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Abstract—To lower buildings’ significant energy consumption and high impacts on environmental sustainability, recent years have
witnessed rapidly growing interests in efficient HVAC precooling control and optimization. However, due to the complex analytical modeling
of building thermal transfer, rigorousmathematical optimization for HVAC precooling is highly challenging. As a result, progress onHVAC
precooling optimization remains limited in the literature. Our main contribution is that we overcome the aforementioned challenge and
propose an accurate and tractable HVAC precooling optimization framework. Themain results of this paper are three-fold: i)We develop an
RC-network-based analytical model for multi-zoneHVACprecooling tominimize both total energy costs and peak load demand. ii)We show
that the HVACprocooling optimization problem based on the proposedRC networkmodel admits a convex approximation, which enables
an efficient optimization algorithm design. iii) Based on the convex approximation insight and by exploiting special problem structures, we
develop an efficient distributed algorithm to solve the HVACprecooling optimization problem. Further, we conduct extensive simulation
studies to verify the performance of our proposedmathematicalmodel and algorithms. Our numerical results indicate that compared with
the five existingHVAC control strategies, the proposed algorithm consistently outperforms existing state-of-the-art approaches.

Index Terms—Energy efficiency, building HVAC precool scheduling, distributed optimization, algorithms
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1 INTRODUCTION

BUILDINGS have a significant impact on the global climate
change and other energy-related environmental issues

[1]. In the United States, over one-third of all energy and
around 70 percent of electricity were consumed by build-
ings [2]. Further, according to U.S. Department of Energy
(USDOE), around 40 percent of the total energy used by
buildings is consumed by the heating, ventilation, and air
conditioning (HVAC) systems [3]. In particular, during
hot summer months, cooling requirements would sky-
rocket and become the dominant source of HVAC energy
consumption. Exacerbating the problem is the fact that
these cooling requirements correlate strongly both in
space and time (e.g., a period with peak solar radiation at
a certain geographical region, the time-span duringwhich
most commercial buildings are fully occupied, etc.), which
causes a dramatic surge in the peak power consumption
in the grid. Such a sharply increased energy demand
necessitates ramping up uneconomical and pollutive
generators, further creating serious environmental sus-
tainability concerns. Therefore, to avoid exceedingly high
peak loads, many electric utility companies have imposed
heavy price penalties during the peak load period. For
most commercial buildings, the electricity bills typically

contain two parts: total energy consumption charges and
peak demand charges (i.e., calculated based on the maxi-
mum energy demand in kW in a certain peak demand
interval, e.g., 15 minutes, during the billing cycle [4]).
Although pricing strategies vary with service providers,
peak demand charges always occupy a significant propor-
tion of the electricity bills, sometimes even exceeding
50 percent [5]. As a result, during the peak time when
buildings are fully occupied and operational, there is an
inherent dilemma between procuring energy at extremely
high costs and maintaining indoor thermal comfort, an
importantmetric for indoor environmental quality.

Clearly, to resolve the peak-time dilemma, one has to shift
the HVAC energy demands away from the peak time period
in some way. One effective approach for shifting the HVAC
peak load is to leverage building thermal mass properties to
perform HVAC precooling. Simply speaking, the basic idea
behind precooling is that, if a building has been properly pre-
cooled before occupancy or during the early morning occu-
pied time, then even if the HVAC is turned off, the building
temperature will not jump immediately andwould gradually
and slowly rise up thanks to the “memory effect” of the build-
ing thermal mass. As a result, an acceptable low temperature
would maintain and last into the peak time period, which
helps reduce the peak timeHVACenergy demand.Moreover,
precooling during off-peak times is often assisted by the rela-
tively low ambient temperature (e.g., late nights or early
mornings) and cheaper time-of-use electricity rates, which
would unlikely incur a high energy demand or a higher
energy consumption charge. Because of this win-win situa-
tion, there has been a great deal of interest in developing opti-
mal HVAC precooling control strategies to lower buildings’
peak demand aswell as reduce the total electricity bill.

However, performing optimal HVAC precooling is highly
non-trivial. Themain reason is that there is a lack of an accurate
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and tractable theoretical framework to enable rigorous mathe-
matical optimization for HVAC precooling. To date, most
building energy simulation tools based on the DOE-2 engine
[6] (e.g., EnergyPlus, eQUEST, etc.) calculate through-wall
heat transfer by solving a complex second-order ordinary dif-
ferential equation (ODE). This ODE takes into account a large
number of practical building factors, such as local weather,
building geometry, building envelope characteristics, internal
heat gains from lighting, people and plug loads,HVAC system
specifications, etc. Although being detailed and sophisticated,
the high-complexity of the DOE-2model renders it hopeless to
derive closed-form analytical expressions to formulate tracta-
ble optimization problems. In fact, even for the simpler resis-
tive-capacitive (RC) thermal transfer model (based on a
simplified first-order ODE, see Section 3 for details), it remains
too complex to be used as a starting point for designing optimi-
zation algorithms. Due to these challenges, many existing
studies in HVAC precooling scheduling (see, e.g., [7], [8], [9],
[10], [11]) are limited to either heuristics or simple single-zone
settings (see Section 2 formore detailed discussions).

The major contribution of this paper is that we overcome
the aforementioned challenges and develop an accurate and
tractable mathematical model for rigorous HVAC precool-
ing optimization. The main technical results in this paper
are as follows:

! Based on an RC-based network model for multi-zone
HVAC, we develop an accurate and tractable multi-
objective mathematical optimization framework for
HVACprecooling that considers both total energy costs
and peak load demand. Specifically, by exploiting the
finite dynamic range characteristic of HVAC systems,
we show that the thermal energy transfer model based
on the RC-networkmodel can be closely approximated
and linearized. As a result, the original HVAC precool-
ing optimization problem based on the RC thermal
dynamics ODE can be converted into a convex approxi-
mation, which enables efficient optimization design.
We further show that the error of this convex approxi-
mation can be made arbitrarily small as the number of
time-slots in the system grows asymptotically, hence
offering a graceful trade-off between energy cost opti-
mality and the problemdimension complexity.

! Based on our developed convex approximation above,
we exploit its separable problem structure to propose
an efficient ADMM-type (alternating directionmethod
of multipliers) distributed algorithm for solving the
HVAC precooling problem. Moreover, we show that
the special structural properties of the augmented
Lagrangian naturally imply low-complexity and effi-
cient computational schemes for the primal tempera-
ture setpoints and HVAC energy injection decisions.
Specifically, we prove that the temperature setpoint
in each time-slot can be computed in a “backward
induction” fashion.Also, by recognizing an interesting
rank-1 correction structure, we show that the HVAC
control decision variables in each time-slot can be effi-
ciently computed by leveraging the Sherman-
Morrison-Woodbury (SMW) matrix inversion tech-
nique. We note that these insights are not only elegant
mathematically, but they also lead to highly efficient
HVAC control protocol designs in practice.

! To verify the performance of our proposed mathemat-
ical model and algorithms, we conduct extensive and
in-depth simulation studies based on a large number
of floor plans and internal structures. The effects of
five building parameters (i.e., the gross floor area,
average room size, total number of zooms,wall capaci-
tance, and the window-to-wall ratio), internal loads,
and external environments on the optimal strategy are
investigated based on daily simulations. We also
compare our optimization algorithm with five exist-
ing strategies (i.e., the occupancy-driven ON/OFF
strategy and four other strategies combining precool-
ing with different heuristic demand-limiting control
methods) in terms of cooling energy cost reduction.
Overall, we show that our algorithm consistently per-
forms better by achieving cooling energy cost reduc-
tion ratios ranging up to 75 percent when using these
existing strategies as the baseline, thus confirming the
efficacy of our proposed mathematical optimization
framework and algorithmic design.

Collectively, our results in this paper contribute to a com-
prehensive and fundamental understanding of the roles of
HVAC precooling optimization on environmental sustain-
ability. The remainder of the paper is organized as follows.
Section 2 reviews the relatedwork about the existing precool-
ing HVAC control strategies and the RC network. Section 3
introduces the RC network model and the problem formula-
tion. Section 4 focuses on problem reformulation and linear-
ized approximation, which further motivates efficient
algorithmdesigns in Section 5. Section 6 presents simulations
and numerical studies and Section 7 concludes this paper.

