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ABSTRACT
Powered by advances in deep learning (DL) techniques, machine
learning and arti�cial intelligence have achieved astonishing suc-
cesses. However, the rapidly growing needs for DL also led to
communication- and resource-intensive distributed training jobs
for large-scale DL training, which are typically deployed over GPU
clusters. To sustain the ever-increasing demand for DL training,
the so-called “ring-all-reduce” (RAR) technologies have recently
emerged as a favorable computing architecture to e�ciently process
network communication and computation load in GPU clusters.
The most salient feature of RAR is that it removes the need for
dedicated parameter servers, thus alleviating the potential com-
munication bottleneck. However, when multiple RAR-based DL
training jobs are deployed over GPU clusters, communication bot-
tlenecks could still occur due to contentions between DL training
jobs. So far, there remains a lack of theoretical understanding on
how to design contention-aware resource scheduling algorithms
for RAR-based DL training jobs, which motivates us to �ll this gap
in this work. Our main contributions are three-fold: i) We develop
a new analytical model that characterizes both communication
overhead related to the worker distribution of the job and commu-
nication contention related to the co-location of di�erent jobs; ii)
Based on the proposed analytical model, we formulate the problem
as a non-convex integer program to minimize the makespan of all
RAR-based DL training jobs. To address the unique structure in this
problem that is not amenable for optimization algorithm design,
we reformulate the problem into an integer linear program that
enables provable approximation algorithm design called SJF-BCO
(Smallest Job First with Balanced Contention and Overhead); and iii)
We conduct extensive experiments to show the superiority of SJF-
BCO over existing schedulers. Collectively, our results contribute
to the state-of-the-art of distributed GPU system optimization and
algorithm design.
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1 INTRODUCTION
Background and Motivation: In recent years, the rise of deep
learning has driven an ever-increasing need for large-scale dis-
tributed training in GPU clusters, which leverages massive par-
allelism to speed up the training processes. This has been evi-
denced by the popularity of several prevailing distributed deep
learning (DDL) frameworks (e.g., TensorFlow [1] and PyTorch [12]).
In these DDL frameworks, the traditional and most widely adopted
computing-networking structure is based on the sever-worker (SW)
architecture, where DDL training jobs are decomposed into and
executed in parallel by a set of workers under the coordination of a
parameter server. However, as the number of workers increases, the
SW architecture su�ers from serious scalability limitations since
the server acts as a communication bottleneck and a single-point-of-
failure. To address the scalability limitations of the SW architecture,
the ring-all-reduce (RAR) [13] architecture has attracted increasing
attention in recent years. The key idea of RAR is that, by forming
a ring and working collaboratively, the workers can update the
learning model parameters without needing any parameter server,
thus removing the communication bottleneck and alleviating the
single point of failure. Moreover, it can be shown that the RAR
architecture enjoys the highly desirable “bandwidth optimality” in
the sense that, as the number of workers increases, the amount of in-
formation exchanged in the network is asymptotically independent
of the number of workers (see Section 3 for details).

However, despite all these salient features, the performance of
deploying RAR-based training jobs in multi-tenant GPU clusters
remains far from being satisfactory in practice [19]. The fundamen-
tal reason is that the bandwidth optimality of RAR architecture
only happens when there is only a single training job in the sys-
tem (i.e., a contention-free environment). In a multi-tenant GPU
cluster, however, such an ideal contention-free condition is rarely
satis�ed. As a result, signi�cant communication bottleneck links
could occur when deploying RAR-based training jobs in the system.
For example, researchers in [19] have found that on a cluster of
four-GPU servers connected by 10 Gbps Ethernet, when only one
RAR training job is executed with four GPUs in the cluster, the job
completion time is 295 seconds. In comparison, when four jobs of
the same type are executed simultaneously with each job still using
four GPUs but scheduled across GPU servers, each job’s completion
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time dramatically increases to 675 seconds due to the extensive
communication contention. These empirical performance results
of RAR indicate that developing e�cient and e�ective scheduling
for RAR-based DDL training jobs is well warranted to mitigate
contention-induced communication bottlenecks. However, in the
literature so far, there remains a lack of theoretical understanding
on how to design contention-aware resource scheduling algorithms
for RAR-based DDL training jobs. In light of the rapidly growing
importance of RAR-based DDL deployment, our goal in this paper is
to �ll this gap and develop contention-aware scheduling algorithms
for RAR-based training jobs in multi-tenant GPU clusters.

Technical Challenges:We note, however, that due to a number
of technical di�culties, developing contention-aware scheduling
algorithms for RAR-based DDL jobs in multi-tenant GPU clusters
is highly challenging. First and foremost, just as any network opti-
mization problems that deal with contentions and interferences, the
completion time of an RAR-based training job depends not only on
its resource allocation decisions (i.e., the number of ring-forming
workers and their locality), but also on the number of concurrent
RAR-based DDL jobs that (partially or completely) share the com-
munication links of this job. The complex communication coupling
between concurrent RAR-based training jobs renders it intractable
to compute the per-iteration execution time of an RAR-based DDL
job in closed-form. Second, there exists a fundamental trade-o� in
terms of job locality. On one hand, co-locating all workers of an
RAR-based DDL job on the same server enjoys a faster intra-server
communication speed, but could lead to resource fragmentation.
On the other hand, spreading the ring of an RAR job over multiple
servers could also result in more contentions of communication
links and overhead in establishing connections between servers.
Last but not least, due to the resource constraints of each server
and the iterative nature of DDL training workload, the resource
allocation decision for each RAR-based training job is subject to a
mix of packing and covering types of constraints, both of which
are known to be NP-hard.

Our Contributions: In this paper, we overcome the above chal-
lenges and design a suite of scheduling algorithmic techniques for
e�cient RAR-based DDL training in multi-tenant GPU clusters
with theoretical makespan performance guarantees. The key idea
of our algorithmic design is to transfer the structural complexity
of the intractable per-iteration running evaluation in the original
scheduling problem to the dimensional complexity of an equivalent
reformulated problem, which has a much cleaner integer linear
program structure to work with. Our main results and technical
contributions are summarized as follows:
• We �rst propose a new analytical framework for RAR-based
DDL training resource allocation and scheduling that character-
izes both communication contention and overhead under the
RAR architecture in a multi-tenant GPU cluster. This analytical
modeling serves as the foundation to enable us to formulate the
scheduling optimization framework to minimize the makespan
of all RAR-based training jobs.

• As mentioned earlier, due to the complex resource contentions
and couplings between RAR-based DDL jobs, it is intractable
to determine the closed-form expression for the per-iteration
execution time for each DDL job. To address this challenge,

we further reformulate the original problem into an equivalent
integer problem, which has a cleaner problem structure. Do-
ing so allows us to convert the structural complexity of the
original problem to the exponential dimensionality complex-
ity in the reformulated problem, which is more amenable for
low-complexity search-based optimization algorithm design.

