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ABSTRACT
Identifying the latent cluster structure based on model heterogeneity is a fundamental but challenging task
arises in many machine learning applications. In this article, we study the clustered coe!cient regression
problem in the distributed network systems, where the data are locally collected and held by nodes.
Our work aims to improve the regression estimation e!ciency by aggregating the neighbors’ information
while also identifying the cluster membership for nodes. To achieve e!cient estimation and clustering,
we develop a distributed spanning-tree-based fused-lasso regression (DTFLR) approach. In particular, we
propose an adaptive spanning-tree-based fusion penalty for the low-complexity clustered coe!cient
regression. We show that our proposed estimator satis"es statistical oracle properties. Additionally, to solve
the problem parallelly, we design a distributed generalized alternating direction method of multiplier algo-
rithm, which has a simple node-based implementation scheme and enjoys a linear convergence rate. Collec-
tively, our results in this article contribute to the theories of low-complexity clustered coe!cient regression
and distributed optimization over networks. Thorough numerical experiments and real-world data analysis
are conducted to verify our theoretical results, which show that our approach outperforms existing works
in terms of estimation accuracy, computation speed, and communication costs. Supplementary materials
for this article are available online.
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1. Introduction

In recent years, distributed statistical learning has attracted
growing research interest due to its advantages in computation
e!ciency, data privacy and system scalability. In contrast to
the traditional centralized statistical analysis where models are
estimated with the data stored in a central server, in the context
of distributed statistical learning, the data are locally collected
and remain distributed over multiple local machines, which
could be mobile devices, wireless sensors, hospital data systems,
or some other local data sources (Damiani et al. 2015; Jochems
et al. 2016; Guo et al. 2020; Cadena et al. 2021). Through
mutually sharing the local statistics, all the local machines in the
distributed system collaborate with each other to perform the
global model estimation and statistical analysis. So far, various
distributed statistical methods have been proposed and studied,
such as distributed sparsity learning (Mateos, Bazerque, and
Giannakis 2010), distributed nonparametric estimation (Lin,
Wang, and Zhou 2020; Xu et al. 2021) and distributed Bayesian
analysis (Xu et al. 2014), etc.

In this article, we consider a fundamental distributed regres-
sion problem with clustered coe!cients over networks: Suppose
there are K nodes in the network, each of which collects its
local dataset Dk = {(xk,i, yk,i)}n

i=1, where xk,i ∈ Rd and
yk,i ∈ R (k = 1, . . . , K) represent the ith covariate vector and
response in the kth dataset, respectively; and n denotes the size
of the dataset. For ease of exposition, the size of each dataset is
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assumed to be balanced (i.e., all nodes have n samples).1 Hence,
the total sample size in the network is N = Kn. We assume that
there exist S unknown underlying clusters of the nodes. Further,
the data pairs (x, y) from the sth cluster follow a common
linear model:

y = β"
s x + ε, s = 1, . . . , S, (1)

where βs = [βs,1, . . . , βs,d]" ∈ Rd is the coe!cient vector
for the sth cluster, the independent error ε has a zero mean
and a known variance σ 2. The above linear model varies across
the underlying clusters, and the datasets in the same cluster s
share the same coe!cient βs, thus the name of clustered coe!-
cient regression. In our problem, the number of clusters S, the
nodes’ cluster membership and their model coe!cients are all
unknown. Our goal is to identify the cluster membership of each
node and estimate their corresponding coe!cient. However,
due to communication limitation or privacy restrictions, one
cannot merge these datasets to a single node. Thus, the main
challenge of this problem is to perform clustering and estimate
the coe!cients of each cluster in the network in a distributed
fashion.

The above problem naturally arises in many machine learn-
ing applications. For example, a wireless sensor network is

1Our algorithms and results in this article can easily be extended to cases with
datasets of unbalanced sizes.
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deployed in a large spatial domain to collect and learn the rela-
tionship between the soil temperature y and air temperature x
(Lee, Zhu, and Toscas 2015). The spatial domain can be divided
into several subregions due to the landcover types (e.g., forest,
grassland, etc.), and temperature relationships may vary geo-
graphically: sensors in the same subregion may share the same
regression relationship, and the coe!cients vary across di"er-
ent subregions. Similar scenarios could also emerge in other
applications, such as meta-analysis on medical data (Tang and
Song 2016), federated learning on the speech analysis (Konecny,
McMahan, and Ramage 2015), to name just a few.

Unfortunately, distributively clustering nodes based on
regression model over networks is challenging as it includes two
nontrivial inter-dependent and con!icting subtasks: (a) statistical
estimator design and (b) distributed optimization under the
proposed estimator. In the literature, there exist spanning-tree-
based centralized estimator designs that achieve strong statis-
tical performance guarantee with #(K) computational com-
plexity (e.g., Li and Sang (2018), see Section 2 for detailed
discussions). However, the spanning-tree-based penalty archi-
tectures make it di!cult to design distributed optimization algo-
rithms. On the other hand, there exist e!cient distributed algo-
rithms for solving related clustering problems over networks
(e.g., Hallac, Leskovec, and Boyd (2015), Jiang, Mukherjee, and
Sarkar (2016), and Wang et al. (2018), see Section 2 for details).
However, it is unclear whether they could provide statistical
performance guarantees, such as the selection consistency and
estimation normality. Moreover, they all su"er O(K2) computa-
tional and communication costs.2 In light of the limitations of
these existing works, in this article, we ask the following funda-
mental question: Could we develop a new distributed approach to
achieve both strong statistical performance guarantees and #(K)

computation and communication costs? In other words, could we
achieve the best of both worlds of the existing methods in the
literature?

In this article, we show that the answer to the above question
is a"rmative. The main contribution of this article is that, for the
#rst time, we develop a novel distributed spanning-tree-based
fused lasso regression (DTFLR) approach for solving the clus-
tered coe!cient regression problem in the distributed network
systems. Our approach enjoys oracle statistical performance
and enables low-complexity distributed optimization algorithm
design with linear convergence rate. The main results of this
article are summarized as follows:

• Low-Complexity Estimator Design: We propose a new adap-
tive spanning-tree-based penalty function for the clustered
coe!cient regression problem with #(K) complexity. Specif-
ically, by comparing the coe!cient similarities between the
nodes, we construct an adaptive minimum spanning tree
from the original network graph and only the edges in
the tree are considered in the penalty function. Under this
approach, the number of terms in the penalty function is
reduced to K − 1 (hence, #(K) as opposed to O(K2)).

2The O and # notation are the Bachmann–Landau notations Knuth (1976).
an = O(bn) denotes that there exist positive constants C and n0 with |an| ≤
Cbn for all n ≥ n0; an = #(bn) denotes that there exist positive constants
C, C′ and n0 with C′ ≤ an ≤ Cbn for all n ≥ n0.

