
Class GP: Gaussian Process Modeling for Heterogeneous
Functions

Mohit Malu1,3, Giulia Pedrielli2, Gautam Dasarathy1, and Andreas Spanias1,3

1 School of ECEE, Arizona State University, Tempe AZ 85281, USA
2 SCAI, Arizona State University, Tempe AZ 85281, USA

3 SenSIP Center
{mmalu,giulia.pedrielli,gautamd,spanias}@asu.edu

Abstract. Gaussian Processes (GP) are a powerful framework for modeling
expensive black-box functions and have thus been adopted for various challenging
modeling and optimization problems. In GP-based modeling, we typically default
to a stationary covariance kernel to model the underlying function over the input
domain, but many real-world applications, such as controls and cyber-physical
system safety, often require modeling and optimization of functions that are locally
stationary and globally non-stationary across the domain; using standard GPs with
a stationary kernel often yields poor modeling performance in such scenarios.
In this paper, we propose a novel modeling technique called Class-GP (Class
Gaussian Process) to model a class of heterogeneous functions, i.e., non-stationary
functions which can be divided into locally stationary functions over the partitions
of input space with one active stationary function in each partition. We provide
theoretical insights into the modeling power of Class-GP and demonstrate its
benefits over standard modeling techniques via extensive empirical evaluations.

Keywords: Gaussian process · Black-box modeling · Heterogeneous function ·
Non-stationary function modeling · Optimization

1 Introduction

Many modern day science and engineering applications, such as machine learning,
hyperparameter optimization of neural networks, robotics, cyber-physical systems, etc.,
call for modeling techniques to model black-box functions. Gaussian Process (GP)
modeling is a popular Bayesian non-parametric framework heavily employed to model
expensive black-box functions for analysis such as prediction or optimization [20].
Traditionally, GP models assume stationarity of the underlying, unknown, function.
As a result a unique covariance kernel (with constant hyperparameters) can be used
over the entire domain. However, many real-world systems such as cyber-physical,
natural, recommendation can only be characterized by locally stationary but globally
non stationary functions. Breaking the assumption underlying the stationary kernel can
deteriorate the quality of predictions generated by the GP.

Many studies in the literature tackle this problem. We can classify these studies in to
three categories:
1. Locally stationary and partition based approaches: The work by Gramacy et al., [6] is
one of the first ones to tackle the modeling of heterogeneous functions by partitioning

2 M. Malu et al.

the input space with tree-based algorithms and using independent stationary GPs to
model the underlying function. Kim et al., [10] and Pope et al., [19] propose Voronoi
tessellations based partitioning of the input space. Candelieri et al.,[2] extends the work
[6] by overcoming the modeling limitation of axis aligned partitions by using a support
vector machine (SVM) based classifiers at each node of the tree. Fuentes et al., [4] uses
an alternative kernel which is modeled as a convolution of fixed kernel with independent
stationary kernel whose parameters vary over the sub regions of the space.
2. GP’s with non-stationary kernels: The studies [18,17,5] use non-stationary kernels to
model the heterogeneous function, [8] uses non stationary kernels with a input dependent
kernel parameters and further models the parameter functions with a smooth stationary
Gaussian process. However, the use of non stationary kernel makes these methods
complex and computationally intractable.
3. Warping or spatial deformation based methods: Methods in [21,15] map the original
input space to a new space where the process is assumed to be stationary, [3] uses
composite GP to warp the input space.

For many engineering systems, the structure of the non-stationariety is known or
can be evaluated. As an example, vehicle automatic transmission will exhibit switching
behaviors, with a discrete and finite number of switches (gears changes). When a specific
behavior (gear) is exercised, the system exhibits smooth state dynamics and the metrics
associated to the system that we are interested in monitoring/predicting maintain such
smoothness. The work [16], has considered the case of identifying unsafe system-level
behaviors for Cyber-Physical Systems without exploiting any information about, for
example, switching dynamics.

