
Toward Efficient Online Scheduling for Distributed
Machine Learning Systems

Menglu Yu , Graduate Student Member, IEEE, Jia Liu , Senior Member, IEEE,
Chuan Wu , Senior Member, IEEE, Bo Ji , Senior Member, IEEE, and Elizabeth S. Bentley,Member, IEEE

Abstract—Recent years have witnessed a rapid growth of
distributed machine learning (ML) frameworks, which exploit
the massive parallelism of computing clusters to expedite ML
training. However, the proliferation of distributed ML
frameworks also introduces many unique technical challenges in
computing system design and optimization. In a networked
computing cluster that supports a large number of training jobs,
a key question is how to design efficient scheduling algorithms to
allocate workers and parameter servers across different
machines to minimize the overall training time. Toward this end,
in this paper, we develop an online scheduling algorithm that
jointly optimizes resource allocation and locality decisions. Our
main contributions are three-fold: i) We develop a new analytical
model that considers both resource allocation and locality; ii)
Based on an equivalent reformulation and observations on the
worker-parameter server locality configurations, we transform
the problem into a mixed packing and covering integer program,
which enables approximation algorithm design; iii) We propose a
meticulously designed approximation algorithm based on
randomized rounding and rigorously analyze its performance.
Collectively, our results contribute to the state of the art of
distributed ML system optimization and algorithm design.

Index Terms—Online resource scheduling, distributed
machine learning, approximation algorithm.

I. INTRODUCTION

FUELED by the rapid growth of data analytics and machine
learning (ML) applications, recent years have witnessed an

ever-increasing hunger for computing power. However, with
hardware capability no longer advancing at the pace of the
Moore’s law, it has beenwidely recognized that a viable solution
to sustain such computing power needs is to exploit parallelism
at both machine and chip scales. Indeed, the recent success of

deep neural networks (DNN) is enabled by the use of distributed
ML frameworks, which exploit the massive parallelism over
computing clusters with a large number of GPUs. These distrib-
uted ML frameworks have significantly accelerated the training
of DNN for many applications (e.g., image and voice recogni-
tion, natural language processing, etc.). To date, prevailing dis-
tributed ML frameworks include TensorFlow [1], MXNet [2],
PyTorch [3], Caffe [4], to name just a few.

However, the proliferation of distributed ML frameworks
also introduces many unique technical challenges on large-
scale computing system design and network resource optimi-
zation. Particularly, due to the decentralized nature, at the
heart of distributed learning system optimization lies the prob-
lem of scheduling ML jobs and resource provisioning across
different machines to minimize the total training time. Such
scheduling problems involve dynamic and combinatorial
worker and parameter server allocations, which are inherently
NP-hard. Also, the allocations of workers and parameter serv-
ers should take locality into careful consideration, since co-
located workers and parameter servers can avoid costly net-
work communication overhead. However, locality optimiza-
tion adds yet another layer of difficulty in scheduling
algorithm design. Exacerbating the problem is the fact that the
future arrival times of training jobs at an ML computing clus-
ter are hard to predict, which necessitates online algorithm
design without the knowledge of future job arrivals. So far in
the literature, there remains a lack of holistic theoretical stud-
ies that address all the aforementioned challenges. Most of the
existing scheduling schemes are based on simple heuristics
without performance guarantee (see Section II for detailed dis-
cussions). This motivates us to fill this gap and pursue efficient
online scheduling designs for distributed ML resource optimi-
zation, which offer provable performance guarantee.

The main contribution of this paper is that we develop an
online scheduling algorithmic framework that jointly yields
resource scheduling and locality optimization decisions with
strong competitive ratio performance. Further, we reveal inter-
esting insights on how distributed ML frameworks affect
online resource scheduling optimization. Our main technical
results are summarized as follows:

! By abstracting the architectures of prevailing distrib-
uted ML frameworks, we formulate an online resource
scheduling optimization problem that: i) models the
training of ML jobs based on the parameter server (PS)
architecture and stochastic gradient descent (SGD)

Manuscript received November 1, 2020; revised June 25, 2021; accepted
July 26, 2021. Date of publication August 13, 2021; date of current version
June 27, 2022. This work has been supported in part by NSF grants CA- REER
CNS-2110259, CNS-2102233, CCF-2110252, ECCS-2140277, CNS- 2112694,
HKU-17204619,HKU-17208920, and aGoogle FacultyResearchAward. Recom-
mended for acceptance by Dr. Jiangchuan Liu. (Corresponding author: Jia Liu.)

Menglu Yu is with the Department of Computer Science, Iowa State Uni-
versity, Ames, IA 50011 USA (e-mail: mengluy@iastate.edu).

Jia Liu is with the Department of Electrical and Computer Engineering, The
Ohio State University, Columbus, OH 43210USA (e-mail: liu@ece.osu.edu).

Bo Ji is with the Department of Computer Science, Virginia Tech, Blacks-
burg, VA 24061 USA (e-mail: boji@vt.edu).

Chuan Wu is with the Department of Computer Science, University of
Hong Kong, Hong Kong 999077, Hong Kong (e-mail: cwu@cs.hku.hk).

Elizabeth S. Bentley is with the Air Force Research Laboratory, Information
Directorate, Rome, NY 13441 USA (e-mail: elizabeth.bentley.3@us.af.mil).

Digital Object Identifier 10.1109/TNSE.2021.3104513

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022 1951

2327-4697 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3653-3453
https://orcid.org/0000-0002-3653-3453
https://orcid.org/0000-0002-3653-3453
https://orcid.org/0000-0002-3653-3453
https://orcid.org/0000-0002-3653-3453
https://orcid.org/0000-0001-8844-3233
https://orcid.org/0000-0001-8844-3233
https://orcid.org/0000-0001-8844-3233
https://orcid.org/0000-0001-8844-3233
https://orcid.org/0000-0001-8844-3233
https://orcid.org/0000-0002-3144-4398
https://orcid.org/0000-0002-3144-4398
https://orcid.org/0000-0002-3144-4398
https://orcid.org/0000-0002-3144-4398
https://orcid.org/0000-0002-3144-4398
https://orcid.org/0000-0003-0149-7509
https://orcid.org/0000-0003-0149-7509
https://orcid.org/0000-0003-0149-7509
https://orcid.org/0000-0003-0149-7509
https://orcid.org/0000-0003-0149-7509
mailto:
mailto:
mailto:
mailto:
mailto:

method; and ii) explicitly takes locality optimization
into consideration. We show that, due to the heteroge-
neous internal (between virtual machines or containers)
and external (between physical machines) communica-
tions, the locality-aware scheduling problem contains
non-deterministic constraints and is far more complex
compared to the existing works that are locality-oblivi-
ous (see, e.g., [5], [6]).

! To solve the locality-aware scheduling problem, we
develop an equivalent problem reformulation to enable
subsequent developments of online approximation algo-
rithms. Specifically, upon carefully examining the
locality configurations of worker-server relationships,
we are able to transform the original problem to a spe-
cial-structured integer nonlinear program with mixed
cover/packing-type constraints, and the low-complexity
approximation algorithm design with provable perfor-
mance can be further entailed.

! To tackle the integer nonlinear problem with mixed
cover/packing-type constraints, we propose an approxi-
mation algorithm based on a meticulously designed ran-
domized rounding scheme and then rigorously prove its
performance. We note that the results of our random-
ized rounding scheme are general and could be of inde-
pendent theoretical interest. Finally, by putting all
algorithmic designs together, we construct a primal-
dual online resource scheduling (PD-ORS) scheme,
which has an overall competitive ratio that only loga-
rithmically depends on ML job characteristics (e.g.,
required epochs, training samples).

Collectively, our results contribute to a comprehensive and
fundamental understanding of distributed machine learning
system optimization. The remainder of this paper is organized
as follows. In Section II, we review the literature to put our
work in comparative perspectives. Section III introduces the
system model and problem formulation. Section IV presents
our algorithms and their performance analysis. Section V
presents numerical results and Section VI concludes this
paper.

II. RELATED WORK

As mentioned in Section I, due to the high computational
workload of ML applications, many distributed ML frame-
works (e.g., TensorFlow [1], MXNet [2], PyTorch [3],
Caffe [4]) have been proposed to leverage modern large-scale
computing clusters. A common distributed training architec-
ture implemented in these distributed ML frameworks is the
PS architecture [7], [8], which employs multiple workers and
PSs (implemented as virtual machines or containers) to collec-
tively train a global ML model. Coupled with the iterativeML
training based on stochastic gradient descent (SGD), the inter-
actions between machines in the distributed ML cluster are
significantly different from those in traditional cloud comput-
ing platforms (e.g., MapReduce [9] and Dryad [10] and refer-
ences therein). For example, a MapReduce job usually
partitions the input data into independent chunks, which are

then processed by the map step in a parallel fashion. The out-
put of the maps are then fed to the reduce step to be aggre-
gated to yield the final result. Clearly, the data flows in
MapReduce are a “one-way traffic,” which is unlike those iter-
ative data flows in ML training jobs whose completions highly
depend on the ML job’s convergence property. As a result,
existing job scheduling algorithms for cloud systems are not
suitable for distributed ML frameworks.
Among distributed ML system studies, most of the early

attempts (see, e.g., [7], [8] and references therein) only con-
sidered static allocation of workers and parameter servers. To
our knowledge, the first work on understanding the perfor-
mance of distributed ML frameworks is [11], where Yan et al.
developed analytical models to quantify the impacts of model-
data partitioning and system provisioning for DNN. Subse-
quently, Chun et al. [5] developed heuristic dynamic system
reconfiguration algorithms to allocate workers and parameter
servers to minimize the runtime, but without providing opti-
mality guarantee. The first dynamic distributed scheduling
algorithm with optimality guarantee was reported in [12],
where Sun et al. used standard mixed integer linear program
(MILP) solver to dynamically compute the worker-parameter
server partition solutions. Due to NP-hardness of the MILP,
the scalability of this approach is limited. The most recent
work [13] proposed an online scheduling algorithm to sched-
ule synchronous training jobs in ML clusters with the goal to
minimize the weighted completion time. However, the conse-
cutive time slots were allocated for each training job, and the
numbers of workers and parameter servers could not be
adjusted.
Another line of the research is to leverage the learning-

based approach to do the resource scheduling. There are a
number of recent works using deep reinforcement learning
(DRL) for resource allocation, device placement, and video
streaming. For example, Mao et al. [14] and Chen et al. [15]
designed a multi-resource cluster scheduler using DRL with
the goal to minimize average job slowdown. The proposed
scheduler picks one or more of the waiting jobs in the queue
and allocate to machines at each time slot, and the resource
demand of each job is unknown until after its arrival. Later,
Mao et al. [16], [17] used DRL to heuristically train schedul-
ing policies for graph-based parallel jobs by setting both paral-
lelism level and execution order. Meanwhile, Mirhoseini et al.
[18], [19] utilized DRL to design a model for efficient place-
ment of computational graphs onto hardware devices, aiming
at minimize the running time of each individual TensorFlow
job. Although various performance gains have been empiri-
cally reported, these DRL-based studies do not offer optimal-
ity performance guarantee due to the lack of theoretical
foundation of DRL as of today.
The most relevant work to ours is [6], where Bao et al.

developed an online primal-dual approximation algorithm,
OASiS, to solve the scheduling problem for distributed ML
systems. Our work differs from [6] in the following key
aspects: 1) In [6], the workers and parameter servers are allo-
cated on two strictly separated sets of physical machines, i.e.,
no worker and parameter server can share the same physical

1952 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

machine, which significantly simplified the underlying optimi-
zation problem. In this work, we consider the cases that work-
ers and parameter servers can be co-located on the same
physical machine, which is the common practice in existing
ML systems (see, e.g., [20], [21]). Such co-location can sig-
nificantly reduce inter-server communication, expedite train-
ing, and improve resource utilization efficiency between
workers and parameter servers. However, as will be shown
later, the co-location setting leads to an integer non-convex
optimization problem with non-deterministic constraints,
which is much harder and necessitates new algorithm design.
2) Ref. [6] advocates dynamic worker number adjustment, but
does not guarantee the same global batch size across the train-
ing iterations. According to recent literature [22], maintaining
a consistent global batch size is important for ensuring conver-
gence of DNN training, when the worker number varies. We
ensure a consistent global batch size in our model. We note
that the co-location setting was considered in [23]. However,
the scheduling algorithm therein is a heuristic and does not
provide performance guarantee. This motivates us to develop
new algorithms with provable performance to fill this gap.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first provide a quick overview on the
architecture of distributed ML frameworks to familiarize read-
ers with the necessary background. Then, we will introduce
our analytical models for ML jobs and resource constraints, as
well as the overall problem formulation.