• Statistical Performance Guarantee: Based on the spanning
tree structure, we propose an adaptive lasso approach to
penalize the linear model coe!cient di"erences. We show
that our proposed estimator enjoys elegant oracle properties
(see, Fan and Li 2001), which means that our method can
identify the nodes’ cluster memberships almost surely and
the estimators achieve asymptotic normality.

• Distributed Optimization Algorithm Design: Due to the
restrictions imposed by the spanning-tree-based estimator
design, traditional gradient- or alternating direction method
of multipliers (ADMM)-type methods cannot be applied
to distributively solve the optimization problem and #nd
the nodes’ cluster memberships. In this article, we develop
a novel distributed generalized ADMM algorithm (DG-
ADMM) for solving the spanning-tree-based fused lasso
problem. Moreover, we show that our algorithm has a sim-
ple node-based structure that is easy to implement and also
enjoys a linear convergence.

Collectively, our results in this article contribute to the the-
ories of low-complexity model clustering over networks and
distributed optimization. We validate our theoretical results
with thorough simulation studies and real-world data analysis,
which show that our method has advantages in the estimation
accuracy, computation e!ciency and communication cost. Due
to space limitation, we relegate most of the proof details and part
of numerical results to supplementary materials.

2. Related Work

In the literature, many approaches have been developed to
cluster heterogeneous data, such as the mixture model (Hastie
and Tibshirani 1996; Shen and He 2015), the spectral clustering
(Rohe, Chatterjee, and Yu 2011), etc. However, most of the
literature focuses on clustering the observation y, rather than
the relationship between y and the covariate x. The authors of
Ma and Huang (2017) and Ma et al. (2020) are the #rst few
to investigate the cluster structure based on model heterogene-
ity. Speci#cally, they considered the pairwise fusion penalty to
cluster the intercepts and the regression coe!cients, respec-
tively. However, with K individuals to be clustered, the pairwise
fusion penalty introduces an extra computational complexity at
the order O(K2) . In Tang and Song (2016), the authors pro-
posed an ordering-based fused lasso regression method termed
FLARCC to identify heterogeneity patterns of coe!cients and
to merge the homogeneous parameter clusters across multi-
ple datasets with #(K) computational complexity. However,
FLARCC does not exploit any spatial network structure to
improve the estimation performance. Also, its ordering-based
fusion penalty cannot be easily extended to the cases when
the network relationship of the data is imposed. In our work,
we consider to cluster the nodes and estimate their models
in the network. To avoid the extra tremendous complexity,
we focus on the spanning-tree-based fusion penalization. The
authors of Li and Sang (2018) proposed a spatially clustered
coe!cient (SCC) regression method, which uses a spatial min-
imum spanning tree (MST) to capture the spatial relationships
among the data. Nevertheless, as the SCC method constructs
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the fusion penalty based on the native spatial MST struc-
ture and the traditional lasso, it cannot achieve the clustering
consistency and asymptotic normality for the estimation and
leads to over-clustering in practical. By contrast, in our work,
we develop an adaptive spanning-tree-based fusion penalty,
in which the model similarity is used as adaptive weights for
both determining the spanning-tree structure and constructing
the adaptive fused lasso. Thanks to the adaptive fusion, our
approach enhances the estimation e!ciency and signi#cantly
reduces the algorithm complexities. Furthermore, unlike all the
above methods that are implemented on a single centralized
machine, a key distinguishing feature of our work is that we
conduct coe!cient clustering in a distributed fashion without
data merging.

Our work also contributes to the theory of distributed opti-
mization over networks, which have attracted a signi#cant
amount of recent research (see, e.g., Nedic and Ozdaglar 2009;
Shi et al. 2014; Yuan, Ling, and Yin 2016; Eisen, Mokhtari,
and Ribeiro 2017). In the general framework of distributed
optimization, all K nodes in a connected network distributively
and collaboratively solve an optimization problem in the form
of: minβ f (β) ! ∑K

i=1 fi(β), where each fi is the objective
function observable only to the ith node and β is a globally
common model coe!cient across all nodes, thus, also known as
distributed consensus learning. Interestingly, opposite to tradi-
tional distributed consensus algorithms that focus on reaching
the same model coe!cient, our work considers whether there
exists underlying disagreements among the nodes’ local coe!-
cients: the nodes are to be classi#ed to several clusters and only
the nodes in each cluster share the same coe!cient. We note
that the authors of Jiang, Mukherjee, and Sarkar (2016) and
Wang et al. (2018) also focused on discovering the clustering
patterns among the nodes in distributed network. However, they
adopted a graph-based ridge penalty to obtain consensus of the
inner-cluster coe!cients, which can be reformulated as the well-
known Laplacian penalty (Ando and Zhang 2007). However, a
main limitation of the Laplacian penalty is that it cannot shrink
the di"erences of the coe!cient estimates to zero and thus fails
to recover the cluster structure.

The most related work to ours is Hallac, Leskovec, and Boyd
(2015), which also considered the network lasso method. In
Hallac, Leskovec, and Boyd (2015), the authors adopted an $2
group lasso penalty for each edge in the network graph and also
proposed a distributed ADMM algorithm to solve the network
lasso problem. Our work di"ers from Hallac, Leskovec, and
Boyd (2015) in the following key aspects: (a) The number of
the penalty terms in Hallac, Leskovec, and Boyd (2015) depends
on the number of edges in the network graph, which yields an
O(K2) computation complexity and is unscalable for the large-
sized networks. In this article, we consider an adaptive spanning-
tree-based penalty, which contains exactly K − 1 penalty terms;
(b) The penalty in Hallac, Leskovec, and Boyd (2015) adopted
the traditional lasso penalty for ||β i − β j||, while we consider
an adaptive lasso penalty for the coe!cient di"erences, which
enjoys elegant oracle properties (i.e., the selection consistency
and the asymptotic normality); (c) The algorithm in Hallac,
Leskovec, and Boyd (2015) is based on the classic ADMM algo-
rithm with two constraints on each edge of the original network,
while we propose a new distributed generalized ADMM method

with only one constraint on each edge of the adaptive spanning-
tree, which signi#cantly reduces the algorithm’s implementa-
tion complexity; (d) We rigorously prove the model consis-
tency and algorithm convergence of our proposed approach,
both of which were not studied in Hallac, Leskovec, and Boyd
(2015).

