
a
rX

iv
:2

2
0
6
.1

4
3
5
4
v
1

[c

s.
L

G
]

 2
9
 J

u
n
 2

0
2
2

Hardness and Algorithms for Robust and Sparse Optimization

Eric Price∗ Sandeep Silwal† Samson Zhou‡

June 30, 2022

Abstract

We explore algorithms and limitations for sparse optimization problems such as sparse linear re-
gression and robust linear regression. The goal of the sparse linear regression problem is to identify
a small number of key features, while the goal of the robust linear regression problem is to identify
a small number of erroneous measurements. Specifically, the sparse linear regression problem seeks a
k-sparse vector x ∈ R

d to minimize ‖Ax − b‖2, given an input matrix A ∈ R
n×d and a target vector

b ∈ R
n, while the robust linear regression problem seeks a set S that ignores at most k rows and a

vector x to minimize ‖(Ax− b)S‖2.
We first show bicriteria, NP-hardness of approximation for robust regression building on the work

of [OWZ15] which implies a similar result for sparse regression. We further show fine-grained hardness
of robust regression through a reduction from the minimum-weight k-clique conjecture. On the positive
side, we give an algorithm for robust regression that achieves arbitrarily accurate additive error and
uses runtime that closely matches the lower bound from the fine-grained hardness result, as well as an
algorithm for sparse regression with similar runtime. Both our upper and lower bounds rely on a general
reduction from robust linear regression to sparse regression that we introduce. Our algorithms, inspired
by the 3SUM problem, use approximate nearest neighbor data structures and may be of independent
interest for solving sparse optimization problems. For instance, we demonstrate that our techniques
can also be used for the well-studied sparse PCA problem.

1 Introduction

Sparsity is often a key feature embedded within large datasets and fundamentals tasks in data science
and machine learning. For example, in the sparse linear regression or variable selection problem, the
goal is to find a k-sparse vector x ∈ R

d to minimize ‖Ax − b‖2, given an input matrix A ∈ R
n×d and a

target vector b ∈ R
n. The intuition is that the target vector can be effectively summarized as the linear

combination of a small number of columns of A that denote the important features of the data. Similarly,
in the robust linear regression or constraint selection problem, the goal is to find a set S that ignores
at most k rows and a vector x ∈ R

d to minimize ‖(Ax − b)S‖2, given an input matrix A ∈ R
n×d and a

target vector b ∈ R
n, where the notation (·)S means we only measure the loss over coordinates in S. In

other words, we suppose that up to k entries of the target vector can be arbitrarily corrupted and thus
ignored in the computation of the resulting empirical risk minimizer. In both the sparse and robust linear
regression problems, the L2 loss function can be naturally generalized to other loss functions which align
with specific goals, such as truncating or mitigating the penalty beyond a certain threshold.

Sparsity is a desirable attribute for model design in machine learning, statistics, estimation, and signal
processing. Simpler models with a small number of variables not only provide more ease for interpetability,

∗Department of Electrical and Computer Engineering, The University of Texas at Austin. ecprice@gmail.com
†Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology. silwal@mit.edu
‡Computer Science Department, Carnegie Mellon University. samsonzhou@gmail.com

1

but also tend to have smaller generalization error [FKT15]. A common algorithmic approach for acquiring
sparse vectors for the task of sparse linear regression is to use greedy algorithms that iteratively select
features, e.g., stepwise selection, backward elimination, and least angle regression. Another common
technique for inducing sparse solutions is to penalize the objective with a regularization function. For
example, the well-known LASSO adds a penalty term to the regression objective that is proportional to
the L1 norm of the underlying minimizer x [Tib96] while ridge regression [HK70] often adds a penalty
that is proportional to the L2 norm of x.

1.1 Our Results

In this paper, we study algorithms and limitations for sparse regression and robust regression. In partic-
ular, we consider the following problems:

Problem 1.1 (Robust Regression). Given A ∈ R
n×d, b ∈ R

n, a loss function L : R∗ → R, and integer
0 < k ≤ n, find T ⊂ [n] satisfying |T | ≤ k and x ∈ R

n to minimize L((Ax−b)T), where (Ax−b)T denotes
that we only measure the loss on the coordinates in T . The coordinates not in T are called ignored.

Problem 1.2 (Sparse Regression). Given A ∈ R
n×d, b ∈ R

n, a loss function L : R∗ → R, and integer
0 < k ≤ n, find x ∈ R

n with ‖x‖0 ≤ k to minimize L(Ax− b).

[OWZ15] showed the hardness of approximation for maximizing the number of satisfied linear equa-
tions; their result can be translated to show bicriteria robust regression is NP-hard, i.e., it is NP-hard to
achieve a multiplicative factor approximation to the optimal loss while allowing a constant factor larger
parameter for sparsity. We introduce a further reduction to show the NP-hardness of bicriteria sparse
regression.

