Hardening Hypervisors with Ombro

Ethan Johnson, Colin Pronovost, and John Criswell
Department of Computer Science, University of Rochester

Abstract

This paper presents Ombro, a low-level virtual instruction set
architecture (vVISA) which enforces compiler-based security
policies on real-world commodity hypervisors. We extend the
Secure Virtual Architecture (which itself extends the LLVM
compiler’s Intermediate Representation) to support the full
set of hardware operations needed to run an x86 commodity
hypervisor used in some of the world’s largest public clouds,
namely, the Xen 4.12 hypervisor, running in full hardware-
accelerated mode using Intel’s Virtual Machine Extensions
(VMX). We have ported Xen 4.12 to the Ombro vISA and
demonstrated that it can run unmodified guest VMs of real-
world relevance (namely, Linux guests under Xen’s HVM
and PVH modes). Furthermore, to demonstrate Ombro’s abil-
ity to harden hypervisors from attack, Ombro implements
control flow integrity and the first protected shadow (split)
stack for x86 hypervisors. Our performance results show that
Ombro achieves this protection without imposing measurable
overheads on most application benchmarks.

1 Introduction

Various ideas have been proposed and demonstrated that
can improve hypervisor security against low-level attacks
such as memory safety vulnerabilities. One such approach
would be to re-implement the hypervisor in a safe language
such as Rust [1], but this is considered prohibitively labor-
intensive for real-world hypervisors such as Xen [3], Vir-
tualBox [46], or Hyper-V [42]. Another is to provide a
whole-VM trusted execution environment (TEE) that pro-
tects VMs from a compromised hypervisor by isolating and
removing most of the hypervisor from the trusted computing
base [32,41,55,56]; this approach is powerful and promising
but tends to impose heavyweight requirements (e.g. moving
the non-trusted portion of the hypervisor into VMX/SVM’s
non-root (guest) mode, which imposes high overheads e.g.
on VM exit handling) [41, 56] or substantial modifications
to hardware [32, 55]. Enclave-based TEEs such as Intel’s
SGX [30] offer similar benefits but provide a more func-
tionally limited operating environment compared to whole-
VM TEEs. Designs such as HyperSafe [51], which adds
lightweight control flow integrity (CFI) protection to the hyp-
ervisor, make hypervisors more resilient against attack but
face an “arms race” of rapidly evolving attacks [7,8,27,29],
necessitating the addition of further defenses such as a shadow
stack (HyperSafe [51] is vulnerable to attacks that corrupt
return addresses) to remain viable.

When applied to kernel-mode software like hypervisors,
hardening approaches such as CFI must account for the fact

that the raw hardware/software interface provided by the na-
tive ISA is much “messier” than the execution environment
user-mode applications can expect. Low-level operations
which are typically thought of as transparent and orthogo-
nal, such as context switches, VMX/SVM guest entry/exit,
page table updates, and control register modifications, are
fully exposed to host-kernel-mode software. These operations
present numerous opportunities for security invariants such
as CFI enforcement to be undermined when software logic
has been corrupted by a memory safety exploit.

Prior work on the Secure Virtual Architecture (SVA) [15,
17] addresses this issue by extending the LLVM compiler’s
Intermediate Representation (IR) with virtual instructions
(a.k.a. intrinsics) that encapsulate these low-level hardware/
software interactions with principled, higher-level abstrac-
tions intended for use by kernel-mode code. Program state
discontinuities that could break security enforcement are pre-
vented, since operations such as context switches and paging
updates are handled safely by a thin, trusted layer of code
provided by the compiler to implement the virtual instruc-
tions, whose behavior cannot be compromised by bugs in
a kernel or hypervisor built upon them. To date, SVA has
been used to successfully enforce security policies such as
memory safety [16] and CFI [13] on commodity Linux and
FreeBSD OS kernels. Initial support for hardware-accelerated
virtual machines via Intel VMX has been added to SVA [34],
but it lacks several key features needed to support real pro-
duction hypervisors such as Xen [3], VirtualBox [46] and
Hyper-V [42], and also lacks SMP (multiprocessor) support,
a necessity in the modern cloud.

In this paper, we present Ombro, a low-level virtual instruc-
tion set architecture (VISA) designed to support the efficient
and complete implementation of compiler-based security mit-
igations in real-world commodity hypervisors. We extend
SVA to support the full set of hardware features needed to
support the Xen 4.12 hypervisor [3], including virtual APIC
support, model-specific register (MSR) virtualization, and I/O
port virtualization. We also add the first SMP support to SVA
(benefiting non-hypervisor designs as well that are based on it)
and make several key design improvements to SVA’s existing
VMX support [34] to address shortcomings in performance
and its ability to integrate with the Xen codebase. We have
ported Xen 4.12 to the Ombro vISA and demonstrate that it
can run unmodified guest VMs of real-world relevance (Linux
guests under Xen’s HVM and PVH modes) with negligible
performance impacts on most application benchmarks. Ad-
ditionally, as a case study in the kinds of hypervisor security
mitigations whose design and implementation Ombro sup-

ports, we demonstrate the implementation of control flow
integrity with return address protection (shadow/split stack)
using the tools provided by Ombro, and that these mitigations
add no further performance impacts to guest operations.

To summarize, our contributions are as follows:

e We have enhanced the SVA VISA developed in
Shade [34] to support a full-featured production-quality
hypervisor (namely, Xen). We have also added symmet-
ric multiprocessing (SMP) support to the SVA vISA.

e We have developed techniques that ensure that bugs
in hypervisors cannot break return address and control
flow integrity. We have created a prototype of a system,
dubbed Ombro, that uses our enhanced SVA VISA to en-
force these policies on a production-quality hypervisor.

e We have ported the Xen hypervisor to Ombro. This is
the first full port of a full-featured production-quality
hypervisor to the SVA virtual instruction set.

e We have evaluated the performance of Ombro and found
that the vVISA imposes negligible performance impacts
on most guest application benchmarks. We have also
found that the addition of CFI and return address protec-
tion imposes no measurable overheads.

2 Background

Ombro employs virtual instruction set computing
(VISC) [5, 16] to ensure that its security guarantees (which
mitigate control-flow hijacking) are not bypassed via low-
level interactions between the hypervisor and the x86 hard-
ware. Here, we present background information on VISC,
the VISC-based Secure Virtual Architecture (SVA), and its
features and limitations relevant to Ombro.

2.1 Virtual Instruction Set Computing

Virtual instruction set computing (VISC) [5] is a system
design in which the instruction set to which software is com-
piled (the virtual instruction set or vISA) is decoupled from
the instruction set implemented by the processor (the native
instruction set). A trusted code generator translates code from
the virtual instruction set to the native instruction set. This
translation can occur at any time (at compile time, link time,
install time, boot time, or just-in-time during program execu-
tion). The defining characteristic of VISC is that all software
in the system must be translated from virtual instruction set
code to native instruction set code. In an idealized theoretical
VISC system, this includes applications as well as system
software (e.g. operating system kernels and hypervisor execu-
tives), i.e., all code on the system must target the virtual ISA
rather than the native ISA. Practical designs may elect to relax
this requirement within specific domains (e.g. applications
or guest VMSs running in less-privileged hardware modes) to
maintain support for existing native-code applications.

Secure Virtual Architecture (SVA) [15,16] is a VISC infras-
tructure that leverages the trusted code generator to enforce
security policies on all software in the system stack, including
the OS kernel and (optionally) library and application code.
Because software must be translated by SVA’s trusted code
generator, SVA can instrument code during native code gen-
eration to enforce security policies. SVA’s virtual instruction
set is an extended version of the original LLVM Intermediate
Representation (LLVM IR) [39], allowing SVA to use aggres-
sive static analysis to optimize away provably unnecessary
run-time security checks.

SVA extends LLVM IR with new virtual instructions
(called intrinsics) to support low-level privileged operations
such as I/O, MMU configuration, and context switching in
kernel-mode software without the need for native assembly
code or direct access to privileged in-memory hardware data
structures (page tables, etc.) [15]. These intrinsics are im-
plemented by a small library of trusted code (the “SVA-OS
runtime”) which is, architecturally, considered part of the com-
piler, and linked or inlined into the target program as necessary
during translation from virtual to native code. The resultant
VISA provided to kernel programmers is designed to make
it impossible to express computations that would violate the
security policies specified for the system. To the extent that
goal cannot be ensured statically, the SVA-OS implementa-
tion vets inputs and sanitizes outputs at runtime to prevent
raw hardware functions from being used in unsafe ways.

To prevent attacker-compromised kernel-mode software
from simply bypassing the VISA by executing native code,
newer versions of SVA [13-15,22,34] enforce code segment
integrity on the kernel by using software fault isolation [50] to
prevent it from utilizing any kernelspace page-table mappings
that are both writable and executable. This ensures that all
native code has been translated or validated by the SVA code
generator (either ahead of time or by request at runtime) and
contains any necessary instrumentation while not containing
privileged native instructions that would bypass the vISA.

Because it is possible to fully implement kernel-mode sys-
tem software (e.g., OS kernels or hypervisors) using the SVA
vISA’s virtual instructions, compiler-based security transfor-
mations such as control flow integrity (CFI) [4], software fault
isolation (SFI) [50], or memory safety [20] enforcement can
be performed on it at the LLVM IR level without “blind spots”
arising from opaque native assembly or instructions with priv-
ileged side effects. SVA has been used to safely and efficiently
support a variety of security policies and popular OS kernels
over the years. The original SVA prototype enforced both
spatial and temporal memory safety on the Linux 2.4 ker-
nel [15, 16]. Subsequent iterations exchanged full memory
safety for low-overhead CFI enforced on the FreeBSD 9.0
kernel [13] and explored a novel application of lightweight
SFI instrumentation on the kernel to protect userspace applica-
tions from a compromised kernel [14]. Other SVA derivatives
have explored adding protection against cache and speculative

side-channel threats against protected userspace applications
in a Virtual Ghost system [21,22,34].

2.2 Kernel-Mode Memory Protection in SVA

Starting with the Virtual Ghost project [14], SVA has sup-
ported protecting designated sections of the host-virtual ad-
dress space against tampering by kernel-mode (Ring 0) code
using software fault isolation (SFI) [50]. This protection can
be used as a foundation for multiple security policies and can
optionally protect portions of userspace as well as kernelspace
(lower and upper halves of the address space).

The SVA native code translator instruments all load and
store instructions within host-kernel-mode code with SFI
checks that determine whether the access references a virtual
address within the protected region. If so, the check detects a
violation and generates a trap, allowing the SVA VM to take
corrective action, such as alerting the system administrator or
terminating system execution. Otherwise, the load or store is
allowed to proceed normally [14].

SVA’s SFI checks can be implemented using traditional
bitmasking instructions [50] or a fast scheme developed for
Apparition [22] based on Intel’s Memory Protection Exten-
sions (MPX) [30]. The architecture is flexible and can be read-
ily adapted to other hardware protection mechanisms such as
segmentation [30] or memory protection keys [28,30].

The memory region(s) protected by these SFI checks can
be used to store user or kernel secrets where they cannot be
seen or modified by the kernel/hypervisor. Depending on the
needs of particular threat models, enforcement designs, and
system performance, SFI checks can be omitted on loads so
as to protect data against tampering even if it does not need
to be secret [14].

SVA uses this memory protection in its design to make its
other enforcement mechanisms complete while maintaining
high performance. For instance, SVA maintains its own direct
map (one-to-one mapping of all physical memory) within
the kernelspace SFI-protected region, allowing intrinsics to
write to page tables and code pages while leaving the kernel’s
mappings to them read-only; this avoids the need to expen-
sively switch page tables or mappings on every such intrinsic
call [22]. SVA likewise uses its SFI to ensure the integrity of
its own metadata, such as tables tracking the permitted and
current usage types of each physical memory frame [15,22].

In Virtual Ghost [14], Apparition [22], and Shade [34], a
userspace SFI-protected region is used to hide application
secrets from a compromised OS kernel. In Ombro, we will
use SVA’s SFI to protect hypervisor control stacks and enforce
return address integrity (Section 7).