2 RELATED WORK

In the literature, it has long been recognized that a building’s
thermal mass holds a great potential to shift the building’s
HVAC loads and reduce the peak demand [9], [12], [13], [14].
However, as mentioned in Section 1, due to the lack of an
accurate and tractable theoretical optimization framework,
progress on HVAC precooling optimization has been quite
limited. As a result, most existing studies on HVAC precool-
ing strategies design resort to simple heuristics. For example,
three HVAC precool scheduling schemes termed concave-
increasing, step-up, and linear-up were used in [8], [9] to
gradually reduce the HVAC energy input during the peak
time. Another more sophisticated heuristic approach is
based on the model-based predictive control (MPC) (also
known as receding horizon control) [15], [16], [17]. Simply
speaking, MPC is a method of process control that uses
empirical dynamicmodels combinedwith future predictions
to perform optimization in the current time-slot [10]. How-
ever, it is usually unclear how to determine a proper mathe-
matical model for HVAC, which is a key part of the MPC
approach [11]. Although shown to be effective in varying
degrees, the major limitation of these heuristic approaches is
that there is a lack of optimality guarantee.

To put HVAC precooling optimization on a firmer analyt-
ical footing, in recent years, there have been several lines of
research on developing mathematical optimization techni-
ques for HVAC precooling. For example, Lee and Braun in
[18] proposed three optimization methods to determine the
trajectories of setpoint temperature during the peak time,
including the semi-analytical (SA) method, the exponential
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setpoint equation-based semi-analytical (ESA) method, and
the load weighted-average (WA) method. In their follow-up
work [19], these three methods were further combined with
precooling or extended precooling to reduce the peak cool-
ing load. While these three methods can achieve optimality
guarantee during the peak time to some extent, they do not
consider cooling schedules during the off-peak time. This is
in stark contrast to our work, where we jointly optimize cool-
ing schedules for both peak and non-peak periods.

The most related line of work to our paper is based on the
first-order RC model [20], [21], [22]. Simply speaking, an RC
model captures the physical properties of walls in a building
to predict thermal transfer transients, which is widely popu-
lar in computing cooling or heating requirements for perfor-
mance monitoring, diagnosis, and control strategy analysis
[23] (see Section 3 for further background of RC). Based on
the RC model, Mukherjee et al. [20] developed a thermal
feedback control scheme for a multi-zone building, and
Bhattacharya et al. [22] proposed a dynamic programming
(DP) based algorithm to solve a nonlinear optimal precooling
control problem in buildings under the time-of-use electric-
ity pricing. However, the DP solution is only limited to the
single-zone setting and cannot be extended to multi-zone
HVAC due to the curse of dimensionality of DP. For
RC-based multi-zone HVAC optimization, Gupta et al. [21]
proposed a two-stage approach, where a consensus-based
algorithm is first used to solve a static optimization problem
to obtain optimal stationary states for all time periods. Then,
they designed a control law in each time period to drive the
system to reach the desired stationary states. However, due
to the high-complexity, this two-stage approach is cumber-
some to implement in practice. By contrast, in this paper, we
propose a new convex approximation for RC thermal trans-
fer ODE to avoid the pitfalls of [21], [22]: On one hand, the
low-complexity of our approach allows us to handle multi-
zone settings; on the other hand, the linearized approxima-
tion directly captures the transient dynamics in the systems,
thus eliminating the need for the two-stage process in [21]
and enabling efficient algorithmic designs.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we use boldface to denote matrices/vectors.
We let A> denote the transpose of A. We let ðAÞij represent
the entry in the ith row and jth column of A and let ðvÞm
represent themth entry of v. We let I andO denote the iden-
tity and all-zero matrices, respectively, where their dimen-
sions are conformal to the context. We let 1 and 0 denote
the all-one and all-zero vectors, respectively, where their
dimensions are conformal to the context.

1) HVAC System Modeling. Consider a building with N
HVAC zones that are indexed by i 2 f1; . . . ; Ng. For building
safety concerns and to maintain an appropriate human com-
fort zone, the temperature of each zone imust be maintained
within a range ½T lb

i ; T
ub
i % at all times, where T lb

i and Tub
i repre-

sent the lower and upper temperature bounds of zone i,
respectively. We consider summer operations, where the
ambient temperature is typically higher than the indoor tem-
perature. As a result, air conditioning (AC) operation suffices
and heating is not needed. Our goals in this paper are
two-fold: i) Understanding whether precooling this N-zone
building under time-varying electricity prices can save cost;
and ii) If yes, how to design an optimal precool schedule to
minimize the cooling energy cost.

To this end, we assume a look-ahead time window ½0;W %
(e.g., a day), for which accurate electricity price and weather
forecasts are available. The look-ahead time window is
equally divided into K time-slots, which are indexed by
k 2 f1; . . . ;Kg. Hence, the duration of each time-slot can be
computed as t ¼ W=K. We assumeK to be large enough (or
equivalently, t is sufficiently short) such that the electricity
price and the ambient temperature in each time-slot remain
static. Thus, we let p½k% and TA½k% denote the electricity price,
and ambient temperature in time-slot k, respectively,

We let Ti½k% denote the indoor temperature setpoint of
zone i at the beginning of the kth time-slot. Clearly, the col-
lection of all setpoints fTi½k%; 8i; kg constitutes a cooling
schedule. Correspondingly, we let ui½k% represent the cooling
energy consumption in zone i and time-slot k that achieves
the temperature setpoints Ti½k%.1 As will be seen later, our
precooling schedule optimization amounts to determining
the values of fTi½k%; ui½k%; 8i; kg.

2) Resistive-Capacitive (RC) Thermal Dynamics Model. In
this paper,we consider a heat transfermodel based on thermal
resistance and capacitance, which has been widely adopted in
civil andmechanical research communities. Previous research
has evaluated the accuracy of RCmodels of varied complexity
(e.g., 2R1C, 3R2C, etc.) and found that RC model-based simu-
lation can achieve reasonable accuracy in temperature predic-
tion with the root-mean-square error of around 0.5 'C [24],
[25] and building energy consumption prediction with the
relative error within 10 percent [26]. In what follows, we first
give a primer on the fundamentals of the RC model to famil-
iarize the readerswith the necessary background.

In the RC model for a given building, each zone (e.g., a
room, a hall way, etc.) is modeled as a thermal capacitor and
each wall is modeled as a concatenation of nþ 1 thermal
resistors and n thermal capacitors, n ) 1. Simply speaking,
thermal resistance models the thermal energy flow based on
temperature difference: Q ¼ DT=R, where Q is the thermal
energy (in unit W) transferred across the resistance,DT is the
temperature difference (in unit K), andR is the thermal resis-
tance (in unit K/W). On the other hand, thermal capacitance
models the ability of space/mass to store heat: C dT

dt ¼ Q,

where C has the unit J/K. In practice, the most widely used
RC model is the 3R2C model, i.e., n ¼ 2. As shown in Fig. 1,
under the 3R2Cmodel, the wall separating twoHVAC zones
i and j in a building is composed of three thermal resistors
ðRi1; R12; R2jÞ and two thermal capacitors ðC1; C2Þ. Also,
zone i and zone j are modeled as two thermal capacitors Ci

andCj, respectively.
It can be seen that the RCmodel is analogous to an electric

circuit. As a result, the thermal dynamic under the RCmodel
is also closely related to the classical circuit theory.More spe-

cifically, let S½k%
i ðtÞ denote the temperature of the ith thermal

capacitor at time instant t within time-slot k. We note that it
is important to distinguish the two notions of “time” intro-
duced so far. Earlier in this paper, we have used bracket “½k%”
to denote a time-slot k (in a larger time-scale); while in here,
we use parenthesis “(t)” to signify a time instant within some

1. In practice, the AC power output levels are usually discrete.
Assume that the AC system for each zone i has a cooling power rating
of !ui. Then, any AC power output value 0 * ui½k% * !ui can be attained
by duty cycling the HVAC compressor between ON (power output !ui)
and OFF (power output 0) states with low amplitude and high fre-
quency [22].
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given time-slot. Under the RC model, the evolution of S½k%
i ðtÞ

is governed by the following first-order ordinary differential
equation (ODE)

Ci
dS½k%

i ðtÞ
dt

¼
X

j2N i

S½k%
j ðtÞ + S½k%

i ðtÞ
Rij

þQ½k%
AiðtÞ þQ½k%

HiðtÞ þQ½k%
LiðtÞ;

