sub-sections, the EGLE method was compared
with the conventional (default) formulations of LS and TLS.
However, it is possible to improve the accuracy of these classical
methods by incorporating some physical properties of the TLPE
problem into their default formulations. From Section III-A,
it can be realized that Y1 + Y3 = 0. This information can be
incorporated into the LS and TLS formulations as an equality
constraint. It was also described at the start of this section that
the line parameters vary within a pre-specified range (namely,
±30%). This information can be incorporated into the LS and
TLS formulations as an inequality constraint. Based on the
aforementioned information, a constrained LS and TLS formu-
lation was created and its performance compared with EGLE
for different lines of the IEEE 118-bus system.

During implementation, it was observed that the inequality
constraint remained inactive for all the lines. Furthermore, the
equality constraint primarily impacted the resistance estimates.
This is because the susceptance parameter does not depend on
Y1 or Y3 (see (4)). Similarly, Y4 , Y1 and Y4 , Y3, implying
that (2Y4)2 , (Y1 − Y3)2. This leads to the following approx-
imation in (4): (Y1 − Y3)2 + (2Y4)2 ≈ (2Y4)2. Consequently,
the reactance parameter is also minimally impacted when the
conventional formulation is replaced by the constrained formu-
lation. The ARE values of the improved resistance estimates
obtained using the constrained LS and TLS methods are com-
pared with the conventional LS, TLS, and the EGLE estimates
in Table III. It was observed from the table that the resistance
estimates of both LS and TLS were improved by adding the
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TABLE III
COMPARISON OF RESISTANCE ARE (%) OF CONSTRAINED LS AND TLS WITH

CONVENTIONAL LS, TLS, AND EGLE

TABLE IV
LINE PARAMETER ESTIMATION USING ACTUAL PMU DATA

constraints, but they were still inferior to those obtained using
EGLE.

V. RESULTS: TLPE USING ACTUAL PMU DATA

In this section, TLPE is carried out using raw PMU data ob-
tained from a U.S. power utility in the Eastern interconnection.
This data was collected over a period of 3 consecutive years
from about 400 PMUs that had been placed across the utility’s
service area. To avoid ill-conditioning issues, the data was down
sampled from 30 samples per second to 1 sample per minute.
The initial guesses for the line parameters were obtained from
the PSS/E database shared by the utility, while a zero-mean
Gaussian distribution was assumed as the initial guess for ce
and De. As the true line parameters are not known, ARE cannot
be computed for comparison purposes for the analysis conducted
in this section. Therefore, the ability of EGLE to track the line
parameters is assessed by the consistency of the estimates across
similar operating conditions, as described below.

Two sets of PMU data corresponding to both the ends of
a transmission line were extracted from the massive database
shared by the utility. The first set, S1, comprised current and
voltage phasor measurements from three weekdays - Monday,
Wednesday, and Friday - over a period of two consecutive
weeks. The second set, S2, comprised current and voltage phasor
measurements from two weekdays - Tuesday and Thursday -
over a period of three consecutive weeks. For both the sets,
PMU data corresponding to two different time intervals were
considered: the first time interval, denoted by T1, was from 8
AM to 11 AM, while the second interval, denoted by T2, was
from 3 PM to 6 PM. When the PMU data collected for the two
sets and over the two time intervals were fed as inputs to EGLE,
the results shown in Table IV were obtained.

From the table it is clear that for the same time intervals the
parameter estimates are consistent across S1 and S2. This is
expected because for similar ambient temperature and loading
conditions, the line parameters are expected to be similar. When
the estimates are compared across the two time intervals, slight
variations are observed, particularly in the resistance estimates;
this can be attributed to the difference in ambient temperatures
for T1 and T2. Thus, it can be concluded from this analysis that:
(a) line parameters do change over time, and (b) EGLE is able

Fig. 8. Selecting optimal number of GMM components using BIC.

TABLE V
PARAMETER ESTIMATES FOR L38−65 OF IEEE 118-BUS SYSTEM FOR A

4-COMPONENT GMM NOISE IN THE MEASUREMENTS OVER 1,000 MC RUNS

to track the variations in the line parameters from actual PMU
data.

