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ABSTRACT

The energy demands from data centers contribute greatly to
water scarcity footprint and carbon emissions. Understanding
the use of on-site renewable power generation is an important
Step to gaining insight into making data centers more
sustainable. This study examines the impact of on-site solar or
wind energy on water scarcity usage effectiveness (WSUE) and
carbon usage effectiveness (CUE) at a U.S. county scale for a
given data center size, water consumption level, and energy
efficiency. The analysis uncovers combinations of specific
metrics associated with the grid-based carbon emissions and
water scarcity footprint that enable predictions of the
improvements anticipated when implementing on-site solar or
wind energy. The implementation of on-site renewables has the
most benefit on reducing carbon footprint in areas with high
existing grid-based emissions such as the mountain regions and
the western side of the Appalachian Mountains. The largest
benefit in reducing water scarcity footprint is generally seen in
the western U.S.

Keywords: renewable energy, water scarcity footprint
(WSF), carbon usage effectiveness (CUE), water scarcity usage
effectiveness (WSUE)

NOMENCLATURE

Acr AWARE-CF factor

AMD Availability minus demand, L

C Carbon emissions, kg CO»e

CEF Carbon emission factor

CRAC Computer room air conditioner

CUE Carbon usage effectiveness, kg CO,e/kWh

EIA US Energy Information Administration

eGRID Emissions Generation Resource Integrated
Database

EPA U.S. Environmental Protection Agency

Aaron P. Wemhoff
Villanova University

Villanova, PA
EWIF Energy water intensity factor, L/kWh
I Improvement
P Electric power consumption, kWh
PUE Power usage effectiveness
SWI Scarce water index, L/kWh
w Water consumption, L
WSUE Water scarcity usage effectiveness, L/kWh
WUE Water usage effectiveness, L/kWh
WUEpurce Modified water usage effectiveness that
includes source water flows, L/kWh
x Fraction of flow
Subscripts
EFF Effective value
G Grid
GS Combined grid and on-site solar power
IT IT equipment
site On-site component
NT Non-thermal
REF Reference
S Solar
T Thermal
tot Total
w Wind

1. INTRODUCTION

The growth in the size and quantity of data centers has
increased concern about the sector’s energy consumption. In
2018, it was reported that data centers consume up to 200 TWh
of electricity annually, accounting for 1% of the global energy
demand [1]. More recent estimates have suggested that data
centers consume up to 500 TWh of electricity annually [2].

The large demand for electricity coming from data centers
has raised concerns raised about the environmental impacts of
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consuming large quantities of energy. The utilization of
renewable energy resources, such as wind and solar power, has
been proposed as a potential solution to reduce the
environmental impacts that data centers and their electricity
consumption may have, resulting in the reduction of a data
center’s carbon footprint [3]-[6]. While reducing carbon
emissions is essential for a more sustainable data center, carbon
emissions are just one factor that contributes to the sustainability
of data centers. Hadian and Madani suggested that to consider an
energy system “green”, water and land footprints should also be
considered [7].

The use of renewable energy for data centers has been
proposed by several investigators, with an emphasis on the
power distribution network in conjunction with workload
allocation. Kumar et al. [8] investigated the use of renewable
energy in conjunction with server virtualization and showed
potential energy savings. Li et al. [9] suggested that the tuning of
intermittent load fluctuations and available intermittent
renewable energy sources degrades the renewable energy system
efficiency. Wang and Ye [10] proposed that using renewable
energy in a microgrid works best with a cluster of data centers,
utilizing the advantages of cluster-wide workload allocation.
Wan et al. [11] extend this concept to internet data centers with
the goal of minimizing carbon footprint. This approach may be
more viable since it is difficult to manage the load variations and
power availability for a single data center with on-site renewable
energy production [12].

The aforementioned studies are important in determining
the challenges posed by implementing on-site renewables, yet no
known study exists that shows the potential reductions in carbon
and water scarcity footprints at the U.S. county level when
implementing on-site solar and wind power. The current study
therefore provides the best-case values of footprint reductions,
with the guidance that the actual environmental benefits will be
reduced due to workload variation and renewable power
availability.