2.3 VMX Support in SVA

Shade [34] added initial support for Intel VMX to SVA.
Shade extended the SVA vISA with intrinsics and conceptual
idioms for management of hardware-accelerated guest VMs—
specifically, VM entry and exit (world switches), extended

paging, and VMCS management—while ensuring that these
newly introduced capabilities would not compromise SVA’s
ability to enforce the security policies introduced in prior
work (specifically Virtual Ghost [14] and Apparition [22]).

VMX facilitates world switches (the host/guest context
switches associated with VM entry and exit) by giving the
hypervisor open-ended control over each state element—
instruction pointer, control and segment registers, etc.—as
an individual field within a special in-memory data structure
called the Virtual Machine Control Structure (VMCS) [30].
Different state elements are handled differently according
to their importance in maintaining consistent system oper-
ation, and this behavior can (to an extent) be controlled by
the hypervisor via flags in the VMCS. Some fields can be
bidirectionally saved/restored by the processor as part of the
host/guest-mode transition; for others, the hypervisor is ex-
pected to load an arbitrary value into the VMCS to which the
register will be reset on VM exit. Others, such as the general
purpose registers, are untouched by entry and exit, requiring
the hypervisor to save and restore them itself.

This makes security enforcement on hypervisors challeng-
ing because the architecture implicitly assumes the hypervisor
can be trusted. The ability to set host-state fields and entry/exit
control flags in the VMCS affords countless opportunities for
a compromised hypervisor to exploit VM exit to escape CFI
enforcement and other security measures. Besides the instruc-
tion pointer itself, fields such as the stack pointer, segment
registers, and control registers (which can disable security
features such as protected mode, No-Execute (NX) pages,
and SMEP [30]) can completely redefine the hypervisor’s
environment, rendering many protections useless.

Shade addresses these issues in SVA by encapsulating the
VM entry/exit process (VMLAUNCH/VMRESUME) into an SVA
intrinsic, runvm, which handles switching of sensitive state
during world switches [34]. runvm has the semantics of a
self-contained function call, contrasting with the broad, open-
ended modification of system state possible with the native
interface. Shade keeps context-switched guest state for the
host and each guest VM within SFI-protected SVA internal
memory (Section 2.2), providing access to individual guest
state fields only through targeted intrinsics. The VMCS itself
is likewise stored in protected memory and accessible to the
hypervisor through intrinsics (read/writevmcs) which only
permit access to non-sensitive fields (or vet/sanitize input/
output for partially sensitive fields). VMCS fields related
to features that SVA needs to control at a higher level (e.g.
extended paging) are blocked by read/writevmcs, forcing
the hypervisor to use the appropriate higher-level intrinsics.

While Shade laid important high-level groundwork for
safely supporting the use of VMX acceleration in an SVA-
based system, it fell short of being able to support a full-scale
commodity hypervisor like Xen (or even a lightweight virtual-
ization support driver like KVM [36]). Shade was developed
and evaluated with a minimalist “toy” hypervisor that exer-

cised core VMX operations without the complexity of a full
hypervisor. This facilitated the initial design and debugging
of complex intrinsics such as runvm, but precluded an end-
to-end performance evaluation and left unclear the question
of whether the design choices made in the VISA would truly
be conducive to porting a real hypervisor without invasive
code changes or performance impacts. Shade also lacked
support for key VMX features important to real-world hyper-
visors such as accelerated interrupt controller (APIC), model-
specific register (MSR), and I/O port virtualization [30], and
only supported vetting of a small subset of VMCS fields. Our
work remedies these shortcomings, allowing us to port Xen
4.12 to the SVA vISA and use it to enforce and evaluate a se-
curity policy of real-world interest (return address protection
for CFI) on a real-world hypervisor.

3 Threat Model

Our threat model assumes that we have a system running a
single bare-metal hypervisor, such as Xen, on the hardware.
This hypervisor hosts one or more guest virtual machines
running various operating systems. The hypervisor is benign
but may have exploitable memory safety errors that permit
control-flow hijacking attacks such as return-to-libc [49] and
return-oriented programming (ROP) [47] attacks. As we want
to mitigate advanced control-flow hijacking attacks [7,8, 18,
27], our defense must protect the integrity (but not necessarily
confidentiality) of return and return-from-interrupt addresses.
Non-control data attacks [9], Data-Oriented Programming
(DOP) attacks [29], and other memory safety attacks that
do not corrupt return addresses, function pointers, and other
control data are out of scope.

4 Design

In this work, we present three major design contributions:

1. We extend and improve upon the SVA virtual instruction
set architecture (vVISA) of the Shade [34] project to effi-
ciently support the full set of hardware features needed
to run the Xen 4.12 hypervisor [3] in support of guest
VMs accelerated using the Virtual Machine Extensions
(VMX) [30] feaures of modern Intel x86-64 processors.

2. We extend the SVA VISA to support symmetric multipro-
cessing (SMP), an essential feature of modern systems
that historical SVA designs notably lacked.

3. We present a design for an efficient and straightforward
scheme enforcing forward-edge control flow integrity
(CFI) with return address integrity (i.e. backward-edge
CFI). This serves as a case study in how the SVA vISA
can be used to support sound and efficient enforcement
of security policies on commodity hypervisors, and also
represents an advancement in its own right on the state
of the art [51] as the first efficient protected shadow stack
design for a hypervisor.

Guest

g Applications G_uesF G.ueSF VMX

S (Native Code) || Applications || Applications |R3| Non-Root
3 |24 (Optional) (Native Code) || (Native Code) Mode
§ - Non-Accelerated (Accelerated
% |2 | [PV GuestKemel|| Guest Kernel || Guest Kernel |, HZM”zVH
27| | | (Native Code) || (Native Code) || (Native Code) uests)
E — (Optional)
> |5 Xen Hypervisor (SVA VvISA Code))

x - - ~—Virtual ISA

S Ombro Virtual Machine)

o ~— Native ISA

Z L Processor

Figure 1: Ombro Architecture

Figure 1 depicts the overall architecture of Ombro as used to
enforce security policies on the Xen 4.12 hypervisor.! Om-
bro permits the hypervisor to run in the processor’s highest-
privileged mode—Ring 0 of VMX root mode—without rely-
ing on hardware privilege isolation to enforce security poli-
cies on the hypervisor. The hypervisor is compiled to the SVA
VISA rather than native code, preventing computations from
being expressed that could violate security policy. The Ombro
Virtual Machine’s” SVA-OS runtime support library—a thin
layer of trusted native code provided by the SVA native code
translator (i.e. the compiler; see Section 2.1) to implement
the dynamic security checks required to safely implement
the VISA on native hardware—runs alongside the hypervisor
in this fully privileged mode, having been linked or inlined
directly into the compiled hypervisor by the SVA native code
translator. Software fault isolation (SFI) [50] (Section 2.2
and control flow integrity (CFI) [4] provided by SVA ensure
that the hypervisor, despite running with full hardware priv-
ileges, cannot compromise the Ombro Virtual Machine or
escape the VISA to run unrestricted native code.

Notably, Ombro does not require guest VM code (or host
userspace application code for an OS-resident hypervisor)
to be compiled to the SVA vISA. The hypervisor/host OS
continues to employ standard x86 privilege isolation features
(namely, privilege rings and VMX root/non-root modes) to
isolate guest VMs and userspace applications from the hyper-
visor/kernel and each other, allowing guests and applications
to run unmodified native code. Only the hypervisor/host ker-
nel itself must be ported to the SVA vISA so that it can be
safely controlled within the processor’s most privileged mode.

Section 5 presents the extensions and improvements we
make to the Shade [34] version of the SVA vISA to support a
full commodity hypervisor (Xen 4.12). Section 6 describes
specific enhancements to the SVA design that are necessary
to support multi-processor systems, addressing a weakness in
prior SVA work. Section 7 presents a design that utilizes the
SVA VISA to efficiently and soundly enforce return address

!Our design supports any x86-64 hypervisor in principle, including those
integrated with a host OS kernel; for concreteness, we focus on Xen in this
work. In an OS-resident hypervisor, host userspace applications take the
place of non-accelerated paravirtual guests in Ring 3 of VMX root mode.

2«Virtual machine” here refers to the language-theoretic sense of the term,
not to the concept of a “guest virtual machine” provided by hypervisors. We
aim to consistently use “guest VM to refer to the latter throughout this work.

integrity on Xen to defend the hypervisor against advanced
control-flow hijacking attacks.

Guest Virtualization Modes Supported. The Xen 4.12 hyp-
ervisor, for legacy reasons, supports a variety of operating
modes for guest VMs on the x86-64 platform, which can be
used simultaneously for different guests [54]. These represent
a continuum of hardware acceleration usage and guest OS
support, ranging from the traditional non-accelerated para-
virtualization described in the original Xen paper [23] (re-
ferred to as “PV” mode in Xen’s documentation [54]), to
VMX-accelerated full virtualization supporting native guests
(“HVM” mode), to a modern paravirtual approach utilizing
VMX acceleration with Xen-aware guests (“PVH” mode).

Because classic PV mode is being de-emphasized by the
Xen project and likely to be phased out in the future [54],
Ombro’s design only supports VMX-accelerated guests (i.e.
HVM and PVH) and does not provide a complete set of
intrinsics for the hypervisor to support PV guests running
in usermode (host Ring 3). However, doing so would be a
straightforward extension of the existing SVA vISA, which
fully supports [14-16,22,34]) OS kernels with userspace ap-
plications in Ring 3. Our prototype (Section 8) does exactly
this (in a limited way with some shortcuts) for implementation
convenience. At times, we refer to PV concepts in design sec-
tions for the sake of clarity to readers familiar with Xen. They
are not, however, relevant to our security design, as the design
is intended for a modern Xen installation utilizing HVM/PVH
for all guests including the control domain (dom0).

Terminology: Guest VMs, Domains, vCPUs, etc. SVA in-
terfaces (following Intel’s convention) use the term “guest
virtual machine” to refer to a singular guest CPU virtualized
by a hypervisor. Each such guest CPU exists in one-to-one
correspondence with a Virtual Machine Control Structure
(VMCS) [30]. From the physical CPU’s and SVA’s perspec-
tive, it does not matter how the hypervisor may choose to
group those virtual CPUs together. However, this distinction
is important to Xen, which refers to the overall VM (which
may include multiple emulated CPUs) as a “domain” and
individual virtualized CPUs as “vCPUs”. Each vCPU thus
corresponds to exactly one VMCS, and to one “guest VM”
from SVA’s perspective. Xen performs context switches on
a per-vCPU basis, not per-domain (different vCPUs from
the same or different domains are context switched as in-
dependent entities), which is in line with Intel’s and SVA’s
perspective. In this paper, we sometimes refer to “vCPUs”
rather than “guest VMs* when this distinction is important.

5 vISA Additions and Improvements

Our experience porting Xen to the SVA vISA developed
for Shade [34] led us to extend and improve upon the VISA,
adding missing support for hardware virtualization elements
used by Xen and mitigating disruptions to Xen’s performance
and code structure. We describe these improvements below.

5.1 Securing Higher-Level VMX Features

The Intel VMX feature set is controlled primarily through
control and state fields in a large (page-sized) in-memory,
per-vCPU data structure called the Virtual Machine Control
Structure (VMCS) [30]. Most VMX settings and subfeatures
are controlled straightforwardly via individual VMCS fields
or bits within a field consolidating similar controls. Some
subfeatures, however, are more complex and are spread across
multiple VMCS fields; some even utilize subsidiary control
pages that the hypervisor must provide and link into the main
VMCS by storing (host-)physical pointers into specific fields.

Shade’s VISA support for the VMCS (Section 2.3) is in-
sufficient to manage multi-field controls and substructures
because its read/writevmcs intrinsics operate on individual
fields and cannot readily account for behavioral dependencies
between them (e.g. fields activated by bits in other fields, or
structure pointers that must be set prior to enabling a fea-
ture in a different field). Thus, Shade must err on the side of
caution wherever invalid field combinations could lead to se-
curity holes or undefined behavior: it categorically blocks the
hypervisor from writing to such fields and forces the features
they control to be disabled or utilized in a hardcoded fashion
preconfigured by the SVA runtime.