In this paper, we make a first step in the direction of improving analysis of systems
that are characterized by a discrete and finite number of “classes” of behaviors. Notice
that a single class may be represented by disconnected sets of the input space. In particu-
lar, given an input, we assume the class and the closest class that the system can switch
to, can be both evaluated. Under this scenario, we extend the existing partition based
methods to a family of heterogeneous functions adding the class information. We model
the homogeneous behavior classes by imposing that the GPs learnt within the subregions
of the input space that belong to the same class have same kernel hyperparameters.
These functions are often encountered in many real world applications, where we can
access the class information by learning a classifier using the features. To the best of
our knowledge, we present a first tree-based algorithm with information sharing across
non-contiguous partitions that belong to same homogeneous behaviour class to better
learn the GP models. Our contributions include:

– A novel Class GP framework to model heterogeneous function with class informa-
tion.

– Theoretical analysis - we compute uniform error bounds for our framework and
compare it with the error bounds achieved by standard GP.

– Empirical analysis - we provide extensive empirical evaluations of the model and
compare it with other modeling techniques.

The rest of the paper is organized as follows: Section 2 gives a formal introduction
to the problem and notations used in the paper followed by a brief overview of Gaussian
process modeling and classification tree algorithm in section 3 and introducing the

Class GP 3

Fig. 1. Class-partition space with axis aligned partitions (Pj) and classes (Ci)

Class GP framework in Section 4. Section 5 provides theoretical insights for Class-GP
algorithm followed by details of experimental setup and corresponding results in section
6. Section 7 gives conclusion over the performance of Class-GP as compared to other
methods and insights on future work. Finally, paper ends with an appendix in Section 8.

2 Problem Setup and Notation

Let X ✓ Rd be a compact space with p axis aligned partitions {Xj}pj=1 and each
partition j 2 [p] is assigned a class label i 2 [m] i.e., (j) = i, we call this space as
class-partition space. This paper, models a family of non-stationary functions f defined
over class-partition space, f : X ! R, such that f boils down to a stationary functions
gj’s over each partition j 2 [p] where each gj’s are sampled from a Gaussian process
with a continuous stationary kernel j i.e., gj ⇠ GP(µj(.),j(., .)). For notational
convenience, and w.l.o.g, we assume the prior mean µj = 0. Further, partitions j1, j2
that belong to same class i have same covariance kernel i.e., j1 = j2 = i. Let Ci
denote all the partitions with class label i, i.e., Ci = [{j: (j)=i}Xj , this can be visualized
with the help of an example as shown in figure 1. The function f is formally given as
follows:

f(x) =
pX

j=1

{x 2 Xj}gj(x) (1)

Note: For consistency we denote partitions with a subscript j and classes with subscript
i, owing to this notation any variable with subscript i or j would refer to class or partition
variable respectively.

2.1 Observation Model

Evaluating the function at any point x in the input space reveals the following information:
function evaluation y, the class label z of the partition to which the point belongs and
the tuple distance w = (distance from closest boundary, feature index). We denote that
training data set D = {xn, yn, zn, wn}Nn=1 where N is number of training data points.

4 M. Malu et al.

Also, X = [x1, . . . ,xn]
T ,y, z are the vector of corresponding evaluations, classes

respectively and W is a list of tuples of distance and feature index along which the
distance is measured.

3 Background

This section gives a brief overview of Gaussian Process modeling and the classification
tree algorithm used in the Class-GP framework.

3.1 Gaussian Process Modeling

Gaussian process (GP) modeling is a popular statistical framework to model non-linear
black box functions f due to its analytical tractability of posteriors. With in this frame-
work the function, f : X ✓ Rd ! R, being modeled is assumed the to be a distributed
as per a Gaussian process prior, formally written as follows:

f ⇠ GP(µ(.),(., .)),

GP is completely given by its mean µ(.) and covariance kernel (., .), where for conve-
nience, and without loss of generality, the mean function µ(.) is set to 0. The choice of
the covariance kernel depends on the degree of smoothness warranted by the function
being modeled and is defaulted to stationary kernels such as squared exponential (SE)
kernel or Matérn kernel. Functions modeled within this framework are typically assumed
to be stationary i.e., function can be modeled using a same stationary covariance function
over the entire input space.