(1)

where N i denotes the set of thermal capacitors connected to
thermal capacitor i, Rij denotes the thermal resistor between

zone i and zone j (we assume Rij ¼ Rji), and Q½k%
A;iðtÞ is the

instantaneous thermal power transferred from the ambient
environment to thermal capacitor i at time instant t in time-
slot k and defined as follows:

Q½k%
AiðtÞ¼

TA½k%+S
½k%
i ðtÞ

R0i
; if capacitor i is adjacent to the ambient;

0; otherwise;

(

(2)

whereR0i represents the thermal resistor between capacitor i

and the ambient environment. Note thatQ½k%
AiðtÞ can implicitly

capture the combined effect of some green building technol-
ogies. For example, cool air in early morning can be injected
into the building as free cooling input in some green build-

ings. In (1), Q½k%
HiðtÞ denotes the cooling power input injected

from theHVAC system and defined as follows:

Q½k%
HiðtÞ ¼

u½k%
i ðtÞ; if capacitor i is connected with HVAC;

0; otherwise;

(

(3)

where u½k%
i ðtÞ denotes the instantaneous HVAC cooling

power control decision to zone i at time t in time-slot k. In

(1), Q½k%
LiðtÞ denotes the internal loads (mainly including plug

loads, lighting load, and occupancy load) in zone i and
time-slot k, which are defined as follows:

Q½k%
LiðtÞ ¼

o½k%i ðtÞ; if capacitor i has internal loads;
0; otherwise;

!

(4)

where o½k%i ðtÞ denotes the instantaneous internal loads in
zone i at time t in time-slot k. We note that the prediction of
internal load Q½k%

LiðtÞ can be accurately made based on the
building’s schedules and/or usage statistics in the past that
depend on the day of week, month, or season, etc. For exam-
ple, the occupancy of academic buildings can be easily pre-
dicted based on class schedules, the occupancy of office

buildings can be predicted between weekdays and week-
ends, the occupancy of a convention center can be predicted
based on its events schedule, etc.

3) RC Network. With the above RC-based thermal dynam-
ics modeling, we are now in a position to use an RC network
to model the thermal transfer in a building with a multi-zone
HVAC system. In this paper, a building is viewed as a con-
nected network G ¼ fN ;Lg, whereN andL denote the set of
nodes and links, respectively. Each node in N corresponds
to a thermal capacitor. Also, a reference node is added to rep-
resent the ambient environment. We note that all thermal
capacitors are modeled as nodes in the network, including
both HVAC zones and wall capacitors in the RC wall model.
Each link in L represents a thermal resistor with two end
nodes corresponding to the two adjacent thermal capacitors.
We let N and L denote the total numbers of thermal capaci-
tors and resistors in the network, respectively. Hence, the
network has N þ 1 nodes (including the ambient environ-
ment as the reference node) and L links. For convenience, we
label the nodes from 0 to N , with node 0 denoting the ambi-
ent environment. Rij denotes the thermal resistor between
capacitors i and j.

As an example, Figs. 2 and 3 illustrate the layout of a
three-zone building example and its corresponding 3R2C
network. In the RC network, the thermal capacitors 1, 2, 3,
and 0 in Fig. 3 (denoted by bolded circles) correspond to
zones 1, 2, 3, and the ambient environment in Fig. 2, respec-
tively. Thermal capacitors 4–13 represent the capacitors in
the 3R2Cmodels for walls. In Fig. 2, it can be seen that zones
1 and 2 are connected in the sense that they are adjacent and
separated by awall. Thus, in Fig. 3, a 3R2Cmodel connection
is used to represent thewall between zone 1 and zone 2: three
thermal resistors R1;6, R6;7, R7;3, and two thermal capacitors
C6 and C7. Other wall resistors and capacitors in Fig. 3 can
also be identified following the same token.

4) Problem Formulation. In this paper, our goal is to opti-
mize the cooling schedule to minimize the total electricity
energy expense combined with the peak load demand. As
noted in the introduction, the strong correlation of cooling
requirements in both space and time causes a dramatic
surge in the peak power consumption in the grid, which
necessitates ramping up uneconomical and pollutive gener-
ators. Therefore, we focus on jointly optimizing energy cost
and peak demands in this paper. Let G denote the set of
time-slots in the peak period. Based on the modeling
described earlier, the objective function can be computed asPK

k¼1

PN
i¼1

R t
t¼0 p½k%u

½k%
i ðtÞdtþ P̂ ðmaxk2G

R t
0 u

½k%
i ðtÞdtÞ, where

P̂ ð,Þ denotes the peak load penalty function. In this paper,

we assume that P̂ ð,Þ is an increasing strongly convex func-
tion. Putting together all analytical modeling above, we can

Fig. 1. The 3R2C model for heat transfer across a wall.

Fig. 2. The layout of a three-zone building example.
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write the HVAC precooling optimization (HPrO) problem
as follows:

HPrO:

Minimize
u
½k%
i ðtÞ;8i;k;t

w1

XK

k¼1

XN

i¼1

Z t

t¼0
p½k%u½k%

i ðtÞdt

þ w2P̂

 
max
k2G

XN

i¼1

Z t

0
u½k%i ðtÞdt

!
(5)

subject to Ci
dS½k%

i ðtÞ
dt

¼
X

j2N i

S½k%
j ðtÞ + S½k%

i ðtÞ
Rij

þ

TA½k% + S½k%
i ðtÞ

CiRAi
1AðiÞþu½k%i ðtÞ1HðiÞ þ o½k%i ðtÞ1LðiÞ;

i ¼ 1; . . . ; N; t 2 ½0; t%; k ¼ 1 . . . ; K;

(6)

S½k%
i ð0Þ ¼ Ti½k%; i ¼ 1; . . . ; N; k ¼ 1; . . . ; K; (7)

T lb
i * S½k%

i ðtÞ * Tub
i ; 8i; k; t; (8)

u½k%
i ðtÞ 2 U ½k%

i;t ; 8i; k; t; (9)

where U ½k%
i;t represents the set of all feasible HVAC control

decisions for uiðtÞ at time t; 1AðiÞ is an indicator function
that takes value 1 if zone i is connected to the ambient envi-
ronment and 0 otherwise; 1HðiÞ is an indicator function that
takes value 1 if zone i is directly connected to the HVAC sys-
tem and 0 otherwise; and 1LðiÞ is an indicator function that
takes value 1 if zone i has internal loads and 0 otherwise. In
(5), the weights w1 and w2 are non-negative constants with
w1 þ w2 ¼ 1, which represents the relative emphasis onmini-
mizing total energy cost and peak load demand, respectively.
The extreme cases ðw1 ¼ 1; w2 ¼ 0Þ and ðw1 ¼ 0; w2 ¼ 1Þ cor-
respond to minimizing total energy cost and minimizing
peak load demand, respectively. In Problem HPrO, Eq. (6)
represents the RC-based indoor temperature evolution
dynamics with (7) being the initial condition, and Eq. (8) rep-
resents the human comfort zone constraints.

We note that Problem HPrO is a continuous-time optimi-
zation problem that is difficult to solve directly in a compu-
tationally tractable fashion using conventional optimization
techniques. This is mainly due to the existence of the inte-

gration of an unknown function u½k%
i ðtÞ in the objective func-

tion (5) and in the ODE of the temperature dynamics in (6).

As a result, conventional nonlinear optimization techniques
cannot be directly applied. In the next section, we will show
how these challenges can be addressed by a linear reformu-
lation of Problem HPrO.

4 REFORMULATION FOR THE HVAC PRECOOLING

OPTIMIZATION PROBLEM

In this section, we will propose a convex approximation
approach to reformulate Problem HPrO, which leads to a
convex programming problem and hence a tractable optimi-
zation solution. Moreover, we will show that the error of the
proposed convex approximation approach can be made
arbitrarily small by trading off complexity in problem size.
The basic idea behind our approximation and reformulation
approach is to let the duration of a time-slot tend to be infin-
itesimal (i.e., letting t ! 0), so that the objective function in
(5) and (6) can be linearized and convexified. In what fol-
lows, we will demonstrate the key steps and components of
our convex approximation and reformulation approach.