Theorem 1.1. Let L : Rn → R be any loss function such that L(0n) = 0 and L(x) > 0 for x 6= 0n.
Given a matrix X ∈ R

a×b, vector c ∈ R
a, and a sparsity parameter t, let OPT = minw L(Xw − c) where

‖w‖0 = t. Then for any C1 > 1 and any constant C2 > 1, it is NP-hard to find w′ satisfying ‖w′‖0 = C2t
such that L(Xw′ − c) ≤ C1 ·OPT .

We remark that the statement of Theorem 1.1 holds for any parameter C1 > 1, showing that mul-
tiplicative approximation is NP-hard, even for arbitrarily large multiplicative factors that could depend
on n and d. It also applies to a large number of commonly used loss functions, such as Lp loss or various
M -estimators, e.g., [CW15, CWW19, TWZ+22]. See Table 1 for more details. For completeness, we also
formalize the proof of [OWZ15] to show bicriteria hardness of robust regression.

To prove Theorem 1.1, we prove a reduction (see Corollary 2.6) which states that an algorithm for
the sparse regression problem can be used to solve the robust regression problem using a polynomial
time blow-up. However, it is known that the sparse regression problem requires runtime O(nk) under the
minimum-weight k-clique conjecture [GV21]; could it be the case that robust regression is significantly
easier? We give a fine-grained hardness result showing this is not the case:

Theorem 1.2. For every ε > 0, there exists a sufficiently large n such that the robust regression problem
requires Ω(nk/2+o(1)) randomized time, unless the minimum-weight k-clique conjecture is false.

To complement our fine-grained hardness results, we develop nearly-matching upper bounds with
additive error in the case there exists a diagonal S ignoring k rows achieving zero loss. Namely, we give
an algorithm with time O(nk(n/ε)Ck), where C < 1 can be any constant arbitrarily close to 1

2 , thereby
nearly matching the lower bounds of Theorem 1.2.

2

Loss function Formulation

Lp |x|p
Cauchy λ2

2 log
(
1 + (x/λ)2

)

Fair λ|x| − λ2 ln
(
1 + |x|

λ

)

Geman-McClure x2

2+2x2

Huber

{
x2/2 if |x| ≤ λ

λ|x| − λ2/2 otherwise

L1 − L2 2

(√
1 + x2

2 − 1

)

Tukey

λ2

6

(
1−

(
1− x2

λ2

)3)
if |x| ≤ λ

λ2

6 otherwise

Welsch λ2

2

(
1− e−(

x
λ)

2
)

Table 1: Theorem 1.1 shows the bicriteria hardness of approximation for sparse regression for common
loss functions. The same bicriteria hardness also holds for robust regression.

Theorem 1.3. Given A ∈ R
n×d and b ∈ R

n such that

min
S,x
‖S(Ax− b)‖2 = 0

over all diagonal matrices S with n − k one entries in the diagonal and k zero entries, there exists an
algorithm that returns a diagonal matrix S′ with n− k one entries in the diagonal and k zero entries and
a vector x′ such that ‖S′(Ax′ − b)‖2 ≤ ε in time

min
c≥1

O

(
nk ·

(
12c · n · ‖b‖2

ε

) k
2
·(1+1/(2c2−1))

)
.

We obtain an algorithm with a similar guarantee for sparse regression.

Theorem 1.4. Given A ∈ R
n×d and b ∈ R

n such that there exists a k-sparse vector x satisfying Ax = b,
there exists an algorithm that returns a k-sparse vector z ∈ R

d satisfying ‖Az − b‖2 ≤ ε in time

min
c≥1

O

(
nk ·

(
12c · d · ‖b‖2

ε

)k
2
·(1+1/(2c2−1))

)
.

Our algorithms for Theorems 1.4 and 1.3 are inspired by techniques for the 3SUM problem and its
generalization to k integers, in which the goal is to determine whether a set of n integers contain k
integers that sum to zero. Rather than check all O(nk) possible k-sparse vectors, we first input all k

2 -
sparse vectors into an approximate nearest neighbor (ANN) data structure. Given a query q, the ANN
data structure will output a point x such that ‖x− q‖2 ≤ c ·miny ‖y − q‖2, where the minimum is taken
over all points that are input into the data structure. We can thus query the ANN data structure over all(n
k/2

)
differences between the measurement vector b and all k

2 -sparse vectors, reconstructing the k-sparse
vector from the query that achieves the minimum value.

Surprisingly, our technique also works for the sparse principal component analysis (PCA) problem,
in which the goal is to find a k-sparse unit vector v ∈ R

n to maximize vTAv, given an input PSD matrix
A ∈ R

n×n of rank r.

3

Theorem 1.5. There exists an algorithm that uses Õ
(
k2

ε ·
(
r
(
nκ
ε

)k(1+ε)/2
+
(
1
ε

)r/2+1
))

time and with

high probability, outputs a k-sparse unit vector u such that with high probability,

uTAu ≥ (1− ε) max
‖v‖2=1 ,‖v‖0≤k

vTAv,

where κ is the condition number of A.