1) Distributed Machine Learning: A Primer. As illustrated
in Fig. 1, the key components of a PS-based distributed ML
system include parameter servers, workers, and the training
dataset, which are usually implemented over a connected com-
puting cluster that contains multiple physical machines. The
training dataset of an ML job is stored in distributed data stor-
age (e.g., HDFS [24]) and usually divided into equal-sized
data chunks. Each data chunk further contains multiple equal-
sized mini-batches.

To date, one of the most widely adopted training algorithms
in distributed ML frameworks is the stochastic gradient
descent method (SGD) [25]. With SGD, the interactions
between workers and parameter servers are illustrated in
Fig 2. A worker is loaded with the DNN model (we focus on
data parallel training) with current values of the model param-
eters (e.g., the weights of a DNN) and retrieves a new data
chunk from the data storage. In each training iteration, a

worker processes one mini-batch from its data chunk to com-
pute gradients (i.e., directions and magnitudes of parameter
changes).1 Upon finishing a mini-batch, the worker sends the
gradients to the parameter servers, receives updated global
parameters, and then continues with the next training iteration
to work on the next mini-batch. On the parameter server side,
parameters are updated as: w½k# ¼ w½k% 1# þ akg½k#, where
w½k#, ak, and g½k# denote the parameter values, step-size, and
stochastic gradient in the k-th update, respectively.

2) Modeling of Learning Jobs: We consider a time-slotted
system. The scheduling time-horizon is denoted as T with
jT j ¼ T . We use I to represent the set of training jobs and let
ai denote the arrival time-slot of job i 2 I . As shown in
Fig. 3, parameter servers and workers could spread over multi-
ple physical machines. We let H represent the set of physical
machines. For each job i, we use wih½t#; sih½t# ' 0 to represent
the allocated numbers of workers and parameter servers on
machine h 2 H in each time-slot t ' ai, respectively. Further,
we let Pi½t#, fh2Hjsih½t# > 0g and Wi½t#, fh2Hjwih½t# >
0g denote the sets of physical machines that contain parameter
servers and workers for job i in time-slot t, respectively.

We use a binary variable xi 2 f0; 1g to indicate whether job
i is admitted (xi ¼ 1) or not (xi ¼ 0). We use ti to denote the
training for each sample of job i. We let biðh; pÞ denote the
data rate of the link between a worker for job i (on machine h)
and a parameter server (on machine p). Each worker or param-
eter server is exclusively assigned to some job i, and biðh; pÞ is
reserved and decided by the user upon job submission, which
is common to ensure the data transfer performance [6]. Note
that the value of biðh; pÞ is locality-dependent where the slow-
est worker will become the bottleneck since we focus on

Fig. 1. Illustration of distributed training with the PS architecture.
Fig. 2. The workflow of iterative training.

Fig. 3. Colocated parameter servers and workers on physical machines.

1 As an example, in a DNN model, gradients can be computed by the well-
known “back-propagation” approach.

YU et al.: TOWARD EFFICIENT ONLINE SCHEDULING FOR DISTRIBUTED MACHINE LEARNING SYSTEMS 1953

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

Bulk-Synchronous-Parallel (BSP) scheme [26]. Specifically,
we have:

biðh; pÞ ¼
bðiÞi ; if h ¼ p;

bðeÞi ; otherwise;

(

where bðiÞi and bðeÞi denote the internal and external communi-
cation link rates, respectively. For example, as shown in
Fig. 3, since Job 1’s worker W4 and parameter server PS2 are
both on the same machine, they communicate at the internal
link rate bðiÞ1 . On the other hand, since Job 1’s worker W3 and
parameter server PS2 are on different physical machines, they
communicate at the external link rate bðeÞ1 . In practice, it usu-
ally holds that bðeÞi * bðiÞi .

Next, we calculate the amount of time for a worker on
machine h to process a sample. We use Fi to denote the global
batch size of job i, which is a fixed constant across all time-
slots.2 We assume Fi is equally divided among workers, i.e.,
the local batch size at each worker is: Fi=

P
h02H wih0 ½t#.3

We assume symmetric link speed in both directions
between a worker and a PS. Let gi denote the size of gra-
dients/parameters of job i. Then, from a worker’s perspective,
to push gradients to and pull updated parameters from the PSs
for job i, the combined uplink/downlink communication time
can be computed as: ð2gi=

P
h02H sih0 ½t#Þ=ðminp2Pi½t#biðh; pÞÞ,

where the numerator term gi=
P

h02H sih0 ½t# follows from the
assumption of even parameter distribution among the PSs, and
the denominator is due to the fact that push/pull time is
decided by the slowest link among all connections from the
worker to all PSs (i.e., minp2Pi½t#biðh; pÞ). Hence, the average
computation and communication time to process a sample on
machine h 2 Wi½t# for job i in time slot t can be computed as:

ti|{z}
Training time
per sample

þ
!
2gi=

P
h02H sih0 ½t#

minp2Pi½t#biðh; pÞ

"#!
FiP

h02H wih0 ½t#

"

|ffl{zffl}
Communication time per sample

:

Recall that we focus on the BSP scheme, where all workers
are synchronized before they proceed to the next iteration. In
other words, the total number of samples trained on machine
h 2 Wi½t# for job i in time slot t is determined by the slowest
link among all connections from all workers to all PS (i.e.,
minp2Pi½t#;h02Wi½t#biðh;

0 pÞ). It then follows that the number of
samples trained on machine h 2 Wi½t# for job i in time-slot t
can be computed as:

wih½t#

ti þ
2gi=
P

h02H sih0 ½t#
minp2Pi ½t#;h02Wi ½t#biðh;

0pÞ

! ".
FiP

h02H wih0 ½t#

! " : (1)

Note that in practice, ML users usually specify a fixed ratio
between worker number and PS number (e.g., often 1:14) when
launching their training jobs to ensure appropriate coordina-
tions between workers and PSs in terms of channel bandwidth,
memory allocation, etc. To model this practice, we define the
ratio of worker number to PS number for each job i as:

gi ,
P

h02H wih0 ½t#P
h02H sih0 ½t#

; 8i; t: (2)

With gi, we can rewrite (1) as:

wih½t#
ti þ gi

Fi

2gi
minp2Pi ½t#;h02Wi ½t#biðh;

0pÞ
:

Suppose that, for job i, there are Ki data samples in its
training dataset. In practice, Ki + Fi. In ML systems, an
epoch is defined as a round of training that exhausts all data
samples. We let Ei denote the number of epochs needed by
job i. In this paper, we assume that the epoch of each job is
predetermined. This is because it is often difficult to estimate
the required number of epochs for SGD-type methods’ con-
vergence. Therefore, most SGD-type algorithms in practice
stop after a fixed number of iterations (i.e., fixed number of
epochs, see, e.g., [30] and references therein) to avoid exces-
sive training delay.
Then, the total number of samples to be processed for job i

over the entire training process is EiKi. To make sure that
there are sufficient workers allocated for job i over the entire
training horizon, we have:

X

t2T

X

h2H

wih½t#
ti þ gi

Fi

2gi
minp2Pi ½t#;h02Wi ½t#biðh;

0pÞ
'xiEiKi; 8i 2 I : (3)

We note that, with co-located workers and parameter servers
on each machine, (3) is non-deterministic due to the existence
of the minf,g operator. As will be shown later, this non-deter-
mistic constraint makes the scheduling design far more com-
plicated than related works [5]–[8].
To model the fact that the largest number of assigned con-

current workers is no more than the global batch size (other-
wise, some workers will be idle), we have:

X

h2H
wih½t# - xiFi; 8i 2 I ; ai - t - T: (4)

3) Resource Constraint Modeling: We let R denote the set
of resources (e.g., CPU/GPU, memory, storage, etc.). Let ar

i

2 We note that this fixed global batch size requirement is compliant with
the standard SGD implementation [27] and important for ensuring conver-
gence [22]. In contrast, the global batch size in some existing works on
dynamic ML resource allocation (e.g., [6]) could be time-varying, which
necessitates time-varying dynamic learning rate adjustments to offset corre-
spondingly and further complicates the SGD implementation.

3 Most distributed ML frameworks (e.g., Tensorflow [28]) set the same
local batch size to each worker for the distributed training.

4 In practice, the ratio between numbers and parameter servers are speci-
fied by the user upon the job’s submission (e.g., 1:1 in Kubernetes [29]).

1954 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

and br
i be the amount of type-r resource required by a worker

and a parameter server for job i, respectively. Let Cr
h be the

capacity of type-r resource on machine h. To ensure the
resources do not exceed type-r’s limit, we have:

X

i2I
ðar

iwih½t# þ br
i sih½t#Þ - Cr

h; 8t 2 T ; r 2 R; h 2 H: (5)

Note that for job i, its completion time ~ti corresponds to the
latest time-slot where there remain some active workers allo-
cated for it. Therefore, we have:

~ti ¼ argmax
t2T

%X

h2H
wih½t# > 0

&
; 8i 2 I : (6)

To ensure that no workers and parameter servers are allocated
before job i’s arrival, we have:

wih½t# ¼ sih½t# ¼ 0; 8i 2 I ; h 2 H; t < ai: (7)

4) Objective Function and Problem Statement: Let uið~ti %
aiÞ be the utility function for job i, which is non-increasing
with respect to the training time ~ti % ai. The utility functions
could play the role of various performance metrics based on
job completion times (e.g., fairness). In this paper, our goal is
to maximize the overall utility for all jobs. Putting all con-
straints and the objective function together, the offline (with
knowledge of ai, 8i) distributed ML resource scheduling prob-
lem (DMLRS) can be formulated as:

DMLRS : Maximize
x;w;s

X

i2I
xiuið~ti % aiÞ

subject to Constraintsð3Þ % ð7Þ:

Problem DMLRS is an integer nonlinear program, which is
NP-hard in general [31]. Also, Problem DMLRS involves two
non-deterministic constraints in (3) and (6), which are not
amenable for conventional optimization techniques. More-
over, the arrivals fai; 8ig are often unknown in practice,
which necessitates online optimization. Overcoming these
challenges constitutes the rest of this paper. To conclude this
section, we summarize the key notation used in this paper in
Table I for easy reference.

IV. ONLINE SCHEDULING ALGORITHM DESIGN

In this section, we structure the key components of our online
scheduling algorithm design for solving Problem DMLRS into
three steps from Sections IV-A to IV-C. We state our main the-
oretical performance results in Section IV-D.

A. Reformulation for Non-Deterministic Constraint (6)

The first challenge in solving Problem DMLRS stems from
the non-deterministic “argmax” structure in constraint (6). To
address this challenge, we let Pi be the set of all feasible
schedules for job i 2 I that satisfy constraints (3), (4). Each
schedule pi 2 Pi is defined by the numbers of workers wpi

ht
and parameter servers spiht allocated for job i on machine h in
each time-slot t, i.e., pi, fwpi

ht; s
pi
ht; 8t2T ; h2Hg. Note that

wpi
ht and spiht are constants, not to be confused with decision

variables wih½t# and sih½t#. We define a binary variable xpi 2
f0; 1g that is equal to 1 if job i is admitted and scheduled
under schedule pi, or 0, otherwise. Clearly, due to the combi-
natorial nature, jPij is exponential. We let ~tpi denote job i’s
completion time under schedule pi. Then, one can equiva-
lently reformulate Problem DMLRS as:

R%DMLRS :

Maximize
x

X

i2I

X

pi2Pi

xpiuið~tpi % aiÞ

subject to
X

i2I

X

pi2Gðt;hÞ
ðar

iw
pi
ht þ br

i s
pi
htÞxpi - Cr

h;

8t 2 T ; r 2 R; h 2 H; (8Þ
X

pi2Pi

xpi - 1; 8i 2 I ;

xpi 2 f0; 1g; 8i 2 I ;pi 2 Pi; (9Þ

where we use Gðt; hÞ to represent the set of feasible schedules
that use machine h to deploy workers or parameter servers in
time-slot t. Constraint (8) guarantees that, in any time-slot t
and on any machine h, the total amount of consumed type-r
resources will not exceed the capacity limit Cr

h. Constraint (9)
ensures that, for each job i, at most one feasible schedule from
Pi will be selected. Note that Problem R-DMLRS is an integer
linear program (ILP) and a feasible solution to Problem R-

TABLE I
NOTATION

YU et al.: TOWARD EFFICIENT ONLINE SCHEDULING FOR DISTRIBUTED MACHINE LEARNING SYSTEMS 1955

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

DMLRS has a corresponding feasible solution to the original
Problem DMLRS, and vice versa. Notice that the non-deter-
ministic constraint (6) no longer exists in Problem R-DMLRS.
Further, if relaxing binary xpi -variables to real-valued, Prob-
lem R-DMLRS is a linear program (LP). However, it remains
difficult to solve Problem R-DMLRS since it has an exponen-
tial number of xpi -variables due to the combinatorial nature of
feasible schedules. We will address this challenge in the next
subsection.

