
NET-FLEET: Achieving Linear Convergence Speedup for Fully
Decentralized Federated Learning with Heterogeneous Data

Xin Zhang⇤, Minghong Fang+, Zhuqing Liu+, Haibo Yang+, Jia Liu+, and Zhengyuan Zhu⇤
⇤Department of Statistics, Iowa State University

+Department of Electrical and Computer Engineering, The Ohio State University

ABSTRACT
Federated learning (FL) has received a surge of interest in recent
years thanks to its bene�ts in data privacy protection, e�cient com-
munication, and parallel data processing. Also, with appropriate
algorithmic designs, one could achieve the desirable linear speedup
for convergence e�ect in FL. However, most existing works on FL
are limited to systems with i.i.d. data and centralized parameter
servers and results on decentralized FL with heterogeneous datasets
remains limited. Moreover, whether or not the linear speedup for
convergence is achievable under fully decentralized FL with data
heterogeneity remains an open question. In this paper, we address
these challenges by proposing a new algorithm, called NET-FLEET,
for fully decentralized FL systems with data heterogeneity. The key
idea of our algorithm is to enhance the local update scheme in FL
(originally intended for communication e�ciency) by incorporating
a recursive gradient correction technique to handle heterogeneous
datasets. We show that, under appropriate parameter settings, the
proposed NET-FLEET algorithm achieves a linear speedup for con-
vergence. We further conduct extensive numerical experiments to
evaluate the performance of the proposed NET-FLEET algorithm
and verify our theoretical �ndings.

CCS CONCEPTS
• Computing methodologies!Machine learning.

KEYWORDS
Decentralized federated learning, optimization, algorithm design
ACM Reference Format:
Xin Zhang⇤, Minghong Fang+, Zhuqing Liu+, Haibo Yang+, Jia Liu+, and
Zhengyuan Zhu⇤. 2022. NET-FLEET: Achieving Linear Convergence Speedup
for Fully Decentralized Federated Learning with Heterogeneous Data. In The
Twenty-third International Symposium on Theory, Algorithmic Foundations,
and Protocol Design for Mobile Networks and Mobile Computing (MobiHoc
’22), October 17–20, 2022, Seoul, Republic of Korea. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3492866.3549723

1 INTRODUCTION
Federated learning (FL) is a powerful distributed training paradigm
for modern large-scale machine learning [1, 2, 10, 11, 13, 16, 22,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/3492866.3549723

33, 35–37]. FL leverages a large number of workers to collabora-
tively learn a global model. Mathematically, FL aims to solve an
optimization problem in the form of:

min
x2R?

5 (x) ,
1
<

<’
8=1

58 (x), (1)

where 58 (x) , E'⇠D8 [58 (x; '8)] is the loss function of the data dis-
tributionD8 at worker 8 , and< is the number of workers. Di�erent
from traditional learning algorithms where data are collected and
stored in a centralized server, FL allows the training data distributed
at the workers, which could be smart phones, robots, network sen-
sors, or other local information sources. A global model can be
trained without the need to share the workers’ data over the net-
work, thus helping preserve data privacy. However, FL also faces
several major technical challenges:

(C1). Data Heterogeneity: In conventional distributed learning,
the data are either globally available or randomly shu�ed and
assigned to each worker. Thus, it is safe to assume that the data
distributions at the workers are identical, i.e. D8 = D9 , 88 2 [<].
Unfortunately, in FL systems, data are generated locally at each
worker based on their own circumstances. As a result, data hetero-
geneity among the workers is unavoidable. Such data heterogeneity
imposes signi�cant challenges in designing FL algorithms and their
training performance analysis.
(C2). Unreliable Centralized Server:Most current distributed
learning systems are based on the server-worker architecture,
where workers are coordinated by a centralized server. However,
the centralized server may su�er several limitations, e.g., vulner-
ability to cyber-attacks and being a signi�cant communication
bottleneck. Additionally, in the context of FL, it is sometimes hard
or even infeasible to �nd a trustworthy centralized server with
whom all workers are willing to share information.

The above key challenges motivate us to consider fully decentral-
ized FL systems (i.e., without any centralized server) deployed over
peer-to-peer networks. Toward this end, in this paper, we focus
on the fundamental “linear speedup for convergence” problem for
decentralized FL under data heterogeneity. In the literature, it is
well-known that the centralized-server-aided FL enjoys the “linear
speedup for convergence” property. Speci�cally, the work in [28, 39]
showed that the celebrated FedAvg algorithm and its variants un-
der the homogeneous data setting can achieve a convergence rate
of $ (1/

p
< () with a su�ciently large communication rounds (,

where< is the number of workers and is the number of local
update rounds. Notably, the $ (1/

p
< () convergence rate implies

a “linear speedup” with respect to the number of workers<. This
is because, to attain an n-accuracy in convergence, an algorithm
with a convergence rate O(1/

p
() takes O(1/n2) steps. In contrast,

https://doi.org/10.1145/3492866.3549723
https://doi.org/10.1145/3492866.3549723

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Zhang et al.

an algorithm with a convergence rate O(1/
p
<() needs O(1/<n2)

steps (the hidden constant in Big-O is the same). In this sense, the
convergence rate O(1/

p
<() implies a linear speedup with respect

to the number of workers. Such a linear speedup is highly desirable
because it implies that one can e�ciently leverage the massive
parallelism in large-scale FL systems. However, under the data het-
erogeneity and unreliable centralized server challenges outline in
(C1-C2), a fundamental open question arises: Can we still achieve
the state-of-the art linear speedup for convergence, i.e., $ (1/

p
< (),

under a fully decentralized FL system with data heterogeneity?
In this paper, we give an a�rmative answer to this question and

propose a new recursive gradient correction based fully decentralized
FL algorithm. Our main contributions are summarized as follows:
• To circumvent the unreliable centralized server challenge, we
propose a fully decentralized network FL algorithm called De-
centralized Networked Federated Learning with Recursive Gradient
Correction (NET-FLEET). In NET-FLEET, there is no centralized
server and workers only need to share information with their
neighboring nodes in each communication round. Similar to
FedAvg-type algorithms, our proposed NET-FLEET algorithm
allows the workers to run multiple local updates between two
consecutive communication rounds with their neighbors, so as
to reduce the communication load. By eliminating the central-
ized server, our NET-FLEET algorithm achieves gains in both
robustness and �exibility.

• By proposing a new recursively corrected stochastic gradient esti-
mator technique, our NET-FLEET algorithm works with decen-
tralized network systems where workers hold heterogeneous
datasets. It is worth noting that, although the conventional gradi-
ent tracking method [25, 26, 32] shares some similarity with our
technique, the conventional gradient tracking method cannot be
directly adopted in decentralized FL since the gradient estimators
for local updates are not clearly de�ned in conventional gradi-
ent tracking. In contrast, our new corrected gradient estimator
e�ciently approximates the global stochastic gradient, so that it
can handle data heterogeneity in decentralized FL.

• We establish theoretical guarantees for the convergence perfor-
mance of NET-FLEET. The key challenge in the analysis is to
examine the local model consensus error caused by multiple lo-
cal updates contained in one round of fully decentralized model
averaging. So far, most theoretical results in the FL literature
rely on the assumption of homogenous datasets or gradient dis-
similarity conditions. In this work, we relax these conditions
and show that our proposed algorithm enjoys an $ (1/

p
<()

convergence rate with arbitrary heterogeneous datasets. Our
result implies a linear speedup for convergence with respect to
the worker number. Notably, our analysis and convergence re-
sults do not require the bounded gradient and homogeneous data
assumptions, which could be of independent interest to general
non-convex FL problems.

