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ABSTRACT
In recent years, decentralized bilevel optimization problems have re-
ceived increasing attention in the networking and machine learning
communities. However, for decentralized bilevel optimization over
networks with limited computation and communication capabili-
ties, how to achieve low sample and communication complexities
are two fundamental challenges. In this paper, we make the �rst at-
tempt to investigate the class of decentralized bilevel optimization
problems with nonconvex and strongly-convex structure corre-
sponding to the outer and inner subproblems, respectively. Our
main contributions in this paper are two-fold: i) We �rst propose a
deterministic algorithm called INTERACT (inner-gradient-descent-
outer-tracked-gradient) that requires the sample complexity of
O(=n�1) and communication complexity of O(n�1) to solve the
bilevel optimization problem, where = and n > 0 are the number
of samples at each agent and the desired stationarity gap, respec-
tively. ii) To relax the need for full gradient evaluations in each
iteration, we propose a stochastic variance-reduced version of IN-
TERACT (SVR-INTERACT), which improves the sample complexity
to O(

p
=n�1) while achieving the same communication complexity

as the deterministic algorithm. Our numerical experiments also
corroborate our theoretical �ndings.
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1 INTRODUCTION
In recent years, fueled by the rise of machine learning and arti�cial
intelligence in edge networks, decentralized bilevel optimization
problems have received increasing attention in the networking and
machine learning communities. This is due to the versatility of
decentralized bilevel optimization in supporting many decentral-
ized learning paradigms over peer-to-peer networks, such as the
multi-agent versions of meta learning [22, 34, 34], hyperparame-
ter optimization problem[25, 30], area under curve (AUC) prob-
lems [19, 33], and reinforcement learning[9, 41]. To date, however,
there remain many challenges and open problems in decentral-
ized bilevel learning over peer-to-peer networks. Two of the most
fundamental challenges in decentralized bilevel optimization are
how to achieve low sample and communication complexities. The
need for decentralized bilevel optimization with low sample- and
communication-complexities is particularly compelling in peer-
to-peer edge networks, where the nodes (mobile devices, sensors,
UAVS, etc.) are typically limited in their computation and commu-
nication capabilities.

Mathematically, decentralized bilevel optimization problems
share the same structure as their single-agent counterpart in that
such problems contain an outer objective function that is in turn
dependent on the optimal parameter values of an inner objective.
Interestingly, the single-agent version of bilevel optimization is a
class of challenging optimization problems in its own right due
to the inherent non-convexity in these problems, and thus having
received a signi�cant amount of attention recently. To date, many
algorithmic ideas have been proposed for single-agent bilevel opti-
mization problems, such as double-loop iterative methods [5, 6, 10],
single-level approach for reformulated bilevel problems [17, 28],
and simultaneous upper-lower-level updates [3, 4, 8, 13, 14] (see
Section 2 for more detailed discussions).

Compared to conventional single-agent bilevel optimization
problems, designing e�ective and e�cient algorithms for solving de-
centralized bilevel stochastic optimization problems remains under-
explored. This is in large part due to the fact that using techniques
designed for single-agent bilevel optimization faces several techni-
cal challenges when utilized for decentralized bilevel optimization.
In fact, most of aforementioned algorithmic ideas for single-agent
bilevel optimization are not applicable in decentralized multi-agent
version of bilevel optimization. One of the fundamental reasons
is that, instead of having only one optimization task in the inner
subproblem, there are multiple inner tasks that need to be handled
in the decentralized multi-agent setting, which renders techniques
for single-agent bilevel optimization infeasible and often implies
the challenges of e�ciency and scalability.
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To address the e�ciency and scalability for solving bilevel opti-
mization problem with multiple inner subproblems, a natural idea
is to leverage the decentralized network-consensus optimization
approach [40, 42], where multiple agents distributively and col-
laboratively solve a global learning task. However, in developing
network-consensus approaches for decentralized bilevel optimiza-
tion, two fundamental challenges arise: First, the tightly coupled
inner-outer mathematical structure, together with the decentralized
nature and the non-convexity of the outer problem, makes the de-
sign and theoretical analysis of the algorithms far more challenging
compared to solving conventional single-level minimization prob-
lems. Second, due to the potential low-speed network connections
and the large variability of stochastic gradient-type information
in geographically-dispersed edge networks, network-consensus
approaches for decentralized bilevel optimization are very sensitive
to communication and sample complexities. These challenges mo-
tivate us to design e�ective and e�cient network-consensus-based
algorithms for decentralized bilevel learning, which strike a good
balance between sample and communication complexities.

The major contribution of this paper is that we propose a series
of new algorithmic techniques to overcome the aforementioned
challenges and achieve both low sample and communication com-
plexities for decentralized bilevel optimization. Our main technical
contributions are summarized below:

• We propose a decentralized bilevel optimization algorithm called
INTERACT (inner-gradient-descent-outer-tracked-gradient). We
show that, INTERACT enjoys a convergence rate of O(1/) ) to
achieve an n-stationary point, where ) is the maximum number
of iterations. As a consequence, INTERACT achieves [O(=n�1),
O(n�1)] sample-communication complexity per agent, where =
is the total data size at each agent and n is the desired accuracy. To
our knowledge, INTERACT is the �rst algorithm for decentralized
bilevel optimization with such low sample and communication
complexities (please see Table 1).

• To lower the sample complexity of INTERACT , we propose an-
other enhanced version called SVR-INTERACT using stochastic
vaiance reduction techniques, which further reduces the sample
complexity of INTERACT while retaining the same communica-
tion complexity order. Speci�cally, we show that SVR-INTERACT
retains the same O(n�1) communication complexity as of IN-
TERACT while achieving lower sample complexity of O(

p
=n�1).

• To examine the performance of algorithm INTERACT and SVR-
INTERACT and verify our theoretical results, we conduct experi-
ments on meta-learning tasks with the MNIST [18] and CIFAR-
10 [16]. Our results show that the proposed INTERACT and SVR-
INTERACT algorithms outperform other baseline algorithms.
Also, we numerically show that SVR-INTERACT enjoys low sam-
ple and communication complexities.

The rest of the paper is organized as follows. In Section 2, we re-
view related literature. In Section 3, we provide the preliminaries
of the decentralized bilevel optimization problems. In Section 4 and
Section 5, we propose two algorithms, namely INTERACT and SVR-
INTERACT . Also, the convergence rate, communication complexity,
and sample complexity of these two algorithms are provided. Sec-
tion 6 provides numerical results to verify our theoretical �ndings,
and Section 7 concludes this paper.

Table 1: Comparisons among algorithms for bilevel opti-
mization problems, where n denotes the n-stationary point
de�ned in (2) and = is the size of dataset at each agent. Fos
BSA, we denote sample complexities as (Outer, Inner) as to
achieve the n-staionary point the algorithm requires di�er-
ent number of outer and inner samples. Note that the rest of
the algorithms require the same number of outer and inner
samples to achieve n-stationary point.