B. An Online Primal-Dual Framework for R-DMLRS

In what follows, we adopt a primal-dual online algorithmic
framework to reduce the number of binary variables, which is
an effective approach to address this kind of challenge in the
literature (see, e.g., [6], [32]). Note that, in the dual of
Problem R-DMLRS, the number of dual variables is polyno-
mial. Meanwhile, although there are an exponential number of
constraints in the dual problem, one only needs to be con-
cerned with the set of active (binding) constraints, which are
easier to deal with. To see this, we associate dual variables
prh½t# ' 0, 8t 2 T , h 2 H, r 2 R and !i > 0, i 2 I , with (8)
and (9), respectively. Then, following the standard procedure
of dualization (relaxing the integrality constraints), we obtain
the following dual problem:

D%R%DMLRS :

Minimize
!!;p

X

i2I
!i þ

X

t2T

X

h2H

X

r2R
prh½t#C

r
h

(10)

subject to !i ' uið~tpi % aiÞ %
X

t2T ðpiÞ

X

h2Hðpi½t#Þ

X

r2R
ðar

iw
pi
ht

þ br
i s

pi
htÞp

r
h½t#; 8i 2 I ;pi 2 Pi;

prh½t# ' 0; 8t 2 T ; h 2 H; r 2 R;
!i ' 0; 8i 2 I ;

(11)

where T ðpiÞ denotes the time-slots utilized by schedule pi

and Hðpi½t#Þ denotes the set of machines containing workers
and/or parameter servers under pi in time-slot t. Here, prh½t#
can be viewed as the price for type-r resource in time t. Then,
the right-hand-side (RHS) of (11) can be interpreted as job
utility minus overall resource cost of job i using schedule pi.
Thus !i ' 0 can be viewed as the payoff of admitting job i
with pi. Next, we examine the properties of Problem D-R-
DMLRS. To minimize (10), we tend to reduce !i and prh½t#
until they hit zero. However, as !i and prh½t# decrease, the left-
hand-side (LHS) and RHS of (11) decreases and increases,
respectively (the term uið~tpi % aiÞ in the RHS of (11) is a con-
stant given pi). Therefore, !i will drop to a value !.

i , which is
equal to maximum of the RHS of (11) achieved by some
schedule p.

i and dual price p
r.
h ½t#, i.e.,

!.
i ¼uið~tp.i %aiÞ%

X

t2T ðp.i Þ

X

h2Hðp.i ½t#Þ

X

r2R
ðar

iw
p.i
ht þbr

i s
p.i
ht Þp

r.
h ½t#:

This optimality structural insight implies that Problem D-R-
DMLRS is equivalent to finding an optimal schedule p.

i and
dual price pr.h ½t# to maximize the RHS of (11). The above
insights motivate the following primal-dual-based algorithm
as shown in Algorithm 1.
The intuition of Algorithm 1 is as follows: By the complemen-
tary slackness condition of the Karush-Kuhn-Tucker (KKT)
conditions [27], the primal constraint (9) must be tight when
dual variable !i > 0, which implies that xi ¼ 1 (Step 3) in
Problem DMLRS. Otherwise, if !i ¼ 0, then the RHS of (11)
is non-positive, meaning the utility is low compared to the
cost of resource consumption under schedule p.

i . Therefore,
we should reject job i (xi ¼ 0 in Step 4). However, in order
for the PD-ORS algorithm to work, two challenging compo-
nents need to be specified: the schedule p.

i and how to update
the cost function Qr

hð,Þ
5 In what follows, we will first focus on

designing Qr
hð,Þ and defer the challenging problem of finding

p.
i to Section IV-C. For the design of Qr

hð,Þ, consider the fol-
lowing choice of Qr

hð,Þ:

Qr
hðr

r
h½t#Þ ¼ LðUr=LÞ

rr
h
½t#

Cr
h ; (12)

where constants Ur, 8r, and L are defined as follows:

Ur, max
i2I

uiðdEiKi
Fi

ðti þ 2gigi=ðb
ðiÞ
i FiÞÞe% aiÞ

ar
i þ br

i

; 8r 2 R; (13Þ

L , min
i2I

1=ð2mÞuiðT % aiÞ
P

r2RdEiKiðti þ 2gigi=ðb
ðeÞ
i FiÞeðar

i þ br
i Þ
: (14Þ

Algorithm 1: Primal-Dual Online Resource Scheduling (PD-
ORS).
Initialization:
1. Let wih½t# ¼ 0, sih½t# ¼ 0, 8i; t; h. Let rrh½t# ¼ 0, 8h; r; t.
Choose some appropriate initial values for prh½0#.

Main Loop:
2. Upon the arrival of job i, determine a schedule p.

i to maximize the
RHS of (11) and its corresponding payoff !i using Algorithm 2
(to be specified).

3. If !i > 0, set xi ¼ 1. Set wih½t# and sih½t# according to schedule
p.
i , 8t 2 T ðp.

i Þ, h 2 Hðp.
i ½t#Þ.

Update rrh½t# rrh½t# þ ar
iwih½t# þ br

i sih½t#, 8t 2 T ðp.
i Þ, h 2

Hðp.
i ½t#Þ, r 2 R.

Update prh½t# ¼ Qr
hðrrh½t#Þ, 8t 2 T ðp.

i Þ, h 2 Hðp.
i ½t#Þ, r 2 R.

Schedule job i based on p.
i and go to Step 2.

4. If !i - 0, set xi ¼ 0 and reject job i and go to Step 2.

5 Here, we note that the “cost function” Qr
hð,Þ is interpreted from servers’

perspective rather than jobs’ perspective. Specifically, higher cost means serv-
ers allocated more resources to jobs, which implies higher utility for the jobs
since jobs receive more resources from servers.

1956 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

The scaling factor m in the definition of L satisfies as follows:

1

m
-
dEiKiðti þ 2gigi=ðb

ðeÞ
i FiÞÞe

P
r2Rðar

i þ br
i Þ

T
P

h2H
P

r2R Cr
h

; 8i 2 I :

Here, Ur is the maximum unit-resource job utility to deploy
workers and parameter servers with type-r resource. Here,
uiðdEiKi

Fi
ðti þ 2gigi=ðb

ðiÞ
i FiÞÞe% aiÞ is the largest utility job i

can achieve by using the maximum number of co-located
workers and parameter servers (hence communicating rate is
bðiÞi) at all times during all Ei epochs, so that
dEiKi

Fi
ðtiþ2gigi=ðb

ðiÞ
i FiÞÞe%ai is the earliest possible job

completion time. Similarly, L represents the minimum unit-
time unit-resource job utility among all jobs, with uiðT % aiÞ
being the smallest utility for job i, and workers and parameter
servers communicate at small external rate bðeÞi . We use rrh½t#
to denote the allocated amount of type-r resource to machine
h for (future) time slot t. The intuition behind the Qr

hð,Þ func-
tion is as follows: i) At t¼0, rrh½0#¼0; 8h 2 H; r 2 R. Hence,
the price prh½0# ¼ L is the lowest, 8h; r, and any job can be
admitted; ii) As allocated resources increases, the price
increases exponentially fast to reject early coming jobs with
low utility and to reserve resources for later arrived jobs with
higher utility; iii) When some type-r resource is exhausted,
i.e., rrh½t# ¼ Cr

h; 9r 2 R,Qr
h½Cr

h# ¼ Ur and no job that requires
type-r resources will be admitted since the Ur is the highest
price. As will be shown later, this price function leads to a log-
arithmically scaling competitive ratio in online algorithm
design. Note that computing the price function in Algorithm 1
requires the information of constants Ur, L, which can usually
be estimated empirically based historical data.

Here, we point out a few interesting insights on the design
choices of the cost function in (12). Note that Ur and L are
defined in Eqns (13) and (14), respectively. Here, we inten-
tionally choose Ur to be dependent on r and L to be indepen-
dent on L due to the following reasons:

First, the rationality of choosing an upper bound Ur that
varies with different resource types is to ensure that when
some type-r resource is exhausted, no more jobs that require
type-r resource should be allocated. In other words, when the
allocated amount of type-r resource reaches the capacity of
physical machine h, i.e., rrh½t# ¼ Cr

n; 9r 2 R, the price prh ¼
Qr

hðCr
hÞ should reach the upper bound Ur, indicating that any

job that requires type-r resource will not be allocated to h.
However, jobs that do not require type-r resource should still
be able to be scheduled on machine h. For example, jobs that
do not require GPU can still be placed on a machine with no
available GPUs.

Second, the reason that we choose the lower bound L to be
independent of any resource type r is to yield a larger ratio of
Ur

L . The larger the ratio of Ur

L is, the greater the price will be.
Intuitively, the ratio Ur

L can be interpreted as the scheduling
“uncertainty,” which increases as the ratio gets larger, imply-
ing the price function reacts to the accumulative resource con-
sumption more aggressively. Thus, choosing L to be
independent of resource type r allows the price function Qr

hð,Þ
to react more aggressively to the accumulative allocated

resource amount. We note that one can also choose the lower
bound to be dependent on resource type r by replacing L with
Lr. By doing so, the log-scaling theoretical competitive ratio
in Theorem 5 still holds and the proof in Appendix XII only
needs to be slightly updated with the new notation Lr. How-
ever, the empirical performance of using Lr as lower bound is
worse since the price function reacts less aggressively to the
accumulative allocated resources.

C. Determining Schedule p.
i in Step 2 of Algorithm 1

Now, consider the problem of finding a schedule p.
i in Step

2 of Algorithm 1 to maximize the RHS of (11). First, we note
that any schedule for job i has a unique completion time ~ti,
including the maximizer p.

i for (11). Hence, the problem of
finding the maximum RHS of (11) can be decomposed as:

Max
~ti

Max
w;s

uið~ti%aiÞ%
X

t2T

X

h2H

X

r2R
prh½t#

/ ðar
iwih½t# þ br

i sih½t#Þ
s.t. ar

iwih½t# þ br
i sih½t# - Ĉr

h½t#;
8t 2 T ; r 2 R; h 2 H;

Constraints (3)(4)(7) for xi ¼ 1;

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

; (15)

where Ĉr
h½t# , Cr

h % rrh½t#. Note that in the inner problem,
uið~ti%aiÞ is a constant for any given ~ti. Thus, the inner prob-
lem can be simplified as:

Minimize
w;s

X

t2½ai;~ti#

X

h2H

X

r2R
prh½t#ða

r
iwih½t# þ br

i sih½t#Þ (16Þ

subject to
X

t2½ai;~ti#

X

h2H

wih½t#
ti þ gi

Fi

2gi
minp2Pi ½t#;h02Wi ½t#biðh;

0pÞ
' Vi; (17Þ

ar
iwih½t#þbr

i sih½t#- Ĉr
h½t#; 8r; h; 8t2 ½ai; ~ti#;

Constraint (4) for all t 2 ½ai; ~ti#; (18Þ

where Vi , EiKi represents the total training workload (total
count of samples trained, where a sample is counted Ei times
if trained for Ei times). Note that in Problem (16), the only
coupling constraint is (17). This observation inspires a
dynamic programming approach to solve Problem (16). Con-
sider the problem below if training workload at time t is
known (denoted as Vi½t#):

Algorithm 2: Determine p.
i in Step 2 of Algorithm 1.

Initialization:
1. Let ~ti¼ai. Let !i¼0, p.

i ¼? , wih½t#¼sih½t#¼0, 8i; t; h.
Main Loop:
2. Compute Qð~ti; ViÞ in (21) using Algorithm 3. Denote the resulted

schedule as pi. Let !0i ¼ uið~ti % aiÞ %Qð~ti; ViÞ. If !0i > !i, let
!i !0i and p

.
i pi.

