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ABSTRACT 
The energy demands from data centers contribute greatly to 

water scarcity footprint and carbon emissions. Understanding 
the use of on-site renewable power generation is an important 
step to gaining insight into making data centers more 
sustainable. This study examines the impact of on-site solar or 
wind energy on water scarcity usage effectiveness (WSUE) and 
carbon usage effectiveness (CUE) at a U.S. county scale for a 
given data center size, water consumption level, and energy 
efficiency. The analysis uncovers combinations of specific 
metrics associated with the grid-based carbon emissions and 
water scarcity footprint that enable predictions of the 
improvements anticipated when implementing on-site solar or 
wind energy. The implementation of on-site renewables has the 
most benefit on reducing carbon footprint in areas with high 
existing grid-based emissions such as the mountain regions and 
the western side of the Appalachian Mountains. The largest 
benefit in reducing water scarcity footprint is generally seen in 
the western U.S. 

Keywords: renewable energy, water scarcity footprint 
(WSF), carbon usage effectiveness (CUE), water scarcity usage 
effectiveness (WSUE) 

NOMENCLATURE 
𝐴𝐴𝐶𝐶𝐶𝐶  AWARE-CF factor 
AMD  Availability minus demand, L 
𝐶𝐶  Carbon emissions, kg CO2e 
CEF  Carbon emission factor 
CRAC  Computer room air conditioner 
CUE  Carbon usage effectiveness, kg CO2e/kWh 
EIA  US Energy Information Administration 
eGRID  Emissions Generation Resource Integrated 

Database 
EPA   U.S. Environmental Protection Agency 

EWIF  Energy water intensity factor, L/kWh 
𝐼𝐼  Improvement 
𝑃𝑃  Electric power consumption, kWh 
PUE   Power usage effectiveness 
SWI   Scarce water index, L/kWh 
𝑊𝑊  Water consumption, L 
WSUE  Water scarcity usage effectiveness, L/kWh 
WUE  Water usage effectiveness, L/kWh 
𝑊𝑊𝑊𝑊𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Modified water usage effectiveness that 

includes source water flows, L/kWh 
𝑥𝑥  Fraction of flow 
 
Subscripts 
𝐸𝐸𝐸𝐸𝐸𝐸  Effective value 
𝐺𝐺  Grid 
𝐺𝐺𝐺𝐺  Combined grid and on-site solar power 
𝐼𝐼𝐼𝐼  IT equipment 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  On-site component 
𝑁𝑁𝑁𝑁  Non-thermal 
𝑅𝑅𝑅𝑅𝑅𝑅  Reference 
𝑆𝑆  Solar 
𝑇𝑇  Thermal 
𝑡𝑡𝑡𝑡𝑡𝑡  Total 
𝑊𝑊  Wind 
 
1. INTRODUCTION 
 The growth in the size and quantity of data centers has 
increased concern about the sector’s energy consumption. In 
2018, it was reported that data centers consume up to 200 TWh 
of electricity annually, accounting for 1% of the global energy 
demand [1]. More recent estimates have suggested that data 
centers consume up to 500 TWh of electricity annually [2]. 
 The large demand for electricity coming from data centers 
has raised concerns raised about the environmental impacts of 
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consuming large quantities of energy. The utilization of 
renewable energy resources, such as wind and solar power, has 
been proposed as a potential solution to reduce the 
environmental impacts that data centers and their electricity 
consumption may have, resulting in the reduction of a data 
center’s carbon footprint [3]–[6]. While reducing carbon 
emissions is essential for a more sustainable data center, carbon 
emissions are just one factor that contributes to the sustainability 
of data centers. Hadian and Madani suggested that to consider an 
energy system “green”, water and land footprints should also be 
considered [7]. 

The use of renewable energy for data centers has been 
proposed by several investigators, with an emphasis on the 
power distribution network in conjunction with workload 
allocation. Kumar et al. [8] investigated the use of renewable 
energy in conjunction with server virtualization and showed 
potential energy savings. Li et al. [9] suggested that the tuning of 
intermittent load fluctuations and available intermittent 
renewable energy sources degrades the renewable energy system 
efficiency. Wang and Ye [10] proposed that using renewable 
energy in a microgrid works best with a cluster of data centers, 
utilizing the advantages of cluster-wide workload allocation. 
Wan et al. [11] extend this concept to internet data centers with 
the goal of minimizing carbon footprint. This approach may be 
more viable since it is difficult to manage the load variations and 
power availability for a single data center with on-site renewable 
energy production [12]. 