• Based on the above problem reformulation, we propose an ef-
�cient scheduling algorithm called SJF-BCO (smallest job first
with balanced contention and overhead) with theoretical ap-
proximation ratio guarantee. We conduct extensive experiments
to verify the performance of our proposed SJF-BCO algorithm
and compare with existing scheduling policies to show the su-
periority of SJF-BCO over these baselines.

Collectively, our results contribute to a comprehensive and fun-
damental understanding of RAR-based DDL resource scheduling
optimization. The roadmap of the rest of the paper is as follows.
In Section 2, we review the related literature. Section 3 present
preliminaries to familiar readers with the necessary background.
Section 4 introduces the system model and problem formulation.
Section 5 demonstrates our algorithms and Section 6 provides their
performance analysis. Section 7 presents numerical results and
Section 8 concludes this paper.

2 RELATEDWORK
As mentioned in Section 1, DDL training job scheduling algorithms
have received growing interest recently. Research in this area aims
to schedule DDL jobs and manage computing resources e�ciently
in multi-tenant GPU computing clusters. Early attempts in this �eld
were mostly heuristic approaches based on empirical observations
and models to conduct the resource scheduling (e.g., [3, 7, 10, 11]).
For example, Gandiva [20] considered GPU time-slicing and job
scheduling by predicting DDL training jobs characteristics. Opti-
mus [14] leveraged performance models through online-�tting to
guide the job scheduling aiming to minimize training completion
time. Rather than using prediction models, another line of research
is to take advantage of the model-less data-riven learning methods
for DDL job scheduling (e.g., [2, 8, 18]). For instance, Harmony [2], a
deep-reinforcement-learning-based scheduler considered minimiz-
ing the job completion time. Hu. et al. [8] designed a new scheduling
framework called Spear to minimize the makespan of jobs by lever-
aging the deep reinforcement learning techniques. However, these
works do not provide theoretical performance guarantee. Also, none
of these works considered RAR-based DDL job scheduling.

The most related work to this paper is GADGET [22], which
characterized RAR-based DDL job scheduling based on the assump-
tion that the bandwidth of each job is reserved. As a result, there
is no need to consider communication contention in [22]. We note
that a limitation of the reserved bandwidth assumption is that it
could lead to resource under-utilization. In contrast, this paper
considers communication contention to avoid this limitation. This,
however, renders the scheduling problem far more challenging.
Lastly, Wang et al. [19] also considered contention under various
all-reduce architectures, including RAR. However, they also relied
on a system-dependent online-�ttingmodel to predict the execution
time and did not explicitly formulate any scheduling optimization
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Figure 1: A three-worker illustrative example of the ring-all-
reduce (RAR) process.

problem. Their solution was based on heuristics without theoreti-
cal performance guarantee. In contrast, we develop an analytical
model to facilitate the job scheduling as a rigorous optimization
problem, which in turn entails approximation algorithm design
with theoretical performance guarantee.

3 RING-ALL-REDUCE (RAR)-BASED
DISTRIBUTED LEARNING: A PRIMER

In this section, we provide a quick overview on the RAR-based dis-
tributed learning to familiarize readers with necessary background
and �x the terminologies that are useful in the rest of the paper.

1) SGD-Based Distributed Learning: The training of many
ML problems is typically in the form of an empirical risk mini-
mization (ERM) problem:minw2Rd L̄(w) , 1

P
ÕP
i=1 L(w, �i ), where

w contains the model parameters to be learned, L(w, �i ) is a loss
function, and P is the total number of samples. Due to the high-
dimensionality and the large dataset size of many ERM problems
(e.g., in deep learning), the stochastic gradient descent (SGD)method
has become the most widely adopted method. The SGD method
can be written as the following iterative process: wk+1 = wk �
(�k/Q)

Õ
i 2Qk g

i
k , where �k denotes the learning rate in the k-th

iteration, Qk represents the mini-batch in the k-th iteration with
|Qk | = Q , and gik is a stochastic gradient based on a random sample
�i 2 Qk . The �nite-sum and mini-batch structure of SGD naturally
lends itself to a distributed implementation in a Q-worker DDL sys-
tem coordinated by a parameter server as follows: First, the dataset

is partitioned by Q workers. In each iteration k , each worker re-
trieves the current model parameters from the server and randomly
draws a sample from its local dataset, and then computes a sto-
chastic gradient (e.g., using the backpropagation method). Then, all
workers send their gradients to the server to be aggregated.

2) The Ring-All-Reduce (RAR) Architecture: It can be seen
from the above discussions that SGD-based distributed learning
naturally implies a server-worker (SW) architecture. However, as
mentioned in Section 1, the SW architecture su�ers from scalability
limitations as the number of workers increases. This is because
all workers need to communicate with the server, which creates
a bottleneck. Speci�cally, a w-worker SW system that solves a d-
dimensional ERM problem requires 2wd amount of data exchange
per iteration (each worker sends and receives a d-dimensional vec-
tors per iteration), which scales linearly with respect tow .

To address this scalability limitation, the RAR [13] has been
proposed to remove the server. Under RAR, the workers form a ring
to exchange and aggregate data collaboratively. For a w-worker
RAR system, each worker splits its stochastic gradient intow sub-
vectors (see Fig. 1 for an example with w = 3). Each iteration of
RAR has 2(w � 1) steps that can be divided into two phases. In the
�rst phase (steps 1, . . . ,w�1), workers perform gradients reduction
(i.e., summation), where each worker receives a gradient subvector
from its upstream worker and sends its local reduction result to
its downstream worker (Share-Reduce phase). In the second phase
(stepsw, . . . , 2w�2), eachworker circulates its resultant sub-vectors
following the same token to obtain its �nal resultant gradients
vector (Share-Only phase). Since each worker sends d

w amount of
data for 2(w�1) times, the total amount of data any worker receives
is 2d (w�1)

w , which is asymptotically independent ofw asw increases
(also referred to as being bandwidth-optimal in the literature).

4 SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, we �rst introduce our system model in Section 4.1
and then present the problem formulation for RAR-based DDL
scheduling optimization in multi-tenant GPU clusters in Section 4.2.