We also give a simple NP-hardness proof of the robust regression problem in the appendix using a
reduction from the exact cover problem, in which the goal is to determine whether there exists a sub
collection S′ (of an input collection S of subsets of X) such that every member of X belongs to exactly
one set in S′. Finally, we give explicit examples of why natural algorithms such as the greedy algorithm
or alternating minimization fail to achieve multiplicative guarantees.

1.2 Prior Works

Robust regression. Robust regression has been well-studied in recent years. However, virtually all
works rely on distributional assumptions on the input. The goal is to statistically recover the coefficient
vector which minimizes the expected loss given a small number of corruptions to the distributional input.
In contrast, we assume no distributional assumptions at all and our goal is to solve the computational
problem given a corrupted input. Distributional assumptions have been well-studied in part because they
are tractable; see [KKM18, KKK19, DKS19, CAT+20, ZJS20, BP21, JLST21] and the references within
for a more comprehensive overview of distributional works.

Indeed, many such works such as [BJK15, BJKK17, SBRJ19] state their main motivation behind
using distributional assumptions is that they believe the computational version, which we study, to be
‘hard.’ Since the focus of these works is statistical in nature, they do not rigorously justify why the robust
regression problem in general is computationally hard. Our work aims to fill in this gap and initiate the
study of hardness for robust regression. We remark that some works such as [BJK15, BJKK17, SBRJ19]
assert that a proof of NP-hardness of robust regression is given in [SKPB12]. However, it seems [SKPB12]
actually does not study robust regression at all; instead, it seems they study the problem of sparse
regression, which, although related, does not imply anything about the hardness of robust regression. In
fact, one of our results (Corollary 2.6) gives a reduction from robust regression to sparse regression, which
implies that robust regression is a strictly easier problem than sparse regression. On the other hand, it is
not clear whether hardness for sparse regression implies anything about hardness for robust regression.

Sparse regression. The sparse regression problem has also recently received significant attention,
e.g., [Nat95, DMA97, Mah15, FKT15, HIM18, CYW19, GV21]. [Nat95] showed the NP-harndess of
sparse regression while [FKT15] showed that assuming SAT cannot be solved by a deterministic algorithm
in O(nlog logn) time, then no polynomial-time algorithm can find a k′-sparse vector x with ‖Ax − b‖2 ≤
poly(n), for k′ = k · 2log1−δ n. Subsequently, [HIM18] showed the sparse regression required Ω(nk/2) time,
assuming the k-SUM conjecture from fine-grained complexity. [GV21] strengthened this lower bound to
Ω(nk−ε) time, for any constant ε > 0, using the minimum-weight k-clique conjecture.

L1-relaxation based algorithms such as basis pursuit [CDS98], Lasso [Tib96], and the Dantzig selec-
tor [CT07] have been developed for practical usage that do not involve worst-case inputs. For example,
they consider the setting b = Ax + g, where the noise vector g is drawn from a Gaussian distribu-
tion and the design matrix A is well-conditioned. There has also been an extensive study on other
penalty classes, such as the smoothly clipped absolute deviation penalty [FL01], the Lp norm for bridge
estimators [FF93], or as the regularization function for M -estimators [LW15]. [CYW19] showed the
NP-hardness of O(nC1dC2) multiplicative approximation for these common regularizations of the sparse

4

regression problem and fixed constants C1, C2 > 0, when the loss function is convex and the penalty
function is sparse, such as L1-relaxation. By comparison, we show bicriteria NP-hardness of any multi-
plicative approximation of the actual sparse regression problem, even when the sparsity constraint can
be relaxed up to a multiplicative factor.

Other sparse optimization problems. Sparsity has also been highly demanded in other optimization
problems. In this paper, we show that our algorithmic ideas also extend to the sparse PCA problem,
which was first introduced by [dGJL07] and subsequently shown to be NP-hard by [MWA06]. In fact, it is
NP-hard to obtain any multiplicative approximation if the input matrix is not PSD [Mag17] and to obtain
a (1 + ε)-multiplicative approximation when the input matrix is PSD [CPR16a], though [APKD15] gave
an additive polynomial time approximation scheme based on the bipartite maximum weight matching
problem. In practice, techniques for the more general PCA problem based on rotating previously studied
PCA approaches based on rotation [Jol95] or thresholding [CJ95] the top singular vector of the input
matrix seemed to suffice for specific applications. L1 relaxations [JTU03] and similar heuristics [ZH05,
ZHT06, SH08] have also been considered for the sparse PCA problem. Another line of direction considered
semidefinite programming relaxations [dBEG08, AW08, dKNS20, CDWZ20, CBZ+22].