The aforementioned studies are important in determining 
the challenges posed by implementing on-site renewables, yet no 
known study exists that shows the potential reductions in carbon 
and water scarcity footprints at the U.S. county level when 
implementing on-site solar and wind power. The current study 
therefore provides the best-case values of footprint reductions, 
with the guidance that the actual environmental benefits will be 
reduced due to workload variation and renewable power 
availability. 

A comprehensive study evaluating the impact of on-site 
renewable energy on carbon and water scarcity footprints that 
include indirect contributions from power generation sources 
and grid electricity transfers is lacking in the literature. 
Therefore, this study fills an important research gap by 
calculating the reductions in these footprints at the U.S. county 
scale by implementing on-site solar or wind energy. The study 
specifically examines how changes in these footprints are 
affected by geographic location. Conclusions are provided 
regarding the accuracy of predictions based on available data and 
the relative impact of implementing on-site renewable power 
generation for different locations. 
 
2. MATERIALS AND METHODS 
 

Metrics have been widely used to measure the water 
consumption and energy efficiency of data centers, namely 

power usage effectiveness (PUE) and water usage effectiveness 
(WUE): 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡
𝑃𝑃𝐼𝐼𝐼𝐼

(1) 

𝑊𝑊𝑊𝑊𝑊𝑊 =
𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝐼𝐼𝐼𝐼
(2) 

where 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡, 𝑃𝑃𝐼𝐼𝐼𝐼 , and 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 represent total power draw, IT load, 
and on-site water consumption, respectively. However, the 
holistic data center water footprint includes the water consumed 
at the power generation source and is represented by the metric 

𝑊𝑊𝑊𝑊𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑊𝑊𝑊𝑊𝑊𝑊 (3) 
where the energy water intensity factor (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) quantifies the 
amount of water required to produce the electric power 
consumed by the data center. 𝑃𝑃𝑃𝑃𝑃𝑃 is dimensionless, and the units 
of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝑊𝑊𝑊𝑊𝑊𝑊, and 𝑊𝑊𝑊𝑊𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  are L/kWh. The values of 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 depend on both electricity generation method and 
geographic location. 

The above performance metrics are commonly used to 
indicate environmental impact by data centers, but they do not 
provide a direct indication of neither carbon footprint nor water 
scarcity footprint. However, the metrics water scarcity usage 
effectiveness (WSUE) and carbon usage effectiveness (CUE) are 
direct indicators of the water scarcity and carbon footprints 
associated with data center operation: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =
𝑊𝑊𝑊𝑊𝑊𝑊
𝑃𝑃𝐼𝐼𝐼𝐼

(4) 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡
𝑃𝑃𝐼𝐼𝐼𝐼

(5) 

where 𝑊𝑊𝑊𝑊𝑊𝑊 is the water scarcity footprint, and 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 is the total 
facility carbon footprint. The above metrics in Eqs. (4) and (5) 
include both direct and indirect sources. All metrics in Eqs. (1)-
(5) are calculated on an annual basis. 

The most accurate approach to assessing WSUE and CUE 
are to incorporate electricity transfers within the grid [13]. 
Carbon emissions and water scarcity footprint are embedded in 
electricity generation through both fuel combustion but also in 
the materials used to generate electricity, so it is important to use 
lifecycle calculations of emissions and water footprint. 
Furthermore, electricity transfers in the grid should be 
incorporated to accurately estimate the energy portfolio feeding 
a particular geographic location [14], [15], [16]. The methods to 
calculate these metrics are 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝐴𝐴𝐶𝐶𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊 + 𝑆𝑆𝑆𝑆𝑆𝑆 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃 (6) 
𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃 (7) 

where 𝐴𝐴𝐶𝐶𝐶𝐶 is the AWARE-CF factor (a measure of water 
scarcity), 𝑆𝑆𝑆𝑆𝑆𝑆 is the scarce water index, and 𝐶𝐶𝐶𝐶𝐶𝐶 is the carbon 
emissions factor. Values of 𝐴𝐴𝐶𝐶𝐶𝐶, 𝑆𝑆𝑆𝑆𝑆𝑆, and 𝐶𝐶𝐶𝐶𝐶𝐶 are based on 
geographic location and may be estimated down to the U.S. 
county level. Equations (6) and (7) indicate that knowledge of 
the geographical distribution of these three factors enables 
location-dependent predictions of grid-based water scarcity 
footprint and carbon emissions for a data center with known PUE 
and WUE. 