Learning a GP model involves computing the posterior conditioned on the ob-
served data and learning kernel hyperparameters. Let Dn : {(x1, y1) . . . (xn, yn)}
be the sampled training data of the objective function f . The posterior of the func-
tion f conditioned on the training data Dn is given by a Gaussian distribution i.e.,
f(x)|Dn ⇠ N (µn(x),�2

n(x)), where the mean µn(x) and covariance �2
n(x) are given

as follows:

µn(x) = kTK�1y and �2
n(x) = (x,x)� kTK�1k (2)

Here, y is the vector of noise free observations, k is a vector with kp = (x,xp). The
matrix K is such that Kp,q = (xp,xq) p, q 2 {1, . . . , n}.

The hyperparameters of the model are learnt by maximising the log marginal likeli-
hood which is given as follows:

log p(y|X, ✓) = �1

2
yTK�1y � 1

2
log |K|� n

2
log 2⇡ (3)

and ✓⇤ = argmax✓ log p(y|X, ✓), this optimization problem is solved using off the
shelf non convex optimization packages such as Dividing Rectangles (DIRECT)[9],
LBGFS[12], CMA-ES[7]. For a detailed treatment of Gaussian process modeling we
refer readers to [20] and [22]

Class GP 5

3.2 Classification Tree Algorithm

A classification tree / decision tree classifier is a binary tree algorithm which yield axis
aligned partitions of the input space by recursively partitioning the input space on one
dimension (feature) at a time. The tree is learnt from the training data and the predictions
for any input x is given by traversing the learnt tree from root node to a leaf node. Notice
that each leaf node corresponds to a partition of the input space. We use CART algorithm
to grow/learn the tree. During training at each the goal is to select the best feature and
splitting threshold that minimizes the weighted impurity metric of the children nodes.
Most of the tree based algorithms typically use Gini index as the impurity metric to grow
the tree, which is given as follows:

Gini index = 1�
nX

i=1

(pi)
2 (4)

where pi is the probability of a given class at a given node. The recursion is continued
until one of the stopping criterion’s is met or no further improvement in the impurity
index is achievable. Typical choice of stopping criterion’s include maximum depth of
the tree, minimum number of samples in a leaf, maximum number of leaf / partitions.
For more detailed overview on classification tree please refer the work by [1] and [13].

4 Class-GP Framework

In this section, we introduce a framework to model the family of heterogeneous functions
as defined in section 2. Within this framework we solve two sub-problems: 1. Learning
partitions of the input space using closest boundary information W along with class
information z and, 2. Training a Gaussian Process within each partition such that GP’s
of the partitions that share same class label learn the same set of hyperparameters.
Current framework considers both noise less and noisy function evaluations. Further,
this framework can also be extended to other partitioning methods that can use closest
boundary information.

4.1 Learning Partitions

To learn the partitions of the input space we use decision tree algorithm tailored for the
current framework. The algorithm learns the tree is 2 steps: While in both the steps we
use recursive binary splitting to grow the tree, in the first step we use closest boundary
information to find the best feature index and splitting threshold that maximize reduction
of Gini index (or any other impurity metric) until all the closest boundary information
W is exhausted, in the second step the best feature index and splitting threshold that
maximize reduction of Impurity metric (Gini index) are selected from available training
data at each node as in the CART algorithm 3.2. The nodes are recursively split until a
stopping criterion is satisfied. In our proposed framework we default to Gini index as
impurity metric and, minimum number of samples at the leaf node and max depth are
used as stopping criterion’s.

6 M. Malu et al.

4.2 Gaussian Process in each partition

The partitions of the input space learnt from the decision tree algorithm 4.1 is used to
divide the training data set D into partition based subsets Dj with nj data points for all
j 2 [p]. For each partition Xj underlying stationary function gj is modeled using a zero
mean Gaussian Process prior with continuous stationary kernel j(., .) and subset of
training data Dj is used to learn/train the model. The function modeling and training
in each partition is similar to that of a standard Gaussian process regression problem
with one exception of learning the hyperparameters of the partition GPs. The posterior
of partition GP conditioned on the partition training data is given by y(x)|x, j,Dj ⇠
N (µj,nj (x),�

2
j,nj

(x)) where mean µj,nj = E(y|x, j,Dj) and variance �2
j,nj

are given
as follows:

µj,nj (x) = kT
j K

�1
j yj and �2

j,nj
(x) = j(x,x)� kT

j K
�1
j kj

where yj is the vector of observations in given partition j,kj is the vector with k(s)j =

j(x,xs). The matrix Kj is such that K(s,t)
j = j(xs,xt) where s, t 2 {1, . . . , nj}.