3. Model and Problem Statement

Given a network system with graph structure G = (V , E), where
V and E represent the node and edge sets, respectively, our goal
is to estimate the coe!cients {β i}K

i=1 and determine the cluster
membership for each node. This problem can be formulated as
minimizing the following objective function:

LGraph(β) = 1
2

K∑

i=1
||yi − Xiβ i||2 +

∑

(vi,vj)∈E
Pλ(β i − β j), (2)

where vi ∈ V denotes the ith node in the network; yi =
[yi,1, . . . , yi,n]" ∈ Rn and Xi = [xi,1, . . . , xi,n]" ∈ Rn×d

represent the response and design matrix at the ith node, respec-
tively; and Pλ is a penalty function with tuning parameter λ.
Note that the objective function in Equation (2) consists of two
parts: the #rst part is an ordinary least square (OLS) problem
for all the coe!cients β ! [β"

1 , . . . , β"
K ]" ∈ RKd; the second

term is a penalty designed to shrink the di"erence of any two
coe!cient vectors if the corresponding nodes are connected
in the network. Note that the second term in Equation (2)
depends on the network topology. Thus, we make the following
assumption that is necessary to guarantee that the problem is
well-de#ned in terms of estimation accuracy:

Assumption 1. For any two nodes vi and vj in the given con-
nected network G = (V , E), if they are from the same cluster,
then there exists a path connecting them such that all nodes on
the path belong to the same cluster.

Under Assumption 1, each node is connected with its cluster
members if the cluster size is larger than one: for any node vi
from a cluster with more than two nodes, there exists another
node vj from the same cluster and a path in the graph connecting
them. Without loss of generality, we can suppose the edge (vi, vj)
belongs to E; Otherwise, we can #nd another node vk in the
path that (vi, vk) ∈ E and vk is from the same cluster as vi. This
assumption guarantees that the nodes within the same cluster
will not be separated by other clusters. Hence, by removing
inter-cluster edges, that is, identifying edges with nonzero coef-
#cient di"erence, the original network graph can be reduced
into S subgraphs, which are the subgroup clusters. In our work,
the network topology G is de#ned by the distributed system,
and there is a tradeo" between system cost and the risk of
violating Assumption 1: For example, in the application of wire-
less sensor networks, the sensors’ communication power deter-
mines the network topology. Larger communication range can
improve the connectivity of the network and ensure Assump-
tion 1. However, it requires higher signal strength of the sen-
sors and thus costs more electrical energy for communication.
For the objective in Equation (2), two important remarks are
in order:
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Remark 1. First, the penalty in Equation (2) is de#ned by all
edges in the network graph. If the penalty function is chosen as
Pλ(β i, β j) = λ||β i −β j||2, then Equation (2) has the same form
as in the network lasso method (Hallac, Leskovec, and Boyd
2015). Second, the objective in Equation (2) can also be viewed
as a variant of the method proposed in Ma and Huang (2017),
where the penalization terms are based on all pairwise coe!-
cient di"erences among the nodes, and hence the total number
of the penalization terms is exactly (K − 1)K/2. Although in
Equation (2) the number of penalization terms is reduced to
exactly |E|, the value of |E| still implies that the number of
penalization terms could scale as O(K2) if the network graph
is dense, which will in turn result in heavy computational load
as the network size gets large. To address the problem, we will
propose a simpli#ed spanning-tree-based penalty function in
Section 4.

4. Problem Reformulation: An Adaptive Spanning
Tree Approach

As mentioned earlier and has been long noted in statistics (see,
e.g., Tang and Song 2016; Li and Sang 2018) and optimization
(see, e.g., Chow et al. 2016) communities, directly including all
edges in penalization terms will incur high model complexity.
To reduce the redundant penalization terms, several strategies
have been proposed, including the ordering-based method in
Ke, Fan, and Wu (2015) and Tang and Song (2016) and the
MST-based approach in Li and Sang (2018). Speci#cally, in Ke,
Fan, and Wu (2015) and Tang and Song (2016), the authors
#rst determined the initial estimation of the coe!cients and
then ordered the coe!cients. They then presumed that similar
coe!cients will be neighbors with high probability and only
regularized terms associated with the adjacent coe!cients are
considered. By contrast, the authors of Li and Sang (2018) used
the spatial distance to construct an MST, and the penalization
terms in the tree are preserved. In essence, these two strategies
are spanning-tree-based, with the only di"erence being the de#-
nitions of distance measure for the tree: the #rst one uses model
similarity, while the second one uses spatial distances. In this
article, we propose a new spanning-tree-based approach, where
the distance measure for the tree can be viewed as intelligently
integrating the above two measures. Surprisingly, we will show
that this new distance measure achieves signi#cant performance
gains.

Speci#cally, we construct a spanning-tree as follows: First,
local OLS estimators are determined in each node individually:
β̂ i,OLS = [X"

i Xi]−1[X"
i yi]. Then, the weight for two nodes

is de#ned based on both their local model similarity and their
connection relationship in the graph as follows:

s̃i,j =
{ ||̂β i,OLS − β̂ j,OLS||, if (vi, vj) ∈ E,

∞, otherwise. (3)

The weight s̃i,j in (3) contains two important pieces of informa-
tion. The #rst one is the network topology, which is character-
ized by spatial distances (e.g., in a sensor network, the nodes
can only be connected within a certain communication range);
the second one is the local model similarity that implies the
likelihood of two nodes being in the same cluster. Based on (3),

an MST can be created, so that only terms associated with the
tree are considered in the objective: LMSTs(β) = 1

2
∑K

i=1 ||yi −
Xiβ i||2 + ∑

(vi,vj)∈MSTs Pλ(β i − β j), where the notation MSTs
signi#es that the MST is based on the model similarity. Note that
the estimation e!ciency and clustering accuracy signi#cantly
depend on the penalty. Toward this end, we #rst prove the
following key lemma that guarantees that the nodes in the same
cluster are connected in the MSTs based on our weight de#ned
in (3):

Lemma 1 (Inclusion of MSTs). Given the MSTs based on the
weights in Equation (3) and consider any two nodes vi and vj
in the same cluster. Under Assumption 1, as the local sample
size n → ∞, with probability 1, there exists a path in the MSTs
connecting vi and vj such that all the nodes on the path belongs
to the same cluster.

Several important remarks are in order: (a) With Lemma 1,
the number of inter-cluster edges is S − 1. Thus, the MSTs is
a connected graph with the smallest possible number of inter-
cluster edges. (b) We note that there exist distributed methods
to #nd MSTs (e.g., the GHS algorithm Gallager, Humblet, and
Spira 1983) and their implementation details are beyond the
scope of this article.