One can see from comparing Eqs. (1) and (2) to Eqs. (6) and 
(7) that while PUE and WUE are related to data center 
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environmental burden (i.e., reducing PUE and WUE reduce 
WSUE and CUE), the true measure of environmental impact also 
requires examination of 𝐴𝐴𝐶𝐶𝐶𝐶, 𝑆𝑆𝑆𝑆𝑆𝑆, and 𝐶𝐶𝐶𝐶𝐶𝐶. The use of on-site 
renewable energy effectively adjusts 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐶𝐶𝐶𝐶𝐶𝐶 by replacing 
a portion of upstream grid-based scarce water and carbon flows 
by their corresponding lifecycle values associated with on-site 
solar or wind energy. 
 

2.1 Assessing water consumption from power generation 
To first assess the water scarcity and carbon footprints of a 

data center, it is helpful to examine the water flows within the 
grid to see which geographic areas are most impacted by water 
consumption in electricity generation. The US Energy 
Information Administration’s (EIA) annual report includes every 
power generation source in the United States that produces over 
1 MWh of electricity annually, as well as the geographic 
coordinates of these power plants [17]. Using geolocation 
software, each power generation plant is first assigned its home 
U.S. county. A power generation mix is then calculated for each 
county. In this study, eGRID subregion boundaries and county 
boundary regions are taken from the US Environmental 
Protection Agency (EPA) [18]. Counties are assigned to one of 
26 eGRID subregion boundaries in the contiguous U.S. using the 
geographic centroids of each county. 

Peer et al. classified power generation technologies into two 
categories, non-thermal and thermal power generation sources 
[19]. Thermal power generation sources include coal, oil, natural 
gas, nuclear, biomass, and geothermal. Non thermal power 
generation sources include hydropower, wind, and solar. Each 
eGRID subregion has a thermal and a non-thermal EWIF value. 
Using the power generation mix for each county, and assuming 
counties within the same eGRID subregions have the same 
EWIF for a given power generation type, an estimate of EWIF 
for each county is 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = (𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑇𝑇 ⋅ 𝑥𝑥𝑇𝑇) + �𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑁𝑁𝑁𝑁 ⋅ (1 − 𝑥𝑥𝑇𝑇)� (8) 
where 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑇𝑇 is the thermal EWIF value for the EGRID 
subregion the county lies in, 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑁𝑁𝑁𝑁 is the non-thermal EWIF 
value for the EGRID subregion the county lies in, and 𝑥𝑥𝑇𝑇 is the 
fraction of power generated in the county by thermal sources. 
The value of 𝑥𝑥𝑇𝑇 is calculated as 

𝑥𝑥𝑇𝑇 =
∑ 𝑃𝑃𝑇𝑇

∑ 𝑃𝑃𝑇𝑇 + ∑ 𝑃𝑃𝑁𝑁𝑁𝑁
(9) 

where 𝑃𝑃 is power generation by individual sources, and the 
subscripts 𝑇𝑇 and 𝑁𝑁𝑁𝑁 represent summations over thermal and 
non-thermal individual sources, respectively. 

Figure 1 shows the EWIF values for each county based 
solely on county power generation sources. EWIF values range 
from 0.4 L/KWh to 21.3 L/KWh, with a median EWIF score of 
2.99 L/KWh and a standard deviation of 4.60 L/KWh. The figure 
shows that the highest EWIF values are seen in the southwestern 
U.S., indicating large water loss in power generation 
technologies in this region, which is likely due to the high 
evaporation rate of water due to a dry climate. This conclusion 
indicates a larger contribution to indirect water consumption by 
a data center compared to other parts of the country. Since power 

can be transported across county borders and eGRID subregion 
borders, the EWIF can be defined here as only a rough 
approximation, but general trends at broader geographic scales 
(i.e., relatively large EWIF values in the southwestern U.S.) are 
independent of the inclusion of electricity transfers. 
 