Note the superscripts here represent the components of the vector and matrix.
Learning hyperparameters in a standard GP typically involves finding the the set

of hyperparameters that maximize the log marginal likelihood of the observations 3,
where as in the current framework we are required to find the set of hyperparameters that
maximizes the log marginal likelihood across all the partition within a class. We propose
a novel method to learn of the hyperparameters. A new class likelihood is formed
by summing the log marginal likelihoods of all partition GPs for a given class and
class kernel hyperparameters are learnt by maximizing new likelihood. The formulation
of the class-likelihood function assumes that the data from different partitions are
independent of each other and this reduces the computational complexity of learning the
hyperparameters significantly while still taking data from all the partitions in the class.

The extensive empirical results show that this new class likelihood reduces the
modelling error and provides with the better estimates of the hyperparameters, intuitively
this makes sense as we have more data points to estimate hyperparameters even though
all the data points do not belong to the same partition. The new class likelihood function
for a given class i is given as follows:

Li(yi|Xi, ✓i) =
X

{j: (j)=i}

log p(yj |Xj , ✓i) = �1

2
yT
i K

�1
i yi�

1

2
log |Ki|�

ni

2
log 2⇡

where ✓⇤i = argmax✓i Li(yi|Xi, ✓i),Ki is the block diagonal matrix with blocks of
Kj’s for all {j : (j) = i}, ni =

P
{j: (j)=i} nj , and yi’s is the vector formed by yj

for all {j : (j) = i}.

5 Class-GP Analysis

In this section, we provide formal statement for probabilistic uniform error bounds
for Class GP framework, the results are the extension of the results from [11]. To
state our theorem we first introduce the required assumptions on the unknown function
f =

Pp
j=1 1{x 2 Xj}gj over the input space with p partitions.

Class GP 7

A0: gj’s in each partition are continuous with Lipschitz constant Lgj .

A1: gj’s in each partition are sampled from a zero mean Gaussian process with known
continuous kernel function j on the compact set Xj .

A2: Kernels j’s are Lipschitz continuous with Lipschitz constant Lj

Theorem 1. Consider an unknown function f : X ! R which induces p partitions on
the input space, and is given as f =

Pp
j=1 1{x 2 Xj}gj obeying A0:,A1: and A2:.

Given nj 2 N noisy observations yj with i.i.d zero mean Gaussian noise in a given
partition j 2 [p] the posterior mean (µnj) and standard deviation (�nj) of the Gaussian
Process conditioned on Dj = {Xj ,yj} of the partition are continuous with Lipschitz
constant Lµnj

and modulus of continuity !�nj
on Xj such that

Lµnj
 Lj

p
njk bK�1

j yjk (5)

!�nj
(r) 

s

2rLj

✓
1 + njk bK�1

j k max
x,x02Xj

j(x,x0)

◆
(6)

where bKj = (Kj + ⌘2Inj).
Moreover, pick �j 2 (0, 1), r 2 R+ and set

�j(r) = 2 log

✓
M(r,Xj)

�j

◆
(7)

�j(r) = (Lµnj
+ Lgj)r +

p
�(r)!�nj

(8)

then the following bound on each partition holds with probability 1� �j

��gj(x)� µnj (x)
�� 

q
�j(r)�nj (x) + �j(r), 8 x 2 Xj (9)

and the following bound on the entire input space holds with probability 1� � where
� =

Pp
j=1 1{x 2 Xj}�j i.e.,

|f(x)� µn(x)| 
p
�(r)�n(x) + �(r), 8 x 2 X (10)

Corollary 1. Given problem setup defined in the theorem 1 the following bound on L1

norm holds with probability 1� �

kf � µnk1  ⇣rd
pX

j=1

M(r,Xj)

✓q
�j(r)�nj (x) + �j(r)

◆
(11)

where ⇣ is a non negative constant, � =
P1

j=1 �j and �j = 1�M(r,Xj)e��j(r)/2.