Step 1): Convexifying the HVAC Precooling Objective. As
mentioned earlier, one of the major hurdles in solving Prob-
lem HPrO is the integration of the HVAC input decisions,
which cannot be handled by standard optimization techni-
ques. What is worse is that the objective function of Problem

HPrO involves an unknown decision function u½k%
i ðtÞ, which

further makes the problem intractable. Our key to approxi-
mate and convexify the objective function in (5) is to exploit
the physical characteristics of most HVAC systems that the
cooling power input can only be changed gradually. More
specifically, the HVAC system control usually does not
allow sudden jumps to avoid inefficiency or damages to its
electronics components. Therefore, as the time-slot duration

t gets small, the function u½k%
i ðtÞ can be viewed as a constant

between the time-slot interval ½0; t%. Let ui½k% denote the con-
stant energy input from the HVAC in the kth time-slot for
zone i. Hence, the objective function of Problem HPrO in (5)
can be reformulated as

ð5Þ - Min
ui½k%;8i;k

w1

XK

k¼1

XN

i¼1

p½k%ui½k% þ w2P̂

 

max
k2G

XN

i¼1

ui½k%

!

; (10)

if t is sufficiently small. Also, since we have assumed that
the ambient temperature and the electricity price can be
viewed as constants (cf. Section 3) if the time-slot duration t
is sufficiently small, further reducing t will not violate these
assumptions.

Step 2): Convexifying the RC Thermal Dynamics ODE. Next,
we turn our attention to the RC thermal dynamics ODE in (6).
Note that due to the capacitive thermal mass in the building,

the temperature curve S½k%
i ðtÞ in each zone i also exhibits grad-

ual changes. Hence, as t gets small, the S½k%
i ðtÞ function can be

well approximated by a linear function that passes through
the setpoints Ti½k% and Ti½kþ 1%, as illustrated in Fig. 4. As the

time-slot duration t gets small, the function o½k%i ðtÞ can also be
viewed as a constant between the time-slot interval ½0; t%. Let
oi½k% denote the constant internal loads in the kth time-slot for
zone i. Based on these observations, we can develop a linear
approximation for the RC thermal dynamics ODE as follows.
First, we let N i0 , N [ f0g (i.e., the set combining node i’s
neighbors and the ambient environment) and define ai ,

Fig. 3. The RC network for the three-zone building example in Fig. 2.
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P
j2N i0

ðCiRijÞ+1, i ¼ 1; . . . ;N , where we letRi0 , 1, 8i. Next,

we define the following constants:

pi , eait; i 2 f1; . . .; Ng; (11)

pij ,
ðait + 1Þeait þ 1

a2i CiRijt
; i; j 2 f1; . . . ; Ng; (12)

qij ,
ait + eait þ 1

a2i CiRijt
; i; j 2 f1; . . . ; Ng; (13)

ri ,
eait + 1

ait
; i 2 f1; . . . ; Ng; (14)

si ,
eait + 1

aiCiR0i
; i 2 f1; . . . ; Ng: (15)

Then, we can show the following important ODE lineariza-
tion result:

Theorem 1 (RC Thermal Transfer ODE Linearization).
Let the time-slot duration t be sufficiently small such that: i)

u½k%
i ðtÞ and o½k%i ðtÞ are approximately static with u½k%

i ðtÞ ¼ ui½k%=t
and o½k%i ðtÞ ¼ oi½k%=t, 8i; k; t; and ii) the temperature evolution
curve of each zone i in all time-slots k is approximately a line
segment connecting Ti½k% and Ti½kþ 1%. Then, the RC thermal
dynamics ODE in (6) can be linearized as

piTi½kþ 1% +
X

j2N i

pijTj½kþ 1% + Ti½k% þ
X

j2N i

qijTj½k%

+ riui½k%1HðiÞ + rioi½k%1LðiÞ ¼ siTA½k%;
i ¼ 1; . . . ; N; k ¼ 1; 2; . . . ; K + 1:

(16)

Theorem 1 can be proved by solving the ODE under the
stated assumptions andwe relegate the details toAppendixA.

Step 3): A Convex Programming Reformulation. Based on the
previous two steps, it can be seen that both the objective
function and the RC thermal dynamics ODE have been
approximated by a sum of a convex function and a linear
function concerning the HVAC inputs ui½k% and temperature
setpoints Ti½k%, 8i; k (i.e., precooling schedules), respectively.
Hence, we can approximate and reformulate the original
ProblemHPrO as a convex optimization problem as follows:

R-HPrO:

Minimize
ui½k%;8i;k

w1

XK

k¼1

XN

i¼1

p½k%ui½k% þ w2P̂ ðzÞ
(17)

subject to z )
XN

i¼1

ui½k%; 8k 2 G; (18)

piTi½kþ 1%+
X

j2N i

pijTj½kþ 1% + Ti½k%þ

X

j2N i

qijTj½k%+riui½k%1HðiÞ+rioi½k%1LðiÞ¼siTA½k%;

i¼1;. . .; N; k¼1; 2;. . .; K+1;

(19)

T lb
i *Ti½k%*Tub

i ; i¼1; . . . ; N; k¼1; . . . ; K;

(20)

ui½k%2 ½0; umax%; i¼1; . . . ; N; k¼1; . . . ; K;

(21)

where we introduce an auxiliary variable z to reformulate
and simplify the minmax objective function. Two remarks
regarding Problem R-HPrO are in order: First, it is clear that
as t ! 0 (by letting the number of time-slotsK go to infinity),
the per-slot static HVAC input and linear temperature evolu-
tion approximations (cf. Theorem 1) can be made arbitrarily
accurate. This means that the solution to the proposed refor-
mulated Problem R-HPrO approaches to that of the original
problem asymptotically by trading off complexity of the
problem size (reflected in the number of time-slots). Also, it
can be seen that Problem R-HPrO is a convex optimization
problem since the objective function is convex and all con-
straints are linear. Thus, Problem R-HPrO can be solved in
polynomial time by general interior-pointmethod.However,
we note that Problem R-HPrO possesses several interest-
ing special structural properties, which can be exploited
to enable even more efficient algorithm design, and more
importantly, distributed control implementation. This con-
stitutes themajor subject in the next section.

5 EFFICIENT ALGORITHM DESIGN

Thanks to the RC network model, the reformulated Problem
HPrO possesses a special network structure, which allows
us to develop efficient algorithms. To see this, we first intro-
duce several matrix notations to further restate Problem R-
HPrO in a more compact form as follows.

We start with restating the linearized RC thermal dynam-

ics in (19). To this end, we let T½k% , ½T1½k% . . . TN ½k%%> 2 RN

be the vector that collects all temperature setpoints at the
beginning of time-slot k.We also letu½k% , ½u1½k% . . . uN ½k%%> 2
RN and o½k% , ½o1½k% . . . oN ½k%%> 2 RN be the vectors that col-
lect all HVAC energy inputs and the internal loads in time-
slot k, respectively. Further, we let T , ½T½1% . . . T½K%%>

2 RNK , u ¼ ½u½1% . . . u½K%%> 2 RNK , o ¼ ½o½1% . . . o½K%%>

2 RNK , s , ½s1 . . . sN %> 2 RN , and r , ½r11Lð1Þ . . . rN1LðNÞ%
2 RN . Also, we define threematricesD, E, andG as follows:

½D%ij ,
pi ¼ eait; if j ¼ i;

pij ¼ + ðait+1Þeaitþ1

a2i CiRijt
; if j 6¼ i and j 2 N i;

0; otherwise:

8
><

>:

(22)

Fig. 4. A snapshot of the approximatly linear behavior of temperature

S½k%
i ðtÞ as the duration t gets small.
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½E%ij ,
1; if j ¼ i;

qij ¼ + ait+eait

a2i CiRijt
; if j 6¼ i and j 2 N i;

0; otherwise:

8
><

>:
(23)

½G%ij ¼
ri1HðiÞ ¼ eait+1

ait
1HðiÞ; if i ¼ j;

0; otherwise:

!
(24)

Note that the non-zero elements in matrices D and E are
determined by the RC network topology, andG is a diagonal
matrix.

Next, we further construct two coefficient matrices

A ¼

+E D
+E D

. .
. . .

.

+E D
+E

2

66664

3

77775
2 RNK.NK; (25)

B ¼

+G
+G

+G
. .
.