Our work also connects to the problem of recovering the sparsest non-zero element in a linear subspace
problem (see Theorem C.1). This problem is known to be NP-hard in the worst case [CP86]. On the
positive side, there exists work on planted settings of the problem where the subspace is generated by the
span of random Gaussian vectors along with a planted sparse vector; see [DH14] and references within.

2 Bicriteria Hardness of Approximation

In this section, we show the bicriteria hardness of approximation for both robust regression and sparse
regression. Our results also generalize to loss functions that have no penalty on the zero vector and
positive penalty on any nonzero vector. The bicriteria hardness result for robust regression is immediately
implied by the results in [OWZ15], but it is not phrased in terms of the robust regression problem. We
formalize the details below for completeness. In addition, we extend the bicriteria hardness result for
sparse regression in the following section.

2.1 Bicriteria Hardness of Approximation for Robust Regression

Definition 2.1 (MaxKLin). Suppose there exist a list of n linear equations of the form a1xi1+. . .+akxik =
b, where a1, . . . , ak, b are constants from a ring R and xi1 , . . . , xik are variables from the set x1, . . . , xd.
Then the goal of the MaxKLin(R) problem is to assign values in R to the variables x1, . . . , xd such to
maximize the total number of satisfied linear equations.

Definition 2.2 (Bounded−MaxΓ3 − Lin). Suppose there exist a list of n linear equations of the form
xi1 + xi2 − xi3 = b, such that |b| ≤ B for some fixed B ∈ R and xi1 , xi2 , xi3 are variables from the
set x1, . . . , xd. Then the goal of the Bounded−MaxΓ3 − Lin(R) problem is to assign values in R to the
variables x1, . . . , xd such to maximize the total number of satisfied linear equations.

We use the notation OPTR(I) to denote the maximum fraction of equations of an instance I that can
be satisfied when the equations are evaluated over R.

Theorem 2.1 (Theorem 1.2 in [OWZ15], Hardness of Approximation of Bounded−MaxΓ3 − Lin(R)).
For all constants ε, κ ∈ (0, 1) and q ∈ N, given an instance of Bounded−MaxΓ3− Lin(R), it is NP-hard
to distinguish whether

• Completeness: There is a (1− ε)-good assignment over Z, i.e., OPTZ(I) ≥ (1− ε).

5

• Soundness: There is no (1/q + κ)-good assignment over Zq, i.e., OPTZq(I) ≤ 1
q + κ.

Although there seems to be a typo in the statement of Lemma A.1 in [OWZ15], the corresponding
proof provides the following guarantee:

Lemma 2.2 ([OWZ15]). Given an instance I of Bounded−MaxΓ3− Lin, OPTR(I) ≥ 1
8 OPTZq (I).

By setting κ in the following statement to be 1
8q +

1
8κ in the above formulations, we have that

Corollary 2.3. For all constants ε ∈ (0, 1), κ ∈ (0, 1/8), given an instance of Bounded−MaxΓ3− Lin, it
is NP-hard to distinguish whether

• Completeness: There is a (1− ε)-good assignment over Z, i.e., OPTZ(I) ≥ (1− ε).

• Soundness: There is no κ-good assignment over R, i.e., OPTR(I) ≤ κ.

Theorem 2.4. Given a matrix A ∈ Z
n×d, a sparsity parameter k, and a vector b ∈ R

n, let OPT =
minS,x ‖SAx − Sb‖2, where the minimum is taken over all diagonal matrices S that have k entries that
are zero and n− k entries that are one and all x ∈ R

d. Then for any C1 > 1 (which can depend on the
parameters n, d) and any constant C2 > 1, it is NP-hard to find a matrix S′ with C2k entries that are
zero and n− C2k entries that are one and a vector x ∈ R

d such that ‖S′Ax− S′b‖2 ≤ C1 · OPT .

Proof. Let κ and ε be constants so that 1−κ
ε ≥ C2. Given an instance I of Bounded−MaxΓ3 − Lin,

set k = εn, where n is the number of linear equations over the variables x1, . . . , xd. We create the
corresponding n× d matrix A by setting Ai,j ± 1 if the coefficient of xj = ±1 in the i-th linear equation.
Otherwise, we set Ai,j = 0.

Observe that if there is a (1− ε)-good assignment over Z, then there is a vector x ∈ R
d that satisfies

(1 − ε)n linear equations. Thus by ignoring k = εn linear equations, the remaining coordinates of b are
satisfied by the vector x. Hence, there exists a matrix S with k entries that are zero and n − k entries
that are one such that SAx = Sb and in particular, ‖SAx− Sb‖2 = 0 and OPT = 0.

On the other hand, if there is no κ-good assignment over R to I, then any vector x ∈ R
d will satisfy

fewer than κn linear equations. In particular, even by ignoring C2k ≤ (1−κ)n linear equations, there still
exists some coordinate of b that is not satisfied by the vector x. Thus for every matrix S′ with C2k entries
that are zero and n−C2k entries that are one, we have S′Ax 6= Sb′ and in particular, ‖S′Ax−S′b‖2 > 0
and therefore ‖S′Ax− S′b‖2 > C1 · 0 for any C1 > 1.