4.1 System Model
1) Scheduling Model: Consider a multi-tenant GPU cluster that
contains a set of servers S. Each server is equipped with a set of
homogeneous (i.e., of equal computation speed) and synchronized
GPUs. The servers inS are connected by a network and the network
topology can be modeled as a connected graph. In the beginning
of a scheduling horizon T of length |T | = T time-slots, there is a
set of RAR-based DDL jobs J waiting to be scheduled for training
over T . Each job j 2 J is associated with a number of GPUs G j
and a total number of training iterations Fj from its users, both of
which are requested by its users.1

In this paper, we consider the “gang-scheduling” discipline that
is widely adopted in practical large-scale GPU clusters [7, 10, 19].
Under gang scheduling, all workers (i.e., GPUs) of an RAR-based
DDL job should be allocated simultaneously.Moreover, once a job

1In practice, to prevent spending excessively long time waiting for the training process
of a DDL job to converge, a maximum number of training iterations is usually given.
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Two concurrent jobs
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(a) Without communication contention (b) With communication contention

Server 1 Server 2 Server 1 Server 2
No concurrent jobs

Figure 2: An example of worker placement.

is scheduled to start, all GPUs allocated for this job will run to the
job’s completion and no preemption/migration is allowed.2 Upon
the job’s completion, the occupied resource will also be released
simultaneously. Each GPU can only be occupied by one worker
of some job at any given time. As shown in Fig. 2, the workers
of a job can be allocated within a single server or across multiple
servers, as long as there exists a path in the underlying network
that connects these workers and forms a ring topology to perform
the RAR process. Note that Fig. 2(a) allocates the workers in the
same server for each job, thus having no communication overhead.
On the contrary, Fig. 2(b) allocates workers across di�erent servers
for each job, which introduces communication contention when
the two jobs happen to perform RAR communication concurrently.

In this system, the control decisions of the scheduler are: i) de-
termine a feasible scheduling for all jobs in J subject to network
resource capacity; and ii) determine each job’s starting time. Specif-
ically, consider an RAR-based DDL job j scheduled withw j workers
and its gradient size ismj . Let �js [t] 2 Z+ denote the number of
GPUs scheduled for job j on server s in time-slot t 2 T . Then, a
scheduling decision in time-slot t can be fully de�ned by the vector
y[t] , [�js [t],8j, s]. Let aj = argmint {�js [t] > 0,8s} be the start-
ing time of job j (to be determined) by the scheduling and let Tj be
the resultant completion time of job j. Let J[t] , {j |t 2 [aj ,Tj ]}
represent the set of active jobs (jobs being executed) in time slot t .
Clearly, to satisfy theG j number of GPUs requested for job j during
its training time, we have:’

s 2S
�js [t] = G j , 8j 2 J[t], t 2 T . (1)

Also, scheduling decisions y[t], 8t are subject to GPU resource
constraints. LetOs represent the GPU capacity of server s . To ensure
that the allocated GPUs do not exceed each server’s limit, we have:’

j 2J[t ]
�js [t]  Os , 8s 2 S, t 2 T . (2)

Also, under the non-preemptive gang scheduling, we have:

�js [t] = �js [t � 1], 8s 2 S, j 2 J[t],aj < t  Tj . (3)

Finally, to ensure that no workers should be allocated for non-active
jobs and positive integer number of workers should be assigned to
active jobs, we have:

�js [t] = 0, 8s 2 S, j < J[t], t 2 T , (4)

�js [t] 2 Z++, 8s 2 S, j 2 J[t], t 2 T . (5)

2) Communication Contention Modeling: With the above
scheduling model, we are now in a position to present our com-
munication contention model. We assume that no communication
2Besides the overhead and complication added for both software and hardware, it
has been shown that frequent job preemption and migration may lead to signi�cant
performance degradation [7].

contention will be introduced if at most one server is used for the
job. For example, in Fig. 2(a), jobs 1 and 2 both use intra-server com-
munication and does not incur any communication contention. By
contrast, in Fig. 2(b), jobs 1 and 2 induce communication contention
since they both compete for inter-server link bandwidth between
servers 1 and 2. We let pj [t] denote the largest number of concur-
rently running jobs that share an inter-server communication link
with job j in time slot t , which can be computed as:

pj [t] = max
s 2S

⇢
1{0 < �js [t] < G j }

’
j0 2J[t ]

1{0<�j0s [t] < G j0}
�
,

8j 2 J[t], t 2 T . (6)

In (6), the �rst term 1{0 < �js [t] < G j } indicates that only active
jobs using inter-server communication on server s will be consid-
ered. The second term

Õ
j0 2J[t ] 1{0 < �j0s [t] < G j0} represents

the number of di�erent jobs that compete for inter-server com-
munication on server s . Since job j may not be transmitting at all
times (due to switching between communication and computation
modes), we let kj [t] be the actual largest number of contending jobs
on average with job j in time-slot t , which can be assumed to be
statistically linearly proportional to pj [t], i.e.,

kj [t] = �1pj [t], 8j 2 J[t], t 2 T , (7)

where �1 2 (0, 1] is a positive constant.
3) RAR-Based DDL Training Completion Time Modeling:

To evaluate the job completion time Tj of job j, we need to �rst
characterize the RAR training speed. Note that the per-iteration
RAR operation time of each DDL job can be decomposed into three
parts: i) information exchange time, ii) computation time, and iii)
communication overhead. Next, we will model the operation time
of each part individually.

2-1) Information Exchange Time: We use B
{�j ,1,�j ,2 }(y[t]) to

denote the bandwidth between two successive workers �j ,1 and
�j ,2 in job j’s ring in time-slot t under a scheduling decision y[t],
where�j ,2 is the downstream worker of�j ,1. Note that, unlike [22],
we do not reserve bandwidth for each job in this paper, and this
bandwidth is determined by communication contention with other
jobs under the scheduling decisions y[t] (see Fig. 2(b)). We let
Bj (y[t]) , min(�j ,1,�j ,2)2Lj B

{�j ,1,�j ,2 }(y[t]) represent the band-
width of the bottleneck link of job j under scheduling decision y[t],
where Lj is the set of all links of job j. Recall from Section 3 that
the amount of information exchanged in each time-slot can be com-
puted as 2mj

w j
(w j�1). Thus, the number of time-slots for information

exchange can be computed as 2mj
w j

(w j � 1)/Bj (y[t]).
Clearly, the bottleneck link of job j occurs in those links that

are shared by the largest number of other concurrently running
jobs. We let be and bi be the link bandwidth between and within
servers, respectively, where bi � b

e in practice [16, 23]. Recall
that kj [t] denotes the actual largest number of contending jobs on
average with job j in time-slot t . Ideally, each job on this bottleneck
link has an equal share of bandwidth be/kj [t] under communica-
tion contention. In practice, however, the bandwidth performance
often degrades when multiple jobs compete for a link, which re-
sults in each job having less than b

e/kj [t] share of bandwidth if
kj [t] � 2 [19]. To model this e�ect, we use a function f (� ,kj [t]) to
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represent the “bandwidth sharing degradation factor” under com-
munication contention, where � 2 Rd captures all parameters
that could lead to degradation. We assume that f (� ,kj [t]) satis-
�es the following properties: i) f (� , 1) = 1 and ii) f (� ,kj [t]) is
an increasing function of kj [t]. For example, if f (� ,kj [t]) is a lin-
ear function kj [t] + �(kj [t] � 1), then Bj (y[t]) = b

e/f (� ,kj [t]) =
b
e/(kj [t] + �(kj [t] � 1)).
Recall that in the special case where all workers of a job j are co-

located within a single server, there is no contention. Further, intra-
server communication is typically enabled by fast interconnect
techniques (e.g., NVLink [4]). Hence, we have Bj (y[t]) = bi .