While this achieved Shade’s goal of ensuring security for
the host system while supporting basic VMX functionality, it
locks the hypervisor out of performance- and functionality-
critical VMX features such as extended paging, interrupt con-
troller (local APIC) virtualization, and MSR? and 1I/0 port
virtualization. Shade provided higher-level intrinsics support-
ing extended paging by extending SVA’s existing support for
vetting host page table updates [34] but did not attempt to de-
sign VISA support for APIC, MSR, or I/O port virtualization.

Ombro extends the design of the VISA to support APIC,
MSR, and I/O port virtualization as first-class idioms; Table |
summarizes the new intrinsics. As all three of these features
entail both multi-VMCS-field dependencies and substructures
linked into the VMCS (and APIC virtualization interacts with
MSR virtualization), we address them via similar techniques.

MSR and I/O virtualization are the more straightforward
of these to support. By default, VMX guests are blocked from
accessing MSRs or performing port I/O (i.e., rd/wrmsr and
port I/O instructions cause VM exits) [30]. When MSR or
I/O virtualization is enabled in the VMCS, the processor will
selectively allow guests to read or write particular MSRs or
I/0O ports based on whether their corresponding bits are set in
the MSR and I/O bitmaps, which are substructures linked via
host-physical pointers in the VMCS. This hardware design
has multiple security implications in an SVA system.

Firstly, as MSRs control privileged processor features (in-
cluding crucial security features like long mode and page-

3Model-specific registers (MSRs) are a class of indexed control and in-
formation registers used extensively in the x86 ISA to manage privileged
processor features [30]. They have widely varying semantic and security
implications and represent a substantial portion of the x86 ISA’s complexity.

Table 1: APIC, MSR, and I/O Virtualization Intrinsics

Name (Arguments) Description

vlapic.enable Enable APIC virtualization for
(paddr virtual_apic.page, the active VM using the xAPIC
paddr apic_access_page) (MMIO) interface

Enable APIC virtualization for
the active VM using the x2APIC
(MSR) interface.

Disable the currently active
VM’s local APIC (or use exit-
based virtualization).

Enable posted interrupt process-
ing for the currently active VM.
Disable posted interrupt process-
ing for the currently active VM.

vlapic.enable_x2apic
(paddr virtual_apic_page)

vlapic.disable

posted_interrupts_enable
(u8 vector, paddr descriptor)
posted_interrupts_disable

msr_intercept.{get, set,clear}
(int vmid, u32 msr, enum rw)

Get, set, or clear an MSR inter-
cept for the specified VM.

Get, set, or clear an I/O port
intercept for the specified VM.

io_intercept.{get, set,clear}
(int vmid, ulé port)

level execute permissions [30]), the VISA cannot allow un-
trusted host software (e.g. the hypervisor or host kernel) to
access them arbitrarily. Thus, neither of the rdmsr or wrmsr
instructions are present in the SVA vISA; relevant processor
features are managed through higher-level vISA idioms or
controlled directly by SVA. A guest VM, however, can exe-
cute native (non-vISA) kernel-mode code; its access to MSRs
is therefore constrained only by the MSR bitmaps. Therefore,
it is necessary for Ombro to constrain the settings of the MSR
bitmaps on a per-MSR level.

Secondly, the bitmaps themselves, being VMCS substruc-
tures addressed via raw host-physical pointers, would repre-
sent a security hole if the hypervisor were allowed to control
them directly. A compromised hypervisor could configure
the processor to use bitmap addresses corresponding to arbi-
trary physical memory, including SVA-protected pages (Sec-
tion 2.2), allowing it to trick SVA into overwriting protected
memory (since SVA must write to the bitmaps to ensure guests
exit when accessing security-sensitive MSRs) or infer the con-
tents of protected memory based on a guest’s behavior.*

Ombro addresses these issues by allocating and taking
ownership of the MSR and I/O bitmaps itself in protected
memory, as it does with the VMCS (Section 2.3). The
msr_intercept.clear intrinsic (Table 1) checks the pro-
vided MSR index against a whitelist of known-safe MSRs
that guests can access without compromising Ombro’s secu-
rity policies. 1o_intercept.clear does not need to impose
any restrictions under Ombro’s threat model, as the only need
is to prevent abuse of the bitmap substructure (per-port filter-
ing is available for potential use under other threat models).

APIC virtualization (APICv) poses similar challenges but is
more complex. Modern processors support both legacy xAPIC
mode (in which the APIC is controlled via a memory-mapped
I/0 (MMIO) interface) and the newer x2APIC mode (which is
controlled via MSRs) [30]. Traditionally, hypervisors would

4While Ombro’s threat model (Section 3) does not require confidential-
ity of SVA-protected memory, other SVA-based systems such as Virtual
Ghost [14] and Shade [34] do, making this a relevant design consideration.

configure VMX to force a VM exit on all APIC accesses,
either via extended paging (for the xAPIC MMIO interface)
or by configuring the MSR bitmaps to force exits for APIC-
related MSRs (for x2APIC). This allows the hypervisor to
fully emulate the APIC in software, but is slow.

APICyv allows certain common APIC accesses by the guest
to be virtualized in hardware without a VM exit. The hyper-
visor provides a virtual-APIC page in memory whose fields
stand in for the real APIC’s registers when a guest attempts
to access them [30]. Guest reads to APIC registers via the
MMIO (xAPIC) or MSR (x2APIC) interfaces see the values
provided by the hypervisor in the virtual-APIC page. Guest
APIC writes are virtualized by hardware without a VM exit
in situations involving the task- and processor-priority regis-
ters, end-of-interrupt signaling, and self-IPIs; unvirtualizable
writes are stored to the virtual-APIC page followed by a VM
exit so the hypervisor can handle them conventionally.

Relatedly, posted-interrupt processing [30] allows a hyp-
ervisor to send interrupts to a guest running on a different
processor without forcing that guest to VM exit. When a
processor in guest mode receives a (real) inter-processor inter-
rupt to a specified notification vector, it will (without exiting)
check an in-memory posted-interrupt descriptor to see if one
or more virtual interrupt records have been deposited within
(e.g. by the hypervisor on the sending CPU), and if so, deliver
them to the running guest through its virtual APIC.

Both features effectively map pages of host-physical mem-
ory into a guest’s address space with (limited) write access,
posing a clear security risk under our threat model, as this
could be used to defeat SVA-protected memory (e.g. the re-
turn address stacks described in Section 7). Unlike with MSR
and /O port virtualization, it is not convenient to simply have
Ombro take ownership of the virtual-APIC page and posted-
interrupt descriptor in protected memory, as the hypervisor
needs to frequently read and write to them for normal oper-
ation. Thus, to allow the hypervisor to safely control these
pages, our APICv intrinsics (Table 1) check and record the
VMCS’s references to them in SVA’s memory metadata tables
(which track the usage of every 4-kB physical memory frame;
see Sections 2.2 and 6.1) as if they were page mappings acces-
sible to the hypervisor. The hypervisor is thus only allowed
to use non-sensitive pages it “owns” as APICv VMCS sub-
structures. Additionally, Ombro ensures that the vector used
for posted-interrupt notifications does not overlap with any
intercepted by SVA.

5.2 Guest Context Switching Optimizations

The x86 platform supports context switching of floating-
point unit (FPU) state using the XSAVE and XRSTOR instruc-
tions [30]. These instructions save or load a processor’s entire
FPU state, as well as that of several non-FPU features such
as vector and memory protection extensions, as a several-kB
monolithic data structure; system software is thus architected
to perform these slow operations as infrequently as possible.

Xen refrains from using the FPU during its own execution,
leaving guest state untouched and allowing Xen to only per-
form XSAVE/XRSTOR when context switching from one guest
vCPU to another.

Shade [34] took the straightforward but inefficient approach
of context switching FPU state on every VM entry/exit. This
provided a clean abstraction wherein no guest state is ever
active on the processor in host mode or vice versa, but port-
ing Xen to the SVA vISA for Ombro showed this to be a
flawed design, yielding more than 200% overhead over base-
line (non-SVA) Xen in our no-op hypercall (VM entry/exit)
microbenchmark and unacceptably high overheads of up to
60% on VM-exit-heavy guest workloads (Section 10).

Ombro eliminates this source of overhead by extending
the SVA VISA’s existing thread abstraction, which can be
context switched independently of processor privilege level
transitions, to include guest VM (VMX non-root mode) state
in addition to userspace host process (Ring 3) state as in prior
SVA work [14, 16]. This better matches how real-world hyper-
visors like Xen model context switching and allows FPU state
to be switched on vCPU context switches instead of requiring
it on every VM entry/exit. Because slow-switching elements
of the guest’s state (the FPU, some MSRs, etc.) are thus active
even while the system is in host mode, this provides a slightly
less flexible programming model to the hypervisor than in
Shade, but these limitations are non-issues in practice and
can be worked around: Xen already avoids using the FPU
in hypervisor context; an OS-integrated hypervisor would
simply allocate separate SVA threads for guest VMs and host
processes; and a hypervisor could free up the FPU for itself
by context switching to a dummy SVA thread not associated
with a guest VM or host process.

5.3 VMCS Management Optimizations

Ombro makes two additional improvements to the SVA
VISA to eliminate overheads related to VMCS management
induced in Xen by the Shade [34] design. The foremost of
these is that, unlike the native ISA, Shade only permits a
single VMCS to be loaded on a CPU at a time. The native
ISA only permits one VMCS to be active at a time, but others
need not be unloaded to load a new one [30], allowing them
to remain cached by the hardware for future context switches.
This distinction is crucial to performance; we found via an
informal benchmark that modifying Xen to explicitly clear
(flush) the outgoing VMCS in every context switch induces
unacceptably high (over 4x) runtime overhead on guests when
the machine’s physical CPUs are oversubscribed (i.e., when
vCPU context switches are frequent). Ombro addresses this
limitation by loosening the VISA to allow multiple loaded
VMCSes to coexist, relying on the mutex in the SVA thread
structure (Sections 5.2 and 6.1) to ensure a VMCS cannot be
loaded on multiple CPUs at once (which is undefined behavior
in the native ISA [30]).

The second improvement changes VMCS initialization (the
allocvm intrinsic) to provide benign defaults for all security-
sensitive VMCS and guest state fields rather than requiring
the hypervisor to specify them up-front. While VMCS con-
struction is not performance-critical for Xen, it occurs early in
vCPU creation before Xen has determined most of the guest’s
initial state, making it awkward to port Xen to use Shade’s
interface. Ombro’s interface is more general and agnostic to
hypervisor design choices.

6 SMP Support in SVA

Ombro adds symmetric multiprocessing (SMP) support to
SVA that all previous SVA systems [13—-16,21,22,34] lacked.
This required several changes to the internal design of the
SVA runtime library to make it thread-safe and to add support
for multi-propcessor TLB coherency. However, we made no
changes to the outward-facing SVA-OS virtual instruction
set; the original design [15—-17] proved general enough to be
applicable to both uni- and multi-processor systems.

6.1 Thread Safety and Reference Counting

SVA maintains several data structures in its internal pro-
tected memory (Section 2.2) to track system state that it main-
tains on behalf of the hypervisor/OS kernel and to ensure
that its intrinsics are not used to configure the system in a
way that could undermine other security protections. These
include thread structures used for context switching host pro-
cesses [16] and guest vCPUs (Section 5.2) and a table tracking
typed references to each physical memory frame to prevent
host-kernel-mode software from using its control over the
MMU to evade SVA’s memory protections or code integrity
enforcement [15].

As these structures must be thread-safe in a multi-processor
system, Ombro adds locking to SVA’s thread structures and to
each entry in the frame usage table. Intrinsic calls attempting
to load or save a thread or to change a frame’s usage type
must obtain the relevant lock to prevent races. Incrementing/
decrementing a frame’s reference count in the table when a
page mapping is updated is a lock-free operation utilizing an
atomic compare-exchange loop to perform the update while
checking for integer overflow/underflow.

Additionally, Ombro expands the frame reference counts
themselves to separately count read-only and writable page
mappings to each frame. Prior SVA work [15,22,34] did not al-
low system software to create any mappings to SVA-protected
frames even when they only require tamper-protection and not
confidentiality (e.g. kernel code or page tables). This required
ad-hoc (and OS-specific) handling in SVA of special cases
like the kernel’s direct map and read access to page tables.
Ombro allows these to be handled through ordinary intrinsic
calls, making SVA more system-agnostic and allowing Xen
to continue supporting non-VMX PV guests under Ombro.