A comprehensive study evaluating the impact of on-site
renewable energy on carbon and water scarcity footprints that
include indirect contributions from power generation sources
and grid electricity transfers is lacking in the literature.
Therefore, this study fills an important research gap by
calculating the reductions in these footprints at the U.S. county
scale by implementing on-site solar or wind energy. The study
specifically examines how changes in these footprints are
affected by geographic location. Conclusions are provided
regarding the accuracy of predictions based on available data and
the relative impact of implementing on-site renewable power
generation for different locations.

2. MATERIALS AND METHODS

Metrics have been widely used to measure the water
consumption and energy efficiency of data centers, namely

power usage effectiveness (PUE) and water usage effectiveness
(WUE):

P

PUE = = €))
VVIT

WUE = Ps—”e )

T
where P;,, Pir, and Wy, represent total power draw, IT load,

and on-site water consumption, respectively. However, the
holistic data center water footprint includes the water consumed
at the power generation source and is represented by the metric

WUEyyrce = EWIF - PUE + WUE 3)
where the energy water intensity factor (EWIF) quantifies the
amount of water required to produce the electric power
consumed by the data center. PUE is dimensionless, and the units
of EWIF, WUE, and WUE,,,;c. are L/’kWh. The values of
EWIF depend on both electricity generation method and
geographic location.

The above performance metrics are commonly used to
indicate environmental impact by data centers, but they do not
provide a direct indication of neither carbon footprint nor water
scarcity footprint. However, the metrics water scarcity usage
effectiveness (WSUE) and carbon usage effectiveness (CUE) are
direct indicators of the water scarcity and carbon footprints
associated with data center operation:

WSF
WSUE = 4)
CPIT
CUE = -2 (5)
PIT

where WSF is the water scarcity footprint, and C,, is the total
facility carbon footprint. The above metrics in Egs. (4) and (5)
include both direct and indirect sources. All metrics in Egs. (1)-
(5) are calculated on an annual basis.
The most accurate approach to assessing WSUE and CUE
are to incorporate electricity transfers within the grid [13].
Carbon emissions and water scarcity footprint are embedded in
electricity generation through both fuel combustion but also in
the materials used to generate electricity, so it is important to use
lifecycle calculations of emissions and water footprint.
Furthermore, electricity transfers in the grid should be
incorporated to accurately estimate the energy portfolio feeding
a particular geographic location [14], [15], [16]. The methods to
calculate these metrics are
WSUE = AcgWUE + SWI - PUE (6)
CUE = CEF - PUE (7
where Aqr is the AWARE-CF factor (a measure of water
scarcity), SW1I is the scarce water index, and CEF is the carbon
emissions factor. Values of Aqr, SWI, and CEF are based on
geographic location and may be estimated down to the U.S.
county level. Equations (6) and (7) indicate that knowledge of
the geographical distribution of these three factors enables
location-dependent predictions of grid-based water scarcity
footprint and carbon emissions for a data center with known PUE
and WUE.
One can see from comparing Egs. (1) and (2) to Egs. (6) and
(7) that while PUE and WUE are related to data center
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environmental burden (i.e., reducing PUE and WUE reduce
WSUE and CUE), the true measure of environmental impact also
requires examination of A¢r, SWI, and CEF. The use of on-site
renewable energy effectively adjusts SWI and CEF by replacing
a portion of upstream grid-based scarce water and carbon flows
by their corresponding lifecycle values associated with on-site
solar or wind energy.

2.1 Assessing water consumption from power generation

To first assess the water scarcity and carbon footprints of a
data center, it is helpful to examine the water flows within the
grid to see which geographic areas are most impacted by water
consumption in electricity generation. The US Energy
Information Administration’s (EIA) annual report includes every
power generation source in the United States that produces over
1 MWh of electricity annually, as well as the geographic
coordinates of these power plants [17]. Using geolocation
software, each power generation plant is first assigned its home
U.S. county. A power generation mix is then calculated for each
county. In this study, eGRID subregion boundaries and county
boundary regions are taken from the US Environmental
Protection Agency (EPA) [18]. Counties are assigned to one of
26 eGRID subregion boundaries in the contiguous U.S. using the
geographic centroids of each county.