2-2) Computation Time: To characterize the computation time in
the RAR operation, we use C to denote the computational speed
of a GPU unit (de�ned as the amount of data processed in each
time-slot). Since there are mj

w j
(w j � 1) amount of data for reduction

in each RAR operation, the number of time-slots to complete all
reductions can be computed as mj

w j
(w j � 1)/C . In addition to the

all-reduce operation time, the computation time also includes the
forward pass (FP) time and the backward pass (BP) time to compute
a stochastic gradient. We let �fj (�bj ) denote the duration of one FP
(BP) of job j . Note that the FP time is proportional to the mini-batch
sizeMj , which can be calculated as �fj Mj (the size of a mini-batch
multiplied by the FP processing time of one sample). Meanwhile, the
BP time �bj is usually not relevant to the mini-batch sizeMj and is
typically �xed. Thus, the total number of time-slots for per-iteration
computation can be computed as mj

w j
(w j � 1)/C + �fj Mj + �bj .

2-3) Communication Overhead: In practice, it has been observed
that typically, the more servers an RAR-based DDL job uses to
perform the training, the larger the latency due to communication
overhead (e.g., ACK time for message transmission, negotiation
time among all workers before conducting all-reduce [15]) can
be [19]. In this paper, we use �j (yj [t]) to denote the latency of job j
caused by communication overhead in time-slot t . We assume that
the latency is linear proportional to the number of servers in use,
i.e., �j (yj [t]) = �2

Õ
s 1{�js [t] > 0}, where yj [t] = [�js [t] > 0,8s]

and �2 2 (0, 1] is a positive constant.
Lastly, putting 2-1) – 2-3) together, we can compute the RAR

operation time of job j under scheduling decision y[t] as follows:

�j [t]=
mj
w j

· 2(w j�1)
Bj (y[t])

+

mj
w j

· (w j�1)
C

+�j (yj [t])+�fj Mj + �
b
j . (8)

Hence, the RAR training speed � j [t] (i.e., the number of mini-batch
iterations completed by job j) in time-slot t can be computed as
� j [t] , b(�j [t])�1c. Recall that Fj is the requested number of it-
erations for training job j. Thus, job j’s completion time can be
calculated as:

Tj = aj + argmin
t

�’
t 2T � j [t] � Fj

 
, 8j 2 J[t]. (9)

4.2 Problem Statement
In this paper, our goal is to determine the scheduling decisions
y[t] to minimize the makespan (i.e., maxj Tj ), which is one of the
most useful metrics to measure the e�ciency of multi-tenant GPU
clusters [5, 6]. Putting all modeling constraints and the objective
together, the RAR-based DDL job scheduling problem (RAR-DDLS)

Table 1: Notation.

T/G j Scheduling time horizon/# of GPUs requested by job j
S/N Set of servers/GPUs in the cluster
J[t ] The set of active jobs in time-slot t

kj [t ]
Actual largest number of contending jobs on average with
job j in time-slot t

�j [t ] Per-iteration training time of job j in time-slot t
�js [t ] # of GPUs scheduled on server s for job j in time-slot t
Os GPU capacity of server s

aj /Tj Starting/completion time slot of job j
Y The set of feasible scheduling schemes over T
ykj A schedule of job j indexed with k

�(ykj ) Actual execution time of job j when schedule ykj is used
�̂(ykj ) Estimated execution time of job j when schedule ykj is used
G(ykj ) Set of GPUs allocated for job j when schedule ykj is used
xkj Indicate whether job j follows schedule ykj or not
W k
j� Execution time added to GPU � by job j if job j follows ykj

U �
s The accumulative execution time of worker � on server s

can be formulated as the following optimization problem:

RAR-DDLS: min
�js [t ],8j ,s ,t

max
j 2J

Tj

subject to Constraints (1) � (9).
We note that Problem RAR-DDLS is an integer non-convex pro-

gram with packing and covering constraints, which is NP-Hard.
In addition, the non-convex constraint in (6) involves indicator
functions and the max operator, which cannot be written in a
closed-from expression and hence is not amenable to conventional
optimization techniques. Due to these challenges, we will pursue
an approximation algorithmic approach in Section 5 that o�ers
provable approximation ratio guarantee. To conclude this section,
we summarize the key notations in this paper in Table 1.

5 SOLUTION APPROACH
As mentioned in Section 4, a key challenge to solve Problem RAR-
DDLS is that, due to the mixed covering- and packing-type con-
straints, the number of job scheduling combinations grows ex-
ponentially as the number of servers/jobs increases. Thus, it is
computationally prohibitive to enumerate all possible combina-
tions before the scheduler decides when to start and which GPU(s)
should be allocated to achieve the optimal scheduling. Exacerbating
the problem is the fact that communication contention renders a
mixed-integer bilinear structure in (6), making it intractable to ex-
press pj [t] in closed-form. Due to these challenges, it is di�cult to
directly solve Problem RAR-DDLS based on its original formulation.
To overcome this challenge, we propose the following “indirect”
approach to solve Problem RAR-DDLS.

1) Basic Idea: First, we note that, although not in closed-form
expressions, the per-iteration time �j [t] for each job can be com-
puted in polynomial time according to (6)-(8) once a schedule (i.e.,
y[t] = {�js [t],8j, s}) is given. Speci�cally, we note that the per-
iteration time �j [t] is determined by Bj (y[t]) and �j (yj [t]). More-
over, f (� ,kj [t]) increases as kj [t] gets larger, and �j (yj [t]) in-
creases as

Õ
s 1{�js [t] > 0} grows. Thus, the range of �j [t] can be

estimated. The largest number of kj [t] is maxs Os , i.e., the worst
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 estimate makespan

No

 A ‘‘good enough’’

      schedule ?

Search for a

schedule 

Evaluate                to Return

Yes yy
⌧j [t], 8t

Figure 3: Basic idea for solving Problem RAR-DDLS.

case would be each job places one of its workers into the server
with the biggest capacity and they all compete for the bandwidth.
Thus, we can have Bj (y[t]) 2 [be/f (� ,maxs Os ),bi ]. In addition,
we have

Õ
s 1{�js [t] > 0} 2 [1,G j ]. Then by plugging Bj (y[t]) andÕ

s 1{�js [t] > 0} with their lower and upper bounds in Eqn. (8),
respectively, we can attain the lower and upper bounds.