Algorithms Sample Complex. Decentralized Multi LL tasks

BSA [6] (O (n�2), O(n�3)) 7 7

TTSA [9] O(n�5/2) 7 7

stocBiO [10] O(n�2) 7 7

MSTSA [13] O(n�2) 7 7

STABLE [3] O(n�2) 7 7

ALSET [4] O(n�2) 7 7

SUSTAIN [14] O(n�1.5) 7 7

VRBO [39] O(n�1.5) 7 7

RSVRB [8] O(n�1.5) 7 3

ITD-BiO/AID-BiO [10] O(=n�1) 7 7

INTERACT (Ours) O(=n�1) 3 3

SVR-INTERACT (Ours) O(
p
= n�1 + =) 3 3

2 RELATEDWORK
1) Bilevel Optimization Approaches: Classical approaches to
solve bilevel optimization problems include: i) reformulating the
bilevel problem to a single-level problem and replacing the inner-
level problem by its KKT conditions [36], or ii) utilizing penalty
based approaches [27]. Motivated by various machine learning
applications, gradient-based techniques have recently become the
most popular strategies for solving bilevel optimization problems.
A variety of explicit gradient-based methods have been investigated
(e.g., AID-based methods [10, 34] and ITD-based methods [10, 31]).
Due to large memory requirements and high sample complexities,
these methods face challenges when implemented for machine
learning applications, especially if the training data sizes are large.

To overcome this challenge, a stochastic gradient descent (SGD)
based double-loop algorithm called BSA [6] was recently proposed
for bilevel optimization. BSA provided the �rst �nite-time conver-
gence guarantees for solving non-convex-strongly-convex bilevel
optimization problem. The convergence performance of BSA was
improved by stocBiO [10], however at the cost of evaluating very
large batch-size gradients in each iteration for both outer and
inner subproblems (see Table 1 for a detailed comparison). Re-
cently, motivated by sequential games, many single-loop algorithms
have been proposed for solving the bilevel problems, where the
outer and inner level problem’s iterates are updated simultane-
ously [3, 4, 8, 9, 13, 14, 39]. Initially, it was shown in [9] that TTSA,
a vanilla SGD-based algorithm that updates inner and outer level
problem’s iterates simultaneously, requires O(n�5/2) samples of
both inner and outer-level functions to achieve n-stationarity. Later,
this rate was improved by MSTSA [13] and STABLE [3] to O(n�2)
by utilizing momentum-based gradient estimators for the outer
objective. Recently, [4] improved the analysis of TTSA and showed
that vanilla SGD-based updates for outer- and inner subproblems
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can in fact achieve O(n�2) rate. This performance was further
improved by SUSTAIN [14] and RSVRB [8] by utilizing momentum-
based gradient estimators for both outer- and inner-level updates.
It was shown that SUSTAIN and RSVRB match the best complex-
ity bounds of O(n�1.5) as the optimal SGD algorithm for solving
single-level optimization problems. Another approach to accelerate
traditional SGD based methods is the family of “variance-reduced”
(VR) methods, which are referred to as VRBO [39]. VRBO adopts
recursive gradient estimators to achieve the best known sample
complexity of O(n�1.5).

Orthogonal to the aforementioned approaches, which focus de-
veloping bilevel optimization algorithms only for a single agent
(centralized), in this paper, we focus on amulti-agent (decentralized)
setting to solve a bilevel optimization problem over a network of
agents. To this end, we propose two novel decentralized bilevel al-
gorithms named INTERACT and SVR-INTERACT using gradient de-
scent and variance reduction techniques. We show that INTERACT
achieves the sample complexity of O(=n�1), while SVR-INTERACT
achieves the sample complexity of O(

p
=n�1). We summarize and

compare the complexity results of the above state-of-the-art algo-
rithms in Table 1.

2)Decentralized Learning overNetworks: From amathemat-
ical point of view, conducting decentralized learning over a network
amounts to a group of agents collectively solving an optimization
problem. Most of the existing literature of decentralized learning
are focused on the standard loss minimization formulation[40, 42],
i.e., minx2R3 5 (x), where 5 (·) is the objective loss function and x
denotes the global model parameters to be learned, and 3 is the
model dimension. In the literature, a wide range of machine learn-
ing applications can be modeled by the standard decentralized loss
minimization formulation (e.g., robotic network [15, 32], network
resource allocation [12, 35], power networks [2, 7]). Some recent
works, [20, 21, 26, 43] studied decentralized min-max optimization
problems, i.e., minx2R31 maxy2R32 5 (x, y), which are a special case
(with same outer and inner level objective) of bilevel optimization
problems. Unfortunately, studies on solving general decentralized
bilevel optimization problems are still limited. Existing works in
[1, 38] applied the fuzzy goal programmingmethod for linearization
of functions based on Jacobian matrix for solving multiobjective bi-
level problem. However, none of these work tackles decentralized
bilevel optimization via the network consensus approach.

3 SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, we will describe the system model and the prob-
lem formulation �rst. Then, we will provide several application
examples to further motivate the decentralized nonconvex-strongly-
convex bilevel optimization problems studied in this paper.

1) Network Consensus Formulation: We represent the un-
derlying peer-to-peer communication network with< agents by a
graph G = (N ,L), whereN and L are the set of agents and edges,
respectively, with |N | =<. Each agent can share information with
its neighbors. For agent 8 2 [<], we denote its set of neighbors
by N8 , i.e., N8 , { 9 2 N , : (8, 9) 2 L}. The decentralized bilevel

optimization (DBO) problem can be written as:

min
x8 2R31

✓ (x) =
1
<

<’
8=1

✓8 (x8 ) =
1
<

<’
8=1

58
�
x8 , y⇤8 (x8 )

�

=
1
<=

<’
8=1

=’
9=1

58
�
x8 , y⇤8 (x8 ); b8 9

�
,

s.t. y⇤8 (x8 ) = argmin
y8

68 (x8 , y8 ) = argmin
y8

1
=

=’
9=1

68 (x8 , y8 ; b8 9 ),

x8 = x9 , if 8, 9 2 L, (1)

where x8 and y8 are the local copies of the outer and inner-level vari-
ables at agent 8 2 [<]. Each agent has access to a local dataset of size
=. The local loss is de�ned as: 58 (x8 , y⇤8 (x8 )) B

1
=

Õ=
9=1 58 (x8 , y8 ; b8 9 ).

The equality constraint in (1) ensures a “consensus" among the outer
level variables of each individual agents. Our goal is to solve Prob-
lem (1) in a decentralized manner, where ✓ (G) is non-convex while
the inner-level funtions 68 (x, y) are strongly-convex with respect
to y for all 8 2 [<]. In the rest of this paper, we will refer to (1) as a
decentralized nonconvex-strong-convex bilevel problem.