Peer et al. classified power generation technologies into two
categories, non-thermal and thermal power generation sources
[19]. Thermal power generation sources include coal, oil, natural
gas, nuclear, biomass, and geothermal. Non thermal power
generation sources include hydropower, wind, and solar. Each
eGRID subregion has a thermal and a non-thermal EWIF value.
Using the power generation mix for each county, and assuming
counties within the same eGRID subregions have the same
EWTIF for a given power generation type, an estimate of EWIF
for each county is

EWIF = (EWIFy - x7) + (EWIFyr - (1 —x7))  (8)
where EWIF; is the thermal EWIF value for the EGRID
subregion the county lies in, EWIFyr is the non-thermal EWIF
value for the EGRID subregion the county lies in, and x is the
fraction of power generated in the county by thermal sources.
The value of x is calculated as
__ P ©)

XrP+XnrP
where P is power generation by individual sources, and the
subscripts T and NT represent summations over thermal and
non-thermal individual sources, respectively.

Figure 1 shows the EWIF values for each county based
solely on county power generation sources. EWIF values range
from 0.4 L/KWh to 21.3 L/KWh, with a median EWIF score of
2.99 L/KWh and a standard deviation of 4.60 L/KWh. The figure
shows that the highest EWIF values are seen in the southwestern
U.S., indicating large water loss in power generation
technologies in this region, which is likely due to the high
evaporation rate of water due to a dry climate. This conclusion
indicates a larger contribution to indirect water consumption by
a data center compared to other parts of the country. Since power

Xr

can be transported across county borders and eGRID subregion
borders, the EWIF can be defined here as only a rough
approximation, but general trends at broader geographic scales
(i.e., relatively large EWIF values in the southwestern U.S.) are
independent of the inclusion of electricity transfers.

EWIF (L/kWh)
040 B -

FIGURE 1. EWIF values for every contiguous U.S. county

2.1. Measuring Water Scarcity
The amount of water available for human use after
environmental needs are met varies across each U.S. county.
Several areas across the country are experiencing longer and
more harsh droughts due to climate change, and it is important
to quantify the scarcity of water in our results [20]. Lee et al.
created a US model that quantifies water scarcity and the impact
of water consumption in different US counties [21]. The AWARE
characterization factor (AWARE-US CF), as the metric is named,
compares regional water availability to a reference value that is
bounded between 0.1 and 100 [21]. The factor is defined as
AM Dgir
¢F =D (10)
where A is the county’s AWARE-US CF factor, AMD is water
availability minus demand, and the subscript REF denotes a
universal constant reference value. The factor is geographic-
specific and applied within the calculations of WSUE (Eq. (6)).
A high AWARE-US CF value represents areas of high-water
scarcity. Figure 2 depicts the AWARE-US CF values for each
county in the U.S., showing the largest water scarcity in the
south-central and southwestern U.S., demonstrating a consistent
trend with the EWIF values in Fig. 1.

2.2. Assessing carbon emissions from power generation

Embodied carbon in electricity flows is captured via the
carbon emission factor (CEF) and is used in the CUE calculation
of Eq. (7). CEF quantifies the amount of carbon emissions
embodied in unitary electricity consumption by the percentage
of each category of power production per county. The units for
CEF are kg/KWh. Values of CEF for each power generation
source are based on lifecycle emissions data by the
Intergovernmental Panel on Climate Change and the World
Nuclear Association [22] and incorporate electricity transfers
within the grid, culminating in Scope 3 emissions due to data
center operation [23].
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FIGURE 2. AWARE-US CF values for every cc;ntiguous U.S.
county (adapted from [21])

Figure 3 shows the CEF values for each county. CEF scores
range from 0.007 kg/KWh to 0.902 kg/KWh, with a median CEF
score of 0.17 kg/KWh, and a standard deviation of 0.452
kg/KWh. The largest values appear in the mountain regions (e.g.,
WY, UT, MT, SD, ND) and near the western side of the
Appalachian Mountains (e.g., WV, KY, TN).