+G

2

66664

3

77775
2 RNK.NK: (26)

Note that A is in a blockwise Jordan normal form [27] and B is
diagonal. Lastly, we let TA , ½TA½1%ðsþDiagfrgo½1%Þ> . . . TA½K%
ðsþDiagfrgo½K%Þ>%> 2 RNK . With the above definitions of
matrices and vectors, we can rewrite the linearized RC
thermal dynamics in (19) as ATþ Bu ¼ TA. Further, we
can compactly rewrite Problem R-HPrO in matrix form
as follows:

R-HPrO-M:

Minimize
T;u

XK

k¼1

XN

i¼1

p½k%ui½k% þ PpeakðzÞ

subject to 1>u½k% + z * 0; 8k 2 G;

(27)

ATþ Bu ¼ TA (28)

Tlb * T * Tub; (29)

0 * u * umax; (30)

where Tlb , ½T lb
i ; 8i%

> 2 RNK , Tub , ½Tub
i ; 8i%> 2 RNK , and

umax , umax1 2 RNK . In Problem R-HPrO-M, the inequalities
in (29) and (30) are entry-wise.

We note that the objective function in Problem R-HPrO-
M is separable and the reposed RC thermal dynamics con-
straint in (29) can also be separated block-wise in terms of
variables T and u. Further since Problem R-HPrO is convex
and it is not difficult to check that the Slater’s condition
holds, we can conclude that the strong duality holds and
we can solve Problem R-HPrO in its dual domain. This
prompts us to develop an ADMM-type [28] dual decomposi-
tion scheme. Toward this end, we associate dual variables
mm 2 R

jGj
þ with constraint (27) and v 2 RNK with (28), respec-

tively. Let r > 0 be some fixed constant chosen before

running the algorithm. Then, we can formulate a r-parame-
terized augmented Lagrangian as follows:

LrðT;uÞ ,
XK

k¼1

XN

i¼1

p½k%ui½k% þ P̂ ðzÞ

þ
X

k2G
mkðz+ 1>u½k%Þ þ v>ðATþBu+TAÞ

þ r

2

"
kATþBu+TAk22þ

X

k2G
ðz+1>u½k%Þ2

#
:

(31)

Based on the augmented Lagrangian in (31), we can derive
the primal and dual updating schemes for Problem R-HPrO
as follows:

a) Primal Updates. We first derive the updates for the pri-
mal temperature setpoints T½k%, k ¼ 1; . . . ; K, for which we
have the following result:

Proposition 2 (Temperature setpoints update). The pri-
mal temperature setpoints T½k%, k ¼ 1; . . . ; K, can be computed
as follows:

T½k%¼

1
rE

+1ð+E>v½1% þ rDT½2%Þ; k ¼ 1
1
rE

+1ðD>v½k+ 1%Þ+E>v½k%þrDT½kþ 1%Þ;
k ¼ 2; . . . ; K + 1;

1
rE

+1ðD>v½K + 1%Þ + E>v½K%Þ; k ¼ K:

8
>>>><

>>>>:

(32)

Proof. Take partial derivative of LrðT;uÞwith respect to T½k%
and set it to 0. Then, by further using the blockwise Jordan
normal form structure ofA in (25), we can obtain that

@LrðT;uÞ
@T½k% ¼

+E>v½1% þ rð+ET½1%
þDT½2%Þ ¼ 0; k ¼ 1;

D>v½k+ 1% + E>v½k% þ rð+ET½k%
þDT½kþ1%Þ¼0; k ¼ 2; . . . ; K + 1;

D>v½K+1% + E>v½K%
þrð+ET½K%Þ ¼ 0; k¼K:

8
>>>>>>>><

>>>>>>>>:

(33)

Then, the results stated in Proposition 2 follow from solv-
ing for T½K% from the three cases in (33) correspondingly.
This completes the proof. tu

Remark 1. It is important to note that the structural prop-
erty of (32) implies that T½k%, k ¼ 1; . . . ; K, can be effi-
ciently computed in a backward induction fashion: Starting
from k ¼ K and using the third equation in (32), each
T½k+ 1% can be computed by T½k% using the second equa-
tion in (32), and this process will continue until k ¼ 1, for
which the result can be computed using the first equation
in (32).

Next, we derive the updates for the primal HVAC con-
trol decisions u½k%, k ¼ 1; . . . ; K, for which we have the fol-
lowing result:

Proposition 3 (HVACControl Decision). The primal HVAC
decisions u½k%, k ¼ 1; . . . ;K, can be computed as follows:

u½k% ¼ 1

r

$
Gþ 1GðkÞ11>

%+1$½p½k% + ðmk þ rzÞ

1GðkÞ%1+G>v½k%
%
:

(34)
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Further, each entry in the matrix inversion
$
Gþ1GðkÞ11>

%+1

in (34) can be computed efficiently in closed-form as follows:

$
Gþ1GðkÞ11>

%+1

ij
¼

1þ1GðkÞ
PN

j0¼1;6¼i
ð1=rjÞ

rið1þ1GðkÞ
PN

j¼1
ð1=rj0 Þ

; i ¼ j;

ð1=rjÞ1GðkÞ

rið1þ1GðkÞ
PN

j¼1
ð1=rj0 Þ

; i 6¼ j:

8
>>><

>>>:
(35)

Proof. By taking the partial derivative of LrðT;uÞ with
respect to u½k% and setting it to 0, and further using the
special structure of B, one can obtain that

@LrðT;uÞ
@u½k%

¼ p½k%1+ mk1GðkÞ1+G>v½k%

+ rGu½k% + 1GðkÞ½ðz+ 1>u½k%Þ1% ¼ 0; 8k;
(36)

where 1GðkÞ is an indicator function that takes value 1 if
k 2 G and 0 otherwise. It then follows from (36) that

r
$
Gþ1GðkÞ11>

%
u½k%¼½p½k%+ðmkþrzÞ1GðkÞ%1+G>v½k%:

(37)

Solving for u½k% from (37) yields the result stated in (34).
Next, noting from the definition in (23) thatG is diago-

nal, we have that G+1 is also diagonal and ½G+1%ii ¼ 1=ri.

Now, it is important to recognize that Gþ1GðkÞ11> is

a rank-1 update to G. Therefore,
$
Gþ1GðkÞ11>

%+1
can

be computed by using the Sherman-Morrison-Woodbury
(SMW)matrix inversion lemma [27] as follows:

$
Gþ1GðkÞ11>

%+1¼G+1 + G+111>G+1

1þ 1GðkÞ1>G+11
1GðkÞ:

(38)

Plugging in the definition of G (cf. Eq. (24)) into (38)
yields the result in (35). This completes the proof. tu

Remark 2. From Proposition 3, we can see that if time-slot k =2 G,
i.e., in the off-peak time period, then u½k% can be computed distrib-
utively using local information sinceG is block diagonal. On the
other hand, if time-slot k 2 G, i.e., in the peak-time period, then
the u½k% solution can still be computed in a distributed fashion by
exchanging the ri-information between each zone.

Lastly, taking the derivative of LrðT;uÞ with respect to z

and setting it to 0, we obtain @LrðT;uÞ
@z ¼

P
k2G mk þ

P̂ ðzÞ
dz þ

P
k2G rðz+ 1>u½k%Þ ¼ 0, which further leads to the following

primal z-solution

z ¼ 1

rjGj

&X

k2G
r1>u½k% +

X

k2G
mk +

dP̂ ðzÞ
dz

'
: (39)

2) Dual Update. For notational simplicity, we let vþ and
mmþ represent the values of dual variables v and mm in the
next iteration, respectively. Then, the dual variable updates
can be written as follows:

vþ ¼ vþ r
$
ðATþ Bu+ TAÞ

%

þ

ðz+ 1>u½1%Þ1Gð1Þ

..

.

ðz+ 1>u½K%Þ1GðKÞ

2

664

3

775;
(40)

mþ
k ¼ mk þ rðz+ 1>u½k%Þ: (41)

Finally, by combining the primal and dual updates, we
have the following algorithm:

Algorithm 1. An Efficient Dual-Based Distributed
Approach for Solving Problem R-HPrO-M

Initialization:
1: For each thermal capacitor and resistor, choose some

appropriate initial values for temperature setpoints T½k% and
HVAC control decisions u½k%, 8k ¼ 1; . . . ;K.

2: For each thermal capacitor i, choose appropriate initial
values for dual variables v½k%, k ¼ 1; . . . ;K. For the central
HVAC controller, choose appropriate initial values for z.

Main Loop:
3: Primal Temperature Setpoints Update: Based on (32), compute

and update the temperature setpoints T½k%, k ¼ 1; . . . ;K, in a
backward induction fashion.