Next, we de�ne the notion of n-stationary point. We de�ne
{x8 , y8 ,88 2 [<]} as an n-stationary point if it satis�es:

1
<

’<

8=1
kx8 � xk2

|                  {z                  }
Consensus Error

+ ky⇤�yk2|    {z    }
Lower�Level

Error

+ kr✓ (x̄)k2|     {z     }
Stationarity

Error

 n, (2)

where x̄ , 1
<

Õ<
8=1 x8 , y , [y>1 , ...y

>
<]

>, and y⇤ , [y⇤1
>, ...y⇤<

>
]
>.

Next, we de�ne the notions of sample and communication complex-
ities [37] of a decentralized algorithm to achieve an n-stationary
point de�ned in (2).

D��������� 1 (S����� C���������). The sample complexity is
de�ned as the total number of incremental �rst-order oracle (IFO)
calls required per node for an algorithm to reach an n-stationary point.
Note that we de�ne one IFO call as the evaluation of the (stochastic)
gradient of upper and lower level problems at node 8 2 [<].

D��������� 2 (C������������ C���������). We de�ne a com-
munication round as the sharing and receiving of local parameters by
each node from all its neighboring nodes. Then, the communication
complexity is de�ned as the total rounds of communications required
by an algorithm to achieve an n-stationary point.

2) Motivating Application Examples: Problem (1) can be ap-
plied to a number of interesting real-world decentralized machine
learning problems. Here, we provide two examples to further moti-
vate its practical relevance:
• Multi-agent meta-learning [34]: Meta-learning (or learning to

learn) is a powerful tool for quickly learning new tasks by using
the prior experience from related tasks. Consider a meta-learning
task with< lower level problems. There are< agents who col-
lectively solve this meta-learning problem over a network. This
problem can be formulated as:

min
x2R31

<’
8=1

58
�
x, y⇤8 (x)

�

y⇤8 (x) 2 argmin
y8

68 (x, y8 ) , 8 = 1, . . . ,<, (3)
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where agent 8 2 [<] has a local dataset with = samples, and 58
corresponds to the loss function for the task of agent 8 . Parameter
x 2 R31 is the model parameters shared among all agents, and
y8 2 R32 denotes task-speci�c parameters solved by each agent.

• Multi-agent AUPRC optimization [8]: Another application of (1)
is the multi-agent optimization of area under precision-recall
curve (AUPRC) [33]. Multi-agent AUPRC optimization problem
can be formulated as a bilevel optimization problem with many
lower-level problems as:

min
x2R31

<’
8=1

58
�
y⇤8 (x)

�

y⇤8 (x) = argmin
y8

�y>8 68 (x) +
1
2
ky8 k2, 8 = 1, . . . ,<,

where each 8 2 [=] corresponds to a binary classi�cation task
and x denotes the model parameter.
With the system model and the problem formulation in (1), we

are in a position to present our algorithm design in the next section.

4 THE INTERACT ALGORITHM
In this section, we present our INTERACT algorithm for solving
the decentralized bilevel optimization problems and provide its
theoretical convergence guarantees.

4.1 Algorithm Description
To solve Problem (1), we adopt the network consensus approach
[29]. In each iteration, every agent shares and receives information
from its neighboring nodes. Each agent aggregates the information
received from its neighbours through a consensus weight matrix
M 2 R<⇥< . We denote by [M]8 9 the element in the 8-th row and
the 9-th column inM. We assume thatM satis�es the following:
(a) Doubly stochastic:

Õ<
8=1 [M]8 9 =

Õ<
9=1 [M]8 9 = 1;

(b) Symmetric: [M]8 9 = [M] 98 , 88, 9 2 N ;
(c) Network-De�ned Sparsity: [M]8 9 > 0 if (8, 9) 2 L; otherwise

[M]8 9 = 0, 88, 9 2 N .
The above properties imply that the eigenvalues of M are real and
lie in the interval (�1, 1]. We sort the eigen values of M as: �1 <
_< (M)  · · ·  _2 (M) < _1 (M) = 1. We denote the second-largest
eigenvalue in magnitude of M as _ , max{|_2 (M) |, |_< (M) |}.
We note that _ plays an important role in the step-size selection
for our proposed algorithms (cf. Theorems 1 and 3). Next, using
the implicit function theorem, we evaluate the hyper-gradient of
;8 (x8 ) : 58 (x8 , y⇤8 (x8 )) at x8,C and y⇤8 (x8,C ) as:

r✓8 (x8,C ) = rx 58 (x8,C , y⇤8 (x8,C )) � r
2
xy68 (x8,C , y

⇤
8 (x8,C ))⇥

[r
2
yy68 (x8,C , y

⇤
8 (x8,C ))]

�1
ry 58 (x8,C , y⇤8 (x8,C )) . (4)

Note that computing the local gradient r;8 (x8,C ), 8 2 [<] requires
knowledge of the lower level problem’s optimal solution, y⇤8 (x8 ).
However, obtaining y⇤8 (x8 ) in closed form is usually not feasi-
ble. Therefore, we replace y⇤8 (x8 ) by an approximate solution y8,C ,
thereby, de�ning the following approximate gradient estimate [6]:

r̄58 (x8,C , y8,C ) = rx 58 (x8,C , y8,C ) � r
2
xy68 (x8,C , y8,C )⇥

[r
2
yy68 (x8,C , y8,C )]

�1
ry 58 (x8,C , y8,C ) . (5)

Algorithm 1 The INTERACT Algorithm.
.

Set parameter pair 88 2 [<], (x8,0, y8,0) = (x0, y0).
At each agent 8 2 [<], compute the local gradients:

u8,0 =r̄58 (x8,0, y8,0); v8,0 = ry68 (x8,0, y8,0);

for C = 1, · · · ,) do
Update local parameters using (6) and (7);
Compute local gradients using (8)and (9);
Track the gradients using (10);

end for

The proposed INTERACT algorithm for each agent 8 2 [<] is
illustrated in Algorithm 1. Note that, to achieve state-of-the-art
convergence guarantees, INTERACT relies on consensus updates
along with gradient tracking for solving Problem (1) as follows:
• Step 1 (Consensus update with gradient descent): The local param-

eters of each agent 8 2 [<] are updated using (6). Note that the
consensus is established by only sharing the information of the
outer model parameters x8 , while the inner-model parameters y8
are updated only locally and the local gradient is computed by
just evaluating the local gradient of the lower level objective:

x8,C =
’
9 2N8

[M]8 9x9,C�1 � Uu8,C�1, (6)

y8,C = y8,C�1 � Vv8,C�1, (7)

where U and V are the step-sizes for updating x- and y-variables,
respectively, v8,C is the local gradient, and u8,C is an auxiliary
vector for gradient tracking purposes and will be de�ned shortly.