Hence, any algorithm that finds a matrix S′ with C2k entries that are zero and n− C2k entries that
are one, as well as a vector x ∈ R

d such that ‖S′Ax−S′b‖2 ≤ C1 ·OPT can differentiate whether (1) there
is a (1− ε)-good assignment over Z, i.e., OPTZ(I) ≥ (1− ε) or (2) there is no κ-good assignment over R,
i.e., OPTR(I) ≤ κ. Therefore by Corollary 2.3, it is NP-hard to find a matrix S′ with C2k entries that
are zero and n−C2k entries that are one and a vector x ∈ R

d such that ‖S′Ax− S′b‖2 ≤ C1 ·OPT .

Finally, we observe that in the proof of Theorem 2.4, in one case, the resulting loss is the all zeros
vector while in the other case, there are at least n − C2k nonzero entries. Thus the proof generalizes to
any loss function L such that L(0n) = 0 and L(x) > 0 for x 6= 0n.

2.2 Bicriteria Hardness of Approximation for Sparse Regression

We now extend the bicriteria hardness results from the previous section for the problem of sparse regres-
sion. Note that in the sparse regression problem, including as many variables as possible only helps us.
For example, including as many columns as possible in linear regression only enlarges the column space
and hence finds a possibly closer vector to the target. In the linear regression case, we prove the following
theorem which states that it is NP-hard to choose a set of columns to ignore, even if we relax the number
of ignored columns by a multiplicative factor.

6

Theorem 2.5. Given a matrix X ∈ R
a×b, vector c ∈ R

a, and a sparsity parameter t, let OPT =
minw ‖Xw− c‖ where ‖w‖0 = t. Then for any C1 > 1 and any constant C2 > 1, it is NP-hard to find w′

satisfying ‖w′‖0 = C2t such that ‖Xw′ − c‖ ≤ C1 · OPT .

Proof. We will show that solving the sparse regression problem allows us to solve the robust regression
problem. Let A ∈ Z

n×d, b ∈ R
n, and k be the parameters in Theorem 2.4. Note that the matrix A in

the proof of Theorem 2.4 satisfies n > d. Given A, we construct the matrix X ∈ R
(n−d)×n so that the

rows of X will span the space that is orthogonal to the column subspace of A, i.e., XA = 0. We also
let c = −Xb, and t = k. We claim that if we can solve the sparse regression problem with this derived
instance, then we can solve the robust regression problem of Theorem 2.4. Parameters C1 and C2 are the
same in both theorems.

First, note that the OPT value in Theorem 2.4 is equal to 0: we can ignore k linear constraints and
get 0 loss. This means that there exists a diagonal matrix S and a vector x such that SAx − Sb = 0
which implies Ax − b = w for ‖w‖0 = k i.e., w has n − k zero entries. Therefore, the value of OPT
in the sparse regression problem is also 0 by multiplying the equation Ax − b = w by the matrix X
since X(Ax − b) = Xw implies Xw = c. Now suppose we can solve the sparse regression problem with
any factor C ′

1 > 1 approximation while satisfying ‖w′‖0 ≤ C ′
2k. Since we are assuming a multiplicative

approximation factor, w′ must also evaluate to 0 loss in our objective. Furthermore, w′ has n−C ′
2k zero

entries.
Now Xw′ = c which is the same as X(w′ + b) = 0. Thus, w′ + b lies in the orthogonal complement of

the rows of X by our construction of X. Hence, w′ + b lies in the column space of A. Therefore, there
exists some x′ such that Ax′ = w′+ b or in other words, Ax′− b = w′. Letting S′ have the diagonal which
is the indicator for the sparsity of w′, we get that S′ has C2k zero entries on the diagonal. This implies
‖S′Ax′−S′b‖2 = 0 ≤ C1 ·OPT . Since finding such a pair S′, x′ is NP-hard from Theorem 2.4, it must be
the case that the sparse regression selection problem stated in the current theorem statement must also
be NP-hard, as desired.

Observe that in the proof of Theorem 2.5, in one case, we have Xw = c so that the resulting loss
is the all zeros vector while in the other case, the resulting vector is nonzero. Therefore, the proof of
Theorem 2.5 generalizes to any loss function L such that L(0n) = 0 and L(x) > 0 for x 6= 0n, giving
Theorem 1.1.

Note that the reduction given in the above proof implies the following general statement: robust
regression is ‘easier’ than sparse regression selection. That is, if there exists an algorithm for sparse
regression, we can use it to solve robust regression as well.