6.2 TLB Shootdowns

In an SVA system, physical memory frames used for
security-sensitive purposes such as page-table pages, host-
kernel-mode code, or SFI-protected memory (e.g. return ad-
dress stacks in Ombro—see Section 7) are tracked by SVA
so it can prevent system software from mapping them into
the virtual address space with inappropriate permissions or
outside the SFI-protected region [14, 15,22]. To prevent use-
after-free attacks based on stale TLB entries, SVA flushes
the TLB whenever a frame’s usage type changes and one
or both of the types involved are security-sensitive (because
x86 does not support selective TLB flushes based on physical
addresses [30], a full TLB flush must be used).

On multiprocessor systems, this TLB flush must include
all processors, necessitating TLB shootdowns. Ombro im-
plements this by broadcasting an inter-processor interrupt
(IPI) [30] to all processors at a reserved interrupt vector, which
is received by an SVA handler that performs each local TLB
flush. The processor initiating the shootdown will not release
its lock on the frame’s usage type until all other processors
have acknowledged completion of the flush, ensuring that
software cannot create a conflicting mapping based on the
new type that would violate security policy.

7 Return Address Integrity

To defend against advanced control-flow hijacking attacks
as described in our threat model (Section 3), Ombro must pro-
tect the integrity of return and return-from-interrupt addresses
in Xen. We address this by using the VISA primitives pro-
vided by SVA to implement a splif stack in Xen, where return
addresses are stored on one stack (called the control stack)
while local variables are stored on a separate stack (called
the data stack). The control stack is protected against tamper-
ing using SVA’s kernel-mode memory protection mechanism
(Section 2.2), while memory writes utilizing dynamic point-
ers or offsets that could be controlled by an attacker are only
permitted to access the data stack in ordinary (unprotected)
Xen memory.

7.1 Security Guarantees

Ombro ensures return address integrity (all functions re-
turn control flow to their dynamic callers) by enforcing the
following invariants on the hypervisor at runtime:

Invariant 1. Function calls always save the return address
on the control stack, or do not save any return address (e.g.
tail calls).

Invariant 2. Returns will always retrieve the return address
from the correct location on the control stack, i.e. into which
the return address was saved by the matching dynamic caller.

Invariant 3. Control stacks cannot be corrupted by any
code outside of trusted SVA-OS intrinsics, even when memory
safety errors are exploited.

Invariant 4. System software cannot use an SVA-OS intrinsic
to tamper with a control stack’s contents or a control stack
pointer on its behalf.

7.2 Enforcement Design

In a split stack design, the control and data stack are tracked
by separate stack pointers that can be incremented and decre-
mented independently [10,59]. In Ombro, we use the native
x86 stack pointer register, RSP, for the control stack, so that
call and return instructions naturally use the control stack for
return addresses. This maintains Invariant 1 and contributes
to Invariant 2. The data stack is tracked by a free general-
purpose register reserved from the callee-saved set (R15 in
our prototype). The compiler is modified accordingly to facil-
itate this; function prologues and epilogues create and destroy
stack frames using the data stack pointer, leaving the control
stack pointer to be adjusted only by the return-address pushes
and pops performed by call and return instructions.

Call and return instructions are the only ones permitted
to modify the control stack pointer RSP outside of SVA-OS
intrinsics. They always respectively decrement or increment
RSP by exactly 8 bytes (the Ombro compiler will not emit
returns that pop additional values off the stack), ensuring that
only the relevant return address is affected. No other data is
stored on the control stack besides the single return address
pushed by each call and popped by the corresponding return;
the data stack is used for local variables, argument passing,
and callee-saved registers. As forward-edge CFI prevents
functions being entered except through a call (non-tail-call
jumps can only target another location within the current
function), calls and returns are guaranteed to occur in correctly
nested (matching) order. Hence Invariant 2 is ensured.

Because calls and returns occur in nested order, underflow
of the control stack pointer cannot occur. Overflow is ad-
dressed by placing a guard page at the end of each control
stack; guard pages are marked as invalid in the page tables,
ensuring that any attempt to read or write beyond the space
allocated for a control stack will be intercepted and prevented
by an SVA fault handler.

Ombro instruments all host-Ring-0 code outside of SVA-
OS intrinsic implementations with SFI checks on memory
stores (Section 2.2), ensuring that any attempts to write to a
protected virtual address region will be caught and prevented.
SVA’s enforcement of code segment integrity (Section 2.1)
in conjunction with forward-edge CFI [13,22] ensures that
these SFI checks cannot be bypassed even in the presence of
memory safety errors. The control stack is allocated within
the SFI-protected virtual address region by SVA on Xen’s
behalf. Only call and return instructions are exempted from
SFI checks (so that they can access the control stack as in-
tended); these are generated by the compiler such that they
always access the stack using a predictable static offset from
RSP, so they cannot be used to access any other location in
service of an exploit. Hence Invariant 3 is ensured.

The SVA vISA provides no means for system software to
set or adjust the host-Ring-0 control stack pointer RSP, or to
write to any location on a control stack, except pushing/pop-
ping from it via calls and returns. SVA allocates a control
stack for each CPU (Xen allocates hypervisor stacks on a
per-physical-CPU basis) and points RSP to it as a side effect
of SVA’s boot-time per-CPU initialization; thereafter, SVA
maintains the integrity of RSP across all intrinsic calls, context
switches, and VM entry/exit. Per our threat model (Section 3),
the hypervisor is considered benign prior to exploitation by a
memory safety error; SVA initialization occurs during early
boot before significant attack surfaces become available (there
is no network yet, nor have any guest VMs been started, in-
cluding the dom0 control domain). The SVA-OS intrinsic
implementations themselves are part of the trusted comput-
ing base and thus assumed to correctly implement the vISA,
ensuring that Invariant 4 is upheld after initialization.

8 Implementation

The prototype we built to evaluate Ombro is based on
source code for the SVA-OS runtime support library (see Sec-
tion 2.1, Figure 1, and Section 4) inherited from the Shade [34]
project and other previous SVA work [14-16,22]. We signifi-
cantly modernized and refactored the codebase to address lim-
itations of prior work, which included adding multi-processor
support and overhauling the page reference tracking system to
be more flexible (Section 6). Overall, we improved the code
to be substantially less fragile and more maintainable, and
generalized aspects of the code that were specific to using
SVA with OS kernels (and FreeBSD in particular), such that
it could support a bare-metal hypervisor like Xen while retain-
ing support for OS kernels (including those with integrated
hypervisors). We upgraded SVA to be based on the LLVM
10.0.0 compiler [2] instead of LLVM 3.1 as in Shade [34] and
prior work. In parallel, we ported the x86-64 implementation
of Xen 4.12 [3] to target Ombro’s version of the SVA VISA,
linking it at compile time with the SVA-OS runtime support
library (as in prior SVA work).

Our software trusted computing base (TCB) relative to our
threat model (Section 3) consists of the SVA runtime library
(11,453 lines of code (LOC)), our CFI and SFI passes added to
the LLVM compiler (792 LOC), and non-pass modifications
to LLVM implementing our split stack transformation (497
LOC added/changed), totaling 12,742 LOC.

Porting Xen 4.12 to the SVA vISA and supporting Ombro’s
split stack transformation entailed adding/changing <3,389
LOC? (out of 313,377 total in Xen—about 1%), mostly in low-
level code dealing with page tables, VM entry/exit, VMCSes,

5We counted non-comment/whitespace lines using sloccount [52] for
the SVA library and passes and manually from git diffs for the rest.

SMost changes are gated behind #ifdefs, leaving the original code in
place; we took the difference between vanilla Xen and the Ombro port using
sloccount and added twice the number of removed lines from git diff
as an upper bound on the undercount.

and system boot. By comparison, prior work’s port of Linux
2.4.22 to SVA [16] modified 5,066 LOC out of 632,469 total
(0.8%). This shows that the difficulty of an SVA port scales
roughly but not exactly with the scope of the system.

As Section 4 describes, Ombro’s security design assumes
that all domains are used only in VMX-accelerated modes
(HVM and PVH), but our prototype retains partial support
for classic PV mode. Although Xen 4.12 supports a PVH
dom0, we found it useful to use a PV domO in order to have a
working, debuggable environment while porting VMX-related
components to SVA, as the dom0 is responsible for controlling
Xen and providing hardware drivers. We did not attempt to
fully port Xen’s PV code to SVA, leaving some native assem-
bly and unsafe (to our threat model, not Xen’s) workarounds
in place, though this could be completed with a little extra
work and minor enhancements to the SVA vISA. Since we
benchmarked (Section 10) within a PVH domU, we do not
expect significant performance differences between a PV and
PVH dom0, especially since we used the same configuration
for both Ombro and baseline Xen.

Further Implementation Experience Discussion. Some
readers may be interested in further discussion of our experi-
ence porting Xen to the SVA vISA and how that experience, as
well as our incremental performance evaluations throughout,
fed back into our design process and motivated specific design
changes. For reasons of space, that discussion is deferred to
Appendix B.

9 Security Analysis

Prior work [7,8, 18,25,27] has shown that defenses relying
on CFI [4] to mitigate memory safety attacks must prevent
the corruption of return addresses in order to repel advanced
control-flow hijacking attacks, as static determination of the
call sites to which control flow may return leaves sufficient
loopholes for an attacker to perform arbitrary computation [8].
To this end, Ombro implements a split control/data stack
in Xen (Section 7) and uses SVA’s SFI-based kernel-mode
memory protection facility (Section 2.2) to protect the control
stack (and hence return addresses) from tampering.

Zhou et al. [58] proposed a framework for evaluating the
attack surface exposed by a security policy providing return-
address protection, drawing from Goktag et al.’s [27] taxon-
omy classifying the different types of control-flow “gadgets”
that can be used by an attacker to assemble a code-reuse attack
in the presence of CFI. Call-site (CS) gadgets begin at a return
point following a call instruction, and Entry-point (EP) gad-
gets begin at the entry point to a function. Orthogonally, they
classify the methods by which gadgets can be linked together
to form a “chain” useful for computation: by corrupting return
addresses on the stack (return-oriented programming), indi-
rect jump targets (jump-oriented programming), or function
pointers (call-oriented programming). Depending on the CFI
policy in effect and the availability of gadgets in the target

program, it may be possible and/or necessary to mix differ-
ent gadget types and chaining methods to achieve a practical
chain. Pure call-oriented programming, in which only func-
tion pointers are manipulated to link gadgets, turns out to be
difficult or impractical to achieve in many cases, particularly
in scenarios where it is not possible for the attacker to repeat-
edly exploit memory safety errors; return- or jump-oriented
gadget linking must typically be used to perform initial setup
before the attacker can pivot to a call-oriented chain [7,27].

Because Ombro’s split stack design prevents any corruption
of Xen’s control stack (which includes return as well as return-
from-interrupt addresses), return-oriented gadget linking is
categorically precluded. Additionally, the SVA vISA does not
include LLVM’s indirect jump (indirectbr) instruction and
does not need it to support Xen, the Linux kernel [16], or the
FreeBSD kernel [13, 14]. Thus, jump-oriented gadget linking
is precluded. Cumulatively, this severely limits the ability of
an attacker to assemble a useful gadget chain, particularly
in single-exploit scenarios, as only call-oriented chaining is
possible. That, in turn, is further limited by Ombro’s forward-
edge CFI protection.

Ombro’s label-based forward-edge CFI scheme is based
on that of KCoFI [13]; it is relatively coarse-grained, allow-
ing indirect calls to target any valid function entry point (but
nowhere else). Since the protected control stack already pre-
vents return-oriented gadget chaining, and the prohibition of
indirectbr prevents jump-oriented chaining, the net effect
of adding this forward-edge CFI enforcement is to limit an at-
tacker to a restricted form of pure call-oriented programming:
only entry-point (EP) gadgets can be used and they can only
be chained together via corrupted function pointers.