 
FIGURE 1. EWIF values for every contiguous U.S. county 

 
2.1. Measuring Water Scarcity  

The amount of water available for human use after 
environmental needs are met varies across each U.S. county.  
Several areas across the country are experiencing longer and 
more harsh droughts due to climate change, and it is important 
to quantify the scarcity of water in our results [20]. Lee et al. 
created a US model that quantifies water scarcity and the impact 
of water consumption in different US counties [21]. The AWARE 
characterization factor (AWARE-US CF), as the metric is named, 
compares regional water availability to a reference value that is 
bounded between 0.1 and 100 [21]. The factor is defined as 

𝐴𝐴𝐶𝐶𝐶𝐶 =
𝐴𝐴𝐴𝐴𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅
𝐴𝐴𝐴𝐴𝐴𝐴

(10) 

where 𝐴𝐴𝐶𝐶𝐶𝐶 is the county’s AWARE-US CF factor, 𝐴𝐴𝐴𝐴𝐴𝐴 is water 
availability minus demand, and the subscript 𝑅𝑅𝑅𝑅𝑅𝑅 denotes a 
universal constant reference value. The factor is geographic-
specific and applied within the calculations of WSUE (Eq. (6)). 
A high AWARE-US CF value represents areas of high-water 
scarcity. Figure 2 depicts the AWARE-US CF values for each 
county in the U.S., showing the largest water scarcity in the 
south-central and southwestern U.S., demonstrating a consistent 
trend with the EWIF values in Fig. 1. 
  
2.2. Assessing carbon emissions from power generation  

Embodied carbon in electricity flows is captured via the 
carbon emission factor (CEF) and is used in the CUE calculation 
of Eq. (7). CEF quantifies the amount of carbon emissions 
embodied in unitary electricity consumption by the percentage 
of each category of power production per county. The units for 
CEF are kg/KWh. Values of CEF for each power generation 
source are based on lifecycle emissions data by the 
Intergovernmental Panel on Climate Change and the World 
Nuclear Association [22] and incorporate electricity transfers 
within the grid, culminating in Scope 3 emissions due to data 
center operation [23]. 
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FIGURE 2. AWARE-US CF values for every contiguous U.S. 

county (adapted from [21]) 
 

Figure 3 shows the CEF values for each county. CEF scores 
range from 0.007 kg/KWh to 0.902 kg/KWh, with a median CEF 
score of 0.17 kg/KWh, and a standard deviation of 0.452 
kg/KWh. The largest values appear in the mountain regions (e.g., 
WY, UT, MT, SD, ND) and near the western side of the 
Appalachian Mountains (e.g., WV, KY, TN). 

 

 
FIGURE 3. CEF values for every contiguous U.S. county 

 
2.3. WSUE and CUE metrics with on-site power generation 

The proposed solution to reduce data center environmental 
impacts is the introduction of on-site solar or wind power 
generation. Depending on the size, workload distribution and 
electricity demand, each data center would be capable of 
producing a different quantity of electricity on site. For this 
study, it is approximated that the hypothetical data center studied 
can produce 25% of their electricity demand on site, on average. 
This percentage is a reasonable approximation and is based off 
conservative estimates from discussions with industry 
executives. Baseline values of PUE and WUE are taken as 1.85 
and 1.80, respectively, as typical for many data centers. In this 
study, PUE and WUE are constant, although for computer room 
air conditioner (CRAC) cooling systems they are generally 
higher in the southern U.S. due to the effects of external air 
temperature on CRAC coefficient of performance [24]. 