5. Statistical Model: An Adaptive Fused-Lasso-Based
Approach

For convenience, we use [v]p to denote the pth element of vector
v. Based on the MSTs, we specialize the objective by adopting the
following adaptive lasso penalty:

LMSTs(β) = 1
2

K∑

i=1
||yi − Xiβ i||2 (4)

+ λ

2

K∑

i=1

∑

j∈Ni

d∑

p=1
[π̂ i,j]p

∣∣[β i]p − [β j]p
∣∣,

where Ni represents the set of the neighboring nodes of node
i in the MSTs, π̂ i,j ∈ Rd is an adaptive weight vector de#ned
as [π̂ i,j]p ! 1/

∣∣[β̂ i,OLS]p − [β̂ j,OLS]p
∣∣γ for some constant

γ > 0. Therefore, our proposed estimator is β̂MSTs =
arg minβ LMSTs(β).

Remark 2. Here, our use of an adaptive lasso penalty is moti-
vated by: (a) Adaptive lasso is known to be an oracle procedure
for related variable selection problems Zou (2006); (b) With an
adaptive lasso penalty, the objective in Equation (4) is strongly
convex as long as the design matrix X is of full row rank, so that
the optimal point of Equation (4) is unique. In Ma and Huang
(2017) and Ma et al. (2020), similar methods were proposed
based on the minimax concave penalty (MCP) and the smoothly
clipped absolute deviations (SCAD) penalty, both of which
have been shown to be statistically e!cient. However, from
optimization perspective, the two concave penalties will render
the objective nonconvex, which leads to intractable algorithm
design.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 5

For more compact notation in the subsequent analysis, we
rewrite the objective function Equation (4) in the following
matrix form:

LMSTs(β) = 1
2
||y − Xβ||2 + λN

d(K−1)∑

p=1
[π̂]p|[(H⊗IK)β]p|,

(5)

where y ! [y"
1 , . . . , y"

K ]", X ! diag(X1, . . . , XK)" and β !
[β"

1 , . . . , β"
K ]" are the response vector, the design matrix, and

coe!cient vector, respectively; and ⊗ denotes the Kronecker
product. In Equation (5), H is the incident matrix of the MSTs,
which is row full rank and each entry in H de#ned as [H]l,i =




1, if i = s(l),
−1, if i = e(l),
0, otherwise,

where s(l) and e(l) denote the starting

and ending node indices of edge l in the MSTs, respectively,
with s(l) < e(l). In Equation (5), [π̂]p ! 1/[H · βOLS]γp ,
where H ! H ⊗ IK and βOLS ! [β"

1,OLS, . . . , β"
K,OLS]" is the

vector form of the OLS estimations. Note that adding one more
row to H, we can form a square and full rank matrix: H̃ ![

H
1√
K 1"

]

Li and Sang (2018), and the objective in Equation (5)

can be equivalently rewritten as LMSTs(β) = 1
2 ||y − Xβ||2 +

λN
∑dK

p=1[π̂]p|[H̃β]p|, where H̃ ! H̃ ⊗ IK is a full rank square
matrix. De#ne # ! H̃β as the di"erence of the connected
nodes’ coe!cients. It then follows that the above objective
LMSTs(β) can be rewritten in terms of # as LMSTs(#) = 1

2 ||y −
XH̃−1

#||2 + λN
∑dK

p=1[π̂]p|[#]p|. Our estimator then becomes:
#̂MSTs = arg min# LMSTs(#). Since there is a one-to-one trans-
formation between β̂MSTs and #̂MSTs (i.e., #̂MSTs = H̃β̂MSTs ),
we can instead focus on the theoretical properties of #̂MSTs .
Denote the true coe!cients as β∗ = [β"

1,∗, . . . , β"
K,∗]", and

#∗ = H̃β∗. Note that if the two connected nodes are from
the same cluster, the corresponding elements in #∗ are zero. We
denote the set of nonzero elements in #∗ as A∗. Similarly, the
set of nonzero elements in #̂MSTs is denoted as Â. To prove the
oracle properties of #̂MSTs , we need the following assumptions
for the linear model in Equation (1):

Assumption 2. For the linear model in Equation (1): (a)
the errors are iid with zero mean and variance σ 2; (b)
1
N (XH̃−1

)"XH̃−1 p−→ C for some positive de#nite matrix C as
N → ∞.

In Condition (ii) of Assumption 2, since H̃ is full rank, C is
positive de#nite if X is full column rank. Now, we state the oracle
properties of #̂MSTs as follows:

Theorem 1 (Oracle Properties). Suppose that λ satis#es
λ/

√
N → 0 and λN(γ−1)/2 → ∞. Under Assumptions 1

and 2, our estimator satis#es the following two properties: (a)
(Clustering Consistency) limN→∞P(Â = A∗) = 1 and thus
P([β̂MSTs ]i = [β̂MSTs ]j) = 1 if β i = β j; (b) (Asymptotic

Normality)
√

N([#̂MSTs ]A∗−[#∗]A∗)
d−→N (0, σ 2C−1

A∗) as N →
∞, where CA∗ is the submatrix of C corresponding to A∗.

The clustering consistency (also known as selection consis-
tency) is a direct consequence of Lemma 1, which says that
our method correctly clusters the nodes, that is, P([β̂MSTs ]i =
[β̂MSTs]j) = 1 if nodes i and j are from the same cluster.
The asymptotic normality of β̂MSTs follows immediately from
the linear transformation, that is, β̂MSTs = H̃−1

#̂MSTs . We
relegate the proof details of Theorem 1 to the supplementary
materials. Practically, the cluster membership of each node can
be identi#ed by checking #̂MSTs : if [#̂MSTs]l = 0, then the two
nodes connected by edge l are from the same cluster.

6. A Distributed Generalized ADMM Algorithm

In this section, we will design a distributed algorithm for min-
imizing Equation (4). Due to the penalty structure in Equa-
tion (4), a natural idea is to use the popular ADMM method
(Boyd et al. 2011), which has been shown to be particularly
suited for solving lasso related problems (e.g., Ma and Huang
2017; Wahlberg et al. 2012; Zhu 2017; Ma et al. 2020). However,
in what follows, we will #rst illustrate why it is challenging to use
a regular ADMM approach to solve the MSTs-based fused-lasso
problem in a distributed fashion.