8 M. Malu et al.

6 Numerical Results

In this section, we compare the performance of Class-GP framework with other baselines
Partition-GP and Standard-GP over the extensive empirical evaluations on both noisy
and noiseless simulated dataset. Performance of the models is evaluated using the mean
square error (MSE) metric. Brief overview of the baseline models is given below:
Standard GP: In this framework, we use a single GP with continuous stationary kernel
across the entire space to model the underlying function.
Partition GP: - This framework is similar to that of Treed Gaussian process framework
[6] with additional class information. We learn the partitions of the input space using the
class information followed by modeling the function in each partition individually, i.e.,
the hyperparameters in each partition are learnt independently of other partition data of
the same class.

6.1 Synthetic Data and Experimental Setup

Synthetic data for all the experiments is uniformly sampled from input space X =
[�10, 10]d where, d is the dimension of the input space. Partitions p are generated by
equally dividing the input space and each partition j 2 [p] is assigned a class label
i 2 [m] to forms a checkered pattern. We use Gini index as the node splitting criterion
to learn the tree and, squared exponential (SE) covariance kernel for all GPs to model
the underlying function in each learnt partition. Each model is evaluated and compared
across different functions as given below:

1. Harmonic function:

f(x) =
pX

j=1

1{x 2 Xj}(cosxT!C(j) + bj)

2. Modified Levy function (only for d = 2):

f(x) =
pX

j=1

1{x 2 Xj}

sin2(⇡v1) +

d�1X

k=1

(vk � 1)2
�
1 + 10 sin2(⇡vk + 1)

�

+(vd � 1)2(1 + sin2(2⇡vd)) + bj
�
, where vk =

✓
1 +

xk � 1

4

◆
!C(j),k

3. Modified Qing function (only for d = 2):

f(x) =
pX

j=1

1{x 2 Xj}

dX

k=1

�
(xk!C(j),k)

2 � i
�2

+ bj

!

4. Modified Rosenbrock function (only for d = 2):

f(x) =
pX

j=1

1{x 2 Xj}

d�1X

k=1

[100
�
vk+1 � v2k

�2
+ (1� vk)

2] + bj

!

here vk = xk!C(j),k.

Class GP 9

where the frequency vector !i = i ⇤ ! depends on the class i, !C(j),k is the kth compo-
nent. Further, vector ! is sampled from a normal distribution, constant bj (intercepts)
depends on the partition j and each bj is sampled from a normal distribution.

Following parameters are initialized for each simulation: dimension d, training
budget N , number of partitions p, number of classes m, frequency vector !, Constant
(intercept) vector b, maximum depth of the tree, minimum samples per node, initial
kernel hyperparameters ✓. For a fixed set of initialized parameters, 50 independent
simulation runs for each baseline are performed to compute a confidence interval over
the model performance, training data is re-sampled for each run.

To analyze the effects and compare the model performance with baselines each
parameter i.e., number of partitions (p), number of classes (m), training budget (N) and,
dimension (d), is varied while keeping the others constant. Various initialization of the
parameters for the simulations are shown in the table 1. The performance measure metric
(MSE) for each model across all the simulations is evaluated on uniformly sampled test
data set of fixed size i.e., 5000 data points.

Table 1. Parameter initialization across simulations

Parameters Values
Number of Classes (c) 2, 4, 6, 8
Number of Partitions (p) 4, 16, 36, 64
Training Budget (N) 50, 500, 1000
Dimension (d) 2, 3

(a) Effect of varying partitions for noiseless 2D
harmonic function evaluation.

(b) Effect of varying partitions for noiseless 3D
harmonic function evaluation.

Fig. 2. Effect of the number of partitions.

Effects of each parameter on the model performance is analyzed below:

1. Effect of number of partitions (p): For a fixed set of initial parameters as the number
of partitions (p) is increased the performance of all the models deteriorates as seen

10 M. Malu et al.

(a) Effect of varying classes for noiseless 2D
harmonic function evaluation.