Calculations of WSUE and CUE via Eqs. (6) and (7), 
respectively, are modified to enable evaluation of the effects of 
on-site solar or wind power generation. Since PUE and WUE are 
taken to be constant, then only the factors related to electricity 

generation source are altered. Equation (6) may therefore be 
modified as 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝐴𝐴𝐶𝐶𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊 + 𝑆𝑆𝑆𝑆𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃 (11) 
where 𝑆𝑆𝑆𝑆𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸  is the effective scarce water index that 
incorporates the influence of on-site renewable energy. The 
presence of on-site renewable energy sources only impacts the 
quantity of scarce water within electricity flows, thereby only 
altering 𝑆𝑆𝑆𝑆𝑆𝑆. The scarce water index is therefore modified by 
adding the contributions by the grid power sources as well as the 
onsite renewable energy sources: 

𝑆𝑆𝑆𝑆𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑆𝑆𝑆𝑆𝐼𝐼𝐺𝐺𝑥𝑥𝐺𝐺 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑆𝑆 ⋅ 𝐴𝐴𝐶𝐶𝐶𝐶 ⋅ (1 − 𝑥𝑥𝐺𝐺) (12𝑎𝑎) 
𝑆𝑆𝑆𝑆𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑆𝑆𝑆𝑆𝐼𝐼𝐺𝐺𝑥𝑥𝐺𝐺 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑊𝑊 ⋅ 𝐴𝐴𝐶𝐶𝐶𝐶 ⋅ (1 − 𝑥𝑥𝐺𝐺) (12𝑏𝑏) 

where 𝑥𝑥𝐺𝐺  is the fraction of energy consumed by the data center 
that originates from the electric grid (off-site), and 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑆𝑆  and 
𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑊𝑊 are the EWIF values associated with solar and wind 
energy, respectively. The first term in Eqs. (12a) and (12b) 
therefore indicates the contribution of scarce water flows from 
power generation by the grid, whereas the second term 
incorporates the embodied water in the on-site renewables 
(captured as 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) times the water scarcity metric (𝐴𝐴𝐶𝐶𝐶𝐶). 

𝐶𝐶𝐶𝐶𝐶𝐶 can similarly be defined as 
𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃 (13) 

where the effective CEF incorporates contributions by the grid 
and on-site renewable sources: 

𝐶𝐶𝐶𝐶𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐶𝐶𝐶𝐶𝐹𝐹𝐺𝐺𝑥𝑥𝐺𝐺 + 𝐶𝐶𝐶𝐶𝐹𝐹𝑆𝑆(1 − 𝑥𝑥𝐺𝐺) (14𝑎𝑎) 
𝐶𝐶𝐶𝐶𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐶𝐶𝐶𝐶𝐹𝐹𝐺𝐺𝑥𝑥𝐺𝐺 + 𝐶𝐶𝐶𝐶𝐹𝐹𝑊𝑊(1 − 𝑥𝑥𝐺𝐺) (14𝑏𝑏) 

where 𝐶𝐶𝐶𝐶𝐹𝐹𝑆𝑆 and 𝐶𝐶𝐶𝐶𝐹𝐹𝑊𝑊 are the emission factors associated with 
solar and wind energy sources, respectively. 

One can view Eqs. (12) and (14) as weighted contributions 
of virtual scarce water and carbon flows from two sources: the 
grid with known effective flow parameters of 𝑆𝑆𝑆𝑆𝐼𝐼𝐺𝐺  and 𝐶𝐶𝐶𝐶𝐹𝐹𝐺𝐺, 
and on-site solar/wind with effective flow parameters 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆/
𝑆𝑆𝑆𝑆𝐼𝐼𝑊𝑊 and 𝐶𝐶𝐶𝐶𝐹𝐹𝑆𝑆/𝐶𝐶𝐶𝐶𝐹𝐹𝑊𝑊, respectively. The 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆/𝑆𝑆𝑆𝑆𝐼𝐼𝑊𝑊 
parameter represents the scarce water flow between on-site solar 
panels/wind turbines and the data center, but since no grid 
electricity transfers occur, then 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆/𝑆𝑆𝑆𝑆𝐼𝐼𝑊𝑊 reduces to the on-
site scarce water flow, captured as the water requirement for 
solar/wind power generation (𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑆𝑆/𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑊𝑊) times the local 
water scarcity factor (𝐴𝐴𝐶𝐶𝐶𝐶). The values of 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑆𝑆 and 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑊𝑊 
are taken from Vengosh and Weinthal [25] as 0.338 L/kWh and 
0.0547 L/kWh, respectively, and are location-independent. 