(1) Challenges in Distributed Optimization Algorithm Design:
To see why it is nontrivial to design a distributed ADMM-
based algorithm, we #rst note that the penalty in (4) can
be written as 1

2
∑K

i=1
∑

j∈Ni

∑d
p=1[π̂ i,j]p

∣∣[β i]p − [β j]p
∣∣ =

∑
el∈MSTs

∑d
p=1[π̂ l]p

∣∣[βs(l)]p− [βe(l)]p
∣∣, where el represents the

lth edge in MSTs. In the above, s(l) and e(l) denote the starting
and ending node indices of edge l, respectively, with s(l) < e(l);
and π̂ l = π̂ s(l),e(l) is the corresponding adaptive weight vector
for the lth edge. With the same notation as in Section 5, the
weight di"erence at edge l is #l = βs(l) − βe(l) and # =
['"

1 , . . . , '"
K−1]" = Hβ . Note that there are K − 1 edges in

MSTs. Thus, the problem of minimizing the objective in (4) can
be reformulated as

min 1
2

K∑

i=1
||yi − Xiβ i||2 + λN

K−1∑

l=1

d∑

p=1
[π̂ l]p

∣∣[#l]p
∣∣,

s.t.# = Hβ . (6)
Following classic ADMM, we can construct an augmented
Lagrangian with penalty parameter τ > 0 as Lτ (β , #, z) =
1
2
∑K

i=1 ||yi −Xiβ i||2 +λN
∑K−1

l=1
∑d

p=1[π̂ l]p
∣∣[#l]p

∣∣−〈z, Hβ −
#〉 + τ

2 ||Hβ − #||2, where z ∈ Rd(K−1) is the vector of dual
variables corresponding to the K − 1 edges. In what follows, we
derive the updating rules for (βt+1, #t+1, zt+1). First, given the
primal and dual pair βt , zt , for the lth edge with end nodes s(l)
and e(l), to determine the weight di"erence #t+1, we solve the
subproblem #t+1 = arg min# Lτ (β

t , #, zt), and hence it can be
shown that:

#t+1
l = SλN π̂ l/τ

(
β t

s(l) − βt
e(l) − 1

τ
zt

l

)
, (7)

where SλN π̂ l/τ is the coordinate-wise so$-thresholding operator
with [λN π̂ l/τ ]p = λN[π̂ l]p/τ . Next, we derive the updating rule
for βt+1. Similar to the classic ADMM method, it can be shown
that :

β t+1 = arg min
β

Lτ (β , #t+1, zt) (8)
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= [X"X + τL ⊗ Id]−1[X"y + H"(τ#t+1 + zt)],

where L = H"H is the Laplacian matrix of the MSTs. Unfor-
tunately, the matrix inverse in (8) cannot be computed in a
distributed fashion due to the coupled structure of the Laplacian
matrix L.

(2) Our Solution Approach: To address the above challenges,
our key idea is to leverage the (centralized) generalized ADMM
in Deng and Yin (2016) to derive a new updating rule for β t+1,
so that it can be implemented in a parallel fashion. To this end,
instead of directly solving Equation (8), we add a quadratic
term 1

2 (β − βt)"P(β − β t) in the subproblem (P is a positive
semide#nite matrix to be speci#ed later):

βt+1 = argmin
β

Lτ (β , #t+1, zt) + 1
2
(β − β t)"P(β − β t) (9)

= [X"X+τL⊗Id+P]−1[X"y+H"(τ#t+1+zt)+Pβ t].
Now, the key step is to recognize that we can choose P as P =
−τL ⊗ Id + D, where D = diag(D1, . . . , DK)⊗ Id with positive
scalars Di for node i (the choice of Di will be speci#ed soon). It
then follows that β t+1 = [X"X + D]−1[X"y + H"(τ#t+1 +
zt) + Pβ t]. By comparing our proposed β ’s updates (9) with
the traditional one (8), it can be seen that our method uses a
diagonal matrix D to approximate the graph Laplacian matrix L
for the design matrix mixing (i.e., calculating the matrix inverse
(X"X + D)−1 rather than (X"X + L)−1). Then, to correct
the approximation error, our algorithm involves a neighboring
coe!cient mixing (i.e., the term Pβt = (D − τL ⊗ Id)β

t).
Based on Equation (9), we have the following local update at
each node i:

β t+1
i = [X"

i Xi + DiId]−1
[

X"
i yi +

∑

vi∈el

[H]li(τ#t+1
l + zt

l )

+ (Di − τdeg(i))β t
i + τ

∑

j∈Ni

β t
j

]
, (10)

where vi ∈ el means that node vi is an end node of edge el, and
deg(i) ! |Ni| is the degree of the node vi. Thus, the update of
β t+1

i only requires the local connected neighbors’ information,
which implies distributed implementation.

Note that it remains to specify how to choose the values of Di,
i = 1, . . . , K, for P. According to Proposition 2 (to be proved
later), in order for our algorithm to achieve a desirable linear
convergence rate, the matrix P needs to be positive de#nite. Note
that P = D − τL ⊗ Id = [diag(D1, . . . , DK) − τL] ⊗ Id. To
guarantee P / 0, based on the Gershgorin circle theorem, it can
be readily veri#ed that choosing Di > 2deg(i), ∀i = 1, . . . , K,
su!ces.

Lastly, the dual variables zt+1 can be updated as zt+1 = zt −
τ (Hβt+1−#t+1), and hence for the lth edge, the corresponding
dual update is:

zt+1
l = zt

l − τ
(
β t+1

s(l) − β t+1
e(l) − #t+1

l

)
. (11)

Note, however, that the update rules (7) and (11) are edge-
based while (10) is node-based. To make the update rules con-
sistent, we de#ne several additional notations: At node s(l), we
let #t

s(l) = #t
l and zt

s(l) = zt
l ; At node e(l), we let #t

e(l) = −#t
l

and zt
e(l) = −zt

l . With some derivations, it can be veri#ed that

if #t
s(l) = −#t

e(l) = #t
l and zt

s(l) = −zt
e(l) = zt

l are satis#ed in
iteration t, then in iteration t + 1, #t+1

s(l) = −#t+1
e(l) = #t+1

l and
zt+1

s(l) = −zt+1
e(l) = zt+1

l still hold based on the following node-
based updating rules: ∀i ∈ {s(l), e(l)} and j = {s(l), e(l)}/{i},






#t+1
i = SλN π̂ l/τ

(
β t

i − β t
j − 1

τ zt
i

)
,

β t+1
i = [X"

i Xi + DiId]−1
[

X"
i yi+

∑
vi∈el

(τ#t+1
i + zt

i)

+(Di − τdegi)β
t
i + τ

∑
j∈Ni β

t
j

]
,

zt+1
i = zt

i − τ
(
βt+1

i − βt+1
j − 't+1

i

)
.

(12)

Thus, we can set #0
s(l) = −#0

e(l) = βs(l)0 − βe(l)0 and zs(l) =
ze(l) = 0, ∀l, which satisfy the above conditions. Our method
is summarized in Algorithm 1. The outputs of the algorithm
are the estimated coe!cient β̂ and the coe!cient di"erence #̂.
Whether two nodes are in the same cluster can be determined
by checking #̂ : #̂s(l) = #̂e(l) = 0 if s(l) and e(l) are in the
same cluster. The following proposition guarantees the linear
convergence rate of our proposed DG-ADMM Algorithm.