The above insight suggests that we can solve Problem RAR-
DDLS via the following search-based approach to circumvent the
structural di�culty in (6)-(8) . We can �rst search for a schedule y,
then �j [t],8t can be e�ciently evaluated to estimate the makespan.
Then, we repeat the process until we �nd a “good enough” schedule.
Therefore, we can have the algorithmic framework as shown in
Fig. 3 to obtain an approximate makespan if the search space is
given. Clearly, the search space of y remains huge and di�cult to
sample. Nonetheless, in what follows, we show that Problem RAR-
DDLS can be reformulated to facilitate this search-based approach.

2) Problem Reformulation: In order to enable the search of a
schedule, we �rst reformulate Problem RAR-DDLS by introducing
following notations. We letN = {1, . . . ,N } be the set of all GPUs in
the cluster. LetY = {y1, . . . , y |Y | } be the set of feasible scheduling
schemes for the jobs to be scheduled, where yk = {yk1 , . . . , yk� }
and ykj = {�kjs [t],8s 2 S, t 2 T } 2 ZS⇥T+ . Note that, with a
slight abuse of notation, we use �kjs [t] here as a constant (not a
variable) to denote the number of workers allocated for job j on
server s in time-slot t if schedule yk is used. We also use � j (yk )
to denote the execution time of job j if schedule yk is used. Also,
we denote the starting time of job j under schedule yk as aj (yk ) ,
argmin{t |�kjs [t] > 0, 9s}. Let xkj 2 {0, 1} be the binary variable to
indicate whether job j follows schedule yk (xkj = 1) or not (xkj = 0).
Then Problem RAR-DDLS can be reformulated as the following
integer linear program (ILP):

min
xkj ,8j ,k

max
j

x
k
j
�
aj (yk ) + � j (yk )

�
(10)

subject to.
’

k 2{1, ..., |Y | }
x
k
j = 1, 8j 2 J , (11)

x
k
j = x

k
j0, 8j, j

0 2 J ,k 2 {1, . . . , |Y|}, (12)

x
k
j 2 {0, 1}, 8j 2 J ,k 2 {1, . . . , |Y|}. (13)

Constraint (11) ensures that exactly one schedule is chosen. Con-
straint (12) ensures that all jobs use the same schedule yk . We note
that, although Problem (10) has a simpler structure compared to
Problem RAR-DDLS, it hides the complexity in the dimensionality
of the exponential search space Y, which is intractable to explore.
However, based on this reformulated problem, we will show next
that it is possible for one to identify a “good enough” schedule such
that the makespan can be upper bounded.

Unfortunately, Problem (10) remains an NP-hard problem. We
state this formally in Theorem 1, which can be proved based on the
reduction to the vertex coloring problem (VCP).

T������ 1. Let n� = maxj G j . Solving Problem (10) to within
an O( logn�

2
p
log logn�

)-approximate ratio is NP-hard even when the exact
processing time of each job is available.

P����. Here, we consider the special case with all jobs having
a unit processing time (�(yk ) = 1). We �rst show that VCP can be
reduced to the job scheduling problem in Problem (14) in polynomial
time. Given an instance I of VCP, i.e., given a graphG = (V , E)with
bounded degree n� , we can construct our job scheduling problem
as follows: i) For each node � 2 V , we create a job j� 2 J , where it
has only one schedule�j� = ;; ii) For each edge (u,�) 2 E, we add a
workerwu ,� toS. Also, update the scheduling as�ju = �ju[{wu ,� }
and �j� = �j� [ {wu ,� }. If the graph G

0
s maximum degree is no

greater than n� , then the maximum number of workers that can be
allocated to each job is also n� .

With this reduction, we next show the solution of VCP can be
translated to the solution of Problem (14), and vice verse. First,
recall that each job has one unit processing time. Thus, all jobs
should be executed inside a unit time interval ([0, 1), [1, 2), . . .). If
we have the solution to VCP, then we can schedule jobs with the
same color in the same interval. Also, if we have the solution to the
job scheduling problem, then the jobs in the same interval can be
marked as the same color. Hence, �nding an optimal solution of
Problem (14) is equivalent to �nd an optimal solution of VCP.

Similarly, given an instance of job scheduling, we can construct
an instance of VCP, where the makespan equals to the number
of colors. Therefore, if we have an �-approximate solution to the
job scheduling problem, we have an �-approximate solution to
VCP. However, with the graph of degree at most n� , it is known
that coloring a 2

p
log logn� -colorable graph withO(logn�) colors is

NP-Hard. This completes the proof. ⇤

The hardness result in Theorem 1 suggests that solving Prob-
lem (10) necessitates the design of approximation algorithms, which
is our goal in algorithm development next.

3) Identify a Scheduling with Bounded Makespan: We let
Gj (yk ) be the set of GPUs allocated for job j when schedule yk is
used. We useW k

j� = x
k
j � j (yk ) to denote the execution time added

to GPU � by job j if job j follows schedule yk . Since each job j only
chooses one schedule, the total execution time of GPU � can be
computed asW� =

Õ
j
Õ
kW

k
j� . However, due to communication

contention, the exact processing time � j (yk ) is hard to evaluate in
computingW k

j� . Fortunately, the estimated processing time �̂ j (yk )
can be bounded as �̂ j (yk ) 2 [l� j (yk ),u� j (yk )] for some l  1 and

u � 1, since �j [t] is bounded. Here, we use �̂ j (yk )
u  � j (yk ) to

replace � j (yk ) when computingW k
j� . Consider a search algorithm
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� that solves the following ILP to choose one schedule from Y:

min �1 (14)

subject to. Ŵ k
j� = x

k
j
�̂ j (yk )

u
,8j 2J ,k 2 {1, . . . , |Y|},�2N, (15)’

j 2J

’
k 2{1, ..., |Y | }

Ŵ
k
j�  �u , 8� 2 N, (16)

Constraints (11) � (13).

Note that Problem (14) has no objective function to be optimized
sincewe are only interested inwhether a feasible solution no greater
than a givenmaximum execution time limit�u exists (�u depends on
parameter u). Constraints (15)–(16) ensure that no GPU’s execution
time would exceed �u . LetW �

max = max�2NW� be the maximum
execution time of all GPUs returned by algorithm � . Due to the

use of estimated �̂ j (yk )
u , the solution of � �nds a lower bound of

W
�
max, which is also a lower bound of the makespan under � (due

to potential idling resulted from synchronization barrier).
Note that for any feasible scheduling with the upper bound �u for

Problem (14), we can �nd a corresponding feasible solution for Prob-
lem (10) by setting xkj = 1 if job j follows schedule yk ; otherwise,
set xkj = 0. Thus, the challenge of solving Problem (10) becomes
�nding a tightest execution time limit �u for Problem (14), which
is relatively easy since there is no need to explore the exponential
search space of schedules Y.