 
3. RESULTS AND DISCUSSION 
3.1. Improvement in WSUE 

The improvement in WSUE when implementing on-site 
solar power is defined as 

𝐼𝐼𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ,𝑆𝑆 = (100%) �
𝑊𝑊𝑊𝑊𝑊𝑊𝐸𝐸𝐺𝐺 −𝑊𝑊𝑊𝑊𝑊𝑊𝐸𝐸𝐺𝐺𝐺𝐺

𝑊𝑊𝑊𝑊𝑊𝑊𝐸𝐸𝐺𝐺
� (15) 

where the subscript 𝐺𝐺𝐺𝐺 indicates a value featuring a combination 
of grid power (75%) and on-site solar (25%). The improvement 
is therefore equal to the negative percentage change in WSUE. 
Figures 4 depicts the distribution of 𝐼𝐼𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝑆𝑆 predictions. Green 
counties see a reduction in WSUE due to the addition of on-site 
renewable energy production, while red counties see higher 
WSUE values. Many counties experience considerable 
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improvements, whereas others have larger WSUE values 
because of on-site power generation. 

Combining Eqs. (6), (11), (12a), and (15) shows that the 
value of 𝐼𝐼𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝑆𝑆 can be rewritten as 

𝐼𝐼𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝑆𝑆 = (100%)�
(1 − 𝑥𝑥𝐺𝐺) 𝑃𝑃𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊 �

𝑆𝑆𝑆𝑆𝐼𝐼𝐺𝐺
𝐴𝐴𝐶𝐶𝐶𝐶

− 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑆𝑆�

1 + 𝑃𝑃𝑃𝑃𝑃𝑃
𝑊𝑊𝑊𝑊𝑊𝑊 �

𝑆𝑆𝑆𝑆𝐼𝐼𝐺𝐺
𝐴𝐴𝐶𝐶𝐶𝐶

�
� (16) 

Relations for wind energy can be derived by modifying Eqs. (15) 
and (16) by replacing the subscript 𝑆𝑆 with the subscript 𝑊𝑊, and 
similar results are seen in the county distribution of 𝐼𝐼𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝑊𝑊 (Fig. 
5) as for 𝐼𝐼𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝑆𝑆 (Fig. 4). Since 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑆𝑆 and 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑊𝑊 are constant, 
then the largest benefit is seen in areas where the ratio 𝑆𝑆𝑊𝑊𝐼𝐼𝐺𝐺

𝐴𝐴𝐶𝐶𝐶𝐶
 is 

largest, or areas with a relatively large 𝑆𝑆𝑆𝑆𝐼𝐼𝐺𝐺  and relatively low 
𝐴𝐴𝐶𝐶𝐶𝐶. Figure 6 depicts this relationship for varying ratios of 
𝑆𝑆𝑆𝑆𝐼𝐼𝐺𝐺/𝐴𝐴𝐶𝐶𝐶𝐶, pinpointing the possibility of increased WSUE when 
the ratio falls below 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑆𝑆. This ratio is therefore the key metric 
to gauging the viability of reducing water scarcity footprint for a 
given location. The figure also shows that more improvement is 
seen for on-site wind power due to the lower EWIF of wind 
energy compared to solar energy. Figure 7 provides the 
distribution of 𝑆𝑆𝑆𝑆𝐼𝐼𝐺𝐺/𝐴𝐴𝐶𝐶𝐶𝐶, showing similar patterns as seen in 
Figs. 4 and 5, providing confidence in this conclusion. This ratio 
is physically defined as being proportional to the scarce water 
draw from grid-based power generation versus on-site scarce 
water generation, since the latter is defined as 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑆𝑆 ⋅ 𝐴𝐴𝐶𝐶𝐶𝐶 
(solar) or 𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝑊𝑊 ⋅ 𝐴𝐴𝐶𝐶𝐶𝐶  (wind) per Eq. (12). Figures 4 and 5, 
when compared to Fig. 2, show that counties with low 𝐴𝐴𝐶𝐶𝐶𝐶 have 
little benefit, which agrees with Eq. (16), but counties with low 
𝐴𝐴𝐶𝐶𝐶𝐶 that border counties with large 𝐴𝐴𝐶𝐶𝐶𝐶 have maximum benefit 
since they have large 𝑆𝑆𝑆𝑆𝐼𝐼𝐺𝐺  values due to some power draw from 
their adjacent water-scarce counties. 