(b) Effect of varying classes for noiseless 3D
harmonic function evaluation.

Fig. 3. Effect of number of classes

in Fig. 2(a) and 2(b). Notice that, the performance of Class-GP is superior or at least
as good as Partition-GP owing to the fact that, while keeping the training budget
constant and increasing the number of partitions leads to decrease in number of
points per partition available to learn the hyperparameters of each GP independently
in each partition for Partition-GP, whereas, since the number of classes (m) remain
constant, number of points available to learn hyperparameters of GPs remain same
for Class-GP because of the new likelihood function. The only information we lose
on is the correlation information which leads to the small deterioration in the model
performance. Also, when the training budget (N) is small or close to number of
partitions (p), Standard-GP outperforms both class-GP and Partition-GP. This due
to the insufficient data to learn all the partitions of the input space leading to sharp
rise in MSE of Class-GP and Partition-GP.

2. Effect of number of classes (m): Increasing the number of classes (m) while keeping
other parameters fixed does not effect the performance of the models when the
training budget (N) is significantly high because of the large training data available
to learn the underlying model, whereas when the training budget is moderate the
reduction in the performance of all the models is observed, as seen in the Fig.3(a)
and 3(b), with the increasing classes, while keeping to the trend of performance
between modeling methods. This is observed due to following reasons: For Class-
GP with the increasing classes number of data points to learn the hyperparameters
decreases resulting in reduction in the performance, where as for Partition-BO even
though the number of data points per partition remain same we observe reduction
in performance due to the fact that modeling of high frequency functions (which
increase as the number of classes increase) require larger data points and, whereas
for the Standard-GP the reduction in performance is because more functions are
being modeled with a single GP.

3. Effect of Training Budget (N): Increasing the training budget N has an obvious
effect of improvement in the performance of models as seen in Fig. 4(a) and 4(b)
owing to the fact that GP’s learns the model better with more training data points,
but the drawback of increasing the data points is the computational complexity of

Class GP 11

(a) Effect of varying training budget for
noiseless 2D harmonic function.

(b) Effect of varying training budget for
noiseless 3D harmonic function.

Fig. 4. Effect of training budget

(a) Effect of varying dimension for
noiseless harmonic function with 2
classes.

(b) Effect of varying dimension for
noiseless harmonic function with 2
classes.

Fig. 5. Effect of dimension

the model increases. Also, Notice that the gain in performance of Standard-GP is
not as significant as Class-GP or Partition-GP because single GP is used to model
the heterogeneous function.

12 M. Malu et al.

4. Effect of Dimension (d): An increase in the problem’s dimensionality increases
the number of data points required to model the underlying function. This is also
observed in the performance of the models as shown in Fig.5(a), and 5(b) i.e., with
the increase in the number of dimensions, model performance decreases, while the
other parameters are fixed.

We also evaluate the model’s performance over noisy data sets for various parameter
initialization, but due to the constraint of space, we only display a subset of the results
in the tabular format. Table 2 shows each model’s average MSE (not normalized) over
50 independent runs. It can be observed that when the number of partitions is low, the
performance of Class GP is as good as Partition GP, whereas when the partitions increase,
Class GP outperforms other methods. The full code used to perform simulations can be
found at following Github repository.

Table 2. Model performance comparison in presence of noise

Parameters Average MSE over 50 runs
Functions Training Budget Classes Partitions Class GP Patition GP Standard GP