3. Let ~ti ~ti þ 1. If ~ti > T , stop; otherwise, go to Step 2.

YU et al.: TOWARD EFFICIENT ONLINE SCHEDULING FOR DISTRIBUTED MACHINE LEARNING SYSTEMS 1957

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

Minimize
wih½t#;sih½t#;8h

X

h2H

X

r2R
prh½t#ða

r
iwih½t# þ br

i sih½t#Þ (19Þ

subject to
X

h2H

wih½t#
ti þ gi

Fi

2gi
minp2Pi ½t#;h02Wi ½t#biðh;

0pÞ
' Vi½t#;

Constraints (4)(18) for the given t: (20Þ

Let Qð~ti; ViÞ and uðt; Vi½t#Þ denote the optimal values of Prob-
lems (16) and (19), respectively. Then, Problem (16) is equiv-
alent to the following dynamic program:

Qð~ti; ViÞ ¼ min
v2½0;Vi#

uð~ti; vÞ þQð~ti % 1; Vi % vÞ
' (

: (21)

We find the optimal workload v to be completed in time slot ~ti
by enumerating it from 0 to EiKi, and the remaining workload
EiKi % v will be carried out in time span ½ai; ~ti % 1#. The opti-
mal workload would be the schedule with minimum costs, i.e.,
the objective function of Problem (19) is minimum. Then we
proceed to the next time slot ~ti % 1 with the workload EiKi %
v, which is the same as finding the optimal schedule and cost
as the last time slot ~ti except in a smaller scale. Then, by enu-
merating all ~ti 2 ½ai; T # and solving the dynamic program
Qð~ti; ViÞ in (21) for every choice of ~ti, we can solve Problem
(15) and determine the optimal schedule p.

i . We summarize
this procedure in Algorithms 2 and 3:
In Algorithm 3, however, how to compute uðt; vÞ in Step 2
(i.e., Problem (19)) is yet to be specified. A challenge in solv-
ing (19) is the non-deterministic constraint in (20), where
biðh; pÞ can be either bðiÞi or bðeÞi . Therefore, we need to handle
both cases. To this end, we observe the following basic fact
about 2gi

minp2Pi ½t#;h2Wi ½t#biðh;pÞ
(also illustrated in Fig. 4) as stated in

Fact 1. We omit the proof of this fact due to its simplicity,
which is illustrated in Fig. 4.

Fact 1: The function ð2gi=minp2Pi½t#;h2Wi½t#biðh; pÞÞ ¼
2gi=b

ðiÞ
i if and only if jPi½t#j ¼ jWi½t#j ¼ 1 and Pi½t# ¼Wi½t#;

otherwise, ð2gi=minp2Pi½t#;h2Wi½t#biðh; pÞÞ ¼ 2gi=b
ðeÞ
i .

With Fact 1, we now consider the following two cases:
Case 1): bðiÞi (Internal Communication): In Case 1), Fact 1

implies that Problem (19) reduces to a single-machine prob-
lem (i.e., discarding

P
h2Hf,g in (19) and (20)). Note further

that if we temporarily ignore the workload-coupling constraint
(20) and use the worker-PS ratio in (2), Problem (19) can be
decoupled across resources and simplified as:

X

r2R

½l# Min prh½t#sih½t#ðar
igi þ br

i Þ
s.t. sih½t#ðar

igi þ br
i Þ - Ĉr

h½t#;
Constraint ð4Þ for given r; h;

8
<

: (22)

where each summand in (22) is an integer linear program
(ILP) having a trivial solution wih½t# ¼ sih½t# ¼ 0, 8h 2 H.
However, wih½t# ¼ 0, 8h 2 H, clearly violates the workload
constraint (20). Thus, when (22) is optimal, there should be
exactly one machine h0 2 H with wih0 ½t# ' 1 and exactly one
machine h00 2 H with sih00 ½t# ' 1. This observation shows that
the optimal solution of (19) tends to favor jPi½t#j ¼ jWi½t#j ¼
1 if the workload constraint (20) is not binding.
Notice that the workload constraint (20) in Case 1) becomes

gisih½t# ' Vi½t#ðti þ 2gigi

b
ðiÞ
i Fi

Þ. This implies the following simple
solution: We can first sort each physical machine h according
to
P

r2R prh½t#ðar
igi þ br

i Þ and calculate the minimum number
of sih½t# ¼ Vi½t#ðti þ 2gigi

b
ðiÞ
i Fi

Þ=gi from the workload constraint.
The last step is to check if the machine satisfy the resource
capacity constraint (18) and constraint (4). If so, we return the
schedule ðwih½t#; sih½t#Þ and the corresponding cost value.
Case 2): bðeÞi (External Communication): For those settings

that do not satisfy jPi½t#j ¼ jWi½t#j ¼ 1 and Pi½t# ¼Wi½t#,
Fact 1 indicates that parameter servers and workers are com-
municating at external rate bðeÞi . In this case, the workload con-
straint (20) simply becomes:

P
h2H wih½t# ' Vi½t#ðti þ 2gigi

b
ðeÞ
i Fi

Þ.
Then, we can rewrite Problem (19) as:

Minimize
wih½t#;sih½t#;8h

X

h2H
pwh ½t#wih½t# þ psh½t#sih½t# (23Þ

subject to ar
iwih½t# þ br

i sih½t# - Ĉr
h½t#; 8h; r; (24Þ

X
h2H

wih½t# - Fi; (25Þ
X

h2H
wih½t# ' Vi½t#

!
ti þ

2gigi

bðeÞi Fi

"
; (26Þ

Algorithm 3: Solving Qð~ti; ViÞ by Dynamic Programming.

Initialization:
1. Let cost-min =1, pi ¼ ? , and v ¼ 0.
Main Loop:
2. Compute uð~ti; vÞ using Algorithm 4 (to be specified). Denote the

resulted cost and schedule as cost-v and p̂i.
3. Compute Qð~ti % 1; Vi % vÞ by calling Algorithm 3 itself.

Denote the resulted cost and schedule as cost-rest and ~pi.
4. If cost-min > cost-vþ cost-rest then cost-min ¼ cost-vþ

cost-rest and let pi p̂i [~pi.
5. Let v vþ 1. If v > Vi stop; otherwise go to Step 2.

Fig. 4. Values of 2gi
minp2Pi ½t#;h2Wi ½t#biðh;pÞ

under various settings of Pi½t# andWi½t#. Here, 2gi
minp2Pi ½t#;h2Wi ½t#biðh;pÞ

¼ 2 gi

b
ðiÞ
i

if and only if in (d).

1958 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

where pwh ½t# ,
P

r2R prh½t#ar
i and psh½t# ,

P
r2R prh½t#br

i denote
the aggregated prices of all resources of allocating workers
and PSs on machine h in time t, respectively.

Unfortunately, Problem (23) is a highly challenging integer
programming problem with generalized packing and cover
type constraints (i.e., integer variables rather than 0-1 varia-
bles) in (24)–(26), respectively, which is clearly NP-Hard.
Also, it is well-known that there are no polynomial time
approximation schemes (PTAS) even for the basic set-cover
and bin-packing problems unless P = NP [31]. In what follows,
we will pursue an instance-dependent constant ratio approxi-
mation scheme to solve Problem (23) in this paper. To this
end, we propose a randomized rounding scheme: First, we
solve the linear programming relaxation of Problem (23). Let
f !wih½t#; !sih½t#; 8h; tg be the fractional optimal solution. We let
d 2 ð0; 1# be a parameter. Let Gd be a constant (the notation
Gd signifies that Gd is dependent on d) to be defined later, and
let w0ih½t#¼Gd !wih½t#; s0ih½t#¼Gd!sih½t#, 8h; t. Then, we ran-
domly round fw0ih½t#; s0ih½t#; 8h; tg to obtain an integer solution
as follows:

wih½t# ¼
dw0ih½t#e; with probability w0ih½t# % bw0ih½t#c;
bw0ih½t#c; with probability dw0ih½t#e% w0ih½t#;

%

(27)

sih½t# ¼
ds0ih½t#e; with probability s0ih½t# % bs0ih½t#c;
bs0ih½t#c; with probability ds0ih½t#e% s0ih½t#:

%
(28)

We will later prove in Theorem 3 (when 0 < Gd - 1Þ and
Theorem 4 (when Gd > 1) that the approximation ratio of

this randomized rounding scheme in (27)-(28) enjoys a ratio
that is independent on the problem size.

Lastly, summarizing results in Cases 1) – 2) yields the fol-
lowing approximation algorithm for solving Problem (19):
In the internal communication part of Algorithm 4, we first
sort the machines and then check each machine one by one
(Step 2). We calculate the minimum number of sih½t# needed
to satisfy the learning workload demand D (Step 3). If Con-
straint (4) is satisfied (Step 4), we further check the resource
capacity constraint (18) (Step 5). If we detect a machine with
all above constraints satisfied, we return the cost and schedule
accordingly (Step 6). After exploring one machine, we move
on to the next one as long as it is not the last machine (Step 7).
The external communication part is based on LP relaxation
(Step 8) and randomized rounding (Step 9-12). Note that the
randomized rounding will find at most S integer feasible solu-
tions (Step 12). Finally, we choose the lowest cost among the
solutions from the internal and external communication parts
(Step 13).

D. Theoretical Performance Analysis

We now examine the competitive ratio of our PD-ORS
algorithm. Note that the key component in PD-ORS is our pro-
posed randomized rounding scheme in (27)–(28), which is in
turn the foundation of Algorithm 1. Thus, we first prove the
following results regarding the randomized rounding algo-
rithm. Consider an integer program with generalized cover/
packing constraints: minfc>x : Ax ' a;Bx - b; x 2 Zn

þg,
where A 2 Rm/n

þ , B 2 Rr/n
þ , a 2 Rm

þ , b 2 Rr
þ, and c 2 Rn

þ.
Let !x be a fractional optimal solution. Consider the random-
ized rounding scheme: Let x0 ¼ Gd!x for some Gd (to be speci-
fied). Randomly round x0 to x̂ 2 Zn

þ as: x̂j ¼ dx0je w.p.
x0j % bx0jc and x̂j ¼ bx0jc o.w. Note that in the rounding pro-
cess, if Gd > 1 (Gd 2 ð0; 1#), the packing (cover) constraint is
prone to be violated and the cover (packing) constraint is eas-
ier to be satisfied. Hence, depending on which constraint is
more preferred to be feasible, we consider two cases with
respect to Gd.

1) 0 < Gd - 1: We have the following approximation
result (see proof in Appendix VIII):
Lemma 1 (Rounding): Let Wa,minfai=½A#ij : ½A#ij >0g

andWb,minfbi=½B#ij : ½B#ij >0g. Let d 2 ð0; 1# be a given con-
stant and define Gd as:

Gd , 1þ 3 lnð3r=dÞ
2Wb

%

ffi!
3 lnð3r=dÞ

2Wb

"2

þ 3 lnð3r=dÞ
Wb

s

:

Then, with probability greater than 1% d, x̂ achieves a cost at
most 3Gd

d times the cost of !x. Meanwhile, x̂ satisfies
PrfðAx̂Þi - aið1% ð 2

GdWa
lnð3 m

d ÞÞ
1
2ÞGd; 9ig - d

3 m
.

Remark 1 (Discussions on Feasibility): An insightful remark
of Lemma 1 is in order. Note that, theoretically, the expression
1% ð 2

GdWa
lnð3 m

d ÞÞ
1
2 in Lemma 1 could become negative. In this

case, the last probabilistic inequality in Lemma 1 trivially holds
and is not meaningful in characterizing the feasibility, even
though the inequality remains valid. In order for the probabilistic

Algorithm 4: Solving uðt; vÞ (i.e., Problem (19)).

Initialization:
1. Let wih½t#¼sih½t#¼0, 8h. Let h¼1. Pick some d 2 ð0; 1#. Let Gd

be defined as in (29) or Eqn (30). Let D¼dvðti þ
2gigi=ðb

ðiÞ
i FiÞÞe. Let h. ¼ ? . Let cost-min¼1. Choose some

integer S ' 1. Let iter 1.
Handling Internal Communication:
2. Sort machines in H according to

P
r2R prh½t#ðar

igi þ br
i Þ in non-

decreasing order into h1; h2; . . .; hH .
3. Calculate the minimum number of sih½t# ¼ Vi½t#ðti þ 2gigi

b
ðiÞ
i Fi

Þ=gi.
4. If Constraint (4) is not satisfied, go to Step 7.
5. If Constraint (24) is not satisfied, go to Step 7.
6. Return cost-min

P
r2R prh½t#sih½t#ðar

igi þ br
i Þ and h. ¼ h.

7. Let h hþ 1. If h > H, stop; otherwise, go to Step 2.
Handling External Communication:
8. Solve the linear programming relaxation of Problem (23). Let
f !wih½t#; !sih½t#; 8h; tg be the fractional optimal solution.

9. Let w0ih½t# ¼ Gd !wih½t#; s0ih½t# ¼ Gd!sih½t#, 8h; t.
10. Generate an integer solution fwih½t#; sih½t#; 8h; tg following the

randomized rounding scheme in (27)–(28).
11. If fwih½t#; sih½t#; 8h; tg is infeasible or iter < S, then iter

iterþ 1, go to Step 10.
Final Step:
12. Compare the solutions between internal and external cases.

Pick the one with the lowest cost among them and return the
cost and the corresponding schedule fwih½t#; sih½t#; 8h; tg.