 

 
 

FIGURE 4. Percent improvement in WSUE after 
implementing 25% on-site solar energy production. 

 

 
FIGURE 5. Percent improvement in WSUE after 

implementing 25% on-site wind energy production. 
 
 

 
 

FIGURE 6. Percent improvement in WSUE after 
implementing 25% on-site solar or wind energy production 

for the system in this study based on ratio 𝑆𝑆𝑆𝑆𝐼𝐼𝐺𝐺/𝐴𝐴𝐶𝐶𝐶𝐶. 
 

 
FIGURE 7. Geographic distribution of 𝑆𝑆𝑆𝑆𝐼𝐼𝐺𝐺/𝐴𝐴𝐶𝐶𝐶𝐶. 

 
 

3.2. Improvement in CUE 
The definition of improvement in CUE values using on-site 

solar energy follows the same approach as that for WSUE: 

𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶,𝑆𝑆 = (100%) �
𝐶𝐶𝐶𝐶𝐸𝐸𝐺𝐺 − 𝐶𝐶𝐶𝐶𝐸𝐸𝐺𝐺𝐺𝐺

𝐶𝐶𝐶𝐶𝐸𝐸𝐺𝐺
� (18) 
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where again the subscript 𝑆𝑆 can be replaced with 𝑊𝑊 to represent 
wind energy. Here, Eq. (18) is combined with Eqs. (13) and (14) 
to yield 

𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑆𝑆 = (100%) �(1 − 𝑥𝑥𝐺𝐺) �1 −
𝐶𝐶𝐶𝐶𝐹𝐹𝑆𝑆
𝐶𝐶𝐶𝐶𝐹𝐹𝐺𝐺

�� (19) 

It follows that the improvement in carbon footprint follows 

𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 ,𝑆𝑆 ∝ �1 −
𝐶𝐶𝐶𝐶𝐹𝐹𝑆𝑆
𝐶𝐶𝐶𝐶𝐹𝐹𝐺𝐺

� (20) 

Therefore, the largest improvement is seen where 𝐶𝐶𝐶𝐶𝐹𝐹𝐺𝐺 is large. 
Figure 8 shows the CUE percent improvement values of 

each US county from 0% on site to 25% on site solar power 
generation for data centers. As expected, almost every county 
saw significant improvement in their CUE value when using on 
site solar energy as expected. Those counties seeing an increase 
in CUE may be attributed to the fact that these counties produce 
power through existing wind and hydropower energy, which 
both have lower CEF values than solar energy. One can see that 
the amount of improvement follows trends seen in Fig. 3 for 
𝐶𝐶𝐶𝐶𝐹𝐹𝐺𝐺 distribution. The benefits of on-site solar are nearly 
universal in nature except for a few counties fed by large existing 
renewable energy sources from the grid. 

 

 
FIGURE 8: Percent improvement in CUE after 

implementing 25% on site solar energy production. The 
implementation of wind energy production produces similar 

results. 
 

 

4. CONCLUSION 
This study uncovered the key parameters associated with the 

existing grid-based environmental metrics as a first-order guide 
to implementing on-site power generation. The study found that 
the ratio of 𝑆𝑆𝑆𝑆𝐼𝐼𝐺𝐺/𝐴𝐴𝐶𝐶𝐶𝐶 is a good indicator as to the anticipated 
improvement in water scarcity footprint from implementing on-
site renewable energy in a given location, with wind energy 
providing a larger benefit than solar energy because of the 
former’s lower 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸. The study also found that the reduction in 
carbon footprint roughly corresponds to the magnitude of 
existing grid-based carbon emission factor, as expected. The 
largest potential areas for improvements in carbon footprint are 
in mountain regions, specifically WY, UT, MT, SD, ND, WV, 
KY, and TN. The areas that can most benefit from on-site 

renewables for decreasing their water scarcity footprint are more 
scattered by generally fall in the western portions of the U.S. or 
are low-𝐴𝐴𝐶𝐶𝐶𝐶 counties adjacent to high-𝐴𝐴𝐶𝐶𝐶𝐶 counties. 
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