Collectively, our results in this paper contribute to the state of the
art of decentralized FL with data heterogeneity. The rest of the
paper is organized as follows. In Section 2, we review the literature
to put our work in comparative perspectives. In Section 3, we for-
mally state decentralized FL problem and propose our NET-FLEET
algorithm. The convergence rate and complexity analysis of our

algorithms are provided in Section 4. We provide numerical results
in Section 5 to verify the theoretical results of our algorithms. In
Section 6, we provide concluding remarks and discussions.

2 RELATEDWORK
In this section, we provide a quick overview on recent related work
on FL algorithms with homogeneous and heterogeneous datasets,
as well as algorithms for fully decentralized FL in the literature.

1) FL with Homogenous Datasets: The federated averaging
(FedAvg) algorithm, also known as “Local SGD,” was �rst developed
by [23] as a heuristic approach to address FL. FedAvg lets workers
run successive SGD updates with local data before communicat-
ing with the central server, thus achieving better communication
e�ciency than the traditional parallel SGD. Since then, FedAvg has
sparked a large number of follow-ups that focus on theoretical per-
formance of FL with homogeneous data (see, e.g., [20, 28–30, 39]).
Under the homogeneous data assumption, most of the works pro-
vide a linear speedup for convergence, i.e. an $ (1/

p
<(), for a

su�ciently large communication rounds (, which matches the state-
of-the-art convergence rate of the parallel SGD [3, 6]. Furthermore,
it has also been shown in [20] that FedAvg enjoys a better general-
ization performance than parallel SGD.We refer readers to excellent
recent surveys [10, 16] for a comprehensive review.

2) FLwithHeterogeneousDatasets:More recently, researchers
have started to investigate the performance of FedAvg and its vari-
ants for FL with heterogeneous datasets. The work in [43] �rst
showed that the accuracy of FL degrades signi�cantly for neural net-
works trained on highly skewed heterogeneous datasets. They ex-
plained such accuracy degradation by the weight divergence, which
can be quanti�ed by the Wasserstein distance between the popula-
tion data distributions and the workers’ data distributions. To miti-
gate such worker-drift e�ects, they proposed a strategy to improve
training with heterogeneous data by sharing a small subset of data
between all the workers. So far, most of the existing theoretical work
in the literature (see, e.g., [7, 27, 31, 39]) analyzed FedAvg’s worker-
drift with a (⌧,⌫)-bounded gradient dissimilarity assumption (GBD
assumption), i.e., 1

<
Õ<
8=1 kr58 (x) � r5 (x)k2  ⌧2

+ ⌫2kr5 (x)k2,
88 2 [<]. With the (⌧,⌫)-GBD assumption. These works showed
that FedAvg could achieve a linear speedup for convergence with
the rounds of local updates being 3p(/<. To relax the extra as-
sumption on gradients, the work in [19] proposed a Variance Re-
duced Local SGD (VRL-SGD) algorithm for FL with heterogeneous
data. VRL-SGD introduces an auxiliary variable to track average
deviation between the local gradients and the corresponding global
gradient of the same model parameters, and uses it to approximate
the global gradients during the local SGD updates.

To further reduce the communication complexity, the work in
[34] recently developed a generalized FedAvg (G-FedAvg) algo-
rithm with two-sided learning rates and improved to be as large
as (/<. In G-FedAvg, the workers �rst run local updates with a
local step-size, then upload the local parameter changes to the cen-
tralized server. Upon receiving workers’ information, the server
updates the global model parameter with the local changes and
a server-side step-size. Due to the two-sided learning rates, the
G-FedAvg achieved a linear speedup for convergence with a large
 . But their analysis and convergence results are still limited by

NET-FLEET: Decentralized Federated Learning with Heterogeneous Data MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

the dissimilarity of local gradients. The work in [12] proposed a
Stochastic Controlled Averaging (SCAFFOLD) algorithm, which cor-
rects the worker-drift problem also by utilizing two-sided learning
rates and control variables. SCAFFOLD estimates the worker-drift
by the di�erence between the server-side and worker-side control
variables and uses it to correct the local update. After rounds
of local updates, the workers send the local parameter changes
to the centralized server for server-side update. By using the two-
sided step-sizes and control variables, SCAFFOLD achieves a linear
speedup for convergence without making assumptions on gradi-
ents. However, the aforementioned algorithms only work for the
systems with a centralized parameter server.

3) Decentralized FL Algorithms: Decentralized FL has also
received increasing attention recently, which is motivated by the
fact that in some FL scenarios, the centralized server is not trustable.
For example, the work in [17] proposed a Local Decentralized SGD
(LD-SGD) algorithm for decentralized FL. LD-SGD can be viewed
as a variant of the well-known Decentralized SGD (DSGD) algo-
rithm [18, 24, 40, 41]. In LD-SGD, the workers perform multiple
local updates and then communicate with their neighbors to per-
form one round of parameter aggregation. It is shown that LD-SGD
could achieve a linear speedup for convergence under the bounded
gradient assumption. Recently, the work in [5] developed a peri-
odic decentralized momentum SGD (PD-SGDM) algorithm, which
uses the gradient momentum term to improve the convergence
performance. With a bounded gradient assumption, PD-SGDM can
achieve a linear speedup for convergence as long as the rounds of
local updates is bounded by = 3p(/<, which matches the number
of local updates of the FedAvg algorithm. The work in [38] also
proposed a decentralized momentum SGD algorithm with local up-
dates. Unlike the PD-SGDM which assumes the bounded gradient,
[38] leverages the generalized GBD assumption to handle the data
heterogeneity and achieve the same linear speedup. In this work,
we aim to achieve a linear speedup for decentralized federated
learning without any assumption on gradient boundedness.

The most related work to our NET-FLEET is the decentralized
FL stochastic gradient tracking (DSGT) algorithm proposed by [22].
In DSGT, the workers �rst run rounds local SGD updates and
then perform one round of stochastic gradient tracking update.
However, the authors only provided a convergence analysis for the
case with = 0, i.e., no local update. In comparison, our NET-FLEET
algorithm employs a local update scheme with a new recursive
gradient correction technique. We show that NET-FLEET achieves
a linear speedup for convergence with local updates rounds =
3p(/< without any bounded gradient assumption.

3 PROBLEM STATEMENT AND ALGORITHM
DESIGN

In this section, we will �rst state the fully decentralized FL problem.
Then, we will present our NET-FLEET algorithm.

3.1 Decentralized Federated Learning
In the fully decentralized FL scenario, the workers form a peer-to-
peer network system, which can be represented by an undirected
connected graphG = (N ,L). Here,N andL are the sets of workers
and edges, respectively, with |N | = <. The workers are capable

of local computation and communicating with their neighboring
workers via the edges in L. The goal of fully decentralized FL is
to have the workers distributively and collaboratively solving the
global optimization problem in the following form:

min
x2R?

5 (x) = min
x2R?

1
<

<’
8=1

58 (x), (2)

where each local objective function 58 (x) , EZ⇠D8
58 (x; Z) is only

observable to worker 8 and not necessarily convex. Here, D8 repre-
sents the distribution of the dataset at node 8 , which is heterogeneous
across workers. To solve Problem (2) in a decentralized fashion, one
can reformulate Problem (2) in the following equivalent form by
introducing a local model copy at each worker:

Minimize
1
<

<’
8=1

58 (x8) (3)

subject to x8 = x9 , 8(8, 9) 2 L .

where x , [x>1 , · · · , x
>
<]

>, and x8 is an introduced local copy at
worker 8 . To solve Problem (3), we consider an n2-stationary point
x de�ned as follows:��� 1

<

<’
8=1

r58 (x̄)
���2

| {z }
Global gradient magnitude

+
1
<

<’
8=1

kx8 � x̄k2

| {z }
Consensus error

 n2, (4)

where x̄ , 1
<

Õ<
8=1 x8 represents the global average across all work-

ers. Unlike the n2-stationary point for centralized FL, the above
criterion in Eq. (4) includes two components: the �rst term is the
gradient norm of the global loss function and the second term is
the average consensus error across all local copies. In this work,
we aim to develop an e�cient algorithm to attain an n2-stationary
point for fully decentralized FL with heterogeneous datasets and
study its speedup performance as the number of workers increases.