Proposition 2 (Linear Convergence). Denote the KKT point
for (6) as u∗ = (β"

∗ , #"
∗ , z"

∗ )". With a proper D such that
P / 0, the iterates {ut}∞t=1 converge to u∗ in the sense of G-
norm: ||ut −u∗||G → 0, where || · ||G represents the semi-norm
||x||2G ! x"Gx and G is de#ned as G ! diag(D, 0, 1

τ Id(K−1))

Further, the convergence rate is linear, that is, there exists δ > 0,
such that ||ut+1 − u∗||2G ≤ (1 + δ)−1||ut − u∗||2G.

Due to space limitation, we provide the derivation details and
the proof details in the supplementary materials.

(3) Distributed Tuning Parameter Selection: The tuning
parameter λ plays an important role in the estimation per-
formance of DTFLR. In this part, we present the method for
the tuning parameter selection in the distributed system. Our
selection method is based on the Bayesian information cri-
terion (BIC), which has been widely used in many related
works (Ke, Fan, and Wu 2015; Tang and Song 2016; Ma and
Huang 2017; Li and Sang 2018; Ma et al. 2020). Similar to
DG-ADMM, our selection method only requires local statistics
exchanges instead of the data %ooded across the nodes. Given
λ, the conventional BIC for DTFLR is de#ned as BIC(λ) =
log[ 1

K
∑K

k=1
∑n

i=1
1
n
(
yk,i − β̂ i(λ)"xk,i

)2] + log(Kn)
Kn · Ŝ(λN)d,

where β̂ i(λ) is the estimated coe!cient with the tuning param-
eter λ and Ŝ(λ) is the corresponding estimated cluster number.
Under our distributed setting, the nodes can #rst calculate the
local prediction error

∑n
i=1

1
n
(
yk,i −β̂ i(λ)"xk,i

)2 and determine
the cluster membership by checking #̂. Then, all the nodes
submit the local information to the root node in the MSTs.
By aggregating all the local information, the root node can
calculate BIC(λ). To select the best parameter value, the nodes
repeat the DG-ADMM algorithm against a grid of candidates
{λl}L

l=1. A$er that, the root node collects the local information
for BIC calculation and chooses the best value by λBIC∗ =
arg minλl{BIC(λl)}L

l=1. λBIC∗ will be broadcast to all the nodes
for determining the #nal model. Note that the total computation
and communication complexities are scaled with the number of
candidate values L. In practice, L is a constant number and thus
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Algorithm 1 Distributed spanning tree based fused lasso regres-
sion (DTFLR) method.
Input: Data {Xi, yi}K

i=1, a series of tuning parameters {λl}L
l=1;

1: Each node #nds the local OLS estimation and sets β0
i =

β i,OLS;
2: Each node sends β0

i to its neighboring nodes and calculates
the weight (3);

3: The network constructs an MSTs based on β0
i ;

4: for λ ∈ {λl}L
l=1 do

5: The nodes s(l) and e(l) of edge l set z0
s(l) = z0

e(l) = 0 and
#0

s(l) = −#0
e(l) = β0

s(l) − β0
e(l);

6: while not converged do
7: Each node sends its current βt

i to its neighboring nodes
in the MSTs;

8: Each node updates the primal and dual variables using
the rules in (12);

9: end while
10: The nodes compute prediction errors and aggregate infor-

mation for BIC(λ);
11: end for
Output: The estimated model βBIC∗ based on λBIC∗ =

arg minλl{BIC(λl)}L
l=1.

it would not a"ect the algorithm performance in the sense of
convergence order.

7. Numerical Simulation

In this section, we empirically examine the estimation perfor-
mance of our proposed DTFLR method and estimator β̂MSTs. In
Section 7.1, we #rst study the impact of sample size on our esti-
mator. In Section 7.2, we compare algorithm complexities under
di"erent network topology and penalty functions. Another two
comparisons are provided in supplementary materials to study
the impact of the node number on decentralized estimation and
the impact of underlying cluster number, respectively.

7.1. Impact of Sample Size

In this part of simulation, we consider the following network set-
tings (see Figure 1(a)–(b)): The nodes are uniformly located in

the space [−1, 1]2 and the numbers of the nodes are 50 and 100,
respectively. There are #ve underlying clusters separated by the
solid lines, as shown in Figure 1(a)–(b). The covariate x are gen-
erated from multivariate normal distribution with zero mean
and covariance cov(xi, xj) = 0.5|i−j|. The random error ε fol-
lows the standard normal distribution. The true coe!cients are
randomly generated as βG1,∗ = [4.59, 2.60, −5.12]", βG2,∗ =
[−2.88, 1.51, 0.59]", βG3,∗ = [3.04, 0.53, −4.74]", βG4,∗ =
[−8.09, −3.20, −2.45]" and βG5,∗ = [−0.28, −4.25, −1.28]".
In the network graph, if the distance of two nodes is smaller
than 0.5, then there is an communication edge between them,
which is shown a dashed line. Note that with 0.5 as the radius,
Assumption 1 is satis#ed (see in Figure 1(a)–(b)).

We focus on four di"erent methods: (a) the Laplacian graph-
based method (Wang et al. 2018), in which the penalty can be
regarded as a variant of ridge penalty; (b) the Graph $1 method
with the penalty in (2), which considers all the edges in the
graph; (c) the SCC method proposed in Li and Sang (2018);
(d) our DTFLR method with the MSTs $1 penalty. We study the
cases with di"erent numbers of node K and local sample n: (a)
K = 50 and n = 50; (b) K = 50 and n = 100; (c) K = 100 and
n = 50. Note that Cases (1) and (2) have di"erent local sample
sizes,

We compare in terms of the following performance metrics:
(a) the accuracy of model estimation, MSE(β̂)= 1

K
∑K

i=1 ||̂β i −
β i,∗||22; (b) the estimated group number Ŝ; (c) sensitivity, which
measures the proportion of node pairs from the same cluster
that are correctly identi#ed; (d) speci#city, which measures
the proportion of node pairs from the di"erent clusters that
are correctly identi#ed. Note that the values of sensitivity and
speci#city are in the range [0, 1]. The closer to 1, the better the
prediction is. The simulation results are reported in Table 1 and
Figure 2.

From Table 1 and Figure 2, we can see that our DTFLR
method outperforms the other methods under all the three
circumstances: First of all, we can see that the MSE from the
Laplacian gragh-based method is higher than those of the other
$1 based penalty and also the Laplacian graph-based method
cannot #nd the nodes’ membership. This is because the Lapla-
cian penalty, which is a variant of ridge penalty, cannot shrink
the coe!cient di"erence to zero when two nodes are from the
same cluster. Compared to the Graph $1 method, our method
improves the e!ciency by reducing about 21%, 36%, 49% in

Figure 1. Simulation network settings: (a) random design with 50 nodes and the radius 0.5; (b) random design with 100 nodes and the radius 0.5;(c) random design with
50 nodes and the radius 0.75. The solid lines and nodes’ color show the underlying partition and the dashed lines represent the communication edges among the nodes
in network graphs.
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Figure 2. The boxplots of MSEs of β̂ and the estimated group numbers Ŝ using the three $1 penalty methods under three cases.