VI. DISCUSSION

A. Generalization Capability of EGLE

EGLE is expected to perform TLPE irrespective of the num-
ber of GMM components required to model the non-Gaussian
noise in the PMU measurements. To validate this expectation,
a four-component GMM noise was added to the simulated
voltage and current phasor measurements corresponding to
L38−65 of the IEEE 118-bus system. This noise model was
characterized by a mean of ([−0.002 0 0.005 0.008]), stan-
dard deviation of ([0.001 0.001 0.001 0.001]), and weight
of ([0.1 0.2 0.5 0.2]). The noisy measurements were fed as
inputs to EGLE, and the BIC values obtained form varying from
1 to 10 are shown in Fig. 8. From the figure, it is clear that the
optimal number of GMM components chosen by BIC is 4, which
is same as the number of GMM components present in the noise.
The parameter estimates corresponding to m = 4 are shown in
Table V. From the table it is evident that the line parameter
estimates obtained using EGLE outperform those obtained using
traditional estimation methods (LS and TLS). Since the number
of GMM components used to approximate the non-Gaussian
noise was determined by EGLE and not provided as an a priori
knowledge, this analysis gives a good demonstration of its
generalization capability.

B. Sensitivity Analysis

In this sub-section, we perform sensitivity analyses to further
investigate the robustness of EGLE.
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Fig. 9. Impact of measurement noise levels on estimated resistance ofL38−65
of the IEEE 118-bus system.

Fig. 10. Impact of measurement noise levels on estimated reactance ofL38−65
of the IEEE 118-bus system.

1) Impact of Measurement Noise Levels on Estimation: To
quantify the impact of measurement noise levels on TLPE,
experiments were conducted on L38−65, with GMM measure-
ment noises ranging between ±1%, ±2%, ±5%, and ±10%,
respectively, in the PMU measurements. This sensitivity study
depicts a situation where there is increasing degradation in the
instrumentation system of the PMUs providing the measure-
ments. Note that the GMM noise characteristics corresponding
to ±1% noise is similar to the GMM noise characteristics used
in Section IV. For each successive noise level, the GMM noise
characteristics was obtained by suitably scaling the mean and
standard deviations of the noise. For example, to obtain the
GMM noise characteristics of ±2% noise level, the GMM noise
characteristics corresponding to ±1% noise level was scaled by
a factor of two.

The MARE of the resistance, reactance, and shunt suscep-
tance estimates obtained following 1,000 MC runs are displayed
in Figs. 9–11. It can be noticed from the figures that the amount of
noise present in the measurements has a considerable impact on
the parameter estimates. Specifically, the susceptance parameter
was observed to be highly prone to the inaccuracies present in the
measurements. Conversely, the reactance has a relatively better
tolerance towards noise content. For all four ranges of noise
considered in this analysis, EGLE performed significantly better
than LS and TLS for all three line parameters. This observation is

Fig. 11. Impact of measurement noise levels on estimated susceptance of
L38−65 of the IEEE 118-bus system.

Fig. 12. Impact of measurement noise levels on MAREnet of L38−65 of the
IEEE 118-bus system.

TABLE VI
IMPACT OF INITIAL CONDITIONS ON ESTIMATING PARAMETERS OF L38−65

USING EGLE

also reflected in the MAREnet shown in Fig. 12. The contrast in
the performance was particularly glaring when the noise content
was high (±10%).

2) Impact of Initial Conditions on Estimation: Being an iter-
ative method, EGLE requires an initial guess of the parameters.
The analysis conducted in [32], [33] reveals that the initial guess
is expected to be within 30% of the true value. For studying the
effect of initial condition on EGLE, a relative initialization (RI)
index is defined as shown below,

RI index =
|x(0) − x∗|

x∗
(38)

where, x(0) denotes the initial guess and x∗ denotes the true
value of the parameter to be estimated. The MARE observed
over 1,000 MC runs forL38−65 while starting with progressively
worse initial guesses is shown in Table VI. It can be observed
from the table that the estimates obtained using EGLE had
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similar accuracy for RI index less than 0.3. The quality of the
parameter estimates did deteriorate (and became worse than
those obtained using LS and TLS) when the RI index increased
over 0.4. This is not surprising considering the non-convex
nature of the problem being solved in this paper. However, the
chances of this happening in reality (i.e., initial guess being more
than ±40% away from the true value) is miniscule for the TLPE
problem.