3.2 The NET-FLEET Algorithm
Now, we present our Decentralized Networked Federated Learning
with Recursive Gradient Correction (NET-FLEET) algorithm. To
solve Problem (1) in decentralized network systems where workers
reach a consensus on a global optimal solution, a common approach
in the literature is to let workers aggregate neighboring information
through a consensus matrixW 2 R<⇥< . Let [W]8 9 represent the
element in the 8-th row and the 9-th column inW. Then, a consensus
matrixW should satisfy the following properties:

(a) Doubly Stochastic:
Õ<
8=1 [W]8 9 =

Õ<
9=1 [W]8 9 = 1.

(b) Symmetric: [W]8 9 = [W] 98 , 88, 9 2 N .
(c) Network-De�ned Sparsity Pattern: [W]8 9 > 0 if (8, 9) 2 L;

otherwise [W]8 9 = 0, 88, 9 2 N .
The above properties imply that the eigenvalues of W are real and
can be sorted as �1 < _< (W)  · · ·  _2 (W) < _1 (W) = 1.
We de�ne the second-largest eigenvalue in magnitude of W as
_ , max{|_2 (W) |, |_< (W) |} for further notation convenience. It
can be seen later that _ plays an important role in the step-size
selection and characterizing the algorithm’s convergence rate.

Similar to the centralized-server-based FL, a key de�ning feature
in decentralized FL is that it allows workers to update the local
model parameters multiple rounds before workers’ communication

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Zhang et al.

and model averaging. However, with heterogeneous data at di�er-
ent workers, the update directions (i.e., the stochastic gradients) are
not identically distributed. Thus, after several local update rounds,
the local parameters will move towards their worker-side optimum
x⇤(8) , where x⇤(8) = argmin 58 (x). This phenomenon may cause
divergence of the algorithm and is often referred to as the “worker-
drift problem.” Moreover, the lack of a centralized sever further
worsens the worker-drift problem. To address this challenge, in our
NET-FLEET algorithm, we introduce an auxiliary parameter y(8) at
each worker 8 to approximate the global stochastic gradients. Our
NET-FLEET algorithm is illustrated in Algorithm 1.

Speci�cally, NET-FLEET has inner loops at each worker for
the local updates between two consecutive outer loop iterations
for inter-worker communications. Also, there are (rounds of inter-
worker communications. At each outer loop iteration B , workers
share the local model parameter x(8)B,0 and the corrected gradient

parameter y(8)B,0 with neighboring workers, and initialize the inner-

loop’s starting points as x(8)B,1 and y(8)B,1 based on the neighboring
average and local stochastic gradient update. Then, within the local
inner loops, the update of y(8) follows a recursive structure:

y(8)
B,:+1 = y(8)

B,:
+ g(8)

B,:+1 � g(8)
B,:

, 8: 2 1, · · · , � 1, (5)

where B and : are the indices of outer and inner loops, respectively,
and g(8)

B,:
= r58 (x

(8)
B,:

; ' (8)
B,:

) is the local stochastic gradient with ran-

dom sample ' (8)
B,:

. In (5), it can be easily veri�ed that the correction

term follows y(8)
B,:

� g(8)
B,:

= y(8)B,1 � g(8)B,1 =
Õ
9 2N8

[W]8 9y
(8)
B,0 � g(8)B,0 ,

which measures the di�erence between the local stochastic gradi-
ent and neighboring weighted-average update direction. By adding
such correction term to g(8)

B,:+1, y
(8)
B,:+1 will be close to the global

stochastic gradient as outer loop iteration B gets large. Note that in
NET-FLEET, the model parameter x is updated (times, but the
number of information communication rounds between workers is
only (times. Thus, compared with traditional decentralized learn-
ing algorithms, NET-FLEET reduces the overall communication
cost by a 1/ factor.

R����� 1. Some important remarks regarding our recursive
gradient correction technique are in order. First, we note that the
idea of gradient correction has appeared in the literature, including
stochastic variance reduction (SVR) method in SVRG[9]/SPIDER[4],
gradient tracking (GT) method in GNSD[21]/GT-DSGD[32], etc.
However, the key di�erences between our method and these exist-
ing works are: 1) The SVR method requires a precise global gradient
estimation at each outer loop iteration, while in our method the
outer loops’ gradient estimator is based on an inexact neighboring
averaging and recursive correction; 2) The GT method is designed
with a single-loop structure and demands one round of communi-
cation after each local update, thus su�ering high communication
costs. This limitation is due to the iterates’ contraction result in
the conventional convergence analysis for the GT method (cf. [21,
Lemma 3]), which does not hold for multiple local updates. In con-
trast, our new recursive gradient correction method works with
multiple local updates under decentralized FL. In this sense, the GT
method is a special case of our method when local updates = 1.

Algorithm 1 The NET-FLEET Algorithm.
.

Input: Initial point x0, learning rate [, communication rounds (,
local update rounds .

1: Set x(8)0,0 = x0 and y(8)0,0 = g(8)0,0 = r58 (x
(8)
0,0 ; '

(8)
0,0) at worker 8 , for

all 8 2 [<].
2: for B = 0, · · · , (� 1 do
3: for worker 8 , 8 2 [<] do
4: Share (x(8)B,0 , y

(8)
B,0) with neighboring nodes;

5: Update x(8)B,1 =
Õ
9 2N8

[W]8 9x
(9)
B,0 � [y(8)B,0 ;

6: Calculate g(8)B,1 = r58 (x
(8)
B,1 ; '

(8)
B,1);

7: Correct y(8)B,1 =
Õ
9 2N8

[W]8 9y
(9)
B,0 + g(8)B,1 � g(8)B,0 ;

8: for : = 1, · · · , � 1 do
9: Update x(8)

B,:+1 = x(8)
B,:

� [y(8)
B,:

;

10: Calculate g(8)
B,:+1 = r58 (x

(8)
B,:+1; '

(8)
B,:+1);

11: Correct y(8)
B,:+1 = y(8)

B,:
+ g(8)

B,:+1 � g(8)
B,:

12: end for
13: Set x(8)B+1,0=x

(8)
B, , y

(8)
B+1,0=y

(8)
B, , g

(8)
B+1,0=g

(8)
B, ;

14: end for
15: end for

4 THEORETICAL PERFORMANCE ANALYSIS
In this section, we will establish the convergence properties of
our proposed NET-FLEET algorithm. Due to space limitation, we
outline the key steps of the proofs of Theorem 1. We relegate the
proof details to the supplementary material. We start with stating
the following assumptions:

A��������� 1. The objectives 5 (·) and 58 (·) satisfy:
(1) 5 (x) is bounded from below, i.e., there exists an x⇤ 2 R? , such

that 5 (x) � 5 (x⇤), 8x 2 R? ;
(2) The function 58 (x) is continuously di�erentiable and has!-Lipschitz

continuous gradients, i.e., there exists a constant ! > 0 such that
|r58 (x1) � r58 (x2) |  !kx1 � x2k2, 8x1, x2 2 R? ;

(3) The stochastic gradient is unbiased and has bounded variance with
respect to the local data distribution, i.e., E'⇠D8 [r58 (x; ')] =
r58 (x) and Var'⇠D8 [r58 (x; ')]  f

2 for some constant f > 0.