Corollary 2.6. Let A be an algorithm which solves the following sparse regression problem:

min
w
‖Xw − c‖2 s.t. ‖w‖0 = t

in time f(X, c, t). Consider the robust regression problem of

min
S,x
‖S(Ax− b)‖2

where S is constrained to be a diagonal matrix with n− k one entries in the diagonal and k zero entries.
A solves this problem in time f(X ′, c′, k) where X ′ is any matrix satisfying X ′A = 0 and c′ = −X ′b.

Proof. The proof follows from the proof of Theorem 2.5.

7

3 Fine-Grained Hardness

In this section, we prove a fine-grained hardness result for robust regression. We first need the following
definition and theorem from [GV21].

Definition 3.1 (Definition 1 in [GV21], k-SLRp). For any integer k ≥ 2 and 1 ≤ p ≤ ∞, the k-sparse
regression problem with respect to the ℓp norm is defined as follows. Given a matrix A ∈ R

M×N , a target
vector b ∈ R

M , and a number δ > 0, distinguish between:

• a YES instance: there is some k-sparse x ∈ R
N such that ‖Ax− b‖p ≤ δ, and

• a NO instance: for all k-sparse x ∈ R
N , ‖Ax− b‖p > δ.

Theorem 3.1 (Theorem 3 in [GV21]). For any integer k ≥ 4, the k-SLR2 problem requires time
Ω(Nk−o(1)) (randomized) time, unless the min-weight-k-clique conjecture is false.

Using this theorem (or rather its proof), we can prove the hardness of the following decision version
of sparse regression:

Problem 3.1. Given a matrix A ∈ R
M×N , a target vector b ∈ R

M , integer 0 < k ≤ M , and a number
δ > 0, distinguish between:

• a YES instance: there is some diagonal matrix S with k zeros on the diagonal and n− k ones on
the diagonal and some x ∈ R

N such that ‖S(Ax− b)‖2 ≤ δ, and

• a NO instance: for all diagonal matrices S with k zeros and n − k ones on the diagonal and all
x ∈ R

N , ‖S(Ax− b)‖2 > δ.

We first recall the following theorem of [GV21] and the key underlying details of the proof, which we
encapsulate in the following theorem.

Theorem 3.2. [GV21] Let G = (V,E) be a graph with N vertices with we denoting the integer weight of
edge e. Let W,k be integer parameters and Z = |{(u, v) 6∈ E|u, v ∈ V }| to be the number of non-edges in
the graph G. Suppose that we know a partition of the N vertices into k blocks of size N/k such that if a
k-clique of weight at most W exists then there is such a k-clique with exactly one vertex in each block 1.
Set

α =

√√√√max

(
1,
∑

e∈E

we + 8W

)
, β =

√∑

e∈E

we + 8W + α2Z ·max

(
8Z, 50

(
α2Z,+

∑

e∈E

we

))
.

Define the matrix A =

(
C
D

)
and the vector b =

(
c
d

)
as follows: C ∈ R

(N
2
)×N with rows indexed by all

unordered pairs of possible edges and columns indexed by vertices. For a possible edge e = (u, v) not in
G, the row of C corresponding to e has 2α in the columns of u and v and the corresponding entry of c
has α. If e = (u, v) ∈ E then the columns of u and v have the entry 2

√
we and the corresponding entry

of c has
√
we. All other entries of C are 0. We also have D ∈ R

k∈N

D =

β1 0 · · · 0
0 β1 · · · 0
· · · · · · · · · · · ·
0 0 · · · β1

 , d =

β
β
...
β

1This is a standard assumption and is without loss of generality; see Section 2.2 of [GV21]. We can assume the k blocks
are N/k consecutive integers of {1, . . . , N} in order.

8

where 1 denotes a row vector of length N/k of all ones. Finally, set δ =
√∑

e∈E we + 8W + α2Z > 0.
The following statements hold about A and b:

• (Completeness) If G contains a k-clique of weight at most W then we can let x be the indicator
vector of the clique and we have ‖Ax− b‖2 ≤ δ.

• (Soundness) If there exists x such that ‖Ax − b‖2 ≤ δ then x must be the indicator vector of a
k-clique in G of weight at most W and furthermore, each block of N/k vertices must have exactly
one vertex in the clique.

We now formalize the conditions and provide the proof of Theorem 1.2.

Theorem 3.3. For every ε > 0, there exists a sufficiently large M such that Problem 3.1 requires
Ω(Mk/2+o(1)) randomized time, unless the min-weight-k-clique conjecture is false.

Proof. Consider the hard instance of Theorem 3.1 and 3.2, given by A ∈ R
M×N , b ∈ R

M , δ > 0, and
parameter k where we set M = Θ(

(
N
2

)
), specified fully later. Note that A in the proof in [GV21] is

constructed from a min-weight-k-clique graph instance G and is composed of matrices C,D in their
notation (see the statement of Theorem 3.2). We will augment A in two ways. First, note that D there
is a k×N matrix. We will copy each row of D so that each row is copied k+1 times. The corresponding
part of the b vector is also copied. We will also add N additional rows to A: one additional row C̃ ·xi = 0
for each i ∈ [N] for some polynomially large factor C̃. The parameter k in Problem 3.1 will be equal to
the same k in Theorem 3.1.