Figure 3. The barcharts of the node degrees for the two settings in Simulation 2.

Table 1. The results of Simulation 2.

Case Method MSE(̂β) Ŝ Sensitivity Speci!city

n=50 K=50 Laplacian 0.0329 NA NA NA
Graph 0.0123 7.28 0.9325 1
SCC 0.0134 11.87 0.6777 1
DTFLR 0.0097 5.55 0.9681 1

n=100 K=50 Laplacian 0.0154 NA NA NA
Graph 0.0061 6.83 0.9449 1
SCC 0.0067 11.58 0.7051 1
DTFLR 0.0039 5.35 0.9759 1

n=50 K=100 Laplacian 0.0331 NA NA NA
Graph 0.0107 6.94 0.9717 1
SCC 0.0132 18.62 0.3855 1
DTFLR 0.0055 5.89 0.9140 1

NOTE: The results are based on 100 repetitions.

MSE for the three cases, respectively, while the estimated cluster
numbers are closer to #ve, which is the true group number.
Keeping the sample nodes and doubling the local samples in
Case 2, the MSE of our proposed regularization reduces to the
half of Case 1, which validates our Theorem 1. Comparing
Cases 1 and 2, the estimation e!ciencies for all three methods
are improved. This is because by adding more nodes, the total
sample size is larger. However, for Cases 2 and 3, although they
have the same total sample size, the estimation gets better with
fewer node and simpler network topology. Additionally, note
that the estimated cluster numbers of the SCC method is much
worse than the Graph $1 method and our DTFLR method. This
is because the MST constructed by the spatial distant cannot

guarantee that the nodes from the same group are connected
in the tree. This encourages us to use model similarity as the
weights when constructing the MST in our DTFLR method.

7.2. Impact of Network Complexity

In this section, we use simulations to illustrate the impact of
the choice of penalty on the accuracy, computation time and
communication cost. The computations are performed on a
Windows computer with a 2.93 GHz Intel(R) Core(TM) i7 CPU
processor and 16.0 GB memory. We compare two method: the
Graph $1 method and our DTFLR method. In the distributed
algorithm, the nodes need to update and store the local β i, #i,l,
and zi,l in each iteration. Note that the numbers of {#i,l}l and
{zi,l}l are the same as those the penalization terms associated
with node i. Meanwhile, the nodes are required to send the local
β i to their neighbor nodes in the graph or tree. Clearly, the
amount of data being transmitted grows as the graph becomes
denser. Here, we consider 50 nodes with the same setting as in
Simulation 7.1. Each node contains 50 samples. We adjust the
network denseness by changing the connection radius threshold
value r. Two setting are compared, r = 0.50 and r = 0.75 (See
Figure 1(a) and Figure 1(c)).

As discussed above, the costs for computation and commu-
nication depend on the node degrees of the nodes in the graph
or tree. Based on the simulation setting, the connected degrees
are shown in Figure 3. The node degrees are deterministic for
the graph $1 method. For MSTs $1 penalty in DTFLR, the node
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Figure 4. The boxplots of MSEs of β̂ , the estimated group numbers Ŝ, the computation time ratio and the communication cost ratio of the graph $1 method and DTFLR.

degrees are stochastic because the trees are varying with the local
samples. Thus, we repeat 100 trials and compute the average
degrees for the nodes. In the case with r = 0.50, the maximum
degrees for the graph $1 and MSTs $1 penalties are 12 and 2.72,
respectively; while in the case with r = 0.75, the corresponding
maximum degrees are 25 and 3.25, respectively.

Next, we compare the accuracy and costs for the two methods
under di"erent networks. The MSEs and Ŝ are used to measure
the accuracy. Here the computation time approximation are
considered. Note that the node with more edges take longer
time to calculate more variables. Thus, the computation time
for each iteration is the time for the nodes with the maximum
node degree, and the total computation time is the summation
of the running times of all iterations. The communication cost
is de#ned as the total amount of transmitted messages, which is
proportional to the product of the iterations and the edges. We
set the baseline as the average computation time and the average
communication cost for DTFLR under r = 0.50. The results are
shown in Figure 4. We can see that our DTFLR method outper-
forms in all aspects. By pruning redundant edges, our DTFLR
method enjoys both lower computation and communication
costs, as well as the higher estimation accuracy. In contrast, for
the Graph $1 method, more edges in the graph result in longer
computation time and higher communication cost, as well as
less accurate estimation.

8. Real Data Study

In this section, we’d like to demonstrate the use of our method
on two real datasets from the wireless sensor network (Lee,
Zhu, and Toscas 2015) and the remote sensing (Li et al. 2018b).
We compare the following methods: (a) our proposed DTFLR
method; (b) the graph $1 method shown in (2); (c) k-Means
method on the local estimates.

8.1. Sensornets CSIRO Sensor Network Data

This dataset comes from the Sensornets project3 of the Com-
monwealth Scienti#c and Industrial Research Organization
(CSIRO). The project developed a family of sensor network
nodes known as FLECK ©, which are capable of sensing, compu-
tation and wireless communications, to collect the local soil and
air temperatures from 00:00 November 9, 2012 until 23:55 Jan-
uary 7, 2013. In our study, we focus on two networks deployed
near Yass, New South Wales, Australia, with 48 and 49 valid
sensors, respectively (See in Figure 5). In each network, the
sensors were divided into two landcover types, that is, grassland
and forest. We’d like to study the relationship between the soil
temperature y and air temperature x and check the landcover
e"ect on the relationship. Here we focus on the #rst #ve days’
data.

We consider the following linear model: yit = β0+β1xit+εit ,
where yit , xit , and εit are the soil, air temperature and mea-
surement error from the ith sensor at time t, respectively, and
β0 and β1 are the unknown coe!cients. We apply the three
methods to the data and the clustering results are shown in
Figure 6. It can be seen that the k-Means method has more
clusters than the other two methods and the clustering patterns
are not interpretable. Both the Graph $1 method and our DTFLR
method can divide the sensors into two groups which almost
follow the landcover types. However, in site 1, the two methods
have misclassi#ed some sensors: One sensor for our DTFLR
Method and three for the Graph $1 method. The sensor with ID
141 is misclassi#ed under both two methods. From Figure 5(a),
we can see that though this node is in the general forest area,
it speci#c location is at the gap among the tree cover. This is
the reason why its pattern is similar to those in the grassland
area. However, the Graph $1 method also misclassi#ed the

3http://www.sensornets.csiro.au/

http://www.sensornets.csiro.au/
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Figure 5. The wireless sensor networks of the two sites: the left (a) is the site 1 and the right (b) is the site 2. Red points present the sensors. The map data is from Google
Map.