It is worth noting that we do not need the conventional bounded
gradient variability assumption in most of the literature of FL with
non-i.i.d. datasets. To analyze the algorithm convergence, we de�ne
a potential function as

PB,: , 5 (x̄B,:)+
1

<2

<’
8=1

(kx(8)
B,:

�x̄B,: k2+⇠1[2ky
(8)
B,:

�ȳB,: k2),

where ⇠1 = 6(1 + _ � _) /(1 � _)2 and x̄B,: = 1
<

Õ<
8=1 x

(8)
B,:

,

ȳB,: = 1
<

Õ<
8=1 y

(8)
B,:

. With the above assumptions and de�nitions,
we are now in a position to present the main convergence result
for our NET-FLEET algorithm as follows:

NET-FLEET: Decentralized Federated Learning with Heterogeneous Data MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

T������ 1 (C���������� ��NET�FLEET). Under Assumption 1,
if the step-size [in Algorithm 1 satis�es:

[ min
n 1
3!

,
1

<!2 2 ,
(1 � _)p

12(1 + _ � _) !2
,

r
1�_

24!2 2 ,

(1�_)3<
144

,

r
<(1�_)2

144! 2 ,
(1�_)

3(1+_ �_)< !2
,
(1�_)2 (1+_ �_)<

144

o
,

then Algorithm 1 has the following convergence result:

1
(

(�1’
B=0

 �1’
:=0
E
⇥
kr5 (x̄B,:)k2+

!2

<

<’
8=1

kx(8)
B,:

� x̄B,: k2
⇤


2E[P0,0�P(,0]
([

+
3!f2[
<

+
72[f2

(1�_)2<
+
72(1+_ �_)[f2

(1�_)3 <
. (6)

Several important remarks for Theorem 1 are in order. First, the
convergence metric in Theorem 1 is kr5 (x̄B,:)k2+ !

2

<
Õ<
8=1 kx

(8)
B,:

�

x̄B,: k2, where the �rst term is the global gradient magnitude for the
non-convex objectives and the second term is the average consensus
error across all local parameters in the network system. Although
depending on the Lipschitz constant !, this metric does not lose
generality because we can change themetric to be problem instance-
independent by removing !2 from the second term, which is due
to kr5 (x̄B,:)k2+ 1

<
Õ<
8=1 kx

(8)
B,:

� x̄B,: k2 
1

min{1,!2 } (kr5 (x̄B,:)k
2
+

!2
<

Õ<
8=1 kx

(8)
B,:

� x̄B,: k2). With the metric in Theorem 1 going to zero,
we have that all local parameters will asymptotically be equal and
reach a �rst-order stationary point of the global objective function
5 (·). Moreover, Theorem 1 provides a �nite-time convergence rate
guarantee for our NET-FLEET algorithm.

Second, for the convergence error on the right-hand-side (RHS)
of Eq. (6), with simple derivations, the �rst term can be bounded as:

2
([
E[P0,0�P(,0] 

2
([

"
5 (x0)+

⇠1[2

<2

<’
8=1

ky(8)0,0�ȳ0,0k
2
� 5 (x⇤)

#
,

which is dependent on the initialization. The third and fourth terms
are a�ected by the network topology: a sparser network (i.e., _ is
closer to 1) will have larger values in these two terms.

Third, the range of step-size [is also dependent on the network
topology. A sparse network leads to a smaller step-size. In the
following, we show that by properly selecting the parameters, our
proposed NET-FLEET can achieve a linear speedup for convergence:

C�������� 2 (L����� S������). Under Assumption 1, by setting
 = (1/3/< and [= $ (

p
</(), if the numbers of global and local

communication rounds are su�ciently large such that (� <1/3,
then NET-FLEET has the following convergence rate:

1
(

(�1’
B=0

 �1’
:=0
E
⇥
kr5 (x̄B,:)k2+

!2

<

<’
8=1

kx(8)
B,:

� x̄B,: k2
⇤

= $
⇣E[P0,0�P(,0]

p
(<

+
f2

p
(<

⌘
, (7)

which implies a linear speed up for convergence.

It is worth noting that our algorithm achieves the same =
(1/3/< number of local updates as in [5] without any bounded
gradient assumption.

4.1 Proof Sketch of Theorem 1
Due to space limitation, we provide a proof sketch of Theorem 1
and relegate the proof details to our online technical report[42]. For
better readability, in this section, we organize the proof of Theo-
rem 1 into several key lemmas. Our �rst step to prove Theorem 1 is
to show the descent property of our NET-FLEET algorithm, which
is stated in the following lemma:

L���� 1. Under Assumption 1, the following inequality holds for
any outloop B in Algorithm 1:

E[5 (x̄B,)� 5 (x̄B,0)]

�
[

2

 �1’
:=0
E[kr5 (x̄B,:)k2]�

[

2

 �1’
:=0
E


k
1
<

<’
8=1

r58 (x
(8)
B,:

)k
2
�

+
![2

2

 �1’
:=0
E[kḡB,: k2]+

!2[

2<

 �1’
:=0

<’
8=1
E


kx(8)
B,:

�x̄B,: k2
�
. (8)

Although Lemma 1 appears to be similar to conventional analy-
sis, its proof is highly non-trivial. In (8), we focus on the descending
upper bound for each two outloop local model parameters, between
which have inner loop SGD updates, while the conventional anal-
ysis on gradient tracking method studies on two successive local
model parameters with only one round of SGD update. More Specif-
ically, we note that the RHS of (8) contains the consensus error of
local model parameters

Õ �1
:=0

Õ<
8=1 E[kx

(8)
B,:

� x̄B,: k2], which sums
across not only the worker number< but also inner loop iterations
 . In decentralized FL, we hope that the algorithm works with large
< and large to support large-scale systems and reduce communi-
cation costs, respectively, which in turn leads to a large consensus
error. This large consensus error makes the algorithm harder to
converge compared to decentralized learning algorithms. Therefore,
in what follows, we will establish the error bound for the consen-
sus error in Lemma 2. Unlike the conventional gradient-tracking
analysis that simply focuses on one iteration (cf., e.g., Lemma 3 in
[21]), our analysis studies the consensus error across multiple inner
loop iterations, which thus is novel and more challenging.

L���� 2. Under Assumption 1, we have the following bounds for
the consensus error in Algorithm 1:

 �1’
:=0

<’
8=1

kx(8)
B,:

�x̄B,: k2  (1+_(�1))
<’
8=1

kx(8)B,0�x̄B,0k
2

+
[2 2

1�_

 �1’
:=0

<’
8=1

ky(8)
B,:

�ȳB,: k2, (9)

 �1’
:=0

<’
8=1

ky(8)
B,:

�ȳB,: k2  (1+_(�1))
<’
8=1

ky(8)B,0 �ȳB,0k2

+
24 !2

1�_

<’
8=1

kx(8)B,0�x̄B,0k
2
+
6< f2

1�_
+
12[2 2!2

1�_

⇥

 �1’
:=0

<’
8=1

ky(8)
B,:

�ȳB,: k2+
12<[2 2!2

1�_

:�1’
C=0

kȳB,C k2 . (10)

From (9)-(10), we can see that the consensus errors on x(8) and
y(8) are coupled. Moreover, the error bounds are accumulated as in-
ner loop rounds and worker number< increase. This observation

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Zhang et al.

suggests that we need to judiciously design a potential function
PB,: , so that the linear speedup for convergence remains achievable.