4: Primal HVAC Control Decisions Update: Based on (34) and
(35), compute and update the HVAC control decisions u½k%,
k ¼ 1; . . . ; K either distributively or in an SMW fashion
(depending on whether or not time-slot k is in the peak
demand period G). Use the computed u½k%-information to
update z following (39).

5: Dual Variable Updates: Update the dual variables v½k% and mk,
k ¼ 1; . . . ; K, according to (40) and (41). Let t ¼ tþ 1.

6: Terminate the algorithm if the algorithm converges or if a pre-
defined run-time limit is reached. Otherwise, go back to Step 3
and repeat thewhole primal and dual update processes.

In Algorithm 1, after initializing in Steps 1–2, Steps 3–4
are for primal updates, while Step 5 is for dual updates,
respectively. The main iteration stops if the criterion in Step
6 is met. The convergence of the proposed algorithm follows
similarly from that of the ADDM approach and thus is omit-
ted for brevity in this paper.

Time-Complexity Analysis. The time-complexity of the
proposed distributed algorithm is stated as follows.

Proposition 4. The time-complexity of the dual-based distrib-
uted algorithm in Algorithm 1 is OðKN3 log ð1=!ÞÞ, where !
represents some desired accuracy for stopping criterion.

Proof. In the main loop in Algorithm 1, Step 3 is based on
Eq. (32), where the complexity is dominated by comput-
ing E+1, which is of OðKN3Þ. In Step 4, Eqs. (34) and (35)
use the SMW matrix inversion lemma, which is of
OðKN2Þ. In Step 5, Eqs. (40) and (41) are simple linear
transformation, which are of OðKNÞ. Combining Steps
3–5, it can be seen that the per-iteration time-complexity
in the main loop is OðKN Þ Lastly, due to the strong con-
vexity assumption of P̂ ð,Þ and the ADMM-type structure,
it follows from [29] that the algorithm has a linear conver-
gence rate in terms of the main loop iterations, which fur-
ther implies the stated time-complexity result. This
completes the proof. tu
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Proposition 4 shows that, by exploiting special problem
structure, our custom-designed distributed algorithm has a
lower time-complexity than the OðK3N3 log ð1=!ÞÞ time-
complexity of the interior-point method, which is a general
method for solving convex optimization problems.

Memory-Complexity Analysis. Compared to the central-
ized method, the proposed distributed method is also
advantageous in terms of memory complexity. Specifi-
cally, thanks to the ADMM-type decomposition structure,
each zone i in the RC-network only needs to store jN i0j
p-values and jN i0j q-values in the primal temperature set-
points update (see Step 3 in Algorithm 1); and single N
values of f½Gþ 1GðkÞ11>%+1

ij g
N
j¼1 in the primal HVAC con-

trol decision update (see Step 4 in Algorithm 1). Similarly,
from Step 5 in Algorithm 1, we have that each node i
needs to store jN i0j p-values and jN i0j q-values for dual
variable updates. By contrast, in a centralized implemen-
tation, we need to store the A and B matrices, all of which
are of size N2K2. In other words, in centralized imple-
mentation, one needs a node that has large memory to
hold all problem-related parameters, which is problematic
when N and K are large. On the other hand, in our dis-
tributed implementation, the problem-related parameters
are distributed evenly at each node, and there is no need
to have a “super node” that has a large memory require-
ment to store all problem-related information.

6 NUMERICAL RESULTS

In this section, we perform numerical experiments to vali-
date our theoretical results. We use the RC thermal transfer
model to simulate multi-zone buildings and investigate the
effects of different building parameters, internal loads, and
external environments on the cooling energy cost reduction
by comparing with some existing strategies. The weather
data used in simulation come from the third typical meteo-
rological year collection (TMY3) in Columbus, Ohio; Minne-
apolis, Minnesota; Baltimore, Maryland; Houston, Texas;
and Los Angeles (LA), California. Base on the [30], the total
thermal resistance and heat capacitance of the external walls
for the prototype multi-zone building model in Columbus
and Minneapolis are set to 2.97 m2, K/W and 134.80 kJ/
m2,K, respectively. And in the other three cities mentioned
above, the thermal resistance and heat capacitance of the
external walls are 2.16 m2, K/W and 49.39 kJ/m2,K, respec-
tively. The other parameters for the prototype multi-zone
building model are kept the same for these five cities during
simulation. For example, the windows in external walls
have a u factor of 5.78 W/m2, K; the window-to-wall ratio is
50 percent; and the interior partition walls consist of one
layer of gypsum board on each side, the air gap, and batt
insulation, of which the total thermal resistance and heat
capacitance are 2.57 m2,K/W and 13.86 kJ/m2, K, respec-
tively. Based on these assembly types, parameter values of
the RC network model are determined. The occupancy
schedule and plug loads (0.04 kW/m2 during the occupied
time and 8.00 . 10+4 kW/m2 during unoccupied time) are
primarily based on the schedules from an academic build-
ing on a university campus. The occupied time is from 7
AM to 11 PM, and the peak time is from 12 to 6 PM.

In order tomaintain indoor thermal comfort, the index Pre-
dicted Mean Vote (PMV) is always kept between +0:5 and
þ0:5 (equivalent to PPD = 10%) during the occupied time.
Based on the CBE Thermal Comfort Tool [31], the lower and

upper bounds of setpoint temperature during the occupied
time are 21.8 and 24.5 'C, corresponding to PMV¼ +0:5 and
PMV¼ þ0:5, respectively. The lower and upper bounds of
setpoint temperature during unoccupied time are 19.0 and 25
'C, respectively. The electricity rates are based on the rate
schedules in the power rate zone served by the American
Electric Power (AEP). Based on the time-of-day (TOD) sched-
ule, the energy charge is 2.27 cents per kWH from 7 AM to 9
PM local time for all weekdays, and 0.04 cents per kWH from
9PM to 7AMfor all weekdays, and all hours of the day on Sat-
urdays and Sundays. The demand charge is $4.16 per kW in
eachmonth.

The performance of our proposed optimal strategy based
on the RC-network is compared with five baseline cases,
i.e., occupancy-driven ON/OFF (ON/OFF), precooling
combined with linear-up (PC+LU), precooling combined
with concave-increasing (PC+CI), extended precooling com-
bined with linear-up (EPC+LU), and extended precooling
combined with concave-increasing (EPC+CI), and mea-
sured as the cost reduction ratio, which is shown in (42).
The detailed setpoint temperatures of the five baseline strat-
egies are shown in Table 1.

Cost Reduction Ratio¼CostBase+CostRC-Network

CostBase
.100%:

(42)

T ½k%¼2:71.
h
1+ e+ðk+12Þ

i
þ 21:8; k 2 G; (43)

where G denotes the set of time-slots in the peak period, k
represents any given time during the peak time, and T ½k% is
the room setpoint temperature at the time of k.

6.1 Building Parameters
In this section, we examine the effects of five building
parameters on the performance of the optimal strategy
based on the cooling energy cost reduction ratio. These
parameters include i) the gross floor area, ii) average
room size, iii) total number of rooms, iv) wall capacitance,
and v) the window-to-wall ratio. Table 2 shows the values
assigned for each of these building parameters. For each
combination of parameter values, we randomly generate
10 building samples for daily simulation. The total num-
ber of samples is 1,640. The weather data (one of the hot-
test summer days) and the external walls for the
prototype multi-zone building model in Columbus are
used in this section. Our simulation results show that our
optimization algorithm achieves approximately 5-20 per-
cent energy cost reduction compared with the baseline
case of ON/OFF strategy with full internal loads, depend-
ing on building parameter values.

The effects of the gross floor area in conjunction with
average room size on the cost reduction ratio are illustrated
in Fig. 5. With a fixed average room size (e.g., 40 m2), build-
ings with larger gross floor areas will have larger total ther-
mal capacitance (i.e., thermal mass). But the capacitance per
unit volume of these buildings would be quite similar. At
any given gross floor area (e.g., 800 m2), buildings with a
larger average room size have less internal walls, which
leads to smaller capacitance per unit volume for these build-
ings. Generally, buildings with larger thermal capacitance
per unit volume will be able to shift more cooling loads
from the peak time to the off-peak time. As shown in Fig. 5,
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when the average room size is fixed, the trend line of the
cost reduction ratio in each subfigure stays flat, which
means that the gross floor area in this case has very little
effect on the cost reduction ratio. When we compare the
trend lines across these four plots, we found that the cost
reduction ratios decrease gradually with increasing average
room sizes where capacitance per unit volume is decreas-
ing. These findings are consistent with the assumptions.