• Step 2 (Local gradient estimate): Each agent 8 2 [<] evaluates its
(full) local gradient p8 (x8,C , y8,C ) and d8 (x8,C , y8,C ) using as:

p8 (x8,C , y8,C ) = r̄58 (x8,C , y8,C ), (8)

v8,C = d8 (x8,C , y8,C ) = ry68 (x8,C , y8,C ). (9)

• Step 3 (Local gradient tracking): Each agent 8 2 [<] updates the
global gradient estimate u8,C by averaging over its neighboring
global gradient estimates:

u8,C =
’
9 2N8

[M]8 9u9,C�1 + p8 (x8,C , y8,C ) � p8 (x8,C�1, y8,C�1) . (10)

Note that estimating v8,C does not require gradient tracking as the
inner problem can be solved locally at each agent (cf. Problem (1)).

4.2 Convergence Results of INTERACT
In this subsection, we focus on the theoretical guarantees associated
with INTERACT (Algorithm 1). Providing convergence guarantees
of INTERACT for solving the decentralized bilevel optimization
problem in (1) presents two major challenges: a) Inner-loop error:
Recall that, in constructing the true gradient estimate (4), we utilize
a crude approximation y8,C < y⇤8,C (x8,C ). This approximation induces
an error in the estimated gradient of (cf. (4)) that presents a major
challenge in the analysis of INTERACT ; b) Decentralized topology:
Since INTERACT applies decentralized consensus in outer-loop
iterations, the analysis needs to capture the e�ect of the errors
induced by the decentralized topology. These two issues make
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the convergence analysis of INTERACT di�cult. In spite of these
challenges, we will show that INTERACT provides state-of-the-art
convergence guarantees for solving Problem (1).

1) Convergence metric: We propose the following new metric
for decentralized bilevel problems, which is the key in determining
all convergence results in the following sections:

MC ,E[kr✓ (x̄C )k2 + kxC � 1 ⌦ x̄C k2 + ky⇤C � yC k2], (11)

where y⇤C is de�ned in (2). Note that the �rst term in (11) quanti�es
the convergence of the x̄C to a stationary point of the global objec-
tive. The second term in (11) measures the consensus error among
local copies of the outer variable, while the third term in (11) quan-
ti�es the (aggregated) error in the inner problem’s iterates across all
agents. Thus, if the iterates generated by an algorithm that achieves
MC ! 0, it implies that the algorithm achieves three goals simul-
taneously: 1) consensus of outer variables, 2) stationary point of
Problem (1), and 3) solution to the inner problem.

2) Technical Assumptions: Next, before presenting the main
convergence result of INTERACT , we �rst state the technical as-
sumptions on the outer and inner objective functions in Problem (1):

A��������� 1. The inner function 6 satis�es:
a) For any 8 2 [<], and x8 2 R31 , 68 (x8 , y8 ) is `6 -strongly convex

with respect to the variable y8 , i.e., `6� � r
2
~6(x8 , y8 ).

b) For any 8 2 [<], x8 2 R31 , y8 2 R32 , r68 (x8 , y8 ) is !6-Lipschitz
continuous with !6 > 0.

c) For any 8 2 [<], x8 2 R31 , y8 2 R32 , we have
���r2
G~68 (x8 , y8 )

���2 

⇠6G~ for some ⇠6G~ > 0.

d) For any 8 2 [<], x8 2 R31 , y8 2 R32 , we have r2
G,~68 (x8 , y8 )

andr2
~~68 (x8 , y8 ) are Lipschitz continuous with constants!6G~ >

0 and !6~~ > 0, respectively.

A��������� 2. The outer function 5 and ✓ (x) satisfy:
a) For any 8 2 [<], x8 2 R31 , rx 58 (x8 , y8 ),ry 58 (x8 , y8 ) are Lips-

chitz continuous with constant !5G � 0, !5~ � 0.

b) For 8 2 [<], x8 2 R31 , y8 2 R32 , we have
��r~ 5 (x8 , y8 )��  ⇠5~

for some ⇠5~ � 0.
c) There exists a �nite lower bound ✓⇤ = infx ✓ (x) > �1.

Assumptions 1 and 2 are standard in the literature of bilevel opti-
mization (e.g., [14][6]). Many problems of practical interest in meta-
learning [34][22] and optimization of area under precision-recall
curve(AUPRC) [33] can be shown to satisfy these assumptions.

3) Supporting Lemmas: Next, we present several lemmas that
characterizes the Lipschitz properties of the hypergradient in (4),
the approximate gradient in (5), and the optimal solution of the
inner problem under Assumptions 1 and 2. These lemmas will
be useful in proving our main convergence result (proofs directly
follow from [6] due to structural similarities).

L���� 1. Under Assumptions 1–2, we have

kr̄58 (x, y) � r✓8 (x)k2  !5
��y⇤ (x) � y

��2 ,��y⇤8 (x1) � y⇤8 (x2)
��2  !~ kx1 � x2k2 ,

kr✓8 (x1) � r✓8 (x2)k2  !✓ kx1 � x2k2 ,

for all 8 2 [<] and x, x1, x2 2 R31 and y 2 R32 . The above Lipschitz

constants are de�ned as: !5 =
⇣
!5G+

!5~⇠6G~
`6

+⇠5~

⇣ !6G~
`6

+
!6~~⇠6G~

`26

⌘⌘2
,

!✓ =
⇣
!5 +

!5 ⇠6G~
`6

⌘2
, !~ =

⇣⇠6G~
`6

⌘2
.

L���� 2. Under Assumption 1-2, we have

kr58 (x1, y1) � r58 (x2, y2)k2  !2 [k x1 � x2k2

+ ky1 � y2k2],8 x1, x2 2 R31 , y1, y2 2 R32 . (12)

In the above expressions, 9! � ! 3 and ! 3 is de�ned as:

!2 3 :=2!25G + 6⇠2
6~

1
`26
!25~ + 6⇠2

5~

1
`26
!26G~ + 6⇠2

6G~⇠
2
5~
!26~~

1
`46

. (13)

4) Convergence Results of INTERACT : We state the main
convergence rate result of INTERACT in the following theorem:

T������ 1. (Convergence of INTERACT ) Under Assumptions 1-2,
if the step-sizes satisfy V  min{ 3(`6+!6)`6!6

, 1
`6+!6

}, U  min{ 1
4!✓ ,

1
4! 

q
1�_
2< , 1

< (1�_) ,
(1�_)2
32!2 

, < (1�_)
4!✓ , 9A 2< (1�_)

32!2~ (1+1/A )!25
, (1�A ) (1+A )A (1�_)

2

32!2~ (`6+!6)!2 V
,

1�_
4! , 1}, A =

1
3 V

`6!6
`6+!6

, then {xC , yC } generated by INTERACT satisfy

1
) + 1

)’
C=0

MC 
B0 � ✓⇤

() + 1)min{ 1�_4 , 3A 2 (1�_)
32(1+A )!2~

, U2 }
= O

✓
1
)

◆
,

whereBC = ✓ (x̄C ) + kyC � y⇤C k
2
+ kxC � 1 ⌦ x̄C k2 + U kuC � 1 ⌦ ūC k2.