By combining Lemmas 1 and 2 and after some algebraic simpli�-
cations, we can conclude that:

[

2

 �1’
:=0
E[kr5 (x̄B,:)k2] E[PB,0�PB,]�

[⇠rf
2

 �1’
:=0
E[krfB,: k2]

�
⇠x
<2

E[
<’
8=1

kx(8)B,0�x̄B,0k
2
]�
⇠y⇠1[2

<2
E[

<’
8=1

ky(8)B,0�ȳB,0k
2
]

+(
1
2
+
12⇠1! [2

(1�_)<
+
72! 2[2

(1�_)2<
)
! [2f2

<
+
36 [2f2

(1�_)2<
+

6⇠1[2f2

(1�_)<
,

where ⇠rf , ⇠x and ⇠y are three constants dependent on the step-
size [(see detailed de�nitions in the supplementary material). Then,
by properly choosing the step-size, we can ensure that⇠rf ,⇠x and
⇠y are positive, and so terms associated with them can be dropped.
Finally, by telescoping the above inequality, we arrive at the desired
result as stated in Theorem 1 and the proof is complete.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate our NET-FLEET algorithm onMNIST [15]
and CIFAR-10 [14] datasets. Our experiments are conducted with
four NVIDIA Tesla V100 GPUs.

1) Datasets and Learning Models: 1-a) MNIST with Convo-
lutional Neural Networks (CNN): We train a CNN classi�er on the
MNIST [15] dataset. The adopted CNNmodel has two convolutional
layers (size 3 ⇥ 3 ⇥ 16), each of which is followed by a max-pooling
layer with size 2 ⇥ 2 and then a fully connected layer. The ReLU
activation is used for the two convolutional layers and the “softmax”
activation is used at the output layer. 1-b) CIFAR-10 with Residual
Neural Networks (ResNet): We experiment with classi�cation prob-
lems over the CIFAR-10 [14] dataset with the ResNet18 [8] model.
1-c) Dataset Partition: For independent and identically distributed
(i.i.d.) data partition, all workers can access the same global dataset;
in the case of non-i.i.d. heterogeneous data partition, we use the
same data partition strategy as in [34] that each worker can access
data with at most two labels. Specifally, for the non-i.i.d. setting,
we �rst sort the training data by label, then divide all the training
data into 250 shards with 200 data samples, and randomly assign
two shards to each client.

2) Network System Model:We consider a decentralized net-
work systemwith 50workers. The network topology G is generated
by the Erd•os-Rènyi random graph. Without speci�cation, we set the
edge connectivity probability ?2 = 0.5 for the random graph gen-
eration. The consensus matrix is chosen as W= I� 2L

3_max (L) , where
L is the Laplacian matrix of G and _max (L) denotes the largest
eigenvalue of L.

3) Baselines and Parameter Settings:We compare our NET-
FLEET algorithm with the state-of-the-art LD-SGD [17], GT-SGD
[32] and DSGD [18] on decentralized network systems. The number
of local update rounds is set to 10 for NET-FLEET and LD-SGD.
For MNIST on CNN, we choose the initial step-size as 0.01 and
reduce the step-size to by half for every 100 iterations. The local
batch size is �xed at 32. For CIFAR-10 on ResNet, we choose the

step-size as 0.001. The local batch size is �xed at 128 for CIFAR-10
training.

4) Performance Comparisons:
We compare the test accuracy with respect to the numbers of

communication rounds and training samples. To better visualize the
results, the test accuracies are smoothed by averaging the values in
a window of size 10. Fig. 1 illustrates the results of decentralized
algorithms of CNN on MNIST. In Fig. 1 (a), we can see that NET-
FLEET and LD-SGD have similar performances under i.i.d. data
partition and signi�cantly outperform DSGD and GT-SGD with the
same communication rounds. Fig. 1 (b) shows that under hetero-
geneous data, NET-FLEET outperforms the other algorithms: with
1000 communication rounds, the testing accuracy of NET-FLEET is
5% higher than that of LD-SGD and 8% higher than those of DSGD
and GT-SGD.

Fig. 2 illustrates the results of NET-FLEET for ResNet model
on CIFAR-10 dataset. In Fig. 2(a), we can see that NET-FLEET and
LD-SGD have similar performances under i.i.d. data partition and
signi�cantly outperform DSGD and GT-SGD with the same number
of communication rounds. Fig. 2(b) shows that under heterogeneous
data partition, NET-FLEET outperforms the other algorithms: with
500 communication rounds, the NET-FLEET achieves higher test
accuracy than that of LD-SGD, DSGD and GT-SGD.

5) Impact of the Local Update Rounds:
A key feature in FL algorithms is that the workers are allowed to

perform multiple local parameter updates. In this experiment, we
examine the impact of di�erent number of local update rounds on

(a) The i.i.d. case. (b) The non-i.i.d. case.

Figure 1: Test accuracy of CNN on MNIST by di�erent decen-
tralized learning algorithms.

(a) The i.i.d. case. (b) The non-i.i.d. case.

Figure 2: Test accuracy of ResNet on CIFAR-10 decentralized
learning algorithms.

NET-FLEET: Decentralized Federated Learning with Heterogeneous Data MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

(a) The i.i.d. case. (b) The non-i.i.d. case.

Figure 3: Test accuracy of CNN onMNIST with di�erent local
update rounds.

(a) The i.i.d. case. (b) The non-i.i.d. case.

Figure 4: Test accuracy of CNN on MNIST with di�erent
number of workers.

the training performance. We run NET-FLEET to solve classi�cation
problems with the CNN model over the MNIST [15] dataset. We �x
the step-size at 0.01, edge connectivity ?2 at 0.5, local batch size
at 32, and worker number at 50. We choose the number of local
update rounds from the discrete set {1, 8, 10, 20}. Fig. 3 shows
the performance of NET-FLEET with di�erent number of local
update rounds . As shown in Fig. 3, the test accuracy increases as
 increases under both the i.i.d. and heterogeneous data settings:
with communication rounds being �xed at 1000, NET-FLEET with
 = 1 has accuracy less than 80%. In contrast, with = 8, = 10
and = 20, NET-FLEET achieves more than 95% testing accuracy.

6) Impact of the Number of Workers: We conduct the fol-
lowing experiments with di�erent number of workers. In this ex-
periment, we choose the number of workers from the discrete set
{10, 30, 50, 70} and �x the step-size at 0.01, local update rounds at
10, edge connectivity ?2 at 0.5, and local batch size at 32. As shown
in Fig. 4, convergence results with di�erent number of workers
have similar performances in i.i.d case. NET-FLEET achieves 95%
accuracy in the i.i.d case. In the non-i.i.d heterogeneous case, we
can see that as the number of workers decreases, the convergence
rate decreases. NET-FLEET obtains an accuracy around 96% with
10 workers and achieves more than 97.5% test accuracy with 70
workers in i.i.d case. In heterogeneous data case, NET-FLEET’s ac-
curacy is approximately 92.5% with 10 workers and achieves a test
accuracy more than 97.5% with 70 workers.

7) Impact of the Edge Connectivity Probability:
For the decentralized network system, the network graph G is

generated by the Erd•os-Rènyi random graph with edge connection
probability ?2 . In the �rst experiment, we examine the impact of

(a) The i.i.d. case. (b) The non-i.i.d. case.

Figure 5: Test accuracy of CNN onMNIST with di�erent edge
connection probability ?2 .

(a) The i.i.d. case. (b) The non-i.i.d. case.

Figure 6: Test accuracy of CNN onMNIST with di�erent local
step-size.

di�erent ?2 -values on the training performance with the CNN
model over the MNIST dataset. We choose the ?2 -value from the
discrete set {0.1, 0.3, 0.5, 0.9} and �x the number of workers at
50, local update rounds at 10, step-size at 0.01, and local batch
size at 32. Fig. 5 shows that the convergence result with di�erent
edge connectivity ?2 -values have similar performances in the i.i.d
case. The experiments achieve a 96% accuracy in the i.i.d case. In
the heterogeneous data case, we can see that as ?2 increases, the
test accuracy increases slightly, which shows that the learning
performance of NET-FLEET is insensitive to the ?2 -value.