Fig. 6 shows the effects of the gross floor area and the
total number of rooms on the cost reduction ratio. When the
total number of rooms is fixed (e.g., 5 rooms), buildings
with larger gross floor area will have smaller thermal capac-
itance per unit volume. At any given gross floor area (e.g.,
600 m2), buildings having a larger total number of rooms
have more internal walls, which result in larger thermal
capacitance per unit volume. As seen in Fig. 6, in general,
the cost reduction ratio decreases with the increasing gross
floor area when the total number of rooms is fixed. When
the total number of rooms varies, buildings with smaller
total number of rooms incur lower cost reduction ratios.
The ratios in Fig. 6a are apparently lower than that in the
other three plots due to the much lower thermal capacitance
per unit volume.

The effects of external wall capacitance and the number
of rooms on the cost reduction ratio are shown in Fig. 7 with
a given gross floor area (using 800 m2 in this study). In gen-
eral, with a fixed total number of rooms, the cost reduction
ratio increases gradually when the capacitance of external
walls increases from 50 kJ/m2, K (representing lightweight
building construction without much thermal mass in the
walls) to 300 kJ/m2,K (representing heavyweight construc-
tion with large amounts of thermal mass materials incorpo-
rated). With the increasing total number of rooms, the trend
line of cost reduction ratio is shifted upward along the verti-
cal axis. Similarly, the trend line for 5 rooms is apparently
lower than the other three trend lines.

Fig. 8 illustrates the effects of the window-to-wall ratio
and the total number of rooms on the cost reduction ratio.
In general, the cost reduction ratio decreases with the
increasing window-to-wall ratio. Because the capacitance of
the window is much lower than the capacitance of the exter-
nal wall, a larger window-to-wall ratio would lead to a
smaller capacitance per unit volume for the building, which
reduces the building’s ability to store energy and shift
HVAC loads. The observation across four plots is consistent
with our early observations.

Lastly, two typical examples of a room setpoint tempera-
ture trajectory in a 24-hour period from the optimization pro-
cess are shown in Fig. 9. The majority of building samples
with 5 rooms have the setpoint temperature schedules similar
to Trajectory 1,while other samples are similar to Trajectory 2.

6.2 Internal Loads
In this section, we examine the effects of the internal loads
on the performance of the optimal strategy compared with
the baseline case of ON/OFF strategy. The building samples
with 20 rooms are simulated with different internal load
ratios (i.e., 0.125, 0.5, 0.75, and 1). The internal load ratios
less than 1 represent buildings with less plug loads or at
various occupancy levels. As shown in Fig. 10, generally the
cost reduction ratio decreases with the increasing internal
loads, showing that the effect of precooling on peak load
and energy cost reduction would be lower when facing
higher internal loads. In [32], all the simulations were based
on building samples with much lower internal loads, i.e.,
approximately 12.5 percent of the full loads used in this
paper. Therefore, the cost reduction ratios in [32] were
much higher.

6.3 External Environments
In this section, we examine the effects of the external
environments on the performance of the optimal strategy
against the ON/OFF baseline case. Besides Columbus,
which has been simulated earlier in this paper, the build-
ing samples with 20 rooms are simulated in the other
four cities, and the results are shown in Fig. 11. Based on
the ASHRAE Climate Zone definition, these five cities

TABLE 1
Setpoint Temperatures of Baseline Strategies

Strategies 11 PM to
7 AM

7 AM to
12 PM

12 PM to
6 PM

6 PM to
11 PM

ON/OFF - 22.5 'C 22.5 'C 24.5 'C

PC+LU 24.5 'C 21.8 'C Linear-up from
21.8 'C to 24.5 'C

24.5 'C

PC+CI 24.5 'C 21.8 'C Raising-up based
on (43) from

21.8 'C to 24.5 'C

24.5 'C

EPC+LU 24.5 'C before
4 AM and 21.8
'C after 4 AM

21.8 'C Linear-up from
21.8 'C to 24.5 'C

24.5 'C

EPC+CI 24.5 'C before
4 AM and 21.8
'C after 4 AM

21.8 'C Raising-up based
on (43) from

21.8 'C to 24.5 'C

24.5 'C

TABLE 2
Building Parameters Tested in Simulation Models

Parameters Values

Gross Floor Area Every 100 m2 from 200 m2 to 1,200 m2

Average Room Size {40, 60, 80, 100} m2

Total Number of Rooms 5, 10, 15, 20
Capacitance of External
Walls

Every 50 kJ/m2,K from 50 to 300 kJ/
m2,K

Window-to-wall Ratio {20%, 30%, 40%, 50%, 60%, 70%}

Fig. 5. Cost reduction ratio with respect to average room size and gross floor area.
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(Houston, LA, Baltimore, Columbus, and Minneapolis)
are in climate zones 2A, 3B, 4A, 5A, and 6A, correspond-
ing to the Hot-Humid, Warm-Dry, Mixed-Humid, Cool-
Humid, and Cold-Humid zones, respectively. Among
these five cities, LA has the lowest temperature in sum-
mer. The selected simulation day has the highest temper-
ature of 26.11 'C during the day and the lowest
temperature of 16.67 'C during the night. In this weather
condition, the advantage of precooling is not obvious,
because the building does not require too much cooling
during the day. Thus, LA has the lowest cost reduction
ratio of 5-10 percent. In contrast, Houston and Baltimore
have the highest summer temperature of these five cities,
with the highest temperatures of 33.89 and 31.67 'C

during the simulation day and the lowest temperatures of
23.33 and 22.78 'C during the night, respectively. Com-
pared to the LA building, the buildings in these two cities
would consume much more cooling energy during the
day. However, the relatively high nighttime temperatures
in these locations are not conductive to utilizing precool-
ing. Therefore, Houston and Baltimore only ranked the
second highest in the cost reduction ratio with a range of
7.5-15 percent. Columbus and Minneapolis have the
lower temperatures (18.33 and 17.78 'C, respectively)
than Houston and Baltimore at night and higher tempera-
tures (29.44 and 28.33 'C, respectively) than LA during
the day, which helps shift more cooling loads from the
peak time to the off-peak time, resulting in the highest
cost reduction ratio up to 20 percent.

6.4 Comparison with Other Strategies
In addition to using the ON/OFF strategy as the baseline,
this section provides additional comparisons between the
proposed optimal strategy and the other four existing strate-
gies from the literature, including PC+LU, PC+CI, EPC+LU,
and EPC+CI strategies. The simulation results based on
building samples with 20 rooms (located in Columbus) are
shown in Fig. 12. It can be seen from Figs. 6d and 12, the
optimal strategy outperforms all the selected baselines by
achieving positive cost reduction ratios ranging from 2.5 to
20 percent. Among the five baseline cases, the EPC+CI
strategy performs the best with the least cooling energy cost
based on the electricity price scheme used in this study. In
contrast, the ON/OFF strategy (not utilizing precooling)
leads to the highest cooling energy cost.

Fig. 6. Cost reduction ratio with respect to total number of rooms and gross floor area.

Fig. 7. Cost reduction ratio with respect to total number of rooms and wall capacitance.

Fig. 8. Cost reduction ratio with total number of rooms and window-to-wall ratio.