Harmonic 500
6 4 1.35 1.37 1.51

64 1.68 1.9 1.85

8 4 1.35 1.37 1.53
64 1.7 1.95 1.95

Levy 500
6 4 2.97 e2 2.97 e2 5.72 e2

64 1.15 e3 1.44 e3 1.56 e3

8 4 2.97 e2 2.97 e2 5.83 e2
64 3.36 e3 3.38 e3 4.02 e3

Qing 500
6 4 1.58 e3 1.58 e3 8.45 e7

64 1.79 e9 2.74 e9 9.45 e10

8 4 1.58 e3 1.58 e3 8.45 e7
64 3.25 e10 5.24 e10 8.87 e11

Rosenbrock 500
6 4 1.51 e5 1.52 e5 1.85 e10

64 9.28 e11 9.42 e11 2.24 e13

8 4 1.51 e5 1.52 e5 1.85 e10
64 6.13 e12 1.45 e13 1.97 e14

7 Conclusion and Future Work

This paper presents a novel tree based Class GP framework which extends the existing
partition based methods to a family of heterogeneous functions with access to class
information. We introduced a new likelihood function to exploit the homogeneous
behaviour of the partitions that belong to same class, leading to enhanced the performance
of GP models allowing to learn the hyperparameters across the entire class instead of
individual partitions. Furthermore, we establish a tailored tree algorithm suitable for
current framework that uses the closest boundary information to learn the initial tree.

https://github.com/mohitmalu/Class-GP

Class GP 13

We also provide some theoretical results in terms of the probabilistic uniform error
bounds and bounds on L1 norm. Finally, we conclude with extensive empirical analysis
and clearly show the superior performance of Class GP as compared other baselines.
Extension of the Class GP modeling framework to optimization, scaling to higher
dimensions [14] and extensive theoretical analysis of the algorithm with practical error
bounds are some promising venue to be explored in the future work.

Acknowledgments. This work is supported in part by National Science Foundation
(NSF) under the awards 2200161, 2048223, 2003111, 2046588, 2134256, 1815361,
2031799, 2205080, 1901243, 1540040, 2003111, 2048223, by DARPA ARCOS program
under contract FA8750-20-C-0507, Lockheed Martin funded contract FA8750-22-9-
0001, and the SenSIP Center.

8 Appendix

Proof sketch for the theorem 1 follows along the lines of the proof of Theorem 3.1 in
[11]. We get probabilistic uniform error bounds for GPs in each partitions j 2 [p] from
[11] and we use per partition based bounds to bound the over all function and to derive
bound on L1 norm. The proof for the theorem and corollary given as follows:

Proof. 1
Following bounds on each partition holds with probability 1� �j

��gj(x)� µnj (x)
�� 

q
�j(r)�nj (x) + �j(r), 8 x 2 Xj (12)

where �j(r) and �j(r) are given as follows

�j(r) = 2 log

✓
M(r,Xj)

�j

◆
(13)

�j(r) = (Lµnj
+ Lgj)r +

p
�(r)!�nj

(14)

Now to bound the entire function lets look at the difference |f(x)� µn(x)|.

|f(x)� µn(x)| =

������

pX

j=1

1{x 2 Xj}(gj(x)� µnj (x))

������
(15)

=
pX

j=1

1{x 2 Xj}
��gj(x)� µnj (x))

�� (16)


pX

j=1

1{x 2 Xj}
✓q

�j(r)�nj (x) + �j(r)

◆
, 8 x 2 Xj (17)

The last inequality (17) follows from (12) and holds with probability 1 � �, where
� =

Pp
j=1 1{x 2 Xj}�j .

Now, redefining
Pp

j=1 1{x 2 Xj}
⇣p

�j(r)�nj (x)
⌘
=
p
�(r)�n(x) and

Pp
j=1 1{x 2 Xj}�j(r) = �(r), we have the result. ut

14 M. Malu et al.

The proof for the corollary 1 uses the high confidence bound 10 and is given as
follows:

Proof. We know that L1 norm is given by

kf(x)� µn(x)k1 = E[|f(x)� µn(x)|] (18)

=

Z
|f(x)� µn(x)| dµ (19)

=

Z
������

pX

j=1

1{x 2 Xj}(gj(x)� µnj (x))

������
dµ (20)

=
pX

j=1

Z
1{x 2 Xj}

��(gj(x)� µnj (x))
�� dµ (21)

=
pX

j=1

Z

Xj

��(gj(x)� µnj (x))
�� dµ (22)

 ⇣rd
pX

j=1

M(r,Xj)

✓q
�j(r)�nj (x) + �j(r)

◆
holds w.p 1� �

(23)

where � =
Pp

j=1 �j and �j = 1�M(r,Xj) exp(��j(r)/2). ut

References

1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees.
Routledge (2017)

2. Candelieri, A., Pedrielli, G.: Treed-gaussian processes with support vector machines as nodes
for nonstationary bayesian optimization. In: 2021 Winter Simulation Conference (WSC). pp.
1–12. IEEE (2021)