It is insightful to understand the choice of �u in Problem (14).
On one hand, if �u is too small, Problem (14) could be infeasible,
and no scheduling for Problem (10) can be found. On the other
hand, when �u is too large, then all schedulings can be considered,
and the gap between the optimal maximum execution time and the
optimal makespan can be large, thus no meaningful lower bound of
W

�
max can be found. Fortunately, since determining an appropriate

�u is a univariate search, we can simply use the bisection method
to e�ciently �nd the minimum �u feasible to Problem (14).

4) Algorithm Description: We next present our scheduling
algorithm based on bisection to search �u and the smallest job �rst
strategy to solve Problem (14) for a given �u . Note that if a job’s
ring of workers is scheduled over a large number of servers, it may
potentially worsen communication contention with concurrent
jobs and its communication overhead could be large. Therefore,
to control the number of active servers, we use a threshold pa-
rameter � 2 [1,n�] to control the number of maximum servers
for scheduling jobs. We summarize our scheduling approach in
Algorithm 1. The intuition behind Algorithm 1 is that: 1) When the
job is small (i.e., G j  �), we prefer to pack the job into servers
whose GPUs are already occupied by some other jobs rather than
opening new server(s) to host its workers. Since the job is small, the
induced contention is mild by using the shared servers. Further, by
packing its workers to these servers, we can avoid fragmentation
introduced by a small job and save space for larger jobs that will be
scheduled next. 2) IfG j > �, we prefer to allocate the job’s workers
to new server(s). This is because shared servers may only have
limited available GPU(s), and in order to gang-schedule a large job,
a large number of shared servers may be used, which leads to a
high communication overhead.

Algorithm 1: Smallest Job First with Balanced Contention
and Overhead (SJF-BCO).

1 Input: J ,U �
s , �̂ j (yk ), u, �j ;

2 Initialization: LetU �
s  0,8�, s;

3 Sort jobs by G j in non-decreasing order, and denote as J s ;
4 m  T , y ;, le f t  1, ri�ht  T ;
5 while le f t <= ri�ht do
6 �u  (le f t + ri�ht)/2,m�  T , y�  ;;
7 for � = 1, 2, . . . ,maxj G j do
8 yk�  ;, m

k
�  �1;

9 for j = 1, 2, . . . , |J s | do
10 if G j  � then
11 Return yj , Tj using Algorithm 2;
12 else
13 Return yj , Tj using Algorithm 3;
14 if yj == ; then
15 break;
16 yk�  yk� [ {yj },mk

�  max{mk
� ,Tj };

17 if mk
� < m� then

18 m�  m
k
� , y�  yk� ;

19 if m� < m then
20 m  m� , y y� ;
21 ri�ht  �u � 1;
22 else
23 le f t  �u + 1;
24 return m, y;

Algorithm 2: Fragment-Aware First Fit Packing (FA-FFP).

1 Input: A given job j, S,U �
s , �̂ j (yk ), u, �u ;

2 G�u
idle  available GPUs with execution time not exceed �u ;

3 if |G�u
idle | � G j then

4 Pick top-G j workers with leastU �
s from G�u

idle as yj ;
5 Tj  argmaxt {�js [t] > 0|�js [t] 2 yj ,8s, t};
6 U

�
s  U

�
s + �̂ j (yk )/u,8(�, s) 2 yj ;

7 return yj ,Tj ;
8 if there exists running jobs then
9 Waiting for some job to exit and then goes to Line 2;

10 return ;,T ;

In Algorithm 1,U �
s denotes the accumulative execution time of

worker � on server s . We �rst sort jobs in non-decreasing order of
their sizes G j in Line 3. We search �u using the bisection method
in the range [1,T ], and use the pair (�u ,�) to perform scheduling
(Lines 5-7). We then iterate through each job (Line 9). If its size is
not greater than the threshold � (Line 10), Algorithm 2 will be used
to do the scheduling (Line 11); otherwise, Algorithm 3 will be called
(Line 13). If no feasible scheduling of job j is returned, then we quit
the current loop and update � (Line 14); otherwise, we will update
the scheduling and makespan given the current (�u ,�) (Line 16).
Upon �nishing scheduling all jobs, we will update the schedule and
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Algorithm 3: Least Busy Server-GPU First (LBSGF).

1 Input: A given job j,U �
s , �̂ j (yk ), u, �j ;

2 Sort the server set S by
Õ
� U

�
s /Os in non-decreasing order,

and choose the topm-servers s.t.
Õm
s=1Os � �jG j , and

denote the selected server set as Sselected ;
3 G�u

idle  ;;
4 for s 2 Sselected do
5 Sort GPUs whoseU �

s + �̂ j (yk )/u  �u by execution time
in non-decreasing order, then append them to G�u

idle ;
6 if |G�u

idle | � G j then
7 Pick top-G j workers with leastU �

s as yj ;
8 Tj  argmaxt {�js [t] > 0|�js [t] 2 yj ,8s, t};
9 U

�
s  U

�
s + �̂ j (yk )/u,8(�, s) 2 yj ;

10 return yj ,Tj ;
11 if there are running jobs then
12 Waiting for some job to exit and then goes to Line 2;
13 return ;,T ;

makespan for the given �u if it has a smaller makespan (Lines 17-
18). After exhausting all values of � for a given �u , we will update
the global makespan and the schedule if the current input �u has
a better performance (Lines 19-20). Also, it indicates that we can
further decrease the value of �u to �nd a potentially better schedule.
Thus, we search for the left half space by moving the right pointer
(Line 21); otherwise, we should increase the value of �u by moving
the left pointer (Line 23). By scheduling workers as described in
Algorithm 1, no worker’s execution time will exceed the given limit
�u . We denote the tightest execution time limit returned as �̃u .

Algorithm 2 is based on the idea of “fragment-aware �rst �t pack-
ing,” where we �rst add all available GPUs whoseU �

s + �̂ j (yk )/u 
�u (Line 2). If there are enough available GPUs to schedule for
job j’s workers (Line 3), we choose top-G j GPUs with least execu-
tion time �rst (Line 4). We then evaluate the completion time of
job j (Line 5) and update the corresponding GPUs’ execution time
(Line 6); otherwise, we wait for some job to �nish (Lines 8-9).

Algorithm 3 is based on the idea of “least busy server-GPU
�rst,” where we sort the servers by its GPU’s average accumulative
execution time (Line 2) and add the available GPUs whose execution
time does not exceed �u in a non-decreasing order (Lines 4-5). Here,
we introduce �j � 1 as a tuning parameter. The smaller the �j is,
the fewer number of servers can be used. If enough idle workers can
be found, we schedule the job, evaluate its completion time, update
the execution time of the chosen GPUs, and return the schedule
(Lines 6-10); otherwise, we wait for some job to �nish (Lines 11-12).
If there is no running job left, then return schedule ; and timespan
T (as makespan) to indicate the scheduling is infeasible (Line 13).