We now mimick the proof of Theorem 3.1 in [GV21]. We first handle the easier direction. We claim
that if there is a k-clique of weight at most W for the k-clique instance corresponding to A, then we are
in the YES case of Problem 3.1. Indeed, the proof of Theorem 3.1 in [GV21], summarized in Theorem
3.2, shows that we can let x be the indicator vector for the k-clique and the loss is at most δ by ignoring
k of the C̃ · xi = 0 constraints, setting the value of the ignored variables to be equal to 1, and letting
the rest of the variables (which are not ignored) be equal to 0. The matrix D will contribute 0 loss, even
with the augmentation.

We now handle the remaining case. We claim that if there exists S, x as in the YES case of Prob-
lem 3.1, then a k-clique of weight at most W exists in G. (Soundness case of Theorem 3.2). Let’s focus
on the D matrix and point out useful facts. Each row of D was copied sufficiently many times such that
we can’t ignore all the copies of any row of D. Furthermore, the x vector is partitioned into k blocks of
size N/k and each row of D represents the constraint that one of these N/k blocks sums to 1. Lastly,
the sum of each block must be in the range [1− 2δ/β, 1 +2δ/β] (for the parameter β defined in Theorem
3.2) since otherwise, some row of D will already give loss at least δ, which cannot happen since we are
assuming we are in the YES case of Problem 3.1. This implies the following two statements.

First, each of the N/k (consecutive) blocks of x must have at least 1 ignored variable. That is, for
each block of N/k coordinates, there must be some i belonging to the block that has its corresponding
C̃ · xi = 0 constraint ignored. Otherwise, we will incur a loss larger than δ: the sum of the variables in
each block must be Ω(1) due to the prior paragraph (otherwise we get a large loss for a row of D) but
then summing the constraints C̃ ·xi = 0 for a block gives us a large loss. The only way to avoid this is to
ignore one of the C̃ · xi = 0 for an index i in a block. Since we can only ignore k variables and there are
k blocks, it follows that each block has one ignored variable and overall, we only ignore the constraints
of the form C̃ · xi = 0. The un-ignored variables can now be made arbitrarily (polynomially) small in
absolute value by setting C̃ to be sufficiently large since otherwise the constraint C̃ · xi = 0 contributes
more than δ loss.

The second statement we claim is that the ignored variable in each block must have its value in the
range [1− 2δ/β, 1 + 2δ/β]. This follows from the exact same reasoning used in the proof of Theorem 3.1.

9

To summarize, if the ignored variable is outside this range, then the corresponding row of D will induce
loss larger than δ since we require the sum of all variables in a block to be close to 1. In our case, we can
potentially get some contribution from the variables not ignored. However, as stated previously, their
contribution to the loss can be made to be polynomially small by setting C̃ large enough.

Given these two statements, the proof of the reduction follows exactly as in [GV21]: the k ignored
variables, one in each block, will correspond to the k-clique instance. To recap the argument, the same
steps as in the proof of Theorem 3.1 (and 3.2 in [GV21]) show that we must have (u, v) ∈ E for every
xu, xv that are ignored. Otherwise, the loss of ‖Ax−b‖2 coming from the non-edge terms in the matrix C
is much larger than δ already (see Page 8 in [GV21]). In addition, the proof of the fact that the k-clique
instance has weight at most W also follows. This is because our vector x satisfies the same conditions
required for the soundness case of Theorem 3.2; this portion of the proof in [GV21] proceeds by lower
bounding the error from the matrix C alone, which is unchanged for us, and comparing it to the given
hypothesis that the overall error is bounded by δ. Thus the same lower bound statements employed there
also hold for us as they only consider the ignored variables. See the second half of Page 8 in [GV21].

Finally, the runtime bound required is at least Ω(Nk−o(1)) by Theorem 3.1. Note that the final value of
M is equal toM =

(
N
2

)
+N+k2 ≤ 2N2. Therefore, the runtime is at least Ω(Nk−o(1)) = Ω(Mk/2+o(1)).

4 Upper Bounds

In this section, we present upper bounds for sparse linear regression and robust linear regression. We
utilize data structures for the following formulation of the c-approximate nearest neighbor problem:

Problem 4.1 (Approximate nearest neighbor). Given a set P of n points in a d-dimensional Euclidean
space, the c-approximate nearest neighbor (c-ANN) problem seeks to construct a data structure that, on
input query point q, reports any point x ∈ P such that ‖x− q‖2 ≤ c minp∈P ‖p − q‖2.