3. Davis, C.B., Hans, C.M., Santner, T.J.: Prediction of non-stationary response functions using a
bayesian composite gaussian process. Computational Statistics & Data Analysis 154, 107083
(2021)

4. Fuentes, M., Smith, R.L.: A new class of nonstationary spatial models. Tech. rep., North
Carolina State University. Dept. of Statistics (2001)

5. Gibbs, M.N.: Bayesian Gaussian processes for regression and classification. Ph.D. thesis,
Citeseer (1998)

6. Gramacy, R.B., Lee, H.K.H.: Bayesian treed gaussian process models with an application to
computer modeling. Journal of the American Statistical Association 103(483), 1119–1130
(2008)

7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies.
Evolutionary computation 9(2), 159–195 (2001)

8. Heinonen, M., Mannerström, H., Rousu, J., Kaski, S., Lähdesmäki, H.: Non-stationary gaus-
sian process regression with hamiltonian monte carlo. In: Gretton, A., Robert, C.C. (eds.)
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics.
Proceedings of Machine Learning Research, vol. 51, pp. 732–740. PMLR, Cadiz, Spain
(09–11 May 2016)

Class GP 15

9. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the lipschitz
constant. Journal of optimization Theory and Applications 79(1), 157–181 (1993)

10. Kim, H.M., Mallick, B.K., Holmes, C.C.: Analyzing nonstationary spatial data using piecewise
gaussian processes. Journal of the American Statistical Association 100(470), 653–668 (2005)

11. Lederer, A., Umlauft, J., Hirche, S.: Uniform error bounds for gaussian process regression
with application to safe control. Advances in Neural Information Processing Systems 32
(2019)

12. Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale optimization.
Mathematical programming 45(1), 503–528 (1989)

13. Loh, W.Y.: Classification and regression trees. Wiley interdisciplinary reviews: data mining
and knowledge discovery 1(1), 14–23 (2011)

14. Malu, M., Dasarathy, G., Spanias, A.: Bayesian optimization in high-dimensional spaces: A
brief survey. In: 2021 12th International Conference on Information, Intelligence, Systems &
Applications (IISA). pp. 1–8. IEEE (2021)

15. Marmin, S., Ginsbourger, D., Baccou, J., Liandrat, J.: Warped gaussian processes and
derivative-based sequential designs for functions with heterogeneous variations. SIAM/ASA
Journal on Uncertainty Quantification 6(3), 991–1018 (2018)

16. Mathesen, L., Yaghoubi, S., Pedrielli, G., Fainekos, G.: Falsification of cyber-physical systems
with robustness uncertainty quantification through stochastic optimization with adaptive
restart. In: 2019 IEEE 15th International Conference on Automation Science and Engineering
(CASE). pp. 991–997. IEEE (2019)

17. Paciorek, C.J., Schervish, M.J.: Spatial modelling using a new class of nonstationary co-
variance functions. Environmetrics: The official journal of the International Environmetrics
Society 17(5), 483–506 (2006)

18. Paciorek, C.J.: Nonstationary Gaussian processes for regression and spatial modelling. Ph.D.
thesis, Carnegie Mellon University (2003)

19. Pope, C.A., Gosling, J.P., Barber, S., Johnson, J.S., Yamaguchi, T., Feingold, G., Black-
well, P.G.: Gaussian process modeling of heterogeneity and discontinuities using voronoi
tessellations. Technometrics 63(1), 53–63 (2021)

20. Rasmussen, C.E.: Gaussian processes in machine learning. In: Summer school on machine
learning. pp. 63–71. Springer (2003)

21. Schmidt, A.M., O’Hagan, A.: Bayesian inference for non-stationary spatial covariance struc-
ture via spatial deformations. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 65(3), 743–758 (2003)

22. Schulz, E., Speekenbrink, M., Krause, A.: A tutorial on gaussian process regression: Mod-
elling, exploring, and exploiting functions. Journal of Mathematical Psychology 85, 1–16
(2018)

	Class GP: Gaussian Process Modeling for Heterogeneous Functions