YU et al.: TOWARD EFFICIENT ONLINE SCHEDULING FOR DISTRIBUTED MACHINE LEARNING SYSTEMS 1959

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

statement to be meaningful in characterizing the feasibility of the
integer linear program, we solve for d by enforcing 1%
ð 2
GdWa

lnð3 m
d ÞÞ

1
2 > 0, which yields d ' 3m=e

GdWa
2 . On the other

hand, we prefer d to be small since it bounds the feasibility viola-
tion probability and approximation ratio achievability in
Lemma 1. Hence, the smaller the value of 3 m=e

GdWa
2 , the less

restrictive the condition d ' 3m=e
GdWa

2 is.
To gain a deeper understanding on how restrictive the condi-

tion d ' 3 m=e
GdWa

2 is, we conduct a case study and the results

are illustrated in Fig. 5. Here, we let RHS , 3m=e
GdWa

2 for conve-
nience. We vary d from 0.02 to 0.1. Clearly, the left-hand-side
(LHS) of the condition is the 450 straight line. In order for the con-
dition to hold, the curve of RHS should fall under this straight line.
Based on typical computing cluster parameters, we setWb to 15,
and set r , RH þ 1 to 401 (R ¼ 4;H ¼ 100). We can see from
Fig. 5 that asWa increases, the curve of RHS crosses the dashed
line of LHS at a smaller d-value. This means that, the larger the

value of Wa, the easier for 1% ð 2
GdWa

lnð3 m
d ÞÞ

1
2 to become posi-

tive. Hence, the probabilistic feasibility characterization in
Lemma 1 is useful for typical system parameters in practice.

2) Gd > 1: We have the following approximation result
(see proof in Appendix X):
Lemma 2 (Rounding): LetWa , minfai=½A#ij : ½A#ij > 0g

and Wb , minfbi=½B#ij : ½B#ij > 0g. Let d 2 ð0; 1# be a given
constant and define Gd as:

Gd , 1þ lnð3 m=dÞ
Wa

þ

ffi!
lnð3 m=dÞ

Wa

"2

þ 2 lnð3 m=dÞ
Wa

s

:

Then, with probability greater than 1% d, x̂ achieves a cost at
most 3Gd

d times the cost of !x. Meanwhile, x̂ satisfies
PrfðBx̂Þi > bið1þ ð 3

GdWb
lnð3rd ÞÞ

1
2ÞGd; 9ig - d

3r .
Several important remarks for Lemmas 1 and 2 are summa-

rized as follows:
i) Note that Alg. 4 is a randomized algorithm. Therefore, its

performance is also characterized probabilistically, and d is
used for such probabilistic characterization. Here, it means
that with probability 1% d, one achieves an approximation
ratio at most 3Gd

d and a probabilistic feasibility guarantee as

stated in Lemma 1 when 0 < Gd - 1 and Lemma 2 when
Gd > 1. In other words, the statementsmean that the prob-
ability of getting a better approximation ratio is smaller
under randomized rounding (i.e., better approximation ratio
) smaller 3Gd

d) larger d) smaller probability 1% d).
That is, the trade-off between the approximation ratio value
and its achieving probability is quantified by d. A larger d
implies a smaller approximation ratio, but the probability of
obtaining a feasible solution of this ratio is also smaller (i.e.,
more rounds of rounding needed). Interestingly, for d ¼ 1,
Lemmas 1 and 2 indicate that there is still non-zero proba-
bility to achieve an approximation ratio not exceeding 3Gd.

ii) Note that if we pick Gd 2 ð0; 1#, the approximation ratio
3Gd
d decreases (the smaller the approximation ratio, the
better) as d increases based on Eqn. (35) in
Appendix VIII. However, the growth rate of Gd is
slower compared to that of d due to the log operator.
On the other hand, if we pick Gd > 1, 3Gd

d decreases as
d increases according to Eqn. (38) in Appendix X.
Therefore, the approximation ratio is ultimately con-
trolled by parameter d. Also, the theoretical approxima-
tion ratio 3Gd

d is conservative. Our numerical studies
show that the approximation ratio performance in real-
ity is much smaller than 3Gd

d .
iii) The probabilistic guarantee of the cover constraint

(Ax ' a) when 0 < Gd - 1 and packing constraint
(Bx - b) when Gd > 1, is unavoidable and due to the
fundamental hardness of satisfying both cover and pack-
ing constraints, which are of conflicting nature: Any strat-
egy trying to better satisfy the packing constraints
(multiplying a Gd-factor with Gd 2 ð0; 1#) may increase
the probability of violating the cover constraints, and the
probability of violating the packing constraints may be
increased otherwise. However, the probabilistic bound
here is for worst case and may be pessimistic.

iv) The results in Lemmas 1 and 2 are in fact applicable for
general ILP with mixed cover/packing constraints.
Hence, the results and their insights in Lemmas 1 and 2
could be of independent theoretical interest.

By specializing Lemma 1 and Lemma 2 with parameters in
Problem (23), we have the following approximation results
for Algorithm 4. The first result corresponds to the case where
the feasibility of the resource constraint (packing) is more
favored, i.e., 0 < Gd - 1:
Theorem 3 (Approximation Performance of Alg. 4 When

Resource 100.onstraint Feasibility is Favored): Let

W1, Vi½t#ðti þ 2gigi

b
ðeÞ
i Fi

Þ, W2, minfFi; Ĉr
h½t#=ar

i ; Ĉ
r
h½t#=br

i ; 8r; hg,

and d 2 ð0; 1#. Define Gd as:

Gd, 1þ
3 lnð3ðRHþ1Þ=dÞ

2W2

%

ffi!
3 lnð3ðRH þ 1Þ=dÞ

2W2

"2

þ3 lnð3ðRHþ1Þ=dÞ
W2

s

:

(29)

Fig. 5. The feasibility study.

1960 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

Then, with probability greater than 1%d, Algorithm 4 obtains
a schedule fwih½t#; sih½t#; 8t; hg that has an approximation
ratio at most 3Gd

d with PrfLHS(26)-W1ð1% ð 2
GdW1

lnð3dÞÞ
1
2ÞGd; 9ig - d

3 .
The next result corresponds to the case where the feasibility

of the workload constraint (cover) is more favored, i.e.,
Gd > 1:
Theorem 4 (Approximation Performance of Alg. 4 When

Workload 100.onstraint Feasibility is Favored): Let
W1 , Vi½t#ðti þ 2gigi

b
ðeÞ
i Fi

Þ,
W2 , minfFi; Ĉr

h½t#=ar
i ; Ĉ

r
h½t#=br

i ; 8r; hg, and d 2 ð0; 1#.
Define Gd as:

Gd , 1þ lnð3=dÞ
W1

þ

ffi!
lnð3=dÞ
W1

"2

þ 2 lnð3=dÞ
W1

s

: (30)

Then, with probability greater than 1% d, Algorithm 4 obtains
a schedule fwih½t#; sih½t#; 8t; hg that has an approximation
ratio at most 3Gd

d with PrfLHS(24) > Ĉr
h½t#Gdð1þ

ð 3
GdW2

lnð3ðHRþ1Þ
d ÞÞ

1
2Þg - d

3ðHRþ1Þ .
Note that Eqn. (25) is guaranteed in practice since the num-

ber of samples is typically far more than the number of work-
ers. The competitive ratio of our online algorithm is the worst-
case upper bound of the ratio of the overall utility of admitted
jobs devided by the offline optimal solution of
Problem DMLRS to the total utility of admitted jobs achieved
by Algorithm 1 in the overall time horizon. Theorems 3 and 4
follow directly from Lemmas 1 and 2, respectively, and we
omit the proof here for brevity. Based on these results, we can
establish the overall competitive ratio for Algorithm 1 as
follows.
Theorem 5 (Competitive Ratio of Alg 1 when 0 < Gd-1):

Let d, Gd andW1 be as defined in Theorem 3. Let Ur and L be
as defined in (13) and (14), respectively. Then, with probabil-
ity greater than ð1% ðd=3ÞSÞTKiEi , PD-ORS in Algorithm 1
returns a feasible solution that is 6Gd

d maxr2Rð1;
ln Ur

L Þ–competitive.
Theorem 6 (Competitive Ratio of Alg 1 when Gd > 1): Let

d, Gd and W2 be as defined in Theorem 4. Let Ur and L be as
defined in (13) and (14), respectively. Then, with probability
greater than ð1% ðd=3ðHRþ 1ÞÞSÞTKiEi , PD-ORS in Algo-
rithm 1 returns a feasible solution that is 6Gd

d maxr2R
ð1; ln Ur

L Þ–competitive.
It is worth pointing out that in Theorems 5 and 6, the feasi-

bility achieving probability values, i.e., ð1% ðd=3ÞSÞTKiEi and
ð1% ðd=3ðHRþ 1ÞÞSÞTKiEi , can controlled by choosing
appropriate values of d and S (i.e., rounds of rounding) to off-
set the impact of total number of DP iterations TKiEi. The
smaller d and the larger S are, the higher the feasibility achiev-
ing probability. Theorems 5 and 6 can be proved by weak
duality and the approximation results in Theorems 3 and 4.
We provide a proof in Appendix XII.
Theorem 7 (Polynomial Running Time): By combining

Algorithms 1–4, the time complexity of PD-ORS is
Oð
PjI j

i¼1 TK
2
i E

2
i ðH3 þ SÞÞ, which is polynomial.

Proof: When solving uðt; vÞ using Algorithm 4, it takes
OðHlogHÞ iterations to sort machines in internal communica-
tion case under each time slot t and looping all machines to
calculate the minimum number sih½t# takes OðHÞ. Thus, it
takes ðHlogHÞ time for the internal communication part in
Algorithm 4. For the external communication part in Algo-
rithm 4, solving the LP relaxation of Problem (23) can be
approximately bounded OðH3Þ if we use a polynomial time
LP solver (e.g., Vaidya’s algorithm [33]). According to Algo-
rithm 4, the rounding time is proportional to S. Hence, the run-
ning time for the external communications part is upper
bounded by OðjHj3 þ SÞ. Combining the discussions above,
the running time complexity of Algorithm 4 is OðHlogH þ
H3 þ SÞ ¼ OðH3 þ SÞ. Moreover, the number of states ðt; vÞ
is OðTKiEiÞ in the dynamic programming (DP) for each job
i, and the time complexity of executing DP is OðKiEiÞ. Thus,
the time complexity is OðTK2

i E
2
i Þ in DP. In Algorithm 1, the

number of steps in the main loop is equal to the number of
jobs. Therefore, the overall running time complexity can be
computed as Oð

PjI j
i¼1 TK

2
i E

2
i ðH3 þ SÞÞ. &

V. NUMERICAL RESULTS

In this section, we conduct simulation studies to evaluate
the efficacy of our proposed PD-ORS algorithm. We test an
ML system with jobs parameters generated uniformly at ran-
dom from the following intervals: Ei 2 ½50; 200#, Ki 2
½20000; 500000#, gi 2 ½30; 575# MB, ti 2 ½10%5; 10%4# time
slots, gi 2 ½1; 10#, Fi 2 ½1; 200#. We consider four types of
resources: GPU, CPU, memory, and storage. For fair compari-
sons, following similar settings in [7], [8], [12], we set
resource demand of each worker as follows: 0–4 GPUs, 1–10
vCPUs, 2–32 GB memory, and 5–10 GB storage. We set
resource demand of each parameter server as follows: 1–10
vCPUs, 2–32 GB memory and 5-10 GB storage. The resource
capacity of each physical machine is set roughly 18 times of
the resource demands of a worker/PS following EC2 C5n
instances [34]. We set the job arrival pattern according to the
Google Cluster data [35], but with normalized job arrival rates
in alternating time-slots as follows: the arrival rates are 1=3
and 2=3 in odd and even time-slots, respectively. For fair com-
parisons, we adopt the Sigmoid utility function [6], [36]:
uiðt% aiÞ ¼ u1

1þeu2ðt%ai%u3Þ , where u1 2 ½1; 100# indicates the
priority of job i, u2 indicates how critical the time is for the
job i, and u3 2 ½1; 15# is the estimated target completion time.
We set u2 ¼ 0 for time-insensitive jobs (10% of jobs), u2 2
½0:01; 1# for time-sensitive jobs (55% of jobs) and u2 2 ½4; 6#
for time-critical jobs (35% of jobs).

We first compare our PD-ORS algorithm with three base-
line job scheduling policies: (1) FIFO in Hadoop and
Spark [37], where the jobs are processed in the order of their
arrival times. In our setting, the fixed number of workers
(parameter servers) is between 1 to 30, (2) Dominant Resource
Fairness Scheduling (DRF) in Yarn [38] and Mesos [39],
where the jobs are scheduled based on their dominant resource
share in the cloud to achieve its max-min fairness. The number
of workers and parameter servers are computed and allocated

YU et al.: TOWARD EFFICIENT ONLINE SCHEDULING FOR DISTRIBUTED MACHINE LEARNING SYSTEMS 1961

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

dynamically, and (3) Dorm [12], where the numbers of work-
ers (parameter servers) are computed and placed by an MILP
resource utilization maximization problem with fairness and
adjustment overhead constraints. Workers and parameter serv-
ers are placed in a round-robin fashion on available machines
in Baselines (1) and (2). The comparison results are shown in
Figs. 6 and 7. In Fig. 6, we set T ¼ 20 and I ¼ 50, while in
Fig. 7, we set T ¼ 20 and H ¼ 100. We can see that PD-ORS
significantly outperforms other policies and the gains in total
utility becomes more pronounced as the numbers of jobs and
machines increase.