Figure 6. The clustering results for the sensors: The !rst column is for k-Means, the second column is for the Graph $1 method and the third column is for our DTFLR.

Figure 7. The clusters’ estimated coe"cients with 95% con!dence intervals.

other two sensors with ID 139 and 150, which are covered by
the forest. Thus, we think our DTFLR method has a better
clustering performance than the Graph $1 method and the k-
Means method. Also we show the clusters’ coe!cient estimates
of DTFLR in Figure 7, which are signi#cantly di"erent across

landcover types. Thus, we reach the conclusion that the soil
and air temperature relationship will vary with the di"erent
landcover type and the estimation e!ciency can be improved by
aggregating the neighboring information in the wireless sensor
network.
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Figure 8. (a) is the network topology of the weather stations in Florida: The points present the station locations and the dashed lines present the connection between two
stations. (b) is the clustering results from the proposed DTFLR regularization method.

Figure 9. The coe"cients’ estimation over the clusters based on our DTFLR method.

8.2. High Resolution Air Temperature Remote Sensing
Data

We consider the Global Historical Climatology Network-Daily
(GHCN-D) dataset (Menne et al. 2012). The maximum air
temperature (AT) observations are provided in the GHCN-D
dataset from more than 10,000 stations in the conterminous
U.S. on approximately 30 days in 2010, which are considered
as the response y. Two auxiliary datasets, the gap#lled MODIS
daily land surface temperature (LST) data (Li et al. 2018a) and
the weather stations’ elevation information (Li et al. 2018b), are
used as covariate x. In our study, we focus on the 157 stations in
Florida with 3937 observations. The stations’ network topology
is shown in Figure 8(a), in which two stations are connected if
their distance is smaller than 36 miles. Note that here 36 miles is
the threshold with which the network is connected and the edge
number is moderate.

In our study, we’d like to investigate the linear relationship
between the daily maximum AT y and the daily LST x1, the
station’s elevation x2, and see whether the stations can be clus-
tered based on the linear relationship. We consider the model,
yit = β0 + β1x1,it + β2x2,it + εit , in which the subscript i
presents the ith station and t means the tth record. However, the
above model is locally unidenti#able, because each location only
has the #xed elevation. Thus, the initial estimation is found by
the graph Laplacian method, which can be simply implemented
in the distributed fashion and the corresponding estimates are
also consistent (Wang et al. 2018). Note that in our method,
the initial estimates are used for the MSTs construction and

Table 2. The landcover category percentages (%) of each cluster based on the
DTFLR clustering results and NLCD 2011.

Cluster Developed Forest Planted Shrubland Wetlands

#1 80 3 12 0 5
#2 60 27 13 0 0
#3 56 0 28 8 8
#4 45 45 0 10 0
#5 100 0 0 0 0
#6 67 33 0 0 0
#7 0 33 0 0 67
#8 41 23 0 4 32
#9 0 0 0 0 100

as the adaptive weights in the penalty. It can be easily checked
that Lemma 1 and Theorem 1 still hold, as long as the initial
estimates are consistent. The similar discussion on determining
the adaptive weight is also provided in Zou (2006).

Figure 8(b) shows the clustering results on the stations. In
the results, we have nine spatially contiguous clusters. To better
understand the clustering result from DTFLR, we compare it
with the National Land Cover Database4 (NLCD) in 2011,
because we believe the relationship between AT and LST varies
with the landcover re%ection. The NLCD provides the charac-
teristics of the land surface on 30-meter resolution over seven
main categories. We summarize the category percentages of
each cluster in Table 2.

4https://www.usgs.gov/centers/eros/science/national-land-cover-database

https://www.usgs.gov/centers/eros/science/national-land-cover-database
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Figure 10. The estimated intercept β0 against the developed space percentage
(%). The blue line is based on the local regression !tting.

Now, based on our clustering result, we analyze the pattern
of the coe!cient β over the landcover type. The coe!cients
for each cluster are shown in Figure 9. It can be seen that the
main di"erence is on the intercept β0 in Figure 9(a). Here we
show the intercept β0 against the developed space percentage in
Figure 10. We can see that with the increasing of the developed
space percentage, the intercept β0 are decreasing. It implies that
with the same LST x1 and the elevation x2, the highly devel-
oped space has the lower air temperature y. Then for the LST
coe!cient β1 (see in Figure 9(b)), all the estimates are almost
the same, around the value 1. This means that the LST e"ect is
almost #xed across the clusters, and with one unit increasing in
the LST, the AT also increases one unit. Lastly, we can see from
Figure 9(c) that the elevation e"ect are around 0, except Clusters
7 and 9. We #nd that these two clusters are at the south part of
Florida, and are mostly the wetland with the lowest elevation. It
can be believed that these characteristics make these two clusters
distinguished from the others.

9. Discussion

We considered the problem of distributively learning the regres-
sion coe!cient heterogeneity over networks. We developed a
new adaptive spanning-tree-based fused-lasso model and a low-
complexity distributed generalized ADMM algorithm to solve
the problem. We term our method as develop a distributed
spanning-tree-based fused lasso regression (DTFLR). We inves-
tigated the theoretical properties of both the model consistency
and algorithm convergence. Our theoretical results were val-
idated by the thorough numerical experiments and real data
analysis, which show that our approach outperforms the existing
works in terms of estimation accuracy, computation speed and
communication costs.

In this work, we focus on the case that the node number
K is #xed and the local sample size increases. However, it is
o$en the case that the number of the spatial location K increase
and each location holds limited samples, that is, n is #xed, in

many real spatial problems. Though our proposed optimization
algorithm still works for that case, the statistical properties of
our model need to be further investigated. Also, our framework
assumed a simple balanced design that all nodes have local
sample size going to in#nity. It would be worth studying the
imbalanced design where only a subset of nodes have n → ∞.
Second, we leverages Assumption 1 for the consistency analysis.
Highly connected network graph can guarantee the assumption
while introduces intensive computation and communication
costs. Thus, it is worth investigating the practical guideline
for choosing the spatial network. Lastly, generalizing our
framework to a more general class of regression problems,
including generalized and semi-parametric linear model, will
be an interesting future topic.

Supplementary Materials

The supplementary materials contain detailed derivations for the proposed
algorithm, proofs for the theoretical results, as well as the additional
numerical simulations. The implementation code is also provided in the
supplementary materials.
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