R����� 1. Note from the statement of Theorem 1 that INTER-
ACT requires constant step-sizes U and V that depend on the net-
work topology, Lipschitz constants, and the number of agents. In
particular, di�erent network topology leads to di�erent network
consensus matrixM. Recall that _ < 1 is the second-largest eigen-
value in magnitude ofM. For a dense network, _ is close to 0, which
allows larger step-size U , and then leads to faster convergence.

Theorem 1 immediately implies the following sample and com-
munication complexity results of INTERACT:

C�������� 2. Under the conditions of Theorem 1, to achieve an
n-stationary solution, INTERACT requires: 1) Communication com-
plexity of O(n�1) , and 2) Sample complexity of O(=n�1)) . ⇤

4.3 Proof Sketches of the Convergence Results
Due to space limitation, we provide a proof sketch of Theorem 1.
The proof details are provided in the full online technical report of
this paper [23]. In this section, we organize the proof into several
key steps. Our �rst step is to show the descent property of our
algorithms, which is stated as follows:

Step 1) Descending Inequality for the Outer Function: Under As-
sumptions 1-2, the following inequality holds for Algorithm 1:

✓ (x̄C+1) � ✓ (x̄C )  �
U

2
kr✓ (x̄C )k2 � (

U

2
�
!✓U2

2
)kūC k2

+
U

<

<’
8=1

!✓ kx̄C � x8,C k2 +
2U
<

<’
8=1

!25 ky
⇤
8,C � y8,C k2

+ 2U
���� 1<

<’
8=1

r̄58 (x8,C , y8,C ) � ūC
����
2
, (14)
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where y⇤8,C = argminy8,C 68 (x8,C , y8,C ).
Eqs. (14) focuses on the descending upper bound for adjacent

iterations of outer-level model parameters. Unlike traditional decen-
tralized minimization optimization problems, decentralized bilevel
optimization problems tackle a composition of an inner problem
and an outer problem. This tightly coupled inner-outer mathemati-
cal structure in the bilevel optimization problem, together with the
decentralized nature and the non-convexity of the outer problem,
imposes signi�cant challenges in the theoretical algorithm analysis.
As a result, Eq. (14) contains the consensus error of the outer-level
model parameters kx̄C � x8,C k2 and the convergence metric of inner
model parameter ky⇤8,C � y8,C k2.

Step 2) Error Bound on y⇤ (x): Under Assumptions 1 and 2, the
following inequality holds for Algorithm 1:

ky8,C+1 � y⇤8,C+1k
2
 (1 + A )2 (1 � 2V

`6!6
`6 + !6

)ky8,C � y⇤8,C k
2

+ (X � 1) (1 + A )2 (2V
1

`6 + !6
� V2)kv8,C k2 + (1 +

1
A
)!2~ kx8,C+1 � x8,C k2

+ [(
1
X
� 1) (1 + A )2 (2V

1
`6 + !6

� V2) + (1 + A ) (1 + 1/A )V2]

· kry68 (x8,C , y8,C ) � v8,C k2 . (15)

In Step 2, we continue evaluating the fourth element in Eq. (14).
From the result of Step 2, we can see that ky8,C � y⇤8,C k

2 shrinks if

2(1 + A ) (1 � 2V `6!6
`6+!6

)  1.

Step 3) Iterates Contraction: The following contraction properties
of the iterates hold:

kxC � 1 ⌦ x̄C k2  (1 + 21)_2kxC�1 � 1 ⌦ x̄C�1k2

+

⇣
1 +

1
21

⌘
U2kuC�1 � 1 ⌦ ūC�1k2, (16)

kuC � 1 ⌦ ūC k2  (1 + 22)_2kuC�1 � 1 ⌦ ūC�1k2

+ (1 +
1
22

)kpC � pC�1k2, (17)

where 21 and 22 are some positive constants.
Step 3 is important in analyzing the convergence performance of

the our proposed INTERACT . The key step is to de�ne eM = M⌦ I< .
Then, we have keMxC � 1 ⌦ x̄C k2 = keM(xC � 1 ⌦ x̄C )k2  _2kxC �
1 ⌦ x̄C k2. This is because xC � 1 ⌦ xC is orthogonal to 1, which is
the eigenvector corresponding to the largest eigenvalue of eM, and
_ = max{|_2 |, |_< |}.

Step 4) Potential Function:With results from Steps 1-3, we have:

✓ (x̄)+1) � ✓ (x̄0) +
1 � _

32(1 + 1/A )!2~

⇥
kȳ)+1 � y⇤)+1k

2
� ky⇤0 � ȳ0k2

⇤

 �
U

2

)’
C=0

kr✓ (x̄C )k2 � (
U

2
�
!✓U2

2
� 4(1 +

1
A
)!2~U

2<
1 � _

32(1 + 1/A )!2~
)

·

)’
C=0

kūC k2 + (
U!✓
<

+ (1 +
1
A
)!2~

1 � _
4(1 + 1/A )!2~

)

)’
C=0

kxC � 1 ⌦ x̄C k2

+ [
2U
<
!25 +

1 � _
32(1 + 1/A )!2~

3A �
1 � _

32(1 + 1/A )!2~
(1 + 3A ) (2V

`6!6
`6 + !6

)]

·

)’
C=0

kyC � y⇤C k
2
+ 2U

)’
C=0

k
1
<

<’
8=1

r̄58 (x8,C , y8,C ) � ūC k2

+
1 � _

32(1 + 1/A )!2~
(X � 1) (1 + A )2 (2V

1
`6 + !6

� V2)
)’
C=0

kvC k2

+ 4(1 +
1
A
)!2~U

2 1 � _
32(1 + 1/A )!2~

(

)’
C=0

kuC � 1 ⌦ ūC k2)

+
1 � _

32(1 + 1/A )!2~
· [

(1 + A )2V2

A
+ (

1
X
� 1) (1 + A )2 (2V

1
`6 + !6

� V2)]

·

<’
8=1

)’
C=0

kv8,C � ry68 (x8,C , y8,C )k2 . (18)

Note that the coe�cients of kūC k2 and kvC k2 can be made negative
when step-sizes are chosen properly and k

1
<

Õ<
8=1 r̄58 (x8,C , y8,C ) �

ūC k2 can be decomposed later, we de�ne our potential function as:

BC =✓ (x̄C )+
(1 � _)kyC � y⇤C k

2

32(1 + 1/A )!2~
+kxC �1 ⌦ x̄C k2+U kuC � 1 ⌦ ūC k2 .