CEF (kg/KWh)
0.0073 | I 05021

FIGURE 3. CEF values for every contiguous U.S. county

2.3. WSUE and CUE metrics with on-site power generation
The proposed solution to reduce data center environmental
impacts is the introduction of on-site solar or wind power
generation. Depending on the size, workload distribution and
electricity demand, each data center would be capable of
producing a different quantity of electricity on site. For this
study, it is approximated that the hypothetical data center studied
can produce 25% of their electricity demand on site, on average.
This percentage is a reasonable approximation and is based off
conservative estimates from discussions with industry
executives. Baseline values of PUE and WUE are taken as 1.85
and 1.80, respectively, as typical for many data centers. In this
study, PUE and WUE are constant, although for computer room
air conditioner (CRAC) cooling systems they are generally
higher in the southern U.S. due to the effects of external air
temperature on CRAC coefficient of performance [24].
Calculations of WSUE and CUE via Egs. (6) and (7),
respectively, are modified to enable evaluation of the effects of
on-site solar or wind power generation. Since PUE and WUE are
taken to be constant, then only the factors related to electricity

generation source are altered. Equation (6) may therefore be
modified as
WSUE = AcgWUE + SWlgpp - PUE 1y
where SWigpr is the effective scarce water index that
incorporates the influence of on-site renewable energy. The
presence of on-site renewable energy sources only impacts the
quantity of scarce water within electricity flows, thereby only
altering SWI. The scarce water index is therefore modified by
adding the contributions by the grid power sources as well as the
onsite renewable energy sources:
SWigpr = SWlgxg + EWIFg - Acp - (1 — x¢) (12a)

SWigpp = SWlgxe + EWIFy, - Acr - (1 — x¢) (12b)
where x;; is the fraction of energy consumed by the data center
that originates from the electric grid (off-site), and EWIFs and
EWIF,, are the EWIF values associated with solar and wind
energy, respectively. The first term in Eqgs. (12a) and (12b)
therefore indicates the contribution of scarce water flows from
power generation by the grid, whereas the second term
incorporates the embodied water in the on-site renewables
(captured as EWIF) times the water scarcity metric (Acr).

CUE can similarly be defined as

CUE = CEFgpp - PUE (13)
where the effective CEF incorporates contributions by the grid
and on-site renewable sources:

CEFgpp = CEFgx; + CEFs(1 — x¢) (14a)

CEFgpp = CEFgxg + CEF, (1 — x¢) (14b)
where CEFg and CEFy, are the emission factors associated with
solar and wind energy sources, respectively.

One can view Eqgs. (12) and (14) as weighted contributions
of virtual scarce water and carbon flows from two sources: the
grid with known effective flow parameters of SWI; and CEFj,
and on-site solar/wind with effective flow parameters SW g/
SWI, and CEFs/CEFy, respectively. The SWIs/SWIy
parameter represents the scarce water flow between on-site solar
panels/wind turbines and the data center, but since no grid
electricity transfers occur, then SWI;/SW I, reduces to the on-
site scarce water flow, captured as the water requirement for
solar/wind power generation (EWIFs/EWIFy,) times the local
water scarcity factor (Aqr). The values of EWIFs and EWIFy,
are taken from Vengosh and Weinthal [25] as 0.338 L/kWh and
0.0547 L/kWh, respectively, and are location-independent.

3. RESULTS AND DISCUSSION
3.1. Improvement in WSUE
The improvement in WSUE when implementing on-site

solar power is defined as
WSUE; — WSUE;s
hysuss = (100%) (F—pee—")  (15)

where the subscript GS indicates a value featuring a combination
of grid power (75%) and on-site solar (25%). The improvement
is therefore equal to the negative percentage change in WSUE.
Figures 4 depicts the distribution of Iygyg s predictions. Green
counties see a reduction in WSUE due to the addition of on-site
renewable energy production, while red counties see higher
WSUE values. Many counties experience considerable
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improvements, whereas others have larger WSUE values
because of on-site power generation.

Combining Egs. (6), (11), (12a), and (15) shows that the
value of Iy syg s can be rewritten as

(1~ %) o (SXZG — EWIF)
14 PUE (SWIG) (16)

WUE \ Acr
Relations for wind energy can be derived by modifying Egs. (15)
and (16) by replacing the subscript S with the subscript W, and
similar results are seen in the county distribution of Iy, sy i (Fig.