Next, we compare our PD-ORS algorithm with the OASiS
algorithm in [6], which is also a dynamic scheduling scheme.
As mentioned earlier, the key difference in OASiS is that
parameter servers and workers are located on two strictly sep-
arated sets of machines (i.e., no co-located workers and PSs).
Here, we let H ¼ 100 and T ¼ 20. For OASiS, half of the
machines host parameter servers and the other half host work-
ers. For fair comparisons, both algorithms adopt the same Sig-
moid utility function. The comparison results are shown in
Fig. 8. We can see that PD-ORS outperforms OASiS by allow-
ing co-located parameter servers and workers. We can see
from Fig. 8 that the performance gap between PD-ORS and
OASiS widens as the number of jobs increases, which implies
that PD-ORS is more scalable. This is due to the advantage
afforded by colocation of workers and parameter servers,
which allows each physical machine to be fully utilized. On
the other hand, the strict separation of workers and parameter
servers in OASiS may lead to the inability of placing workers
on server-side machines, should there be available resources
or vice verse.

Next, we investigate the actual training time (completion
time - arrival time) under different methods, where T ¼ 80,
H ¼ 30 and I ¼ 100. The median of the actual training time
is shown in Fig. 9. Here, we simply set its training time to T
(i.e., 80) if the job cannot be finished within the scheduling
time span T . As we can see from Fig. 9, PD-ORS outperforms
other scheduling policies, i.e., it has the smallest median time.
Also, due to the co-location advantage of PD-ORS, its median
time is smaller compared to OASiS, where workers and
parameter servers are placed in strictly separated sets of
machines. We expect that the difference between PD-ORS
and OASiS will become more noticeable as the number of
machines or the capacity of each machine increases since it
will allow more co-location placements.
Next, we demonstrate the competitive ratio of our algo-

rithm PD-ORS, which is the ratio between the total job
utility of the offline optimal solution and the total job util-
ity achieved by PD-ORS. Recall that Problem DMLRS
is a non-convex problem with constraints (e.g., (1)) that
are not amenable to be directly solved by conventional
optimization techniques. To obtain its offline optimum, all
possible combinations of wih½t#; sih½t#; 8i; h; t need to be
considered, which is time prohibitive. Thus, we limit the
number of jobs I to 10 and time span T to 10, and the
result is shown in Fig. 10. As we can see from the figure,
the performance ratio is between 1.0 to 1.4, indicating that
our proposed algorithm PD-ORS has a good competitive
ratio performance.
Lastly, we examine the performance of the randomized

rounding scheme in Algorithm 4, which is the key of PD-

Fig. 8. Utility comparison between PD-ORS and OASiS with increasing
number of jobs.

Fig. 7. Total utility with increasing number of jobs (synthetic data).
Fig. 9. Median of actual training time comparison.

Fig. 6. Total utility with increasing number of machines (synthetic data).

1962 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

ORS. We evaluate the rounding performance in terms of the
ratio between the optimal total utility and the total utility
obtained by our algorithm. The optimal utility is computed
using the Gurobi optimization solver. We let H ¼ 100, I ¼
50, T ¼ 20. We vary the pre-rounding gain factor Gd (Theo-
rems 3 and 4) from 0.2 to 1.2. The results are shown in
Fig. 11. The packing constraints are easier to satisfy with a
smaller Gd, while the cover constraints are prone to be vio-
lated as Gd gets smaller. In our experiments, if the total rounds
of randomized rounding before we find an integer feasible
solution exceeds a preset threshold (e.g, 5000), we will discard
the corresponding job. Theorem 3 suggests that there is a
trade-off: if we set Gd to be close to one to pursue a better total
utility result, the rounding time could be large to obtain a fea-
sible solution. As Gd increases, the probability of violating the
packing constraints increases, meaning we need to have more
rounding attempts to obtain an integer feasible solution. How-
ever, according to our numerical experiences, if the machine’s
resource capacity is relatively large compared to the jobs’
resource demands per worker/PS, the number of rounding
attempts is small and not sensitive to the variation of Gd. On
the other hand, as Gd decreases, the probability of violating
the cover constraint increases. However, in practice, the model
usually converges with fewer number of iterations than the
pre-defined training epochs since the required number of
epochs is usually overestimated [40]. In other words, the vio-
lation of the cover constraint in one iteration may be
acceptable.

As we can see from Fig. 11, the best approximation ratio
value is achieved when Gd ¼ 1. This is because if Gd

approaches 0, it implies that d decreases at a larger rate (cf.
Eq (29)), resulting the increment of the performance ratio. On
the other hand, if Gd goes to infinity, it implies d decreases (cf.
Eq (30)), resulting in a much faster increment of the perfor-
mance ratio. Also, we can see from Fig. 11 that the perfor-
mance ratios for all choices of Gd are much better than the
theoretical bounds in Theorems 3 and 4, which shows that the
approximation ratio is much tighter than the worse-case bound
suggested in Theorems 5 and 6.

Next, we show further experimental results with real-world
data traces. We first compare our PD-ORS algorithm with
baseline scheduling algorithms, where we follow job arrivals
exactly based on timestamps recorded in the Google Cluster
data [35] by scaling down the original job trace (i.e., a
“snippet” of the trace). Here, we set T ¼ 80, I ¼ 100 and
H ¼ 30. The comparison results are shown in Figs. 12–13.
Similarly, as we can see from the figures, our algorithm PD-
ORS outperforms other scheduling policies. In addition, due
to the co-location advantage of PD-ORS, it achieves more
total job utility compared to OASiS.

In the previous experiments, we have set the portions for
time-insensitive jobs, time-sensitive jobs and time-critical
jobs to 10%, 55% and 35%, respectively, which follows the
default setting in [6] for fair comparison. Theoretically, the
larger the portion of time-sensitive and time-critical jobs is,
the better the performance is in terms of job utility compared
to other scheduling policies. Based on the Google trace analy-
sis [41], there are four categories of scheduling class of a job
to indicate the latency sensitivity of the job, where we label

Fig. 13. Total utility with increasing number of jobs (Google cluster data
trace).

Fig. 12. Total utility with increasing number of machines (Google cluster
data trace).

Fig. 11. Impact of pre-rounding gain factorGd on competitive ratio.

Fig. 10. Competitive ratio.

YU et al.: TOWARD EFFICIENT ONLINE SCHEDULING FOR DISTRIBUTED MACHINE LEARNING SYSTEMS 1963

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

class 0 as time-insensitive, Classes 1 and 2 as time-sensitive,
and Class 3 as time-critical. In order to follow the practical
setting in the trace, we roughly set the ratio to 30%, 69% and
1%. We set T ¼ 80. The number of machines increases from
10 to 50 with the number of job fixed to 100, and the number
of jobs increases from 20 to 100 with the number of machines
fixed at 30. We let Figs. 14 and 16 follow the previous ratio
setting (i.e., 10%, 55% and 35%), and Figs. 15 and 17 follow
the revised ratio setting (i.e., 30%, 69% and 1%). We examine
the utility gain compared to OASiS, where it is normalized.
We present our experimental results in Figs. 14–17. We can
see from the figures that as the portion of critical jobs
decreases by 34%, the utility gain becomes smaller. That is,
the advantage of our proposed algorithm PD-ORS becomes
less prominent.

We note that although in theory we can compare our PD-
ORS algorithm (a special case with utility function uðxÞ ¼ x)
with Optimus in [23] (which also takes co-location into con-
sideration), it is not straightforward to do so in practice. Opti-
mus requires an offline stage to estimate the u-parameters of
the speed function fðpj; wjÞ (cf. u0–u3 in [[23], (3)] for asyn-
chronous training and u0–u4 for synchronous training in [[23],
(4)]). Estimating these parameters requires specific hardware
and software packages that are not available in our current
experimental environment. Due to the above computing
resource limitations and time constraints, we are unable to
conduct experiments to directly compare PD-ORS and Opti-
mus in this work. Also, our focus in this work is on scheduling

algorithmic designs for deep learning training with main con-
tributions being on the theoretical aspects (proving rigorous
scheduling performance guarantees). Implementing our PD-
ORS algorithm in a similar testbed environment and having a
comparison with Optimus is very interesting and will be our
next step in future studies.

VI. CONCLUSION

In this paper, we investigated online resource scheduling for
distributed machine learning jobs in a shared computing clus-
ter. We considered the most general setting that workers and
parameter servers can be co-located on the same set of physi-
cal machines. We showed that this problem can be formulated
as a challenging integer nonlinear programming problem with
non-deterministic constraints. We developed an efficient
online scheduling algorithm with competitive ratio guarantee.
Our main contributions are three-fold: i) We developed a new
analytical model that jointly considers resource locality and
allocation; ii) Through careful examinations of worker-server
configuration relationships, we resolved the locality ambiguity
in the model and reduce the problem to a mixed cover/packing
integer program that entails low-complexity approximation
algorithm design; iii) We proposed a meticulously designed
randomized rounding algorithm to solve the mixed cover/
packing integer program and rigorously established its approx-
imation ratio guarantee. Collectively, our results expand the
theoretical frontier of online optimization algorithm design
for resource optimization in distributed machine learning
systems.

Fig. 16. Total utility with increasing number of jobs [T=80, H=30, (10%,
55%, 35%)].

Fig. 15. Total utility with increasing number of machines [T=80, I=100,
(30%, 69%, 1%)].

Fig. 14. Total utility with increasing number of machines [T=80, I=100,
(10%, 55%, 35%)].

Fig. 17. Total utility with increasing number of jobs [T=80, H=30, (30%,
69%, 1%)].

1964 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

VII. APPENDIX A

VIII. PROOF OF LEMMA 1
Proof: Consider the probabilities of the following “bad”

events: 1) c>x̂ > 3Gd
d c>!x; 2) 9i such that ðAx̂Þi < ai; and 3)

9i such that ðBx̂Þi > bi. Note that events 2) and 3) can be
equivalently rewritten as: 2’) 9i such that EfðAx̂Þi

Wa
ai

< Wag
and 3’) 9i such that EfðBx̂Þi

Wb
bi

> Wbg. Since Efx̂g¼x0¼
Gd!x, by linearity of expectation, we have:

Efc>x̂g ¼ c>Efx̂g ¼ c>Gd!x ¼ Gdc
>!x; (31Þ

E ðAx̂Þi
Wa

ai

% &
¼ GdE ðA!xÞi

Wa

ai

% &
' GdWa; (32Þ

E ðBx̂Þi
Wb

bi

% &
¼ GdE ðB!xÞi

Wb

bi

% &
- GdWb: (33Þ

Then, by the Markov inequality and (31), we can obtain the
probability Prfc>x̂ > 3Gd

d c>!xg - d
3 .

Next, we note that each x̂j can be viewed as a sum of inde-
pendent random variables in [0,1] as follows: The fixed part of
bx0jc is a sum of bx0jc random variables with value 1 with prob-
ability 1.

Then, we have that ðBx̂Þi
Wb
bi

¼ ð
P

j½B#ijx̂jÞWb
bi

is also a sum
of independent random variables in [0,1]. Using the Chernoff
bound, we have

Pr ðBx̂Þi
Wb

bi
> ð1þ "ÞGdWb

% &
- exp %"2

GdWb

3

! "
:

Setting ð1þ "ÞGd¼1, i.e., "¼ 1
Gd
%1, we have:

Pr ðBx̂Þi
Wb

bi
> Wb

% &
- exp % 1

Gd
% 1

! "2

Gd
Wb

3

 !

: (34)

Forcing expð%ð 1
Gd
%1Þ2Gd

Wb
3 Þ¼

d
3r and solving Gd, we have:

Gd , 1þ 3 lnð3r=dÞ
2Wb

%

ffi!
3 lnð3r=dÞ

2Wb

"2

þ 3 lnð3r=dÞ
Wb

s

: (35)

Using (32), the Chernoff bound, and following similar argu-
ments, we have:

Pr ðAx̂Þi
Wa

ai
- ð1% "ÞGdWa

% &
- exp %"2

GdWa

2

! "
:

Forcing expð%"2 GdWa
2 Þ ¼ d

3 m
and solving for ", we have " ¼

ð 2
GdWa

lnð3 m
d ÞÞ

1
2. It follows that

PrfðAx̂Þi
Wa

ai
- ð1%ð 2

GdWa
lnð3 m

d
ÞÞ

1
2ÞGdWag -

d

3 m
;

which implies that:

Pr ðAx̂Þi-ai 1%

ffi
2

GdWa
ln

3 m

d

! "s !