Step 5) Main proof of Theorem 1:Note that we use the full gradient
estimator in INTERACT, thus we have k

1
<

Õ<
8=1 r̄58 (x8,C , y8,C ) �

ūC k2 = 0. Also, we have

kpC � pC�1k2!2 <(kxC � xC�1k2 + V2kvC�1k2), (19)

where pC =
⇥
p1 (x1,C , y1,C )>, · · · , p< (x<,C , y<,C )

>
⇤>.

Combing the above results and choosing 21 = 22 = 1
_ � 1 yield:

✓ (x̄)+1) � ✓ (x̄0) +
1 � _

32(1 + 1/A )!2~

⇥
kȳ)+1 � y⇤)+1k

2
� ky⇤0 � ȳ0k2

⇤

+ [kx)+1 � 1 ⌦ x̄)+1k2 � kx0 � 1 ⌦ x̄0k2]

+ U [ku)+1 � 1 ⌦ ū)+1k2 � ku0 � 1 ⌦ ū0k2]

 �
U

2

)’
C=0

kr✓ (x̄C )k2 +⇠1
)’
C=0

kūC k2 +⇠2
)’
C=0

kxC � 1 ⌦ x̄C k2

+⇠3

)’
C=0

kyC � y⇤C k
2
+⇠4

)’
C=0

kvC k2 +⇠5
)’
C=0

kuC � 1 ⌦ ūC k2, (20)

where the constants are relegated to our technical report [23]. With
appropriately chosen parameters to ensure ⇠1,⇠4,⇠5  0,⇠2 

�
1�_
4 ,⇠3  �

3A 2 (1�_)
32(1+A )!2~

, we have the following convergence results:

1
) + 1

)’
C=0

MC 
B0 � ✓⇤

() + 1)min{ 1�_4 , 3A 2 (1�_)
32(1+A )!2~

, U2 }
. (21)

This completes the proof of Theorem 1.

5 THE SVR-INTERACT ALGORITHM
Note that, in the INTERACT algorithm (Algorithm 1), each agent
needs to evaluate the full local gradient in each iteration, which
might not be feasible for many large-scale problems. This motivates
us to develop a stochastic version of INTERACT that circumvents
the need to compute full local gradients in each iteration. To this end,
we leverage the variance reduce methods to design SVR-INTERACT,
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a stochastic version of INTERACT that achieves low sample com-
plexity for solving decentralized bilevel optimization problem. In
this section, we �rst present the SVR-INTERACT method, and then
provide its convergence guarantees.

In particular, we further de�ne an (approximate) stochastic gra-
dient estimate of the local gradient in (5). We de�ne the stochastic
gradient of r̄58 (x8,C , y8,C ) by r̄58 (G8,C ,~8,C ; b̄8 ) as

r̄58 (x8,C , y8,C ; b̄8 ) = rx 58 (x8,C , y8,C ; b08 ) �
 

!6
r
2
xy68 (x8,C , y8,C ; Z

0
8 )

·

k( )÷
9=1

(� �
r
2
yy68 (x8,C , y8,C ; Z

9
8 )

!6
)ry 58 (x8,C , y8,C ; b08 ), (22)

where k( ) ⇠ U{0, . . . , � 1} denotes a random variable uni-
formly chosen from {0, . . . , � 1}. Note that the stochastic gra-
dient estimator collects  + 2 2 N independent samples b̄8 :=�
b 08 , b

0
8 , . . . , b

 
8 , k( )

 
, where b 08 , b

9
8 ⇠ `, Z 98 ⇠ c, 9 = 0, . . . , denote

the samples of the outer and inner objectives. Next, we de�ne the
convergence metric that we will utilize for solving the decentralized
bilevel learning problem.

5.1 Algorithm Description
In SVR-INTERACT, we use the same network consensus approach
as in INTERACT.

The proposed SVR-INTERACT algorithm is illustrated in Algo-
rithm 2. In each iteration, every agent 8 2 [<] estimates its full gra-
dients every @ steps. For other iterations, when<>3 (C,@) < 0, SVR-
INTERACT estimates local gradients p8 (x8,C , y8,C ) and d8 (x8,C , y8,C )
using the following gradient estimators:

pC =pC�1+
1
|S|

S’
8=1

⇥
r̄58 (x8,C , y8,C ; b̄8 )�r̄58 (x8,C�1, y8,C�1; b̄8 )

⇤
; (23)

dC =dC�1+
1
|S|

S’
8=1

⇥
r68 (x8,C , y8,C ; b̄ 08 )�r68 (x8,C�1, y8,C�1; b̄

0
8 )

⇤
, (24)

where we de�ne:

pC ,
⇥
p1 (x1,C , y1,C )>, · · · , p< (x<,C , y<,C )

>
⇤> ;

dC ,
⇥
d1 (x1,C , y1,C )>, · · · , d< (x<,C , y<,C )

>
⇤>

. (25)

Note that in contrast to INTERACT, SVR-INTERACT utilizes a
variance-reduced gradient estimator. Moreover, SVR-INTERACT
makes use of gradient tracking and consensus updates similar to
the INTERACT algorithm. Next, we will present the convergence
rate results of SVR-INTERACT.

5.2 Convergence Results of SVR-INTERACT
For SVR-INTERACT, we need an extra assumption on the outer
and inner objective functions in Problem (1) due to the stochastic
gradient estimator we use.

A��������� 3 (S��������� F��������). Assumptions 1 and
2 hold for 58 (x8 , y8 ; b) and 68 (G8 ,~8 ; b), for all b 2 supp (c), where
supp(c) represents the support of c .

Algorithm 2 The SVR-INTERACT Algorithm.
.

Set parameter pair 88 2 [<], (x8,0, y8,0) = (x0, y0).
At each agent 8 2 [<], compute the local gradients:

u8,0 =r̄58 (x8,0, y8,0); v8,0 = ry68 (x8,0, y8,0); (26)

for C = 1, · · · ,) do
Update local parameters using (6) and (7);
if <>3 (C,@) = 0 then

Compute local gradients using (8) and (9);
else

Compute local gradients using (23) and (24);
end if
Track the gradient using (10);

end for

L���� 3. Under Assumptions 1–2, 88 2 [<], (x, y) 2 R31 ⇥ R32 ,
the stochatic gradient estimator in (22) satis�es:

���r̄58 (x, y) � Eb̄8 [r̄5 (x, y; b̄8 )]
��� 

⇠6G~⇠5~
`6

✓
1 �

`6
!6

◆ 
.

Besides, we have an additional lemma to characterizes the bias
of the stochastic estimator shown in eqs.(22), and it also holds for
the deterministic estimator shown in eqs.(5).