8) Impact of the Step-size: In this experiment, we choose the
step-size from the discrete set {0.0005, 0.001, 0.005, 0.01} and �x
worker number at 50, local update rounds at 10, edge connectivity
?2 at 0.5, and local batch size at 32, global batch size at 512. As
shown in Fig. 6, larger local step-sizes lead to faster convergence
rates in both i.i.d and non-i.i.d cases. NET-FLEET achieves accuracy
less than 75% with a step-size 0.0005, and obtains more than 95%
test accuracy with a step-size 0.01.

6 CONCLUSION
In this paper, we studied fully decentralized federated learning with
data heterogeneity. A novel federated learning algorithm named
NET-FLEET was proposed for fully decentralized network systems.
Our NET-FLEET algorithm allows the workers to keep the local
data and run multiple local update steps during the training, thus
maintaining local data privacy and reducing the communication
costs. We showed that with properly selected parameters, our algo-
rithm achieves the state-of-the-art linear speedup for convergence,

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Zhang et al.

i.e., an $ (1/
p
< () convergence rate, where< is the number of

workers, and (and are the numbers of communication and local
update rounds, respectively. Extensive numerical studies veri�ed
the theoretical performance results of our proposed algorithm.

ACKNOWLEDGMENTS
This work has been supported in part by NSF grants CAREER CNS-
2110259, CNS-2112471, CNS-2102233, CCF-2110252, CCF 1934884,
and SES 1952007.

REFERENCES
[1] B������, T. S., C���, R., M���, T., O��������, A., P����������, I. C., ��� S��, W.

Federated learning of predictive models from federated electronic health records.
International Journal of Medical Informatics 112 (2018), 59–67.

[2] C��, X., F���, M., L��, J., ��� G���, N. Z. Fltrust: Byzantine-robust federated
learning via trust bootstrapping. ISOC Network and Distributed System Security
Symposium (NDSS) (2021).

[3] D����, O., G�����B�������, R., S�����, O., ��� X���, L. Optimal distributed
online prediction using mini-batches. The Journal of Machine Learning Research
13 (2012), 165–202.

[4] F���, C., L�, C. J., L��, Z., ��� Z����, T. Spider: near-optimal non-convex
optimization via stochastic path integrated di�erential estimator. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems
(2018), pp. 687–697.

[5] G��, H., ��� H����, H. Periodic stochastic gradient descent with momentum
for decentralized training. arXiv preprint arXiv:2008.10435 (2020).

[6] G������, S., ��� L��, G. Stochastic �rst-and zeroth-order methods for non-
convex stochastic programming. SIAM Journal on Optimization 23, 4 (2013),
2341–2368.

[7] H���������, F., ���M������, M. On the convergence of local descent methods
in federated learning. arXiv preprint arXiv:1910.14425 (2019).

[8] H�, K., Z����, X., R��, S., ��� S��, J. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (2016), pp. 770–778.

[9] J������, R., ��� Z����, T. Accelerating stochastic gradient descent using
predictive variance reduction. Advances in neural information processing systems
26 (2013), 315–323.

[10] K������, P., M�M����, H. B., A����, B., B�����, A., B�����, M., B������, A. N.,
B�������, K., C������, Z., C������, G., C�������, R., �� ��. Advances and
open problems in federated learning. Foundations and Trends in Machine Learning
14, 1–2 (2021), 1–210.

[11] K���, J., X����, Z., N�����, D., Z��, Y., Z����, Y., ��� G������, M. Reliable
federated learning for mobile networks. IEEE Wireless Communications 27, 2
(2020), 72–80.

[12] K����������, S. P., K���, S., M����, M., R����, S., S����, S., ��� S�����, A. T.
Sca�old: Stochastic controlled averaging for federated learning. In International
Conference on Machine Learning (2020), PMLR, pp. 5132–5143.

[13] K�������, P., S�����, P., Y���, H., H���, M., L��, J., R������, K., ��� V�����
���, P. K. Achieving optimal sample and communication complexities for non-iid
federated learning. In ICML Workshop on Federated Learning for User Privacy and
Data Con�dentiality (2021).

[14] K���������, A., H�����, G., �� ��. Learning multiple layers of features from
tiny images.

[15] L�C��, Y., C�����, C., ��� B�����, C. Mnist handwritten digit database. Avail-
able: http://yann. lecun. com/exdb/mnist (1998).

[16] L�, T., S���, A. K., T��������, A., ��� S����, V. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine 37, 3 (2020),
50–60.

[17] L�, X., Y���, W., W���, S., ��� Z����, Z. Communication e�cient decentralized
training with multiple local updates. arXiv preprint arXiv:1910.09126 (2019).

[18] L���, X., Z����, C., Z����, H., H����, C.�J., Z����, W., ��� L��, J. Can
decentralized algorithms outperform centralized algorithms? a case study for de-
centralized parallel stochastic gradient descent. InAdvances in Neural Information
Processing Systems (2017), vol. 30.

[19] L����, X., S���, S., L��, J., P��, Z., C���, E., ��� C����, Y. Variance reduced
local SGD with lower communication complexity. arXiv preprint arXiv:1912.12844
(2019).

[20] L��, T., S����, S. U., P����, K. K., ��� J����, M. Don’t use large mini-batches,
use local sgd. arXiv preprint arXiv:1808.07217 (2018).

[21] L�, S., Z����, X., S��, H., ��� H���, M. Gnsd: A gradient-tracking based
nonconvex stochastic algorithm for decentralized optimization. In 2019 IEEE
Data Science Workshop (DSW) (2019), IEEE, pp. 315–321.

[22] L�, S., Z����, Y., ��� W���, Y. Decentralized federated learning for electronic
health records. In 2020 54th Annual Conference on Information Sciences and
Systems (CISS) (2020), IEEE, pp. 1–5.

[23] M�M����, B., M����, E., R�����, D., H������, S., ��� � A����, B. A.
Communication-e�cient learning of deep networks from decentralized data.
In Arti�cial Intelligence and Statistics (2017), PMLR, pp. 1273–1282.

[24] N����, A., ��� O�������, A. Distributed subgradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control 54, 1 (2009), 48–61.

[25] P�, S., ��� N����, A. Distributed stochastic gradient tracking methods. Mathe-
matical Programming (2020), 1–49.

[26] �, G., ��� L�, N. Harnessing smoothness to accelerate distributed optimization.
IEEE Transactions on Control of Network Systems 5, 3 (2017), 1245–1260.

[27] S���, A. K., L�, T., S������, M., Z�����, M., T��������, A., ��� S����, V. On
the convergence of federated optimization in heterogeneous networks. arXiv
preprint arXiv:1812.06127 3 (2018).

[28] S����, S. U. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767 (2018).

[29] S����, S. U., ��� K����������, S. P. The error-feedback framework: Better rates
for sgd with delayed gradients and compressed updates. Journal of Machine
Learning Research 21 (2020), 1–36.

[30] W���, J., ��� J����, G. Cooperative sgd: A uni�ed framework for the design and
analysis of local-update sgd algorithms. Journal of Machine Learning Research 22
(2021).

[31] W���, S., T���, T., S��������, T., L����, K. K., M�����, C., H�, T., ��� C���,
K. Adaptive federated learning in resource constrained edge computing systems.
IEEE Journal on Selected Areas in Communications 37, 6 (2019), 1205–1221.

[32] X��, R., K���, U. A., ��� K��, S. An improved convergence analysis for decen-
tralized online stochastic non-convex optimization. IEEE Transactions on Signal
Processing 69 (2021), 1842–1858.

[33] X�, J., G���������, B. S., S�, C., W�����, P., B���, J., ���W���, F. Federated
learning for healthcare informatics. Journal of Healthcare Informatics Research
(2020), 1–19.

[34] Y���, H., F���, M., ��� L��, J. Achieving linear speedup with partial worker
participation in non-i.i.d. federated learning. In International Conference on
Learning Representations (2021).