Gd;9i

()

- d

3 m
:(36)

By using union bound and (34) and (36), we have that events
1)–3) occur with probability less than d

3 þm , d
3 m

þ r , d
3r ¼ d,

and the proof is complete. &

IX. APPENDIX B

X. PROOF OF LEMMA 2
Proof: Similar to the case when 0 < Gd - 1, we can have

the expectation equations for the bad cases as in Eqns. (31)-
(33). We also can view each x̂j as a sum of independent ran-
dom variables in [0,1] in the same way. Then, we have that
ðAx̂Þi

Wa
ai

¼ ð
P

j½A#ijx̂jÞWa
ai

is also a sum of independent ran-
dom variables in [0,1]. Using the Chernoff bound, we have
that:

PrfðAx̂Þi
Wa

ai
- ð1% "ÞGdWag - expð%"2

GdWa

2
Þ:

Setting ð1% "ÞGd¼1, i.e., " ¼ 1% 1
Gd

, we have:

Pr ðAx̂Þi
Wa

ai
- Wa

% &
- exp % 1% 1

Gd

! "2

Gd
Wa

2

 !

: (37)

Forcing expð%ð1% 1
Gd
Þ2Gd

Wa
2 Þ¼

d
3 m

and solving Gd, we have:

Gd , 1þ lnð3 m=dÞ
Wa

þ

ffi!
lnð3 m=dÞ

Wa

"2

þ 2 lnð3 m=dÞ
Wa

s

:

(38)

Using (32), the Chernoff bound, and following similar argu-
ments, we have:

Pr ðBx̂Þi
Wb

bi
> ð1þ "ÞGdWb

% &
- exp %"2

GdWb

3

! "
:

Forcing expð%"2 GdWb
3 Þ ¼ d

3r and solving for ", we have " ¼
ð 3
GdWb

lnð3rd ÞÞ
1
2. It follows that

Pr ðBx̂Þi
Wb

bi
> ð1þ ð 3

GdWb
lnð3r

d
ÞÞ

1
2ÞGdWb

% &
- d

3r
;

which implies that:

Pr ðBx̂Þi > bi 1þ

ffi
3

GdWb
ln

3r

d

! "s !

Gd; 9i

()

- d

3r
: (39)

By using union bound and (37) and (39), we have that events
1)–3) occur with probability less than d

3 þm , d
3 m

þ r , d
3r ¼ d,

and the proof is complete. &

XI. APPENDIX C

XII. PROOF OF THE COMPETITIVE RATIO

We use OPT as the optimal objective value of Problem R-
DMLRS, which is also the optimum to Problem D-R-DMLRS.
We let p̂i denote the approximate schedule obtained by Algo-
rithm 2, which inexactly solves Problem D-R-DMLRS. Let Pi

YU et al.: TOWARD EFFICIENT ONLINE SCHEDULING FOR DISTRIBUTED MACHINE LEARNING SYSTEMS 1965

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

andDi be the primal and dual objective values of Problems R-
DMLRS and D-RMLRS after determining the schedule p̂i in
Algorithm 1. Let P0 and D0 be the initial values of Problems
R-DMLRS and D-RMLRS, respectively, where P0 ¼ 0 and
D0 ¼

P
t2T
P

h2H
P

r2R Pr
h ½0#Cr

h. We also let PI and Di be
the final primal and dual objective values returned by Algo-
rithm 1. We present our main result in Lemma 8.
Lemma 8: If there exists constants " ' 1, Gd > 0 and d 2

ð0; 1# such that Pi % Pi%1 ' d=3Gd
" ðDi %Di%1Þ; 8i 2 I , and

if P0 ¼ 0 and D0 - 1
2OPT , then Algorithm 1 is

6Gd"
d -competitive.
Proof of Lemma 8: Since PI ¼

P
i2I ðPi % Pi%1Þ, and

DI %D0 ¼
P

i2I ðDi %Di%1Þ, we can have:

PI ¼
X

i2I
ðPi % Pi%1Þ '

d=3Gd

"

X

i2I
ðDi %Di%1Þ

¼ d=3Gd

"
ðDI %D0Þ:

By weak duality theorem [42], we have

DI ' OPT ' PI:

Thus, it follows that:

DI %D0 '
1

2
OPT; PI '

d=3Gd

"
ðDI %D0Þ '

d=3Gd

2"
OPT;

and the proof is complete. &

Next, following similar arguments in [6], [32], we introduce
the relationship between the cost and resource consumption
before and after processing one job. Let pr;ih ½t# be the unit cost
of type-r resource on server h at time t after handling job i.
Let rr;ih ½t# be the amount of type-r resource allocated to jobs
on server h at time t after processing the job i. For ease of our
subsequent analysis, we now define the following allocation-
cost relation that is implied by Algorithm 1:
Definition 1: The allocation-cost relationship for Algo-

rithm 1 with " > 1; Gd > 0 and d 2 ð0; 1# is

pr;i%1
h ½t#ðrr;ih ½t# % rr;i%1

h ½t#Þ ' d=3GdCr
h

"
ðpr;ih ½t# % pr;i%1

h ½t#Þ;

8i 2 I ; h 2 H; r 2 R:

The allocation-cost relationship shows that the cost in each
time slot for scheduling a new job is bounded by the increase
of term Cr

hp
r
h½t# in Problem D-R-DMLRS, and the possible

increment introduced by randomized rounding in Algorithm 4.
This is ensured by the update of the price function and the
rounding scheme, respectively.
Lemma 9: If the allocation-cost relationship holds for " '

1; Gd > 0 and d 2 ð0; 1#, then Algorithm 1 ensures
Pi % Pi%1 ' d=3Gd

" ðDi %Di%1Þ; 8i 2 I .
Proof of Lemma 9: For any job i 2 I , if job i is rejected,

then we have Pi % Pi%1 ¼ Di %Di%1 ¼ 0 according to
Problems R-DMLRS and D-R-DMLRS, the inequality must
hold. If job i is accepted with schedule pi, i.e., xpi ¼ 1, then

the increment value of the primal objective value Pi is

Pi % Pi%1 ¼ uiðtpi % aiÞ:

Since xpi ¼ 1, according to Algorithm 1, the constraint (11) is
binding. Then, we can have

uiðtpi % aiÞ ¼ !i þ
X

t2T ðpiÞ

X

h2Hðpi½t#Þ

X

r2R
ðar

iw
pi
ht þ br

i s
pi
htÞp

r
h½t#

¼ !i þ
X

t2T ðpiÞ

X

h2Hðpi½t#Þ

X

r2R
prh½t#

/ ðrr;ih ½t# % rr;i%1
h ½t#Þ:

Similarly, we can have the increment value of the dual objec-
tive valueDi as follows:

Di %Di%1¼!i þ
X

t2T ðpiÞ

X

h2Hðpi½t#Þ

X

r2R
ðpr;ih ½t# % pr;i%1

h ½t#ÞCr
h:

Summing up the allocation-cost relationship over all t 2
T ðpiÞ; h 2 Hðpi½t#Þ; r 2 R, we have

Pi % Pi%1 '
d=3Gd

"
ðDi %Di%1 % !iÞ þ !i

¼ d=3Gd

"
ðDi %Di%1Þ þ ð1% d=3Gd

"
Þ!i:

As !i ' 0, "; Gd > 0 and d 2 ð0; 1#, we have

Pi % Pi%1 '
d=3Gd

"
ðDi %Di%1Þ:

This completes the proof of Lemma 9. &

For specific h 2 H; r 2 R, we define "rh as the correspond-
ing parameter in the allocation-cost relationship for any job
i 2 I and any time slot t 2 T . Then, it holds that " ¼
maxh;rf"rhg. Without loss of generality, we assume that the
resource demand of each worker or parameter server is much
smaller compared to the capacity of that resource on one
server, i.e., ar

i * Cr
h;b

r
i * Cr

h. This is common in real-world
machine learning system as large percentage of resources in
the whole server. As rrh½t# increases from 0 to Cr

h, then we can
claim that drrh½t# ¼ rr;ih % rr;i%1

h , and derive a differential ver-
sion of the allocation-cost relationship, which is defined as
follows:
Definition 2: The differential allocation-cost relationship

for Algorithm 1 with "rh ' 1 is

prh½t#dr
r
h½t# '

Cr
h

"rh
dprh½t#; 8t 2 T ; h 2 H; r 2 R:

Next we show that a feasible "rh satisfies the differential
allocation-cost relationship with price function prh½t# defined in
(12).
Lemma 10: "rh ¼ ln Ur

L , and the price function defined in
(12) satisfy the differential allocation-cost relationship.
Proof of Lemma 10: The derivation of the marginal cost

function is

1966 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

dprh½t# ¼ pr
0
h ðr

r
h½t#Þdr

r
h½t# ¼ LðU

r

L
Þ
rr
h
½t#

Cr
h lnðU

r

L
Þ

1
Cr
hdrrh½t#:

The differential allocation-cost relationship is

LðU
r

L
Þ
rr
h
½t#

Cr
h drrh½t# '

Cr
h

"rh
LðU

r

L
Þ
rr
h
½t#

Cr
h lnðU

r

L
Þ

1
Cr
hdrrh½t#;

which holds for "rh ' lnðUr

L Þ. Then, we can set "¼
maxr2Rð1; lnðU

r

L ÞÞ, which satisfies the differential allocation-
cost relationship. This completes the proof. &

With the aforementioned lemmas, we are now in a position to
prove Theorems 5 and 6. Note that the Theorems provide probabi-
listic guarantees. We first analyze the performance ratio, which is
followed by the probabilistic feasibility discussion for both cases.
Proof of Theorems 5 and 6: According to Lemma 10, the

marginal cost function used in Algorithm 1 satisfies the differ-
ential allocation-cost relationship with " ¼ maxrð1; ln Ur

L Þ.
Since the resource demand in a job i is much smaller than the
capacity, we can derive

drrh½t# ¼ rr;ih % ri%1
h ½t#;

dprh½t# ¼ pr
0
h ðr

r
h½t#Þðr

r;i
h ½t# % rr;i%1

h ½t#Þ ¼ pr;ih ½t# % pr;i%1
h ½t#:

So, the differential allocation-cost relationship in Definition 2
implies the allocation-cost relationship in Definition 1 holds
for " ¼ maxrð1; ln Ur

L Þ.
According to Algorithm 1, we note that

1

m
-
dEiKiðti þ 2gigi=ðb

ðeÞ
i FiÞÞe

P
r2Rðar

i þ br
i Þ

T
P

h2H
P

r2R Cr
h

; 8i 2 I :

Then, the minimum amount of overall resource consumption
of job i can be computed as:

T
P

h2H
P

r2R Cr
h

m

- dEiKiðti þ 2gigi=ðb
ðeÞ
i FiÞÞe

X

r2R
ðar

i þ br
i Þ:

Then, it follows that:

D0 ¼
X

t;h;r

LCr
h

¼
X

t;h;r

min
i2I ;pi2Pi

1=ð2mÞuiðtpi % aiÞCr
hP

r2RdEiKiðti þ 2gigi=ðb
ðeÞ
i FiÞeðar

i þ br
i Þ

¼
T
P

h;r C
r
h

2m
min
i;pi

uiðtpi % aiÞ
P

r2RdEiKiðti þ 2gigi=ðb
ðeÞ
i FiÞeðar

i þ br
i Þ

- 1

2
dEiKiðti þ 2gigi=ðb

ðeÞ
i FiÞÞe

X

r2R
ðar

i þ br
i Þ

min
i2I ;pi2Pi

uiðtpi % aiÞ
P

r2RdEiKiðti þ 2gigi=ðb
ðeÞ
i FiÞeðar

i þ br
i Þ
; 8i 2 I :

- 1

2
dEiKiðti þ 2gigi=ðb

ðeÞ
i FiÞÞe

X

r2R
ðar

i þ br
i Þ

ðaÞ
uiðtpi % aiÞ

- 1

2
uiðtpi % aiÞ -

ðbÞ 1

2
OPT;

where (a) follows by selecting ði;pÞ ¼ argmini2I ;pi2Piuiðtpi %
aiÞ, and (b) follows from the assumption that the offline optimal
solution accepts at least one job, which is reasonable in real-
world machine learning system. Then we have OPT '
mini;puiðtpi % aiÞ. According to Lemmas 8 and 9, the competi-
tive ratio is proved.