Ombro may be susceptible to the pure-call-oriented “Con-
trol Jujutsu” attack described by Evans et al. [25], who showed
that, in popular programs, common function pointer coding
patterns make it possible to assemble purely call-oriented
chains of EP gadgets even when return addresses are fully pro-
tected and strong static analysis is used to limit forward-edge
control flow transfers to those intended by normal program
operation. Specifically, they noticed that this was possible
in Apache and Nginx due to extensive use of function point-
ers to provide C++-style runtime polymorphism in C, which
exacerbates the lack of context-sensitivity in static (label-
based) CFI. We observe that Xen frequently utilizes similar
code patterns, using function pointers to delegate at runtime
to method implementations specific to particular virtualiza-
tion modes, hardware capabilities, etc. Hence, similar attacks
might be possible against Xen protected by Ombro. It is un-
clear, however, whether such attacks can work in practice
against a bare-metal hypervisor like Xen. Evans et al. relied
on the proliferation of arbitrary-code-execution system calls
such as system () and execve () to invoke a shell rather than
attempting to achieve arbitrary computation through code
reuse alone; these elements do not exist in Xen, and similarly
desirable functionality from an attacker’s perspective (e.g.,

giving the attacker’s domain dom0 privileges or mapping a
victim domain’s memory into the attacker’s) is not necessarily
invoked from as many places in the codebase.

Although our prototype implementation only restricts indi-
rect calls to calling any valid function, it would be straightfor-
ward to extend our label-based CFI approach to utilize a more
precise control flow graph based on more advanced static anal-
ysis. Because Xen is a monolithic executable and does not
support run-time module loading, whole-program analysis
could be used to identify functions that are never address-
taken (i.e. never indirectly called) and refrain from emitting
CFI labels for them, eliminating them as viable targets for
gadget chaining. While such functions might be reachable
“downstream” of other functions that are called indirectly,
this could make return-to-library [49] and similar short-chain
code-reuse attacks more difficult, furthering the goal of mak-
ing it difficult to reach functionality of ultimate interest to an
attacker. (Most indirectly-called functions in Xen are focused
on low-level platform-specific and scheduling-related func-
tionality, and do not interact directly with code manipulating
sensitive high-level fields such as access controls.)

Since it is built using SVA, Ombro prevents many attacks
(such as code injection) even if an attacker successfully di-
verts control flow. Because SVA prevents tampering with host-
kernel-mode code pages (i.e. Xen or SVA code) to ensure that
all privileged code is compiled with the trusted vISA transla-
tor (Section 2.1), it is impossible for an attacker to pivot from
code reuse to a more flexible code-injection attack, which is
typically the goal of code-reuse payloads in practice [27,35];
attackers must perform all malicious computation via code
reuse. While ROP “compilers” do exist (e.g. [48]), they are
incapable of compiling complex high-level payloads, partic-
ularly for the restrictive code-reuse modalities necessary to
defeat Ombro’s CFI. This effectively limits attackers to non-
control data and data-oriented programming (DOP) attacks,
which are outside our threat model’s scope (Section 3). DOP
could also face practical headwinds similar to Control Jujutsu.

10 Performance Evaluation

To evaluate Ombro’s performance, we selected a portfolio
of real-world application macrobenchmarks (Section 10.1)
that we believe are reflective of typical cloud workloads. We
used the Phoronix Test Suite’s pts/kernel suite [40,44] as a
starting point, with the following adjustments:

o We excluded benchmarks that failed to compile or run
on our test system running unmodified Xen (see system
details below). We used a more recent version (2.4.48)
of the Apache benchmark rather than exclude it due to
its real-world importance and use by related work [41].

e Because the full pts/kernel suite takes days to run and in-
cludes numerous configurations of the same applications
with minor differences, we ran a single configuration of

each application, selecting the longest-running one that
completed in less than five minutes. Our full suite runs
in approximately three hours. Phoronix runs each bench-
mark at least three times and until the standard deviation
of all runs is less than 3.5% or a benchmark-specific cut-
off threshold is met; the result reported for each bench-
mark is the (arithmetic) mean of these runs [45].

e We chose to add a Memcached benchmark (v1.6.9, also
from Phoronix) because it is used by related work [41]
and represents a stress test for Ombro’s overheads. We
used the “Get” configuration with four connections.

We also developed and ran microbenchmarks (Section 10.2)
for hypercall latency (VM entry/exit), EPT fault handling, and
inter-processor interrupts (IPIs); our selection of microbench-
marks parallels related work [41].

For all of our experiments, we used a Dell Precision 7820
workstation with an Intel Xeon Silver 4208 (Cascade Lake)
CPU (8 cores/16 threads at 2.10 GHz with 11 MB L3
cache) [11], 32 GB 2666 MHz DDR4 memory, a 256 GB
M.2 NVMe SSD, and a 2 TB SATA 7200 RPM hard drive.
All disk I/O for the experiments used the SSD (the hard drive
was unused); the domO (control VM) had direct access to the
SSD and the domU (guest VM)’s virtual disk was directly
backed by a physical partition (not a file-based disk image).

For our baseline, we ran unmodified (“‘vanilla”) Xen 4.12
with an Arch Linux (kernel 5.15.12-archl1-1, packages up-
dated 2022-01-04) dom0 running in PV (traditional paravirt-
ualization) mode. The benchmarks ran within a domU running
the same Linux distribution in PVH (VMX-accelerated with
paravirtual optimizations) mode. The domU was allocated
16 vCPUs and 24 GB of RAM. We used GCC 11.1.0 to com-
pile the benchmark applications. We disabled Spectre [37]
mitigations such as IBRS [30] for all benchmark runs to pro-
vide a fair comparison, since our prototype did not implement
them (for reasons of time). We likewise enabled eager FPU
saving in vanilla Xen as Ombro saves FPU state on every
vCPU context switch (Section 5.2).

We evaluated Ombro using the implementation described
in Section 8, i.e., Xen 4.12 ported to the SVA vISA and com-
piled with CFI, SFI, and split-stack transformations. All other
configurations were the same as for the baseline.

10.1 Macrobenchmark Results

Table 2 summarizes our macrobenchmark results compar-
ing baseline unmodified Xen (labeled “vanilla”) with Ombro.
As Table 2 shows, Ombro incurs no detectable overheads (dif-
ferences are within or close to noise margins) on most bench-
marks, even though we selected a predominantly I/O-intensive
(i.e. challenging to virtualize) benchmark set. Several excep-
tions, particularly Memcached, RocksDB, and LevelDB, are
discussed further in Section 10.3 and Appendix A.1.

7Arch Linux is a “rolling” distribution without versioned releases, so the
package date stands in lieu of a version number.

Table 2: Macrobenchmark Results

Benchmark Units Vanilla Ombro
(1] is better) Result Std. Dev. | Ovhd. Std. Dev.
PostgreSQL TPS 1 4266.496 26.7% -17.84% | 18.5%
PostgreSQL ms (avg. lat.) | | 61.644 21.0% -16.72% | 18.9%
MBW MiB/s T 6694.581 0.3% -2.88% 0.1%
BenchmarkMutex ns | 39.967 0.9% -0.67% | 0.0%
PostMark TPS 1 4335.000 1.0% -0.58% | 1.0%
pmbench us | 0.113 4.5% -0.55% | 4.2%
OSBench (Create Files) | us/event | 24.270 0.3% -0.07% | 0.8%
ctx_clock clocks | 240.000 0.0% 0.00% 0.0%
OpenSSL (RSA 4096) | signs/s T 1516.867 0.3% 0.05% 0.2%
StressNG (RdRand) bogo ops/s T 250298.447 | 0.0% 0.06% 0.0%
Apache req/s 212698913 | 0.4% 0.34% 0.1%
t-testl sl 23.587 0.9% 0.75% 0.6%
iPerf (TCP) Mbits/s 1 28029.667 | 2.3% 0.75% 1.1%
SQLite s 83.164 0.8% 1.06% 0.7%
Hackbench s 140.056 0.8% 4.53% 1.8%
Schbench us) 18762.667 | 0.7% 4.59% 8.0%
IPC (TCP Socket) messages/s T 473697.400 | 13.3% 4.63% 12.1%
LevelDB uslop | 428.367 0.1% 12.62% | 0.3%
RocksDB ops/s T 34557.667 | 0.1% 12.82% | 0.3%
Memcached ops/s T 46960.733 | 0.2% 21.81% | 2.1%
Geometric mean 0.87%
Table 3: Microbenchmark Results (TSC cycles)
Benchmark Vanilla Ombro
Cycles | Std. Dev. | Cycles | Std. Dev. | Ovhd.
No-op hypercall 750 18.5% 1465 14.2% 95%
EPT fault 4180 10.0% 5693 8.88% 36%
vCPU self-IPI 1731 12.9% 2353 14.6% 36%
IPI (vCPU—vVCPU) | 2966 14.6% 3531 14.4% 19%

We also ran our benchmarks with Ombro’s split stack, CFI,
and SFI transforms disabled to determine if Ombro’s security
instrumentation contributes significant performance overhead.
Our results show no discernible difference, i.e., nearly all
of Ombro’s overhead comes from the VISA itself, not the
instrumentation. Appendix A.2 contains detailed results.

10.2 Microbenchmarks

Table 3 summarizes our microbenchmark results for key
hypervisor operations. We ran 22® timed iterations of each
benchmark (reporting the arithmetic mean) after 2'> untimed
warmup iterations. Results are in hardware timestamp counter
(TSC) cycles measured using the rdtsc instruction (with
Xen’s rdtsc interception disabled) before and after the oper-
ation (or sending/receiving on the respective CPUs for IPIs;
our processor synchronizes the TSC across cores [30]).

Each microbenchmark includes a VM entry/exit cycle,
which is minimally exercised by the no-op hypercall bench-
mark. Ombro’s base hypercall overhead is substantially
greater than the overhead of more complex operations, which
are themselves greater than our macrobenchmark overheads in
Section 10.1. This indicates that VM entry/exit is the primary
source of Ombro’s overhead. Since hardware acceleration is
designed to make VM exits relatively rare, Ombro’s overhead
only substantially impacts difficult-to-virtualize workloads
that incur frequent VM exits.

10.3 Overhead Sources and Their Remedies

Prior work [41] illustrated that Memcached’s performance
is highly sensitive to changes in VM entry/exit latency be-

cause it is frequently bottlenecked by the need to send inter-
processor interrupts (IPIs) between guest vCPUs, e.g. by
Linux’s implementation of the futex () system call. IPIs
are efficient on a “bare-metal” (unvirtualized) system but
expensive to virtualize because hypervisors cannot safely ex-
pose the interrupt controller (local APIC) to guests, requiring
a VM exit to virtualize the APIC in software whenever an
IPI is to be sent. Although VMX currently provides exit-
free hardware-virtualized delivery of virtual interrupts (Sec-
tion 5.1), the sending of them is not yet virtualized, making
this a major pain point for virtualizing popular applications
like Memcached. Besides Memcached, our RocksDB and
LevelDB benchmarks are of a similar nature (multi-threaded
in-memory databases) and exhibit the same sensitivity.

To confirm our hypothesis that Ombro’s overheads come al-
most exclusively from VM entry/exit overheads (Section 10.2)
and that this is responsible for our three macrobenchmark out-
liers, we conducted an informal experiment where we mod-
ified vanilla Xen to add artificial (busy-wait) overhead after
each VM exit. With this modification, vanilla Xen’s mac-
robenchmark results closely matched those of Ombro (the
same benchmarks showed similar slowdowns).

We conclude, therefore, that Ombro’s overheads on these
outliers are not of great concern, as the IPI virtualization
problem is shared with vanilla Xen (and x86 virtualization
in general). We explore this further in Appendix A.1, where
we compare vanilla Xen with a bare-metal (unvirtualized)
system; we observe that baseline Xen’s overheads on Mem-
cached, RocksDB, and LevelDB (and others) far outweigh the
additional impact of Ombro on Xen. We note also that Intel
has announced plans to introduce hardware-accelerated 1P/
virtualization in future processors [12] to address this issue;
we expect this will eliminate Ombro’s overheads on these
workloads as it will eliminate the underlying VM exits.

As Appendix A.2 details, none of Ombro’s effective over-
head is attributable to its compile-time security instrumen-
tation (split stack, CFI, and SFI). This bodes well for the
prospects of using the SVA approach and infrastructure to
implement stronger security hardening, such as full memory
safety [20,43,57], on hypervisors, as hypervisor execution
evidently does not represent a sufficient fraction of system run-
time to make instrumentation on it costly in absolute terms.