[35] Y���, H., L��, J., ��� B������, E. S. Cfedavg: achieving e�cient communication
and fast convergence in non-iid federated learning. In 2021 19th International
Symposium onModeling and Optimization inMobile, Ad hoc, andWireless Networks
(WiOpt) (2021), IEEE, pp. 1–8.

[36] Y���, H., Z����, X., K�������, P., ��� L��, J. Anarchic federated learning. In
International Conference on Machine Learning (2022), PMLR, pp. 25331–25363.

[37] Y���, Q., L��, Y., C���, T., ��� T���, Y. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST)
10, 2 (2019), 1–19.

[38] Y�, H., J��, R., ��� Y���, S. On the linear speedup analysis of communication
e�cient momentum sgd for distributed non-convex optimization. In International
Conference on Machine Learning (2019), PMLR, pp. 7184–7193.

[39] Y�, H., Y���, S., ��� Z��, S. Parallel restarted sgd with faster convergence
and less communication: Demystifying why model averaging works for deep
learning. In Proceedings of the AAAI Conference on Arti�cial Intelligence (2019),
vol. 33, pp. 5693–5700.

[40] Y���, K., L���, Q., ��� Y��, W. On the convergence of decentralized gradient
descent. SIAM Journal on Optimization 26, 3 (2016), 1835–1854.

[41] Z���, J., ��� Y��, W. On nonconvex decentralized gradient descent. IEEE
Transactions on Signal Processing 66, 11 (2018), 2834–2848.

[42] Z����, X., F���, M., L��, Z., Y���, H., L��, J., ��� Z��, Z. Net-�eet: Achiev-
ing linear convergence speedup for fully decentralized federated learning with
heterogeneous data. https://kevinliu-osu.github.io/publications/FLEET_TR.pdf.

[43] Z���, Y., L�, M., L��, L., S���, N., C����, D., ��� C������, V. Federated learning
with non-iid data. arXiv preprint arXiv:1806.00582 (2018).

A PROOF OF MAIN RESULTS
For notation convenience, we de�ne the following variables: eW =
W ⌦ I< , g(8)

B,:
= r58 (x

(8)
B,:

; ' (8)
B,:

), rf (8)
B,:

= r58 (x
(8)
B,:

), and aB,: =

[a(8)>
B,:

, · · · , a(8)>
B,:

]
> and āB,: = 1

<
Õ<
8=1 a

(8)
B,:

, for a 2 {x, y, g,rf}.
Here ȳB,: = ḡB,: because of ȳB,0 = ḡB,0 . Also, we de�ne matrix
Q , I � (

1
< 11>) ⌦ I, so it holds that QaB,: = aB,: � 1 ⌦ āB,: .

https://kevinliu-osu.github.io/publications/FLEET_TR.pdf

NET-FLEET: Decentralized Federated Learning with Heterogeneous Data MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

A.1 Proof of Lemma 1
P����. From the !-smoothness of 5 and x̄B,:+1 = x̄B,: � [ȳB,: =

x̄: � [ḡB,: , we have

5 (x̄B,:+1)  5 (x̄B,:) � hr5 (x̄B,:), x̄B,:+1 � x̄B,: i +
!

2
kx̄B,:+1

� x̄B,: k2 = 5 (x̄B,:) � [hr5 (x̄B,:), ḡB,: i +
![2

2
kḡB,: k2 . (11)

Since E[g(8)
B,:

|FB,:] = r5 (8)
B,:

, we have

E[5 (x̄B,:+1) |FB,:]  5 (x̄B,:)�[hr5 (x̄B,:),rfB,: i+
![2

2
E[kḡB,: k2

|FB,:] = 5 (x̄B,:) �
[

2
kr5 (x̄B,:)k2 �

[

2
krfB,: k2 +

[

2
kr5 (x̄B,:)

� rfB,: k2 +
![2

2
E[kḡB,: k2 |FB,:]  5 (x̄B,:) �

[

2
kr5 (x̄B,:)k2

�
[

2
krfB,: k2 +

!2[

2<
kQxB,: k2 +

![2

2
E[kḡB,: k2 |FB,:] . (12)

Taking full expectation on the above inequality and telescoping
from : = 0 to � 1 yields:

E[5 (x̄B,)� 5 (x̄B,0)] �
[

2

 �1’
:=0
E[kr5 (x̄B,:)k2]�

[

2

 �1’
:=0
E[krfB,: k2]

+
![2

2

 �1’
:=0
E[kḡB,: k2]+

!2[

2<

 �1’
:=0
E[kQxB,: k2] . (13)

⇤

A.2 Proof of Lemma 2
P����. First, for any xC and _ = max{|_2 |, |_< |}, we have:

k eWxC �1 ⌦ x̄C k2= k eW(xC �1 ⌦ x̄C)k2 _2kxC �1 ⌦ x̄C k2 . (14)

Note that xB,: = eWxB,0�[
Õ:�1
C=0 yB,C and x̄B,: = x̄B,0�[

Õ:�1
C=0 ȳB,C .

Thus, we have

kQxB,: k2 = k eWxB,0 � [
:�1’
C=0

yB,C � 1 ⌦ (x̄B,0 � [
:�1’
C=0

ȳB,C)k2

(0)
 (1+21)k eWxB,0�1⌦ x̄B,0k2+(1+

1
21

)[2k
:�1’
C=0

yB,C �1⌦ ȳB,C k2

(1)
 _kxB,0 � 1 ⌦ x̄B,0k2 +

[2

1 � _
k

:�1’
C=0

yB,C � 1 ⌦ ȳB,C k2

(2)
 _kQxB,0k2 +

[2:

1 � _

:�1’
C=0

kQyB,C k2, (15)

where (a) follows from kx + yk2  (1 + 2)kxk2 + (1 + 1/2)kyk2 for
any 2 > 0, (b) follows from (14) with 21 = 1/_ � 1, and (c) follows
from the Jensen’s inequality.

Since yB,: = yB,:�1+ gB,: � gB,:�1 = eWyB,0+gB,: �gB,0 and ȳB,: =
ȳB,0+ ḡB,:� ḡB,0, it follows that

kQyB,: k2 = k eWyB,0 + gB,: � gB,0 � 1 ⌦ (ȳB,0 + ḡB,: � ḡB,0)k2

_kQyB,0k2 +
1

1 � _
kgB,: � gB,0k2

_kQyB,0k2 +
3

1 � _
(2<f2 + !2kxB,: � xB,0k2), (16)

Note that the term kxB,: � xB,0k2 can be bounded as:

kxB,:�xB,0k2= k eWxB,0�[
:�1’
C=0

yB,C �xB,0k2=8kxB,0�1⌦ x̄B,0k2

+2[2:
:�1’
C=0

kyB,C k2
(0)
 8kxB,0�1⌦ x̄B,0k2+2[2:

:�1’
C=0

(2k1⌦ ȳB,C k2

+2kyB,C �1⌦ ȳB,C k2)  8kQxB,0k2+4[2:
:�1’
C=0

kQyB,C k2

+4[2<:
:�1’
C=0

kȳB,C k2, (17)

where (0) is due to the fact that k eW � Ik  2.
Thus, by plugging (17) into (16), we have

kQyB,: k2 _kQyB,0k2 +
6<f2

1 � _
+
24!2

1 � _
kQxB,0k2

+
12:[2!2

1 � _

:�1’
C=0

kQyB,C k2 +
12<:[2!2

1 � _

:�1’
C=0

kȳB,C k2 . (18)

⇤

A.3 Proof of Theorem 1
P����. By combining the results from Lemma 1 and Lemma 2,

we have

E[5 (x̄B,)� 5 (x̄B,0)] �
[

2

 �1’
:=0
E[kr5 (x̄B,:)k2]�

[

2

 �1’
:=0
E[krfB,: k2]

�
!2[

2<

 �1’
:=0
E[kQxB,: k2]+

![2

2

 �1’
:=0
E[kḡB,: k2]+

!2[

<
(1 + _(� 1))

⇥ EkQxB,0k2+
[3!2 2

<(1 � _)

 �1’
:=0
EkQyB,: k2 . (19)

Also, from Lemma 2, for some constant ⇠1 (to be determined
later), it follows that

(kQxB, k2 +⇠1[2kQyB, k2) � (kQxB,0k2 +⇠1[2kQyB,0k2)

 � (1 � _ �
24⇠1!2[2

1 � _
)kQxB,0k2 � (1 � _)⇠1[2kQyB,0k2

+
[2 +12⇠1 !2[4

1�_

 �1’
:=0

kQyB,: k2+
12<⇠1!2 2[4

1�_

⇥

 �1’
:=0

kȳB,: k2+
6<⇠1[2f2

1�_
. (20)

MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea Zhang et al.