Recall that the randomized rounding algorithm is a key
component in our algorithm. Toward this end, we show
the probability of obtaining a feasible solution with the
proved competitive ratio. Here, we consider the following
two cases:

1): When 0 < Gd - 1 (Theorem 5): According to Theo-
rem 3, the probability of violating the cover constraint is no
greater than d=3 at each randomized rounding iteration. Recall
that our Algorithm 1 runs a predetermined number of S itera-
tions to find a feasible integer solution. Thus the probability
that no feasible integer solution returned after S iterations
rounding is at most ðd=3ÞS . It then follows that the probability
of at least one feasible integer solution found is at least 1%
ðd=3ÞS . Moreover, the number of states ðt; vÞ in the dynamic
programming for each job i is OðTKiEiÞ. Therefore, with
probability greater than ð1% ðd=3ÞSÞTiKiEi , PD-ORS in Algo-
rithm 1 returns a feasible integer solution with the proved
competitive ratio.

2): When Gd > 1 (Theorem 6): According to Theorem 4,
the probability of violating the packing constraint is no greater
that d=3ðHRþ 1Þ at each randomized rounding iteration. Fol-
lowing the similar arguments in 1), we can show that with
probability greater than ð1% ðd=3ðHRþ 1ÞÞSÞTiKiEi , PD-
ORS in Algorithm 1 returns a feasible integer solution with
the proved competitive ratio, and the proof is complete. &

REFERENCES

[1] M. Abadi et al., “Tensorflow: A system for large-scale machine
learning,” in Proc. 12th USENIX Symp. Operating Syst. Des. Implemen-
tation, 2016, pp. 265–283.

[2] T. Chen et al., “MXNet: A flexible and efficient machine learning
library for heterogeneous distributed systems,” in Proc. NIPS Workshop
Mach. Learn. Syst., 2016.

[3] A. Paszke et al., “Pytorch: An imperative style, highperformance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8024–8035.

[4] Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675–
678.

[5] B.-G. Chun et al., “Dolphin: Runtime optimization for distributed
machine learning,” in Proc. ICML ML Syst. Workshop, 2016.

[6] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., 2018, pp. 495–503.

[7] M. Li et al., “Scaling distributed machine learning with the parameter
server,” in Proc. 11th USENIX Symp. Operating Syst. Des. Implementa-
tion, 2014, pp. 583–598.

[8] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: Building an efficient and scalable deep learning training system,”
in Proc. 11th USENIX Symp. Operating Syst. Des. Implementation,
2014, pp. 571–582.

[9] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proc. Commun. ACM, vol. 1, no. 51, 2008, pp. 107–
113.

[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,” in
Proc. 2nd ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., 2007,
pp. 59–72.

YU et al.: TOWARD EFFICIENT ONLINE SCHEDULING FOR DISTRIBUTED MACHINE LEARNING SYSTEMS 1967

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

[11] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling and
scalability optimization of distributed deep learning systems,” in Proc.
21th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2015, pp.
1355–1364.

[12] P. Sun, Y. Wen, N. B. D. Ta, and S. Yan, “Towards distributed machine
learning in shared clusters: A dynamically-partitioned approach,” in
Proc. IEEE Int. Conf. Smart Comput., 2017, pp. 1–6.

[13] Q. Zhang, R. Zhou, C. Wu, L. Jiao, and Z. Li, “Online scheduling of het-
erogeneous distributed machine learning jobs,” in Proc. 21st Int. Symp.
Theory, Algorithmic Found., Protocol Des. Mobile Netw. Mobile Com-
put., 2020, pp. 111–120.

[14] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proc. 15th ACM Workshop
Hot Topics Netw., 2016, pp. 50–56.

[15] W. Chen, Y. Xu, and X. Wu, “Deep reinforcement learning for
multi-resource multi-cluster job scheduling,” in Proc. IEEE ICNP,
2017.

[16] H. Mao, M. Schwarzkopf, S. Venkatakrishnan, and M. Alizadeh,
“Learning graph-based cluster scheduling algorithms,” in Proc. SysML,
2018.

[17] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proc. ACM Special Int. Group Data Commun., 2019, pp.
270–288.

[18] A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, and J. Dean,
“A hierarchical model for device placement,” in Proc. Int. Conf. Learn.
Representations, 2018.

[19] A. Mirhoseini et al., “Device placement optimization with
reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 2430–2439.

[20] V. Kovalevskyi, “MXNet distributed training explained in depth,” [Online].
Available: https://aswesee.it/mxnet-distributed-training-explained-in-depth-
part-1-b90c84bda725

[21] “Distributed training in MXNet,” [Online]. Available: https://mxnet.
apache.org/versions/1.8.0/api/faq/distributed_training

[22] P. Goyal et al., “Accurate, large minibatch SGD: Training imagenet in
1 hour,” 2017, arXiv:1706.02677.

[23] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient
dynamic resource scheduler for deep learning clusters,” in Proc. 13th
EuroSys Conf., 2018, pp. 1–14.

[24] “Apache Hadoop,” [Online]. Available: http://hadoop.apache.org/
[25] J. Dean et al., “Large scale distributed deep networks,” in Proc. 25th Int.

Conf. Neural Inf. Process. Syst. - Volume 1. USA: Curran Associates
Inc., 2012, pp. 1223–1231.

[26] T. Cheatham, A. Fahmy, D. Siefanescu, and L. Valiani, “Bulk synchro-
nous parallel computing- A paradigm for transportable software,” in
Proc. Hawaii Int. Conf. Syst. Sci., 2005, pp. 268–275.

[27] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Pro-
gramming: Theory and Algorithms, 3rd ed. New York, NY, USA:
Wiley, 2006.

[28] “Multi-worker training with keras,” [Online]. Available: https://www.
tensorflow.org/tutorials/distribute/multi_worker_with_keras

[29] “Run deep learning with paddlepaddle on kubernetes,” 2017. [Online].
Available: https://kubernetes.io/blog/2017/02/run-deep-learning-with-
paddlepaddle-on-kubernetes/

[30] Z. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh, “Spiderboost: A class
of faster variance-reduced algorithms for nonconvex optimization,”
2018, arXiv:1810.10690.

[31] D. S. Hochbaum, Approximation Algorithms for NP-Hard Problems, D.
S. Hochbaum, Ed. Boston, MA: PWS Publishing Company, 1997.

[32] N. Buchbinder and J. (Seffi) Naor, The Design of Competitive Online
Algorithms via a Primal-Dual Approach, vol. 3. Norwell, MA: Now
Publishers Inc., Feb. 2009.

[33] P. M. Vaidya, “An algorithm for linear programming which requires
oðððmþ nÞn2 þ ðmþ nÞ1:5nÞLÞ algorithmic operations,” Mathemati-
cal Programming, vol. 47, pp. 175–201, 1990.

[34] “Amazon ec2 instances,” [Online]. Available: https://aws.amazon.com/
ec2/instance-types

[35] C. Reiss et al., “Heterogeneity and dynamicity of clouds at scale: Google
trace analysis,” in Proc. 3rd ACM Symp. Cloud Comput., 2012, pp. 1–13.

[36] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and
D. H. Tsang, “Need for speed: Cora scheduler for optimizing comple-
tiontimes in the cloud,” in Proc. IEEE Conf. Comput. Commun., 2015,
pp. 891–899.

[37] M. Zaharia et al., “Spark: Cluster computing with working sets,” in
Proc. USENIX HotCloud, 2010, p. 10.

[38] V. K. Vavilapalli et al., “Apache hadoop yarn: Yet another resource
negotiator,” inProc. ACM4th Annu. Symp. Cloud Comput., 2013, pp. 1–16.

[39] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing
in the data center,” in Proc. USENIX NSDI, 2011, pp. 22–22.

[40] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Multi-tenant GPU clusters for deep learning workloads: Anal-
ysis and implications,” in Proc. MSR-TR-2018-13, 2018.

[41] P. Minet, "Eric I. RenaultKhoufi, and S. Boumerdassi, “Analyzing traces
from a google data center,” in Proc. Int. Wireless Commun. Mobile
Comput. Conf., 2018, pp. 1167–1172.

[42] D. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA:
Athena Scientific, 1999.

Menglu Yu (Graduate Student Member, IEEE)
received the B.S. degree from the Department of
Electrical and Information Engineering, Hunan Uni-
versity, China, in 2014. She is currently working
toward the Ph.D. degree with the Department of
Computer Science, Iowa State University. Her pri-
mary research interests include optimization for dis-
tributed machine learning systems and data centers,
as well as network optimization.

Jia Liu (Senior Member, IEEE) received the Ph.D.
degree from the Department of Electrical and Com-
puter Engineering, Virginia Tech, in 2010. He is an
Assistant Professor with the Department of Electrical
and Computer Engineering, The Ohio State Univer-
sity, where he joined in August 2020. From August
2017 to August 2020, he was an Assistant Professor
with the Department of Computer Science, Iowa
State University. His research areas include theoreti-
cal machine learning, control and optimization for
stochastic networks, and optimization for data analyt-

ics infrastructure and cyber-physical systems. Dr. Liu is a member of ACM.
He was the recipient of the numerous awards at top venues, including IEEE
INFOCOM’19 Best Paper Award, IEEE INFOCOM’16 Best Paper Award,
IEEE INFOCOM’13 Best Paper Runner-up Award, IEEE INFOCOM’11 Best
Paper Runner-up Award, and IEEE ICC’08 Best Paper Award. Dr. Liu was
the recipient of the NSF CAREER Award in 2020. He was the recipient of the
Google Faculty Research Award in 2020. He is also a winner of the LAS
Award for Early Achievement in Research from the College of Liberal Arts
and Sciences at Iowa State University in 2020, and the Bell Labs President
Gold Award in 2001. His research is supported by NSF, AFOSR, AFRL, and
ONR.

Chuan Wu (Senior Member, IEEE) received the B.
Eng. and M.Eng. degrees from the Department of
Computer Science and Technology, Tsinghua Uni-
versity, China, in 2000 and 2002, respectively, and
the Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Toronto,
Canada, in 2008. Since September 2008, She has
been with the Department of Computer Science, the
University of Hong Kong, where she is currently a
Professor. Her current research focuses on the areas
of cloud computing, distributed machine learning

systems and algorithms, and intelligent elderly care technologies. She is a
member of ACM, and was the Chair of the Interest Group on Multimedia serv-
ices and applications over Emerging Networks (MEN) of the IEEE Multime-
dia Communication Technical Committee (MMTC) from 2012 to 2014. She is
an Associate Editor of IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE TRANS-

ACTIONS ON MULTIMEDIA, ACM Transactions on Modeling and Performance
Evaluation of Computing Systems, and IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS FOR VIDEO TECHNOLOGY. She was the co-recipient of the best paper
awards of HotPOST 2012 and ACM e-Energy 2016.

1968 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 4, JULY-AUGUST 2022

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

Bo Ji (Senior Member, IEEE) received the B.E. and
M.E. degrees in information science and electronic
engineering from Zhejiang University, Hangzhou,
China, in 2004 and 2006, respectively, and the Ph.D.
degree in electrical and computer engineering from
The Ohio State University, Columbus, OH, USA, in
2012. Dr. Ji is an Associate Professor with the
Department of Computer Science, Virginia Tech,
Blacksburg, VA, USA. Prior to joining Virginia
Tech, he was an Associate Professor with the Depart-
ment of Computer and Information Sciences and a

faculty member of the Center for Networked Computing at Temple Univer-
sity, where he was an Assistant Professor from July 2014 to June 2020. He
was also a Senior Member of the Technical Staff with AT&T Labs, San
Ramon, CA, from January 2013 to June 2014. His research interests include
the modeling, analysis, control, optimization, and learning of computer and
network systems, such as wired and wireless networks, large-scale IoT sys-
tems, high performance computing systems and data centers, and cyber-physi-
cal systems. He currently serves on the editorial boards of the IEEE/ACM
TRANSACTIONS ON NETWORKING, IEEE INTERNET OF THINGS Journal, and IEEE
OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY. Dr. Ji is a member of the
ACM. He is a National Science Foundation (NSF) CAREER awardee (2017)
and an NSF CISE Research Initiation Initiative (CRII) awardee (2017). He is
also the recipient of the IEEE INFOCOM 2019 Best Paper Award.

Elizabeth S. Bentley (Member, IEEE) received the
B.S. degree in electrical engineering from Cornell
University, the M.S. degree in electrical engineering
from Lehigh University, and the Ph.D. degree in elec-
trical engineering from University at Buffalo. She
was a National Research Council PostDoctoral
Research Associate with the Air Force Research Lab-
oratory in Rome, NY. She is currently employed by
the Air Force Research Laboratory in Rome, NY,
performing in-house research and development in the
Networking Technology branch. Her research inter-

ests include cross-layer optimization, wireless multiple-access communica-
tions, wireless video transmission, modeling and simulation, and directional
antennas/directional networking.

YU et al.: TOWARD EFFICIENT ONLINE SCHEDULING FOR DISTRIBUTED MACHINE LEARNING SYSTEMS 1969

Authorized licensed use limited to: Iowa State University Library. Downloaded on August 28,2022 at 03:29:53 UTC from IEEE Xplore. Restrictions apply.