11 Related Work

Compiler-based virtual machines decouple the instruction
set used to express computation from the instruction set im-
plemented by the hardware. Ombro builds directly upon prior
work with the Low Level Virtual Architecture [5, 17] and
Secure Virtual Architecture [16], described in Section 2.

Previous work has enforced CFI and/or return address in-
tegrity on systems code, but none have enforced return address
integrity for hypervisors. KCoFI [13] and KCFI [26] enforce
control flow integrity on OS kernel code but do not provide
return address integrity. Silhouette [58] provides CFI and a

protected shadow stack for application code running in priv-
ileged mode on embedded systems and inspired our attack
surface analysis (Section 9). Kage [24] uses compiler-based
techniques similar to Ombro’s to provide CFI and a protected
shadow stack for an embedded real-time OS while splitting
the kernel into trusted and untrusted layers. IskiOS [28] pro-
vides a protected shadow stack for the Linux kernel by uti-
lizing Intel’s Memory Protection Keys feature [30] but does
not enforce it on hypervisor code. Ombro could incorporate
IskiOS’s technique in lieu of SVA’s MPX-based SFI enforce-
ment option if Intel deprecates MPX as planned [31].
HyperSafe [51] enforces control flow integrity on hyper-
visor code and controls how the hypervisor configures the
MMU to prevent attackers from corrupting page tables, hyp-
ervisor code pages, or CFI labels. Unlike Ombro, it does not
provide return address integrity and is therefore susceptible
to advanced ROP attacks [7,8,18,27]. The HyperSafe authors
designed and evaluated a shadow stack variant in conjunction
with their CFI scheme but found it to have high overhead
(over 300%) due to its reliance on the x86 platform’s WP bit
as an isolation mechanism [51]. In contrast, Ombro’s use of
SFI for kernel-mode isolation provides efficient control stack
protection. HyperSafe also does not appear to constrain VMX
features (e.g., by protecting the VMCS) whereas Ombro does.
Whole-VM trusted execution environments (TEEs) that
protect guest VMs from compromised hypervisors, such as
CloudVisor [41,56], H-SVM [32,33], and HyperCofter [55],
are an orthogonal approach to hardening the hypervisor itself
against attack. Ombro’s SVA-based VISC approach could
readily lend itself to implementation of a whole-VM TEE
using SFI and vISA restrictions in lieu of the hardware-based
isolation mechanisms used by prior work, similar to Virtual
Ghost’s [14] and Apparition’s [22] approach for OS kernels.
In such a system, a whole-VM TEE could be combined with
Ombro-style hypervisor hardening for additional defense-in-
depth with (we believe) minimal cumulative overhead.

12 Future Work and Conclusions

Several interesting directions for future work exist. We
can explore additional security policies that SVA-based sys-
tems could enforce on hypervisor code, such as code pointer
integrity [38] and memory safety [20,43,57]. We can also ex-
plore replacing hardware-enforced security enforcement and
isolation with compiler instrumentation techniques. For exam-
ple, we could explore whether compiler-based enforcement
could allow us to create hypervisors with isolated components
as previous work [53] does using hardware isolation features.

In conclusion, we have expanded the SVA vISA and ported
the Xen hypervisor to it, have used the vISA to implement
the first protected shadow (split) stack for a hypervisor, and
have demonstrated its efficiency on real-world benchmarks.

We thank the anonymous reviewers and shepherd for their
helpful feedback. This work was supported by NSF grant
CNS-1629770 and ONR award N00014-17-1-2996.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

The Rust Programmng Language. https://www.rust-
lang.org [Online; accessed 2022-06-08].

The LLVM Compiler Infrastructure Project. [Online;
accessed 2022-01-12].

Xen Project. https://xenproject.org [Online; ac-
cessed 2021-08-07].

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay
Ligatti. Control-Flow Integrity Principles, Implementa-
tions, and Applications. ACM Transactions on Informa-
tion Systems Security, 13:4:1-4:40, November 2009.

Vikram Adve, Chris Lattner, Michael Brukman, Anand
Shukla, and Brian Gaeke. LLVA: A Low-Level Vir-
tual Instruction Set Architecture. In Proceedings of
the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-36, pages 205-216, San
Diego, CA, 2003. IEEE Computer Society.

Daniel P. Bovet and Marco Cesati. Understanding the
LINUX Kernel. O’Reilly, Sebastopol, CA, 21d edition,
2002.

Nicholas Carlini and David Wagner. ROP Is Still Dan-
gerous: Breaking Modern Defenses. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 385—
399, San Diego, CA, August 2014. USENIX Associa-
tion.

Nicolas Carlini, Antonio Barresi, Mathias Payer, David
Wagner, and Thomas R. Gross. Control-flow Bend-
ing: On the Effectiveness of Control-flow Integrity. In
Proceedings of the 24th USENIX Security Symposium
(SEC), pages 161-176, Washington, D.C., 2015.

Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and
Ravishankar K. Iyer. Non-Control-Data Attacks Are Re-
alistic Threats. In Proceedings of the 14th USENIX Se-
curity Symposium (SEC), pages 12—12, Baltimore, MD,
2005.

Clang Documentation. SafeStack. https://
clang.llvm.org/docs/SafeStack.html [Online; ac-
cessed 18-June-2021].

Intel Corporation. Intel Xeon Silver 4208 Processor.
https://ark.intel.com/content/www/us/en/
ark/products/193390/intel-xeon-silver-4208-
processor-llm-cache-2-10-ghz.html. [Online;
accessed 2021-08-11].

Intel Corporation. Intel Architecture Instruction Set
Features and Future Extensions Programming Refer-
ence. https://software.intel.com/content/www/
us/en/develop/download/intel-architecture-

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

instruction-set-extensions-programming-
reference.html, May 2021. [Downloaded 2022-01-
12].

John Criswell, Nathan Dautenhahn, and Vikram Adve.
KCoFI: Complete Control-Flow Integrity for Commod-
ity Operating System Kernels. In Proceedings of the
35th IEEE Symposium on Security and Privacy (S&P),
pages 292-307, San Jose, CA, May 2014.

John Criswell, Nathan Dautenhahn, and Vikram Adve.
Virtual Ghost: Protecting Applications from Hostile Op-
erating Systems. In Proceedings of the 19th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS’ 14,
pages 81-96, 2014.

John Criswell, Nicolas Geoffray, and Vikram Adve.
Memory Safety for Low-Level Software/Hardware In-
teractions. In Proceedings of the 18th USENIX Security
Symposium, Security’09, pages 83—100, 2009.

John Criswell, Andrew Lenharth, Dinakar Dhurjati, and
Vikram Adve. Secure Virtual Architecture: A Safe Exe-
cution Environment for Commodity Operating Systems.
In Proceedings of the 21st ACM SIGOPS Symposium
on Operating Systems Principles, SOSP’07, pages 351—
366, Stevenson, WA, 2007. ACM.

John Criswell, Brent Monroe, and Vikram Adve. A
Virtual Instruction Set Interface for Operating System
Kernels. In Workshop on the Interaction between Oper-
ating Systems and Computer Architecture, pages 26-33,
Boston, MA, USA, June 2006.

Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann,
and Fabian Monrose. Stitching the Gadgets: On the In-
effectiveness of Coarse-Grained Control-Flow Integrity
Protection. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 401-416, San Diego, CA,
August 2014. USENIX Association.

Hoss Firooznia (Universitato de Rocestro Es-
perantistoj). About Esperanto. https:
//esperanto.lodestone.org/esperanto/en [On-

line; accessed 2022-06-08].

Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve.
SAFECode: Enforcing Alias Analysis for Weakly
Typed Languages. In ACM SIGPLAN Conference on
Programming Language Design and Implementation,
Ottawa, Canada, June 2006.

Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox,
and Sandhya Dwarkadas. Spectres, Virtual Ghosts, and

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Hardware Support. In Proceedings of the 7th Interna-
tional Workshop on Hardware and Architectural Sup-
port for Security and Privacy, HASP’ 18, pages 5:1-5:9,
Los Angeles, CA, 2018. ACM.

Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L.
Cox, and Sandhya Dwarkadas. Shielding Software from
Privileged Side-Channel Attacks. In Proceedings of the
27th USENIX Security Symposium, Security’ 18, pages
1441-1458, 2018.

B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the
Art of Virtualization. pages 164—177, Bolton Landing,
NY, USA, October 2003.

Yufei Du, Zhuojia Shen, Komail Dharsee, Jie Zhou,
Robert J Walls, and John Criswell. Holistic Control-
Flow Protection on Real-Time Embedded Systems with
Kage. In Proceedings of the 31st USENIX Security
Symposium, Security *22. USENIX Association, 2022.

Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard
Shrobe, Martin Rinard, Hamed Okhravi, and Stelios
Sidiroglou-Douskos. Control Jujutsu: On the Weak-
nesses of Fine-Grained Control Flow Integrity. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’15, pages
901-913, Denver, CO, 2015. ACM.

X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-Grained
Control-Flow Integrity for Kernel Software. In Proceed-
ings of the 1st IEEE European Symposium on Security
and Privacy (EuroS&P), pages 179—194, Saarbriicken,
Germany, March 2016.

Enes Goktas, Elias Athanasopoulos, Herbert Bos, and
Georgios Portokalidis. Out of Control: Overcoming
Control-Flow Integrity. In Proceedings of the 35th IEEE
Symposium on Security and Privacy (S&P), pages 575—
589, San Jose, CA, May 2014.

Spyridoula Gravani, Mohammad Hedayati, John
Criswell, and Michael L. Scott. Fast Intra-Kernel
Isolation and Security with IskiOS. In Proceedings
of the Twenty Fourth International Symposium on
Research in Attacks, Intrusions and Defenses, RAID
21, 2021.

Hong Hu, Shweta Shinde, Sendroiu Adrian,
Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang.
Data-Oriented Programming: On the Expressiveness
of Non-Control Data Attacks. In Security and Privacy
(SP), 2016 IEEE Symposium on, pages 969-986. IEEE,
2016.

Intel. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual. May 2018. 325462-067US.

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

Intel Corp. Introduction to Intel® Mem-
ory Protection Extensions, July 2013. https:
//software.intel.com/content/www/us/en/
develop/articles/introduction-to-intel-
memory-protection-extensions.html [Online;

accessed 2020-11-10].

S. Jin, J. Ahn, J. Seol, S. Cha, J. Huh, and S. Maeng.
H-SVM: Hardware-Assisted Secure Virtual Machines
under a Vulnerable Hypervisor. IEEE Transactions on
Computers, 64(10):2833-2846, Oct 2015.

Seongwook Jin, Jeongseob Ahn, Sanghoon Cha, and
Jaehyuk Huh. Architectural Support for Secure Virtual-
ization under a Vulnerable Hypervisor. In 2011 44th An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 272-283. IEEE, 2011.

Ethan Johnson, Komail Dharsee, and John Criswell. Se-
cure Guest Virtual Machine Support in Apparition. In
Proceedings of the 15th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments,
VEE 2019, pages 17-30, New York, NY, USA, 2019.
ACM.

Mateusz Jurczyk and Sergei Glazunov. Google
Project Zero: In-the-Wild Series: Windows Exploits.
https://googleprojectzero.blogspot.com/2021/
01/in-wild-series-windows-exploits.html,

2021. [Online; accessed 2021-11-02].

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and An-
thony Liguori. kvm: The Linux Virtual Machine Monitor.
In Proceedings of the Linux Symposium, volume 1, pages
225-230, Ottawa, Ontario, Canada, Jun 2007.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In Proceedings of the 40th
IEEE Symposium on Security and Privacy, SP’19, San
Francisco, CA, 2019. IEEE.

Volodymyr Kuznetsov, Laszl6 Szekeres, Mathias Payer,
George Candea, R. Sekar, and Dawn Song. Code-Pointer
Integrity. In Proceedings of the 11th USENIX Confer-
ence on Operating Systems Design and Implementation,
OSDI’ 14, pages 147-163, Berkeley, CA, USA, 2014.
USENIX Association.

Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transfor-
mation. In Proceedings of the International Sympo-
sium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization, CGO’04, pages 75—
86, Palo Alto, CA, 2004. IEEE Computer Society.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Phoronix Media.
www.phoronix-test-suite.com.

2019-03-11].