L���� 4. Under Assumption 1-3, we have

Eb̄
��r58 �x1, y1; b̄ � � r58

�
x2, y2; b̄

���2  !2 [k x1 � x2k2

+ ky1 � y2k2],8 x1, x2 2 R31 , y1, y2 2 R32 . (27)

In the above expressions, 9! � ! B and ! B is de�ned as:

!2 B = 2!25G + +6⇠2
6G~!

2
5~

 
 

2`6!6 � `26

!
+ 6⇠2

5~
!26G~

 
 

2`6!6 � `26

!

+6⇠2
6G~⇠

2
5~

 4

!26

1
!26
!26~~ .

To establish the convergence of SVR-INTERACT, we use the
same convergence metric as that of INTERACT as shown in (11).

1) Main Theorem of SVR-INTERACT:We state the main con-
vergence rate result of SVR-INTERACT in the following theorem:

T������ 3. (Convergence of SVR-INTERACT) Under Assumptions
1-3, if the step-sizes satisfy V  min{ (1�_)`6!6

768!2 (`6+!6)
,
(1�_) (`6+!6)

4096!2 
,

3(`6+!6)
`6!6

,
!2~`6!6

24!2 (`6+!6)
,
(1�_) (`6+!6)

512!2 
, 1
2(`6+!6) ,

16
(1�_) (`6+!6) },

U  {
1
8!✓ ,

A
16<!2~ (A+1)

, 1
8! 

p
<
, 1
< (1�_) ,

(1�_)2
128!2 

, (1�_)4 (
<

!✓+16!2 <
),

1
16! 

q
1�_
< ,

288A (1+A )<!2~
(1�_)!25

, A (1+A ) (1�_)
256!2~ (`6+!6)!2 V

, A (1+A ) (1�_)2
512!2~ (`6+!6) (!2 V)

,
p
1�_
8! , (1�_)

2

4 ,
32!2~

16(1+ 1
A )!

2
~
,
r

1�_
64!2 

,
32!2~
(1�_) }, A = 1

3 V
`6!6
`6+!6

, then the

iterates {xC , yC } generated by SVR-INTERACT satisfy

1
) + 1

)’
C=0

MC 
B0 � ✓⇤

() + 1)min{ 1�_4 , 3A 2 (1�_)
32(1+A )!2~

, U2 }
+⇠bias

= O(
1

) + 1
) +⇠bias, (28)
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whereBC = ✓ (x̄C )+kȳC�y⇤C k
2
+kxC�1⌦x̄C k2+U kuC�1⌦ūC k2,⇠bias ,

2U (
⇠6G~⇠5~

`6

⇣
1� `6!6

⌘ 
)
2

min{ 1�_
4 , 3A2 (1�_)

32(1+A )!2~
, U2 }

.

R����� 2. From the statement of Theorem 3, it can be seen
that the step-sizes U and V for SVR-INTERACT depend on the net-
work topology, the Lipschitz constants, and the number of agents.
Additionally, the convergence performance of SVR-INTERACT is
a�ected by the constant ⇠180B , which is the bias term a�ected by
the stochastic gradient estimator.

Theorem 3 immediately implies the following sample and com-
munication complexity results of SVR-INTERACT:

C�������� 4. Under the conditions of Theorem 3, to achieve an
n-stationary solution (cf. de�nition in Eq. (2)), with the number of
samples for the gradient estimator in (22) chosen as = O(log(1/n)),
SVR-INTERACT requires: 1) communication complexity: O(n�1); and
2) sample complexity: O(

p
=n�1)).

R����� 3. Corollary 4 indicates that SVR-INTERACT has the
same communication complexity as that of INTERACT, but im-
proves the sample complexity of INTERACT.

5.3 Proof Sketch of the Convergence Results
The proof of Theorem 3 follows the same structure as that of
Theorem 1, with Step 1)–Step 4) being identical. Thus, we omit
the �rst four steps for brevity and only focus on the last step in
this paper. In Algortihm 2, we can show the following relations:
k
1
<

Õ<
8=1 r̄58 (x8,C , y8,C ) � ūC k2 = 0 every @ iterations. Let =C denotes

the largest positive integer that satis�es (=C � 1) @  C . With C 2

((=C � 1) @,=C@ � 1] \ Z, we have
��� 1
<

Õ<
8=1 r̄58 (x8,C , y8,C ) � ūC

���2 

1
<

Õ<
8=1 kr̄58 (x8,C , y8,C ) � p8 (x8,C , y8,C )k2 . We note that the next step

is one of the most crucial steps in our proofs. The bias term has to
be eliminated from the kr̄58 (x8,C , y8,C ) � p8 (x8,C , y8,C )k2 in advance;
otherwise, we will not be able to use the mean variance theorem
later. From the algorithm update of SVR-INTERACT, we have

EC kr̄58 (x8,C , y8,C ) � p8 (x8,C , y8,C )k2

EC kp8 (x8,C , y8,C ) � Eb̄8 [p8 (x8,C , y8,C )]k
2
+

✓⇠6G~⇠5~
`6

✓
1 �

`6
!6

◆ ◆2
.

Next, telescoping over C from ((=C � 1)@ + 1 to C and noting |S| = @
implies that

EC kp8 (x8,(=C�1)@, y8,(=C�1)@) � Eb̄8 [p8 (x8,(=C�1)@, y8,(=C�1)@)]k
2 = 0,

Then, we have
)’
C=0

k
1
<

<’
8=1

r̄58 (x8,C , y8,C ) � ūC k2 

⇠6G~⇠5~
`6

✓
1�

`6
!6

◆ �2
() + 1)

+ !2 

)’
C=0
EC (kxC � xC�1k2 + kyC � yC�1k2).

Combing the above inequality and results in Steps 1)–4) and choos-
ing 21 = 22 = 1

_ � 1, we have:

✓ (x̄)+1)�✓ (x̄0)+
1 � _

32(1 + 1/A )!2~

⇥
kȳ)+1�y⇤)+1k

2
� ky⇤0 � ȳ0k2

⇤

(a) A �ve-agent network. (b) A 10-agent network.

Figure 1: Di�erent network topology.
+ [kx)+1�1 ⌦ x̄)+1k2�kx0�1 ⌦ x̄0k2]+U [ku)+1�1 ⌦ ū)+1k2

� ku0 � 1 ⌦ ū0k2]  �
U

2

)’
C=0

kr✓ (x̄C )k2 +⇠ 0
1

)’
C=0

kūC k2

+⇠ 0
2

)’
C=0

kxC � 1 ⌦ x̄C k2 +⇠ 0
3

)’
C=0

kyC � y⇤C k
2
+⇠ 0

4

)’
C=0

kvC k2

+⇠ 0
5

)’
C=0

kuC �1 ⌦ ūC k2+2U
⇠6G~⇠5~

`6

✓
1�

`6
!6

◆ �2
() +1), (29)

where the de�nitions of the constants can be found in our tech-
nical report [23]. With appropriately chosen parameters to ensure
⇠ 0
1,⇠

0
4,⇠

0
5  0,⇠ 0

2  �
1�_
4 ,⇠ 0

3  �V
`6!6
`6+!6

, we have the following
convergence results:

1
) + 1

)’
C=0

MC 
B0 � ✓⇤

() + 1)min{ 1�_4 , 3A 2 (1�_)
32(1+A )!2~

, U2 }
+⇠bias, (30)

where ⇠bias ,
2U (

⇠6G~⇠5~
`6

⇣
1� `6!6

⌘ 
)
2

min{ 1�_
4 , 3A2 (1�_)

32(1+A )!2~
, U2 }

. This completes the proof.