C. Non-Degeneracy of EGLE in Presence of Gaussian Noise
and Measurement Bias

In this sub-section, we study the case where the PMU mea-
surements have Gaussian noise. As Gaussian is a special case for
a GMM (namely, that the mixtures are identical), we compare
performance of EGLE with that of LS and TLS. A two compo-
nent GMM having the characteristics defined in Section IV-A is
used to model the non-Gaussian noise in the voltage and current
phasor measurements. For ensuring that the Gaussian noise has a
similar same range/spread (as the non-Gaussian noise), its mean
was kept at 0.0035 and its standard deviation was kept at 0.0027.
Hence, this simulation also investigates the case where a bias
is present in the PMU measurements [12], [35]. The analysis
was performed for L38−65 of the IEEE 118-bus system. The
comparison of the MARE for the line parameter estimates is
shown in Fig. 13.

It can be observed from the figure that the MARE for the
traditional approaches (LS and TLS) increases considerably
when the measurement noise model changes from Gaussian
to non-Gaussian (compare the heights of the blue and orange
bars of the resistance, reactance, and susceptance estimates).
However, the increase is minor for EGLE (the height of the green
bars only change slightly when the noise model is changed).
The slight improvement in the performance of EGLE over LS
and TLS in the presence of Gaussian noise (compare heights
of blue and orange bars with the green bars for the Gaussian
noise case), is because of the former’s ability to better handle
bias in the measurements. To summarize, this analysis shows
that for operating conditions in which the measurement noise is
non-Gaussian, EGLE significantly outperforms the traditional
methods. Even when the measurement noise is Gaussian but has
a bias (which often occurs in PMU measurements [12], [35]),
EGLE is still able to give better estimates.

D. Computational Complexity Analysis

The computational complexity of EGLE and the techniques
used for comparison are described in this sub-section in terms of
the big O notation (denoted by O). The computational complex-
ity of the four techniques that were used in the simulations are
as follows: (a) For a linear regression problem with N number
of samples, the LS method has a computational complexity of
O(N); note that as the number of parameters is constant for
the TLPE problem, it was not included in the computational
complexity calculation. (b) If the TLS method is implemented
using the truncated SVD approach, then it also has a compu-
tational complexity of O(N) [36]. (c) The denoising-followed-
by-(conventional)-estimation approach also has a computational

Fig. 13. Performance comparison in presence of Gaussian and non-Gaussian
measurement noise forL38−65 of the IEEE 118-bus system over 1,000 MC runs

complexity of O(N). (d) If β denotes the maximum number
of iterations, then the computational complexity of the MTEE
approach is O(βN2) [34]. (e) The computational complexity
of EGLE after incorporating the BIC-based model selection is
O(βN). Thus, it can be inferred from this comparison that the
computational complexity of EGLE is greater than the LS, TLS,
and denoising-based methods but much less than the MTEE
method.

VII. CONCLUSION

A novel method (termed EGLE) for jointly estimating ac-
curate transmission line parameters and noise parameters when
the PMU measurements have non-Gaussian measurement noises
has been developed and presented in this paper. The effectiveness
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of EGLE for TLPE was compared with that of the LS, TLS,
denoising-based, and MTEE methods. The results show that
EGLE significantly outperform the traditional methods when the
measurement noise is highly non-Gaussian. It was also shown
that if the measurement noise is Gaussian (a special case of
GMM), EGLE continues to give accurate estimates. Thus, EGLE
is a more general method for parameter estimation that can be
used for any type of measurement noise. The ability to estimate
the non-Gaussian noise characteristics (by expressing them as a
GMM) is an added advantage of the proposed methodology.

Accurate knowledge of the transmission line parameters is
crucial for improved power system monitoring, control, and
protection applications. As the proliferation of PMUs increases
in the power system (from high voltage transmission to sub-
transmission and even distribution), the use of the proposed
methodology will ensure that monitoring, control and protection
applications at any level of the power system is not negatively
impacted by inaccurate line parameter information.

APPENDIX A
NATURE AND SOURCE OF NOISE IN PMU MEASUREMENTS

Most papers published in the literature on PMUs have implic-
itly assumed that the noise in the synchrophasor measurement
system has a Gaussian distribution. It is only recently that
extensive statistical testing conducted on data obtained from
PMUs placed in the field has proven otherwise. One of the first
studies was conducted by Wang et al. in [11]. They used nine sets
of redundant PMU measurements from 18 buses of the Western
Electricity Coordinating Council system. The conclusion of their
statistical analysis was that noise in the PMU measurements did
not follow a Gaussian distribution. An independent study was
conducted by Ahmad et al. [12] using field PMU data from
the Texas Independent Synchrophasor network and the Indian
synchrophasor network. The conclusion of their statistical anal-
ysis was that for a given window, a GMM is appropriate for
modeling the noise in synchrophasor measurements. These two
studies along with [35], [37] have identified the following to
be the source of noise in PMU measurements: different system
operating conditions, aging process of instrument transformers,
incorrect time synchronization, errors introduced by the phasor
estimation algorithm, varying communication channel noises,
and/or cyber-attacks such as eavesdropping, global positioning
system (GPS) spoofing and data tampering.