Phoronix Test Suite. https://
[Online; accessed

Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, and Haib-
ing Guan. (Mostly) Exitless VM Protection from
Untrusted Hypervisor through Disaggregated Nested
Virtualization. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1695-1712. USENIX As-
sociation, August 2020.

Microsoft. Introduction to Hyper-V on Windows
10, 2018. https://docs.microsoft.com/en-us/
virtualization/hyper-v-on-windows/about/
[Online; accessed 2021-08-07].

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,
and Steve Zdancewic. SoftBound: Highly Compatible
and Complete Spatial Memory Safety for C. In Pro-
ceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’09, pages 245-258, New York, NY, USA, 2009.
ACM.

OpenBenchmarking. Common Kernel Bench-
marks. https://openbenchmarking.org/suite/
pts/kernel. [Online; accessed 2021-08-11].

OpenBenchmarking. Phoronix Test Suite Docu-
mentation. https://github.com/phoronix-test-
suite/phoronix-test-suite/blob/master/
documentation/phoronix-test-suite.md.
line; accessed 2022-01-12].

[On-

Oracle Corporation. VirtualBox. https://
www.virtualbox.org [Online; accessed 2022-06-08].

Ryan Roemer, Erik Buchanan, Hovav Shacham, and
Stefan Savage. Return-Oriented Programming: Systems,
Languages, and Applications. ACM Transactions on
Information Systems Security (TISSEC), 15(1):2:1-2:34,
March 2012.

Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. Q: Exploit Hardening Made Easy. In Pro-
ceedings of the 20th USENIX Conference on Secu-
rity, SEC’11, pages 25-25, Berkeley, CA, USA, 2011.
USENIX Association.

Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang,
Vincent Freeh, and Peng Ning. On the Expressiveness
of Return-into-libc Attacks. In Proceedings of the 14th
International Conference on Recent Advances in Intru-
sion Detection (RAID), pages 121-141, Menlo Park, CA,
2011.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient Software-Based Fault Iso-
lation. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles, SOSP’93, pages 203-216,
Asheville, NC, 1993. ACM.

Z. Wang and X. Jiang. HyperSafe: A Lightweight Ap-
proach to Provide Lifetime Hypervisor Control-Flow
Integrity. In Proceedings of the 31st IEEE Symposium
on Security and Privacy (S&P), pages 380-395, May
2010.

David A. Wheeler. SLOCCount.
www.dwheeler.com/sloccount/ [Online;
2022-06-08].

http://
accessed

Dan Williams, Yaohui Hu, Umesh Deshpande, Piush K.
Sinha, Nilton Bila, Kartik Gopalan, and Hani Jamjoom.
Enabling Efficient Hypervisor-as-a-Service Clouds with
Ephemeral Virtualization. In Proceedings of the 12th
ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE 2016, New York,
NY, USA, 2016. ACM.

Xen Project. Understanding the Virtualization Spec-
trum, 2014. https://wiki.xenproject.org/wiki/
Understanding_the_Virtualization_ Spectrum
[Online; accessed 2021-08-05].

Yubin Xia, Yutao Liu, and Haibo Chen. Architecture
Support for Guest-Transparent VM Protection from Un-
trusted Hypervisor and Physical Attacks. In 2013 IEEE
19th International Symposium on High Performance
Computer Architecture (HPCA), pages 246-257. IEEE,
2013.

Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang.
CloudVisor: Retrofitting Protection of Virtual Machines
in Multi-Tenant Cloud with Nested Virtualization. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP °11, pages 203—
216, New York, NY, USA, 2011. ACM.

Tong Zhang, Dongyoon Lee, and Changhee Jung.
BOGO: Buy Spatial Memory Safety, Get Temporal
Memory Safety (Almost) Free. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’19, pages 631-644, 2019.

Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John
Criswell, and Robert J. Walls. Silhouette: Efficient Pro-
tected Shadow Stacks for Embedded Systems. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 1219-1236. USENIX Association, August 2020.

[59] Philipp Zieris and Julian Horsch. A Leak-Resilient
Dual Stack Scheme for Backward-Edge Control-Flow
Integrity. In 13th ACM Asia Conf. on Computer & Com-
munications Security (ASIACCS), Incheon, Republic of
Korea, June 2018.

A Additional Benchmarks

In this appendix, we provide results and discussion of addi-
tional benchmarks that we conducted in order to shed light on
the main results presented in Section 10. We did not include
these results in the main body of the paper because they ei-
ther served to demonstrate existing issues known from prior
work that we do not claim as novel results, or presented no
statistically significant contrast and thus could be summarized
adequately in the main text without detailed results.

A.1 Unmodified Xen vs. Unvirtualized

In Section 10.1, we observed that a few benchmarks from
our subset of the Phoronix suite, particularly Memcached,
RocksDB, and LevelDB, exhibited non-negligible overheads
(unlike most of our macrobenchmarks) under Ombro as com-
pared to baseline (“vanilla”) Xen. Through further experimen-
tation (Section 10.2) and reference to existing literature in the
field [41], we were able to conclude (Section 10.3) that the pri-
mary cause of these particular benchmarks’ poor behavior was
likely due to the fact that they frequently send inter-processor
interrupts (IPIs) to communicate between threads running
on different virtual CPUs (vCPUs), which on current Intel
processors requires taking a VM exit [12, 30].

As VM exits are expensive (slow) operations for hyper-
visors to handle due to the substantial amount of processor
state that must be saved and loaded during a world switch,
hypervisor and hardware design generally tries to make them
infrequent as a share of total execution time. Workloads that
do not make that possible (such as these problematic bench-
marks) can therefore expect to incur substantial overheads
simply from being virtualized in the first place.

To illustrate this issue, we re-ran our macrobenchmark
suite (Section 10.1) on our test machine in a “bare-metal”
(i.e. unvirtualized) configuration and compared the results
to that of vanilla Xen, as shown in Table 4. For consistency
with our main results, vanilla Xen is retained as the baseline,
with the bare-metal results compared to it, yielding negative
“overheads”, i.e. speedups, for bare metal. As can be seen,
the benchmarks that showed non-negligible overheads under
Ombro in Section 10.1 all run substantially faster on bare
metal than under vanilla Xen, the difference between the two
being far greater in magnitude than the difference between
Ombro and vanilla Xen. In fact, most of the benchmarks,
including the ones to which Ombro added no or negligible
overhead over vanilla Xen, show significant gaps between
unvirtualized and virtualized execution.

Our methodology for the bare-metal benchmark runs was
to boot a copy of the same Linux installation used for the
domU (unprivileged guest domain) in Xen-based benchmark
runs directly from the system bootloader instead of through
Xen. As it is the same system except for the addition of a few
driver packages needed to support running on physical hard-
ware, this minimizes differences between the configurations,

but the comparison is nonetheless imperfect: the bare-metal
runs had access to the system’s full 32 GB of RAM, whereas
the Xen-based runs were limited to 24 GB in the domU, as we
needed to leave some of the system’s memory for Xen and the
dom0. This, as well as effects such as the difference between
virtualized and unvirtualized disk I/O, could potentially am-
plify the difference measured between vanilla Xen and bare
metal. We therefore do not attempt to draw strong quantitative
conclusions from the detailed results of this comparison and
suffice to note qualitatively that the outliers in our Ombro
benchmarks are clearly especially difficult cases for vanilla
Xen as well. This is consistent with the conclusions of prior
work [41] and the fact that Intel is planning to introduce IPI
virtualization to future processors so that workloads such as
these no longer need to incur frequent VM exits [12].

A.2 Ombro without Instrumentation

As part of our performance evaluation (Section 10), we
wished to measure whether Ombro’s control flow integrity
(CFI), software fault isolation (SFI), and split stack transfor-
mations had measurable impacts on performance. This would
allow us to separate overheads due to instrumentation from
those incurred simply by porting Xen to the SVA virtual in-
struction set (VISA).

To this end, we set a flag in the compiler that instructed it
to not add CFI and SFI checks to the generated code or to
perform the split stack transformation when building Xen in
the Ombro configuration. This results in a build of Ombro
which does not have functional hardening protections beyond
vanilla Xen but still uses SVA intrinsics rather than native
assembly to perform low-level operations. Thus, it measures
any overheads from extra data copying or code indirection
entailed by routing through the virtual instructions as well as
the overheads of any runtime security checks peformed by
the intrinsics themselves.

We ran our macrobenchmark suite on this “no-
instrumentation” build of Ombro/Xen and compared it with
vanilla Xen, as summarized in Table 5. As in Appendix A.1,
we use vanilla Xen as our baseline for consistency with our
main results in Section 10.1. The overheads listed for “Ombro
without instrumentation” can therefore be compared head-to-
head with the “Ombro” numbers in Section 10.1.

As can be seen, the results for Ombro without instrumen-
tation do not exhibit a clear contrast from the Ombro results
in Section 10.1 that rises above the noise floor. (In fact, the
geometric mean for Ombro without instrumentation shows
higher overhead than ordinary Ombro, which can be clearly
attributed to experimental noise given the high standard devia-
tions on the benchmarks that turned out the most favorably for
ordinary Ombro, particularly the PostgreSQL benchmarks.)
We therefore conclude that the CFI and SFI instrumentation
and the split stack transformation add no measurable overhead
to the “core” VISA port. This makes sense in light of our con-
clusion from Sections 10.2 and 10.3 that Ombro’s overheads

are driven primarily by an increase in VM entry/exit latency,
not by overheads on Xen’s own execution (e.g. scheduling
and VM-exit handling such as hardware emulation).

The observation that CFI, SFI, and split-stack enforcement
on Xen do not measurably impact overall performance indi-
cates that Ombro’s increased VM entry/exit latency is coming
from the extra data copying and operations performed by
SVA’s implementation of VM entry/exit, rather than from
Xen itself being slowed down by the compile-time security
transformations. As our Ombro benchmarks were conducted
with SVA’s standard bitmasking SFI implementation selected
(Section 2.2) instead of the optional MPX-accelerated SFI
implementation from Apparition [22] (which is in principle
faster), this leads to a secondary conclusion that optimizing
SVA’s CFI and SFI instrumentation is neither necessary nor
worthwhile for Ombro, even though it has been for past SVA-
based systems.

B Implementation and Porting Experience

Section § describes our prototype implementation of Om-
bro (i.e. the SVA compiler and runtime library plus our port
of the Xen hypervisor to the SVA vISA) as used in our perfor-
mance evaluation (Section 10). However, as the construction
of this prototype represents a great deal of the work involved
in this project, this appendix discusses that experience fur-
ther for the benefit of interested readers. We discuss practical
observations from the experience of building the prototype
(B.1) as well as how our observations of the prototype’s per-
formance fed back into the design process (B.2).

B.1 Engineering Observations

The process of porting Xen to SVA took two programmers
(a PhD student and a research programmer) roughly two years
to complete. This includes the substantial infrastructural im-
provements to SVA described in Section 8; qualitatively, we
improved SVA from a minimally functional research proto-
type (previous SVA systems could not even run large-scale ap-
plications like the Apache web server without crashing) to one
that, while perhaps not “production-grade”, can confidently
run a complete Xen system with multiple guests hosting a full
spectrum of complex end-user applications. These include a
fully working MATE desktop GUI under the Ubuntu-based
Linux Mint and a Wayland-based window manager (Sway)
under Arch Linux (we used Arch for our benchmarks but ex-
ercised both distributions heavily during development); web
browsers like Firefox and Chrome; development tools like
Clang and GCC; and a full Phoronix suite of kernel-intensive
real-world macrobenchmarks (Section 10). Notably, we did
not need to exclude any benchmarks for lack of compatibility
with Ombro, although a few failed to compile on the unmodi-
fied baseline system, likely due to the system compiler being
too new.

We expect that, particularly with these SVA infrastructure
improvements in place, an experienced hypervisor developer

could repeat our port of Xen (or port another hypervisor) to
SVA/Ombro in substantially less time than we took, as we
spent a lot of those two years learning about hypervisor and
VMX inner workings and debugging opaque low-level issues.

Once we completed the port of Xen to SVA and had a fully
working system, it was relatively straightforward to imple-
ment return address protection via a compile-time split stack
transformation (Section 7). The split-stack-related changes to
the compiler, SVA runtime library, and Xen were relatively
small (see LOC numbers in Section 8) and took only about a
month to complete, during which we also began the perfor-
mance evaluation and writing of the paper.