Fig. 9. The room setpoint temperature trajectories.
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7 CONCLUSION

In this paper, we developed an accurate and tractable mathe-
matical framework for multi-zone HVAC precooling optimi-
zation, with the goal to minimize total energy costs and peak
load demand. Themain results of this paper are three-fold: i)
We developed an RC-network-based analytical model for
multi-zone HVAC precooling to minimize both total energy
costs and peak load demand; ii) By exploiting the physical
characteristics of HVAC controls, we showed that the HVAC
procooling optimization problem based on the proposed
RC-network model can be converted into an approximated
convex optimization problem, which further leads to effi-
cient optimization algorithm design. Moreover, the convex
approximation offers a graceful trade-off between energy
cost optimality and problem dimension complexity; and iii)
By leveraging special structures in the approximated convex
optimization, we designed an efficient ADMM-type distrib-
uted algorithm to solve the HVAC precooling optimization
problem.Moreover, we showed that low-complexity compu-
tation schemes can be developed for temperature setpoints
and HVAC control decisions under the ADMM-type algo-
rithmic framework. To verify the efficacy of the proposed
analytical models and optimization algorithms, we have con-
ducted extensive simulation studies and investigated the
effects of five building parameters, including the gross floor
area, average room size, total number of rooms, wall capaci-
tance, and the window-to-wall ratio, on the cooling energy
cost reduction ratio based on the weather in Columbus, OH.
Overall, when compared with the baseline case of the occu-
pancy-driven ON/OFF strategy, our algorithm was able to

achieve approximately 5-20 percent cooling energy cost
reduction, depending on the selected values for various
building parameters. We found that with a fixed total num-
ber of rooms, the gross floor area and the window-to-wall
ratio had negative effects on the cost reduction ratio; i.e.,
buildings with larger values of these parameters would gen-
erally incur smaller cost reduction ratios. In contrast, build-
ings with larger values of wall capacitance would result in
larger cost reduction ratios. We also examined the effects of
internal loads and different weather conditions on the per-
formance of the optimal strategy against the ON/OFF base-
line. In general, the cost reduction ratio (ranging from 2.5 to
75 percent) decreases with the increasing internal loads. Of
the five cities (i.e., Houston, LA, Baltimore, Columbus, and
Minneapolis) representing different climate zones in the U.S.
, our algorithmwas able to achieve the highest cost reduction
ratios (ranging from 7.5 to 20 percent) in Columbus andMin-
neapolis and the least cooling energy cost reduction (5-10
percent) in LA. When compared with five existing strategies
(using the ON/OFF, PC+LU, PC+CI, EPC+LU, and EPC+CI
strategies as the baselines in simulation), our algorithm out-
performed all of them based on the employed electricity
price scheme. Collectively, the results and findings in this
paper contribute to a new and exciting research paradigm
that leverages HVAC precooling optimization to signifi-
cantly improve environmental sustainability of buildings.
Future research topics may include investigating the effects
of other parameters (e.g., the electricity rate and occupancy
schedule) on the cost reduction ratio, as well as the impacts
of their prediction errors.

Fig. 12. Optimal strategy compared with baseline cases.

Fig. 10. Cost reduction ratio with respect to internal loads and gross floor area.

Fig. 11. Cost reduction ratio with respect to external environment and gross floor area.
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APPENDIX

Since the the time-slot duration t is sufficiently short, we
have u½k%

i ðtÞ ¼ ui½k%=t, o½k%i ðtÞ ¼ oi½k%=t 8i; k; t, and the temper-
ature evolution curve of each zone i is a line segment con-
necting Ti½k% and Ti½kþ 1%, we can rewrite the RC thermal
dynamics ODE as follows:

Ci
dS½k%

i ðtÞ
dt

¼
X

j2N i

S½k%
j ðtÞ + S½k%

i ðtÞ
Rij

þTA½k% + S½k%
i ðtÞ

R0i
1AðiÞ þ

ui½k%
t

1HðiÞ þ
oi½k%
t

1LðiÞ;

where 1AðiÞ is an indicator function that takes value 1 if
zone i is connected to the ambient environment and 0 other-
wise; 1HðiÞ denotes the indicator function that takes value 1
if zone i is directly served by the HVAC system and 0 other-
wise; and 1LðiÞ is an indicator function that takes value 1 if
zone i has the internal loads and 0 otherwise; Assuming
zone i is connected to the ambient environment, and divid-
ing both sides by Ci, we have

dS½k%
i ðtÞ
dt

¼
X

j2N i

S½k%
j ðtÞ + S½k%

i ðtÞ
CiRij

þTA½k% + S½k%
i ðtÞ

CiR0i

þ ui½k%
Cit

1HðiÞ þ
oi½k%
Cit

1LðiÞ

¼ TA½k%
CiR0i

+ S½k%
i ðtÞ

X

j2N i0

1

CiRij
þ
X

j2N i

S½k%
j ðtÞ
CiRij

þ ui½k%
Cit

1HðiÞ þ
oi½k%
Cit

1LðiÞ;

which further implies that

dS½k%
i ðtÞ
dt

þ S½k%
i ðtÞ

X

j2N i0

1

CiRij

¼ TA½k%
CiR0i

þ
X

j2N i

S½k%
j ðtÞ
CiRij

þ ui½k%
Cit

1HðiÞ þ
oi½k%

Cit1LðiÞ
:

By letting ai ,
P

j2N i0
ðCiRijÞ+1, i ¼ 1; . . . ; N , and multiply-

ing both sides by eait, we have that

eait
dS½k%

i ðtÞ
dt

þ eaitaiS
½k%
i ðtÞ ¼ eait

TA½k%
CiR0i

þ eait
X

j2N i

S½k%
j ðtÞ
CiRij

þ eait
ui½k%1HðiÞ þ oi½k%1LðiÞ

Cit
:

(44)

Integrating (44) from 0 to t yields

eaitS½k%
i ðtÞ

(((
t

0
¼ TA½k%
aiCiR0i

Z t

0
aie

aidt

þ
X

j2N i

1

aiCiRij

Z t

0
aie

aitS½k%
j ðtÞdt

þ ui½k%1HðiÞ þ oi½k%1LðiÞ
aiCit

Z t

0
aie

aitdt:

Noting that S½k%
i ð0Þ ¼ Ti½k% and S½k%

i ðtÞ ¼ Ti½kþ 1%, we have

eaitTi½kþ 1% + Ti½k% ¼
TA½k%
aiCiR0i

ðeait + 1Þ

þ
X

j2N i

1

aiCiRij

Z t

0
aie

aitS½k%
j ðtÞdt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hai

þ ui½k%1HðiÞ þ oi½k%1LðiÞ
aiCit

Z t

0
aie

aitdt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hbi

:

(45)

Now, consider the two terms hai and hbi in (45). For hai, we
have

hai ¼ 1

aiCiRij

Z t

0
aie

aitS½k%
j ðtÞdt

¼ðcÞ 1

aiCiRij
eaitS½k%

j ðtÞ
(((
t

0
+
Z t

0
eait

Tj½kþ 1% + Tj½k%
t

dt

& '

¼ðdÞ 1

aiCiRij

&
eaitTj½kþ 1% + Tj½k%

+Tj½kþ 1% + Tj½k%
t

Z t

0
eaitdt

'

¼ 1

aiCiRij

&
eaitTj½kþ1% + Tj½k%

+Tj½kþ 1% + Tj½k%
ait

ðeait + 1Þ
'
;

(46)

where ðcÞ follows from integration by parts and the fact that
S½k%
j ðtÞ being a linear function passing through Tj½k% and

Tj½kþ 1%; and ðdÞ follows from that
Tj½kþ1%+Tj½k%

t is a constant
independent of t. On the other hand, for hbi, it is easy to see
that

hbi ¼ ui½k%1HðiÞ þ oi½k%1LðiÞ
aiCit

Z t

0
aie

aitdt

¼ ui½k%1HðiÞ þ oi½k%1LðiÞ
aiCit

ðeait + 1Þ:
(47)

Substituting (46) and (47) into (45), we have

eaitTi½kþ 1% + Ti½k% ¼
TA½k%

aiCiR0i
ðeait + 1Þ

þ ui½k%1HðiÞ þ oi½k%1LðiÞ
aiCit

ðeait + 1Þ

þ
X

j2N i

*
ðait + 1Þeait þ 1

+
Tj½kþ 1% + ðait + eait þ 1ÞTj½k%
a2i CiRijt

:

(48)Rearranging and collecting terms in (48), we have

eaitTi½kþ 1% +
X

j2N i

ðait + 1Þeait þ 1

a2i CiRijt

& '
Tj½kþ 1%

+ Ti½k% þ
X

j2N i

ait + eait þ 1

a2i CiRijt

& '
Tj½k%

+ eait + 1

ait
ðui½k%1HðiÞ þ oi½k%1LðiÞÞ ¼ TA½k%

eait + 1

aiCiR0i
:
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Lastly, by letting coefficients pi, pij, qij, ri, and si be defined
as in (11)–(15), it then follows that:

piTi½kþ1%+
X

j2N i

pijTj½kþ1%+Ti½k%þ
X

j2N i

qijTj½k%

+riðui½k%1HðiÞ þ oi½k%1LðiÞÞ¼siTA½k%;

which is the same as stated in (16). This completes the
proof.
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