Thus, combining (19) and (20), we have

E[5 (x̄B,)� 5 (x̄B,0)+
1

<2
(kQxB, k2+⇠1[2kQxB, k2)

�
1

<2
(kQxB,0k2+⇠1[2kQxB,0k2)]

�
[

2

 �1’
:=0
E[kr5 (x̄B,:)k2]�

[

2

 �1’
:=0
E[krfB,: k2]�

!2[

2<

 �1’
:=0
E[kQxB,: k2]

+
6⇠1[2f2

(1�_)<
+(
![2

2
+
12⇠1!2 [4

(1�_)<
)

 �1’
:=0
E[kḡB,: k2]+

3[2

(1�_)<2

⇥

 �1’
:=0
EkQyB,: k2� (1�_�

24⇠1!2[2

1�_
� (1+_(� 1))< !2[)

⇥
1

<2
E[kQxB,0k2] � (1 � _)

⇠1[2

<2
E[kQyB,0k2], (21)

by setting [ min{1/<!2 2, 1/
p
12⇠1!2}.

From Lemma 2, with [

q
1�_

24!2 2 , it holds that

 �1’
:=0

kQyB,: k2  2(1 + _(� 1))kQyB,0k2 +
12< f2

1 � _

+
48 !2

1 � _
kQxB,0k2 +

24<[2 2!2

1 � _

:�1’
C=0

kȳB,C k2 . (22)

By plugging (22) into (21), we have

E[5 (x̄B,)�5 (x̄B,0)+
1
<

(kQxB, k2+⇠1[2kQxB, k2)�
1
<

(kQxB,0k2

+⇠1[
2
kQxB,0k2)] �

[

2

 �1’
:=0
E[kr5 (x̄B,:)k2]�

!2[

2<

 �1’
:=0
E[kQxB,: k2]

�
[⇠rf
2

 �1’
:=0
E[krfB,: k2]�

⇠x
<2
E[kQxB,0k2]�

⇠y⇠1[2

<2
E[kQyB,0k2]

+(
![2

2
+
12⇠1!2 [4

(1�_)<
+
72!2 2[4

(1 � _)2<
)
 f2

<
+
36 [2f2

(1�_)2<
+

6⇠1[2f2

(1�_)<
.

(23)

where⇠rf , 1�![� 24⇠1!2 [3

(1�_)< �
144!2 2[3

(1�_)2< ,⇠x , 1�_� 24⇠1!2[2

1�_ �

(1 + _(� 1))< !2[�
144!2[2 2

(1�_)2 , ⇠y , 1 � _ �
6(1+_ �_)
⇠1 (1�_) .

By setting ⇠1 = 6(1+_ �_)
(1�_)2 , we have ⇠y = 0. By letting [

min{
r

< (1�_)3
144(1+_ �_)! 2 ,

q
< (1�_)2
144! 2 , 1/3!}, we have ⇠rf � 0. Also,

letting [ min{ (1�_)
3(1+_ �_)< !2 ,

(1�_)3<
144 , (1�_)

2
(1+_ �_)<
144 }, we

have ⇠x � 0.
With the above parameter setting and the proposed potential

function, we have

[

2

 �1’
:=0
E[kr5 (x̄B,:)k2 +

!2

<
kQxB,: k2]  E[PB,0�PB,]

+
3! f2[2

2<
+
36 [2f2

(1�_)2<
+
36(1 + _ �_)[2f2

(1�_)3<
, (24)

by further setting [ min{
r

< (1�_)3
144(1+_ �_)! 2 ,

q
< (1�_)2
144! 2 }.

Telescoping (24) for B from 0 to (� 1 and multiplying the factor
2(/[on both sides, we have

1
(

(�1’
B=0

 �1’
:=0
E[kr5 (x̄B,:)k2+

!2

<
kQxB,: k2] 

2E[P0,0�P(,0]
([

+
3!f2[
<

+
72[f2

(1�_)2<
+
72(1 + _ � _)[f2

(1�_)3 <
(25)

This completes the proof of Theorem 1. ⇤

A.4 Proof of Corollary 2
P����. Recall from Theorem 1 that the condition on the step-

size is

[min{
1
3!

,
1

<!2 2| {z }
,A1

,
(1 � _)p

12(1 + _ � _) !2| {z }
,A2

,

r
1 � _
24!2 2| {z }
,A3

,

r
<(1 � _)2

144! 2| {z }
,A5

,
(1 � _)

3(1 + _ � _)< !2| {z }
,A6

,

(1 � _)3<
144| {z }
,A7

,
(1 � _)2 (1 + _ � _)<

144 | {z }
,A8

}. (26)

where (a) follows from plugging⇠1 = 6(1+ _ � _) /(1� _)2, and
(b) is due to A4  A5.

Setting = 4
p
(/<3 (i.e. = (1/3/<), we have

A1 =
1

<!2 2 =
p
<

!2
p
(

= $ (

p
<

p
(

),

A2 =
(1�_)p

12(1+_ �_) !2
(0)
�

(1�_)
p
12 !

=
(1�_)<3/4

p
12!(()1/4

>$ (

p
<

p
(

),

A3 =

r
1 � _
24!2 2 =

r
1 � _
24!2

<3/4

(()1/4
> $ (

p
<

p
(

)

A5 =

r
<(1 � _)2

144! 2 =

r
(1 � _)2

144!
<7/4

(()1/4
> $ (

p
<

p
(

)

A6 =
(1 � _)

3(1 + _ � _)< !2
�

(1 � _)
3< 2!2

=
(1 � _)

p
<

3!2
p
(

= $ (

p
<

p
(

)

A7 = $ (((<)
1/4

)
(1)
> $ (

p
<

p
(

)

A8 =
(1 � _)2 (1 + _ � _)<

144
�

(1 � _)2_<
144

= $ (<) > $ (

p
<

p
(

),

where (a) follows from � 1 + _ � _ and (b) follows from (�

<1/3. Then we can set [= $ (
p
</

p
() and have the following

convergence bound:

1
(

(�1’
B=0

 �1’
:=0
E[kr5 (x̄B,:)k2+

!2

<
kQxB,: k2]

$
⇣ 2E[P0,0�P(,0]

p
(<

+
3!f2
p
(<

+
72f2

(1�_)2
p
(<

+
72f2

(1�_)3
p
(<

⌘
.

This completes the proof. ⇤

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement and Algorithm Design
	3.1 Decentralized Federated Learning
	3.2 The NET-FLEET Algorithm

	4 Theoretical Performance Analysis
	4.1 Proof Sketch of Theorem 1

	5 Experimental Evaluation
	6 Conclusion
	References
	A Proof of Main Results
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2
	A.3 Proof of Theorem 1
	A.4 Proof of Corollary 2