We believe this success highlights the power and flexibility
of the SVA approach. SVA provides a well-defined interface
for low-level software/hardware interactions along with a ro-
bust toolkit of primitives useful for enforcing confidentiality
and integrity policies, such as kernel-mode memory protection
and mediation of hardware data structures (e.g. page tables
and VMCSes). This foundation gives security researchers a
proven framework within which they can experiment with
novel security policies and enforcement mechanisms, allow-
ing them to focus on the security and performance tradeoffs
of their contributions rather than reinventing and reimple-
menting solutions to the myriad known pitfalls of securing
kernel-mode code.

B.2 Performance-Driven Design Changes

As our performance analyses (Section 10 and Appendix A)
show, the entirety of Ombro’s statistically significant overhead
(only seen on certain IPI-heavy benchmarks) comes from the
basic port of Xen to the SVA VISA, not from its compile-time
security instrumentation on Xen (CFI, SFI, and split stack).
In earlier versions of our VISA design, its overheads were
substantially larger, and appeared on more benchmarks, than
in the final version presented in this paper. These overheads
yielded insights that drove several design changes to the VISA
which dramatically improved performance to bring Ombro
more in line with a non-SVA baseline.

Active vs. Loaded VMCSes in the vISA. The first such
change, detailed in Section 5.3, corrected a limitation of the
Shade [34] version of the VISA that was not previously evi-
dent because Shade’s hypervisor support was not sufficiently
sophisticated to support a real-world hypervisor or evaluate
performance at any level higher than microbenchmarks that
exercised the functionality of individual VMX instructions.
Shade interpreted Intel’s concept of there only being one “ac-
tive VMCS” at a time on a processor [30] as meaning that
a previous VMCS had to be explicitly unloaded (using the
VMCLEAR instruction) before a different one could be loaded
(via VMPTRLD). While porting Xen, however, it quickly be-
came clear that Xen expects to be able to maintain multiple
loaded VMCSes even as it switches between different active
ones in vCPU context switches—i.e. to perform subsequent

VMPTRLDs on multiple VMCSes within a working set without
VMCLEARing any of them until the respective vCPU is ready
to be torn down or migrated to a different physical CPU.

To see how much impact Shade’s more restrictive interface
would have on real-world performance, we modified Xen to
explicitly flush the outgoing vCPU’s VMCS on every context
switch and informally measured the impact on a domU guest
running a context-switching stress test program we had cre-
ated for debugging. If the (single-threaded) guest was the only
significant load on the machine, no slowdown was evident
compared to vanilla Xen—unsurprising, since few context
switches were occurring. However, when we forced context
switches by running a CPU-intensive application on all cores
in the dom0, we found that the domU’s performance dropped
precipitously, by over 4x.

Clearly, the hardware is able to take significant advantage
of Xen’s default behavior by retaining multiple VMCSes in
on-chip cache across vCPU context switches. Ombro there-
fore (Section 5.3) improves the VISA to support calling the
loadvm intrinsic on a new VMCS without having to first
call unloadvm on a then-current one. While this (slightly)
complicates the VISA’s conceptual model of VMCS behavior
compared to Shade, the performance improvements are well
worth it, demonstrating that this facet of the native ISA is
indeed essential to preserve at the vISA level.

Tying Guest State to SVA Thread Switches vs. VM En-
try/Exit. The sole remaining source of VISA overhead that
appeared in our benchmarks (Section 10 and Appendix A)
is attributable to overhead on VM entry and exit. While en-
try/exit overheads should ideally not be performance-critical
due to hardware-accelerated virtualization that makes VM
exits rare, real systems fall short of this ideal. As our perfor-
mance analysis in Section 10.3 explains, this is particularly
true for IPI-heavy workloads that incur frequent VM exits. It
is therefore desirable to minimize the SVA vISA’s impact on
entry/exit latency as much as possible.

As Section 5.2 discusses, Shade’s version of the runvm
intrinsic [34] was designed to present a conceptually clean
abstraction wherein no guest state is ever active on the proces-
sor when running in host mode (outside of the runvm intrinsic
itself) or vice versa. This necessitated that runvm’s implemen-
tation context-switch all system state elements, on every entry
and exit, that could be modified by a guest and which could
affect host software’s view of system state.

While porting Xen, we realized that this design decision
was overly prescriptive on hypervisor and host-OS design
and negatively impacted performance, since it forced heavy-
weight state components such as the FPU and MSRs to be
switched on every VM entry/exit. In practice, the hypervisor/
kernel is not expecting SVA to completely hide the guest’s
existence from it; rather, it will save and restore its own state
on higher-level context switches (between guest vCPUs or
host userspace threads) to accommodate the guest’s occupa-
tion of the processor. This allows the hypervisor/kernel to

minimize unnecessary copying by refraining from disturbing
major state components like the FPU except when it decides
to schedule a different vCPU or thread to run; it also allows it
to implement lazy FPU saving [6] if desired.

Since its original versions [16, 17], SVA has provided vISA
primitives to assist OS kernels in safely transitioning between
their own execution state and that of userspace threads as
they handle interrupts, traps, and system calls and make con-
text switches. This, we realized, is exactly the model used by
real-world hypervisors for making context switches between
vCPUs. It was therefore natural to eliminate Shade’s excessive
orthogonality between userspace-thread and guest-vCPU con-
text switches in favor of unifying them under SVA’s existing
thread abstraction [13, 14]. As described in Section 5.2, guest
vCPU state is now stored in the same fields within SVA’s
thread context structures as used for userspace threads, the
only difference being that the hypervisor/OS kernel chooses
to enter that context via a call to the runvm intrinsic (VM entry
to VMX non-root mode) rather than via SVA’s iret function
(return to host Ring 3 from interrupt/trap/syscall handler).

Besides streamlining the SVA vISA, this conceptual change
improved Ombro’s VM entry/exit overhead from over 200%
to just 95% (Section 10.2) and macrobenchmark overhead
on the worst IPI-heavy outlier from 60% to 21.81% (Sec-
tion 10.1). Based on further informal experimentation, we
believe reducing the overhead further may be possible, but the
current implementation has reached a point of diminishing
returns, making it more profitable to focus on eliminating the
root cause of excessive VM exits in the outlier benchmarks,
e.g. through Intel’s upcoming hardware IPI virtualization sup-
port [12] as discussed in Section 10.3 and Appendix A.1.

C Background on the Name Ombro

For readers who are curious what the name Ombro signifies,
it is a word meaning “shade” or “shadow” in the constructed
international auxiliary language Esperanto [19]—the only arti-
ficial language that has successfully become a “living” human
language. This follows a loose tradition within our research
group of naming systems after a general theme of “ghosts”
or “shadows”, which originated with systems building on the
Virtual Ghost [14] project. These initially included Appari-
tion [22] and Shade [34] (direct descendants of Virtual Ghost)
and expanded to include some non-SVA-based shadow stack
projects such as Silhouette [58], IskiOS [28], and Kage [24]
(the latter two translating “shadow” in Greek and Japanese
respectively). Ombro was doubly appropriate for the work
presented in this paper as it can be interpreted either as a
translation of “Shade” (the project we directly extend) or as
referring to the “shadow stacks” we provide for Xen to protect
return addresses.

The Esperanto origin of Ombro is also apropos to the na-
ture of a virtual instruction set computing (VISC) system
like SVA, as Esperanto is an academically-constructed yet
practically-purposed human language designed to streamline

second language learning by minimizing irregularities and
exceptions—much as the SVA virtual instruction set architec-
ture (VISA) does in relation to native hardware ISAs to make
analysis and protection of low-level system software easier.
Like SVA’s role in mediating the interface between hardware
ISAs and low-level software, Esperanto is not meant to re-
place native languages but to supplement them in situations
where they struggle to fulfill their communication goals.

The Ombro name was selected by the lead author (Ethan
Johnson) who studied and learned Esperanto as a hobby dur-
ing the development of this work. He has attained intermediate
proficiency in the language and welcomes correspondence
either in English aii en Esperanto.

Table 4: Unmodified Xen 4.12.0 vs. No Hypervisor (arrows indicate whether higher or lower is better)

Benchmark Units Vanilla Xen | Std. Dev. | Bare Metal | Std. Dev. | % Ovhd.
RocksDB ops/s T 34557.667 0.1% 852098.333 | 1.1% -2365.73%
Memcached ops/s T 46960.733 0.2% 84270.000 0.6% -79.45%
PostgreSQL TPS 1 4266.496 26.7% 7625.012 7.8% -78.72%
Hackbench sl 140.056 0.8% 37.645 4.2% -73.12%
LevelDB us/op | 428.367 0.1% 168.999 0.2% -60.55%
IPC (TCP Socket) messages/s T 473697.400 | 13.3% 739706.667 | 2.2% -56.16%
PostgreSQL ms (avg. lat.) | | 61.644 21.0% 32.989 8.5% -46.48%
Apache req/s 212698913 | 0.4% 257396.147 | 0.3% -21.01%
OSBench (Create Files) | us/event | 24.270 0.3% 19.570 0.1% -19.37%
PostMark TPS 1 4335.000 1.0% 5102.000 0.0% -17.69%
pmbench us l 0.113 4.5% 0.094 1.0% -16.54%
MBW MiB/s T 6694.581 0.3% 7793.890 0.8% -16.42%
ctx_clock clocks | 6694.581 0.3% 7793.890 0.8% -16.42%
t-testl sl 23.587 0.9% 21.874 0.5% -7.26%
iPerf (TCP) Mbits/s 1 28029.667 2.3% 29551.667 0.3% -5.43%
SQLite sl 83.164 0.8% 81.030 0.6% -2.57%
BenchmarkMutex ns | 39.967 0.9% 39.200 0.0% -1.92%
StressNG (RdRand) bogo ops/s 1 250298.447 | 0.0% 251830.763 | 0.0% -0.61%
OpenSSL (RSA 4096) signs/s T 1516.867 0.3% 1499.200 0.6% 1.16%
Schbench us 18762.667 0.7% 20819.200 3.1% 10.96%

Table 5: Unmodified Xen 4.12.0 vs. Ombro without CFI, SFI, or Split Stack Transformations (arrows indicate whether higher or
lower is better)

Benchmark Units Vanilla Xen | Std. Dev. | Ombro without Std. Dev. | % Ovhd.
instrumentation

PostgreSQL ms (avg. lat.) | | 61.644 21.0% 59.805 19.9% -2.98%
MBW MiB/s T 6694.581 0.3% 6884.724 0.2% -2.84%
pmbench us 0.113 4.5% 0.110 3.8% -2.60%
PostgreSQL TPS 1 4266.496 26.7% 4364.444 24.1% -2.30%
OSBench (Create Files) | us/event | 24.270 0.3% 24.207 0.1% -0.26%
BenchmarkMutex ns | 39.967 0.9% 39.933 1.0% -0.08%
OpenSSL (RSA 4096) signs/s T 1516.867 0.3% 1517.400 0.1% -0.04%
SQLite sl 83.164 0.8% 83.152 0.8% -0.01%
ctx_clock clocks | 240.000 0.0% 240.000 0.0% 0.00%
PostMark TPS 1 4335.000 1.0% 4335.000 1.0% 0.00%
StressNG (RdRand) bogo ops/s T 250298.447 | 0.0% 250127.343 0.0% 0.07%
t-testl sl 23.587 0.9% 23.642 1.1% 0.23%
Apache req/s 212698.913 | 0.4% 208431.403 0.1% 2.01%
iPerf (TCP) Mbits/s 1 28029.667 2.3% 27447.667 2.4% 2.08%
Schbench us | 18762.667 0.7% 19934.857 9.8% 6.25%
Hackbench sl 140.056 0.8% 149.015 0.5% 6.40%
IPC (TCP Socket) messages/s 1 473697.400 | 13.3% 430804.400 8.6% 9.05%
LevelDB us/op | 428.367 0.1% 494.449 0.1% 15.43%
RocksDB ops/s T 34557.667 0.1% 28721.333 0.4% 16.89%
Memcached ops/s T 46960.733 0.2% 35734.733 1.5% 23.91%
Geometric Mean 3.32%