5) as for Iy syg s (Fig. 4). Since EWIFg and EWIFy, are constant,
then the largest benefit is seen in areas where the ratio S:Vi is
CF

lysyes = (100%)

largest, or areas with a relatively large SW; and relatively low
Acp. Figure 6 depicts this relationship for varying ratios of
SW1;/Ack, pinpointing the possibility of increased WSUE when
the ratio falls below EWIFs. This ratio is therefore the key metric
to gauging the viability of reducing water scarcity footprint for a
given location. The figure also shows that more improvement is
seen for on-site wind power due to the lower EWIF of wind
energy compared to solar energy. Figure 7 provides the
distribution of SWi;/Acr, showing similar patterns as seen in
Figs. 4 and 5, providing confidence in this conclusion. This ratio
is physically defined as being proportional to the scarce water
draw from grid-based power generation versus on-site scarce
water generation, since the latter is defined as EWIFs - Acp
(solar) or EWIFy, - Acr (wind) per Eq. (12). Figures 4 and 5,
when compared to Fig. 2, show that counties with low A, have
little benefit, which agrees with Eq. (16), but counties with low
Acr that border counties with large A-r have maximum benefit
since they have large SWI; values due to some power draw from
their adjacent water-scarce counties.

% Improvement

| =
-6.00 25.00

FIGURE 4. Percent improvement in WSUE after
implementing 25% on-site solar energy production.

% Improvement

oL
-6.00 25.00

FIGURE 5. Percent improvement in WSUE after
implementing 25% on-site wind energy production.
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— Wind

IWSUE

4 6 10
SWig/Aqr, LkWh

FIGURE 6. Percent improvement in WSUE after
implementing 25% on-site solar or wind energy production
for the system in this study based on ratio SWi;/Acg.

0

SWI/AWARE-CF

E
0.00 1064

FIGURE 7. Geographic distribution of SW; /Acr.

3.2. Improvement in CUE
The definition of improvement in CUE values using on-site
solar energy follows the same approach as that for WSUE:

CUE; — CUE
lee.s = (100%) (5 ——)

CUE, (18)
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where again the subscript S can be replaced with W to represent
wind energy. Here, Eq. (18) is combined with Eqs. (13) and (14)
to yield

CEF,
ICUE,S=(100%)<(1—xG)(1— S)) (19)

CEF;
It follows that the improvement in carbon footprint follows
I (1 CEFS) (20)
m f—
CUE,S CEF,

Therefore, the largest improvement is seen where CEFj; is large.

Figure 8 shows the CUE percent improvement values of
each US county from 0% on site to 25% on site solar power
generation for data centers. As expected, almost every county
saw significant improvement in their CUE value when using on
site solar energy as expected. Those counties seeing an increase
in CUE may be attributed to the fact that these counties produce
power through existing wind and hydropower energy, which
both have lower CEF values than solar energy. One can see that
the amount of improvement follows trends seen in Fig. 3 for
CEF; distribution. The benefits of on-site solar are nearly
universal in nature except for a few counties fed by large existing
renewable energy sources from the grid.

~_ Solar to 25% On-Site Solar

9% Change

2655 2341

FIGURE 8: Percent improvement in CUE after
implementing 25% on site solar energy production. The
implementation of wind energy production produces similar
results.

4, CONCLUSION

This study uncovered the key parameters associated with the
existing grid-based environmental metrics as a first-order guide
to implementing on-site power generation. The study found that
the ratio of SW1;/Acr is a good indicator as to the anticipated
improvement in water scarcity footprint from implementing on-
site renewable energy in a given location, with wind energy
providing a larger benefit than solar energy because of the
former’s lower EWIF . The study also found that the reduction in
carbon footprint roughly corresponds to the magnitude of
existing grid-based carbon emission factor, as expected. The
largest potential areas for improvements in carbon footprint are
in mountain regions, specifically WY, UT, MT, SD, ND, WV,
KY, and TN. The areas that can most benefit from on-site

% Change of CUE from 0% On-Site

renewables for decreasing their water scarcity footprint are more
scattered by generally fall in the western portions of the U.S. or
are low-A . counties adjacent to high-A.r counties.
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