6 PERFORMANCE ANALYSIS
In this section, we analyze the theoretical performance of SJF-BCO.
Speci�cally, we will establish the approximation ratio guarantee of
our proposed SJF-BCO algorithm as follows:

1) We �rst show in Lemma 2 that the maximum execution time
(i.e., Ŵ Alg1

max ) returned by our algorithm is equal to �̃u .

2) We then prove that the makespan is O(Ŵ Alg1
max ) in Lemma 3.

3) We further show that the gap between �̃u and the tightest exe-
cution time limit �⇤u returned by some o�ine optimal algorithm
in the right-hand-side (RHS) of (16) is bounded in Lemma 4.

Finally, by putting all these lemmas together, we arrive at the ap-
proximation ratio result stated in Theorem 5.

L���� 2 (M������ E��������T���U���������). Algorithm 1
produces a schedule with the maximum execution time Ŵ Alg1

max = �̃u .

P����. Note that in Algorithm 1, we can obtain a schedule such
that the execution time of every worker will not exceed �̃u , i.e.,Õ
j
Õ
k x

k
j
�̂ j (yk )
u  �̃u , 8� (cf. Line 2 in Algorithm 2 and Line 5 in

Algorithm 3). Note that �̃u is the tightest value found by Alg. 1
since we will keep decreasing its value in the RHS of (16) until it
becomes equal to Ŵ Alg1

max in the LHS of (16). It then follows that:

Ŵ
Alg1
max = max

�2N

’
j 2J

’
k 2{1, ..., |Y | }

x
k
j
�̂ j (yk )

u
= �̃u .

Thus, we can have the maximum execution time Ŵ Alg1
max is equal to

�̃u , and the proof is complete. ⇤

L���� 3 (M������� U���������). Algorithm 1 achieves a
makespan at most n�Ŵ

Alg1
max , where n� is de�ned as in Theorem 1.

P����. To bound the makespan, we need to attain upper bounds
of the total busy and idle time for each worker. Recall that due to
the synchronous gang scheduling for training, the worker may wait
for other workers to �nish executing other jobs before it could start
processing the current job, which may result in idling. First, we can
have the total busy time T busy

�  Ŵ Alg1
max

Lem. 2
= �̃u . Next, we work

on bounding the total idle time T idle
� .

For any worker � 2 N , we use �j to denote the last job j on �.
Suppose job j follows schedule yk . At any time slot t before worker
� processes job j, there are two cases: i) worker � is occupied by
other jobs (i.e., � is busy); ii) worker � is idle, but at least one worker
�
0 2 Gj (yk ) is busy with executing other jobs. Since we consider

the gang-scheduling discipline, the job cannot be delayed if there is
a su�cient number of GPUs available as requested. Thus we have:

T
idle
�

(a)


’
�0 2Gj (yk ) |�0,�

T
busy
�0 

’
�0 2Gj (yk ) |�0,�

Ŵ
Alg1
max

(b)
 (G j�1)Ŵ Alg1

max ,

where (a) follows from the fact that in any time slot t that worker
� is idle (case ii), we must be able to �nd at least one busy worker
�
0 2 Gj (yk ). To calculate the idle time of worker �, we can calculate
the busy time of worker(s) �0 2 Gj (yk ) instead, and the limit of
each worker’s busy time is Ŵ Alg1

max . Also, (b) follows from the fact
that at most G j � 1 number of GPUs (except worker �) are busy.
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Then, we can upper bound the makespan T total as:

T
total = max

�2N
(T busy
� +T idle

� )  max
j 2J

✓
Ŵ

Alg1
max + (G j � 1)Ŵ Alg1

max

◆

= max
j 2J

G jŴ
Alg1
max = n�Ŵ

Alg1
max ,

and the proof is complete. ⇤

Next, we characterize the gap between the maximum execution
time limit �̃u and the optimal execution time �⇤u in the RHS of (16).

L���� 4. The maximum execution time �̃u returned by Algo-

rithm 1 satis�es �̃u  �
u
l · �⇤u , where � = maxj

� j (yk1 )
� j (yk2 )

,8k1,k2.

P����. Let k⇤ and k̃ be the schedule indices chosen by solving
Problem (14) optimally and Algorithm 1, respectively. Let G(yk ) be
the set of selected GPUs if schedule yk is used. We have

�̃u
Lem. 2
= max

�2G(yk̃ )

’
j 2J

�̂ j (yk̃ )
u

(a)
 max

�2G(yk̃ )

’
j 2J

�
u
l �̂ j (y

k⇤ )
u

(b)
 max

�2G(yk⇤ )

’
j 2J

�
u
l �̂ j (y

k⇤ )
u

Eq. (16)
 �

u

l
�
⇤
u .

To see why (a) holds, recall that for any schedule yk , we have
�̂ j (yk ) 2 [l� j (yk ),u� j (yk )]. Then, for any two di�erent schedules

yk1 and yk2 , we can calculate the worst-case ratio as �̂ j (yk1 )
�̂ j (yk2 )


u� j (yk1 )
l� j (yk2 )

 �
u
l . The inequality in (b) can be established as fol-

lows. First, note that k̃ is chosen using the least execution time
�rst scheduling strategy in Algorithm 2 (Line 4). Then, we have

max�2G(yk̃ )
Õ
j 2J

�̂ j (yk̃ )
u  max�2G(yk )

Õ
j 2J

�̂ j (yk )
u , 8k , which

can be proved by contradiction as follows. Suppose there exists

� 2 G(yk ) \ G(yk̃ ) such that
Õ
j 2J

�̂ j (yk )
u  Õ

j 2J
�̂ j (yk̃ )
u , 8�0 2

G(yk̃ ). However, we know that k̃ chooses the GPUs with the least
execution time �rst, i.e., � should be in G(yk̃ ), which contradicts
our assumption. This completes the proof. ⇤

Finally, by putting everything together, we have the following
approximation ratio for our proposed approach:

T������ 5 (A������������R����). Alg. 1 isn�� u
l -approximate.

P����. We use T ⇤ to denote the optimal makespan that pro-
duced by some o�ine optimal algorithm. It then follows that

T
total Lem.3

 n�Ŵ
Alg1
max

Lem.2
= n��̃u

Lem.4
 n��

u

l
�
⇤
u

(a)
 n��

u

l
T
⇤,

where (a) is due to Problem (14) estimates the processing time as
�̂ j (yk )
u without considering potential idling (caused by synchroniza-

tion barrier), which implies �⇤u T ⇤. This completes the proof. ⇤

R����� 1. Note that the result in Theorem 5 does not depend
explicitly on the parameter� in SJF-BCO. This is because Theorem 5
is only a worst-case upper bound that depends on �̃u , which in turn
depends on �. Hence, � is implicitly captured in Theorem 5.

T������ 6 (P��������� R������ T���). Time complexity of
SJF-BCO isO(n� |J |N logN logT ), where n� is de�ned as in Thm. 1.