APPENDIX B
APPROXIMATING AN ARBITRARY DISTRIBUTION BY A

GAUSSIAN MIXTURE MODEL (GMM)

GMMs are a powerful way of representing any non-Gaussian
density with sufficient accuracy. This can be mathematically
shown using the properties of a delta function [38]. A family
of functions, δλ, on the interval (−∞,∞) which are integrable
over every interval are called a delta family of positive types if! ∫ a

−a δλ(x)dx −→ λ, as λ −→ λ0, for some a.! For every constant γ > 0, δλ tends to zero uniformly for
γ ≤ |x| ≤ ∞ as λ −→ λ0.! δλ(x) ≥ 0 for all x and λ

Additionally, note that when the variance tends to 0, the
Gaussian density tends to the delta function. Now, let us look
at approximating an arbitrary function p using the delta family.
Consider the sequence pλ(x), which is formed by the convolu-
tion of δλ and p, given by

pλ(x) =

∫ ∞

−∞
δλ(x− u)p(u)du. (39)

It can be observed that pλ(x) converges to p(x) on every interior
sub-interval of (−∞,∞). Since the Gaussian density can be
used as a delta family of positive type, the approximation pλ can
be written as:

pλ(x) =

∫ ∞

−∞
Nλ(x− u)p(u)du. (40)

This forms the basis for the Gaussian sum approximation. pλ(x)
can be approximated on any finite interval by a Riemann sum,
since the term δλ(x− u)p(u) is integrable on (−∞,∞) and is
at least piece-wise continuous. If a bounded interval (a, b) is
considered, this function is given by:

pλ,n(x) =
1

k

n∑

i=1

Nλ(x− xi)[ξi − ξi−1] (41)

where the interval (a, b) is divided into n sub-intervals by
selecting points such that:

a = ξ0 < ξ1 < ξ2 < . . . < ξn = b. (42)

Using the mean value theorem, in each sub-interval, a point xi

can be chosen such that:

p(xi)[ξi − ξi−1] =

∫ ξi

−ξi−1
p(x)dx (43)

Thus, an approximation of pλ over some bounded interval (a, b)
can be written as:

pλ,n(x) =
n∑

i=1

ωiNσi(x− xi) (44)

where
∑n

i=1 ωi = 1 and ω ≥ 0 ∀ i.
Under this framework, an unknown d-dimensional distribu-

tion can be expressed as a linear combination of Gaussian terms.
The form of the approximation becomes:

p(x) =
m∑

i=1

ωiN (x;µi,Σi) (45)

where, m denotes the number of Gaussian components re-
quired to approximate the non-Gaussian distribution in the
form of a GMM, ωi is the weight of the ith Gaussian
component, N (x;µi,Σi) denotes the ith Gaussian com-
ponent given by N (x;µi,Σi) =

1
(2π)0.5|Σi|0.5 exp(−0.5(x−

µi)TΣ
−1
i (x− µi)), and µi and Σi denotes the mean and co-

variance matrix of the ith Gaussian components.
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APPENDIX C
OVERVIEW OF MINIMUM TOTAL ERROR ENTROPY (MTEE)

METHOD

An alternate way to estimate parameters for a static linear
regression problem in which both the dependent and the inde-
pendent variables have non-Gaussian noise is by minimizing
the total error entropy. This was done in [34], and the resulting
technique was referred to as the minimum total error entropy
(MTEE) method. The total error was defined as

etot =
c−Dx√
xTx+ 1

(46)

The MTEE method minimized the quadratic Renyi’s entropy of
etot. Using the Parzen window method, an expression for the
quadratic Renyi’s entropy was obtained as follows

Ĥ2(e
tot) = −log



 1

N2

N∑

i=1

N∑

j=1

Gσ
√
2

(
etotj − etoti

)


 (47)

where N is the length of the Parzen window, and Gσ(.) is a
Gaussian kernel with kernel size σ. In [34], the minimization of
Ĥ2(etot) was performed iteratively using the steepest descent
method. Although the MTEE method is able to estimate param-
eters for EIV problems in which the noises in the dependent and
the independent variables are non-Gaussian, it takes a long time
to converge because of the double summation over N present in
(47).
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