6 EXPERIMENTAL EVALUATION
In this section, we conduct numerical experiments to demonstrate
the performance of our INTERACT and SVR-INTERACT algorithms
on a meta-learning problem. In particular, we evaluate and compare
the performance of the proposed algorithms against two stochastic
algorithms discussed below as the baselines:
• Decentralized Gradient-Tracking Stochastic Gradient Descent (GT-

DSGD): This algorithm can be viewed as a “stripped-down” ver-
sion of INTERACT utilizing stochastic gradients instead of full
gradients. It is motivated by the GT-SGD algorithm [24]. The al-
gorithm performs local updates using gradients p8 (x8,C , y8,C ) and
d8 (x8,C , y8,C ) evaluated using the following stochastic gradient es-
timators at each agent: p8 (x8,C , y8,C )= 1

S

Õ
S

8=1
⇥
r̄58 (x8,C , y8,C ; b̄8 )

⇤
,

and d8 (x8,C , y8,C )= 1
S

Õ
S

8=1
⇥
r68 (x8,C , y8,C ; b̄8 )

⇤
.

• Decentralized Stochastic Gradient Descent (D-SGD): This algorithm
can be viewed as a simpli�ed version of GT-SGDwithout utilizing
gradient tracking [11]. For D-SGD, each agent updates its local pa-
rameters as: x8,C =

Õ
9 2N8 [M]8 9x9,C�1�U 1

S

Õ
S

8=1
⇥
r̄58 (x8,C , y8,C ; b̄8 )

⇤
and y8,C = y8,C�1 � V 1

S

Õ
S

8=1
⇥
r68 (x8,C , y8,C ; b̄8 )

⇤
.

1) Meta-learning Model and Datasets: We evaluate the per-
formance of INTERACT and SVR-INTERACT across< agents that
collectively aim to solve the meta-learning problem with< tasks
{T8 , 8 2 [<]}. We allocate each agent one task with 58 de�ning
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(a) The MNIST dataset. (b) The CIFAR-10 dataset.

Figure 2: Convergence performance comparisons on the �ve-agent network.

(a) (b)

Figure 3: Convergence performance comparisons on the
10-agent network.

(a) The INTERACT algorithm. (b) The SVR-INTERACT algorithm.

Figure 4: Convergence performance with di�erent edge
connectivity probability.

(a) The INTERACT algorithm. (b) The SVR-INTERACT algorithm.

Figure 5: Convergence performance with di�erent learning rate on the MNIST dataset.

the loss function of the 8-th agent. For the loss function 58 (x, y8 )
corresponding to task T8 , the parameter G de�nes the model pa-
rameters shared among all agents, while ~8 denotes task speci�c
parameters. The meta-learning problem aims at �nding common
parameters x for all tasks, and each task then adapts its own pa-
rameters y8 by minimizing local lower level losses. The objective
function ismin 1

<
Õ<
8=1 58

�
x, y⇤8

�
, subject to y⇤8 = argminy868 (x, y8 ).

In practice, y8 denotes the parameters of the last layer of a neural
network, while x are the parameters of the remaining layers. The
inner problem includes a strongly convex regularizer ensuring that
the inner function 68 (x, y8 ) is strongly-convex with respect to y8
and the outer function 58 (x, y⇤8 ) is nonconvex with respect to x .

We evaluate the proposed algorithms on the MNIST [18] and
CIFAR-10 [16] datasets using a two-hidden-layer neural network
with 20 hidden units. The network topology G is generated by
the Erd•os-Rènyi random graph approach. The consensus matrix is
chosen asW = I � 2L

3_max (L) , where L is the Laplacian matrix of G
and _max (L) denotes the largest eigenvalue of L.

2) Performance Comparison: We set the constant learning
rates U = V = 0.5, edge connectivity probability ?2 = 0.5, num-
ber of agents < = 5, and each agent has = = 1000 data samples
and mini-batch size @ = d

p
=e. The network topology is shown

in Fig. 1(a). In Fig. 2, we compare the performance of INTERACT

and SVR-INTERACT with the GT-SGD and SGD algorithms using
the convergence metricM on the MNIST and CIFAR-10 datasets.
We note that both INTERACT and SVR-INTERACT outperform the
baseline algoirthms GT-SGD and SGD. In Fig. 3, we notice a simi-
lar behavior when the number of tasks (and agents) are increased
to 10. More importantly, we note that in all experiment settings,
the SVR-INTERACT algorithm has the lowest sample complexity,
which corroborates our theoretical �ndings.

3) Impact of the Edge Connectivity:We conduct experiments
using �ve-node network systems and compare the performance of
the algorithms on three di�erent network topologies. For the three
settings, we choose the value of the edge connectivity probability
from the discrete set {0.3, 0.5, 0.7}, while the rest of the settings
stay the same as previous experiments. As shown in Fig. 4, we can
observe that the convergence metricM is relatively insensitive to
the change of network topologies. Fig. 4 shows that the convergence
metric M slightly increases as the edge connectivity probability ?2
decreases (i.e., the network becomes sparser).

4) Impact of the Learning Rate: In this experiment, we choose
the learning rates U and V from the discrete set {0.5, 0.1, 0.01, 0.001}.
We �x the number of agents to �ve and set ?2 = 0.5. The rest
of the experiment settings stay the same as in previous experi-
ments. As shown in Fig. 5, larger values of learning rates U or
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V lead to faster convergence rates for both INTERACT and SVR-
INTERACTalgorithms.

7 CONCLUSION
In this paper, we developed two algorithms called INTERACT and
SVR-INTERACT for solving decentralized non-convex-strongly-
convex bilevel optimization problems. We showed that, to achieve
an n-stationary point, INTERACT and SVR-INTERACT have the
communication complexity of O(n�1) and sample complexities of
O(=n�1) and O(

p
=n�1), respectively. Our numerical studies cor-

roborate the theoretical performance of our proposed algorithms.
We note that our paper is the �rst to explore decentralized bilevel
learning, which opens up several interesting directions for future re-
search. For instance, it would be of interest to develop di�erentially-
private algorithms for decentralized bilevel learning over networks.
Also, one can adopt compression techniques to further reduce com-
munication costs, especially for large-scale deep learning models.
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