P����. The sorting operation plays a dominant role in the total
running time in Algorithm 1. For each job j, if G j  �, we need
to sort all GPUs in the cluster, which takes O(N logN ) time in
order to choose top-G j workers with least execution time �rst
in Algorithm 2 (Line 4). Otherwise, we only need to sort servers,
which takes O(S log S) time in order to choose top-m servers as in
Algorithm 3 (Line 2). Thus, it takes O(N logN ) time to schedule
each job since N > S . Then, for all the jobs to be scheduled given
(�u ,�), it has O(|J |N logN ) time complexity. Recall that we use
bisection to search �u , where each iteration contains an inner loop
indexed by � 2 [1,n�]. This implies a total of n� logT trials. Thus,
the overall time complexity is O(n� |J |N logN logT ). ⇤

7 NUMERICAL RESULTS
In this section, we conduct simulation studies to evaluate the per-
formance of our proposed SJF-BCO algorithm.

1) Experiment Settings: Similar to the setting in [19], the work-
load is generated based on the Microsoft job trace [9]. We generate
160 DDL jobs by scaling down the original job trace [9] following
the job-type distribution, where there are 80 single-GPU jobs, 14
2-GPU jobs, 26 4-GPU jobs, 30 8-GPU jobs, 8 16-GPU jobs, and 2
32-GPU jobs. We set Fj 2 [1000, 6000]. The extra time cost brought
by communication contention and overhead is within 15% of the
total actual execution time. We let �1 = �2 (cf. Sec. 4.1) to make
communication contention and overhead cost comparable. We set
�j [t] 2 [0.01, 0.05] [21], and �j = 1,8j. We set the estimated execu-
tion time �̂(yk ) 2 [50, 300] (evaluated from the product of �j [t] and
Fj ). The GPU cluster has 20 servers. The number of GPUs on each
server is chosen from {4, 8, 16, 32} uniformly at random.

2) Baselines for Comparison:We compare our algorithmwith
three representative job scheduling algorithms: First-Fit (FF) [17],
List-Scheduling (LS) [17], and Random (RAND) [19]. Here, we de�ne
�
f
u as the maximum execution time limit returned by the scheduling
policy f . Given a job j , FF picks the �rstG j available GPUs such that
their accumulative execution time does not exceed the limit � F Fu ,
from server to server. This policy tends to pack di�erent jobs into
the fewest number of servers to avoid fragmentation introduced by
small jobs, which can save space for large jobs to be scheduled next.
LS selects top-G j GPUs with least execution time �rst, so that the
accumulative execution time does not exceed the limit �LSu . Note
that this policy may introduce high communication overhead since
it may choose GPUs from a large number of servers. Further, LS tries
to balance the execution time between GPUs by always selecting
the one with the least execution time. RAND randomly chooses
servers and GPUs to schedule jobs. In this policy, we allocate GPUs
to a job as long as it does not exceed T , i.e., we set �RAND

u = T , to
avoid the long running time in order to �nd a feasible schedule.

3) Experiment Results: First, we compare the makespan per-
formance achieved by our SJF-BCO algorithm with those of the
baseline policies. We set T = 1200. As shown in Fig. 4, SJF-BCO
outperforms other scheduling policies both in terms of makespan
and average job completion times, implying that SJF-BCO is also
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superior in terms of total job completion time. Note that SJF-BCO
tends to open new server(s) for large jobs to avoid the large com-
munication overhead and use shared servers for small jobs to avoid
the fragmentation, thus achieving better average completion time
and makespan than FF and RAND. Note that SJF-BCO has more
prominent advantages over these baselines when the cluster has
limited GPU resources.

Then, we examine the impact of � on the makespan in our pro-
posed SJF-BCO algorithm. We set T = 1200, and select � from 1 to
32. As indicated in Fig. 5, as the value of � increases, the makespan
�rst drops and then increases and then drops again. Recall that in
Algorithm 1, FA-FFP is used when the number of requested GPUs
G j  �; otherwise LBSGF is used. Note that before Turning point 1
in Fig. 5, as � increases, the makespan drops since more small jobs
are packed into the fewest number of shared servers, resulting in
decrement of communication contention and overhead introduced
by larger jobs to be scheduled later. However, as � continues to
grow, communication contention becomes more noticeable since
more large jobs are scheduled to the shared servers, leading to the
increase of makespan. Finally, as � becomes su�ciently large, then
the majority or even all jobs use shared servers to schedule their
workers, which can slightly decrease the communication overhead
due to the smaller resultant ring-span (see Turning point 2 in Fig. 5).

Next, we investigate the in�uence of communication contention
by reducing the number of servers. We set T = 1500. Intuitively,
the larger number of servers, the less communication contention.
As we can see from Fig. 6, as we increase the number of servers
from 10 to 20, the makespan of FF, LS and SJF-BCO decrease due to
the degradation of contention level. Note that, if enough resources
are available in the cluster, then each job will have a separate set
of servers using SJF-BCO, i.e., its performance will become better
as number of GPUs increases. In this case, no communication con-
tention will be introduced using SJF-BCO. The intuition that FF
has the largest makespan reduction is that the average idle time
for workers drops dramatically since a smaller execution time limit
could be set as the number of servers increases.

Lastly, we inspect the in�uence of � on the makespan for SJF-
BCO with � 2 {1, 2, 4, 8} and � = 1. As we can see from Fig. 7, the
makespan monotonically decreases as the � increases. Recall that a
larger �-value implies a larger number of servers could be selected.
Then, the job has a higher chance to open new servers to schedule its
workers, resulting in less communication contention and a smaller
communication overhead. Interestingly, � plays a similar role as �,
with the aim to balance communication overhead and contention.

Speci�cally, � a�ects the overall balance between all jobs since it
determines the portion of jobs to use either FA-FFP or LBSGF, while
� focuses more on the balance between communication contention
and overhead for a speci�c job that uses LBSGF to schedule.

8 CONCLUSION
In this paper, we studied resource scheduling for DDL jobs in a
multi-tenant GPU cluster, where we considered the communication
contention and overhead determined by the distribution of work-
ers. We showed that this problem can be formulated as a highly
non-trivial non-linear integer program with nonconvex and mixed
packing-covering constraints. We then converted the problem into
a tractable integer linear program, which enables the design of
approximation algorithms. Speci�cally, we developed a new analyt-
ical model that jointly considers the placements and starting times
of the workers of each DDL job. Through careful reformulation,
we then transformed the problem into an integer linear program
with a more tractable structure, and proposed an approximation
algorithm with an approximation ratio performance guarantee. We
provided rigorous theoretical analysis and conducted experiments
to demonstrate the e�cacy of our algorithms. Collectively, our
results contribute to a fundamental understanding on resource
scheduling for DDL jobs in multi-tenant GPU clusters.
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