In particular, we use the following data structure:

Theorem 4.1. [AR15] For any fixed constant c > 1, there exists a data structure that solves the c-ANN
problem in d-dimensional Euclidean space on n points with O(dnρ+o(1)) query time, O(n1+ρ+o(1) + dn)
space, and O(dn1+ρ+o(1)) pre-processing time, where ρ = 1

2c2−1
.

We first get an algorithm, i.e., Algorithm 1, for compressed sensing in the noise-less setting.

Theorem 4.2. Suppose we are given A ∈ R
n×d and b ∈ R

n such that there exists a k-sparse vector x
satisfying Ax = b. Algorithm 1 returns a k-sparse z satisfying ‖Ax−Az‖2 ≤ ε in time

min
c≥1

O

(
nk ·

(
12c · d · ‖b‖2

ε

)k
2
·(1+1/(2c2−1))

)
.

Proof. By scaling, we can assume b to be a unit vector without loss of generality. This means our ε term
will implicitly be multiplied by a ‖b‖2 factor. We first show that z satisfies the approximation guarantees
of Theorem 4.2. Note z is k-sparse since all y and ỹ considered in line 18 of Algorithm 1 are k/2-sparse
in Rd (all y′s considered satisfy that Ay is in the image of some k/2 columns of A). Our task now is to
show ‖Az −Ax‖2 ≤ ε. Now let x = x1 + x2 be any division of x into the sum of two k/2-sparse vectors
x1 and x2. Define b1 = Ax1, b2 = Ax2 so that b = b1 + b2 and let y be such that Ay is the closest point
in some net N (considered in line 6 of the algorithm) to b1. By the choice of our net, we know that
‖Ay −Ax1‖2 ≤ δ. We have

‖(b−Ay)− b2‖2 = ‖(b−Ay)− (b−Ax1)‖2 = ‖Ay −Ax1‖2 ≤ δ. (1)

10

Algorithm 1 Compressed Sensing Upper Bound

1: Input: Matrix A ∈ R
n×d, vector b ∈ R

d, sparsity k, accuracy ε
2: procedure CompressedSensing-UpperBound(A, b, k, ε)
3: δ ← ε/((2c + 2)
4: S ← ∅
5: for each choice T of k/2 columns of A do

6: N ← δ net over the image of AT ⊲ AT denotes the submatrix of A with only columns in T
7: for each b′ = Ay ∈ N do

8: S ← S ∪ (b′, y, T)
9: end for

10: end for

11: D ← c-approximate nearest neighbor data structure for {b′ | (b′, y, T) ∈ S}
12: Best ←∞
13: for each (b′, y, T) ∈ S do

14: b′′ ← b− b′

15: (b̃, ỹ, T̃)← output of D on query b′′

16: Best ← min(Best, ‖b′ + b′′ − b‖2) ⊲ We are extending y, ỹ to k/2 sparse vectors in R
d in the

natural way, i.e., supported on the coordinates of T and T̃ respectively
17: if Best is updated then

18: Associate vector z = y + ỹ with Best
19: end if

20: end for

21: Return the vector z associated with the variable Best
22: end procedure

Letting b′ = Ay for this y and considering this choice of y and b′ in the loop on line 15 of Algorithm 1,
the above calculation shows the existence of a b′′ = b− b′ such that ‖b2 − b′′‖ ≤ δ. By the construction
of D in line 11 of Algorithm 1, it follows that D will output a b̃ on query b′′ such that

‖b′′ − b̃‖2 ≤ 2cδ. (2)

This is because there must exist some ȳ ∈ N such that ‖Ax2 − Aȳ‖2 ≤ δ by our net. Thus since
‖b2 − b′′‖ ≤ δ, we have ‖b′′ − b̄‖2 ≤ 2δ by triangle inequality and (2) follows since D is only guaranteed
to return a c-approximate neighbor.

Altogether, for this y and corresponding ỹ from line 17 of Algorithm 1, we have

‖A(y + ỹ)− b‖2 = ‖A(y + ỹ)− (Ax1 +Ax2)‖2
= ‖(Ay −Ax1) + (Aỹ −Ax2)‖2
≤ ‖A(y − x1)‖2 + ‖Aỹ − b2‖2
≤ δ + ‖Aỹ − b2‖2 (from (1))

≤ δ + ‖b̃− b′′‖2 + ‖b′′ − b2‖2 (by triangle inequality and Aỹ = b̃)

≤ δ + 2cδ + δ (from (2))

= (2c + 2)δ

≤ ε,

or in other words, ‖A(x− z)‖2 ≤ ε, as desired.

11

We now compute the runtime of Algorithm 1. The size of N is upper bounded by

|N | ≤
(
3·
δ

)k/2

≤
(
12c

ε

)k/2

.

Picking all the choice of T and looping over all the vectors in N in the for loop of line 5 of Algorithm 1
takes time at most O(dk/2 · |N | · nk). Initializing D on the set S is dominated by the |S| many queries
performed on D, which we discuss now. Looping over S and querying D in the for loop on line 15
takes time O(|S| · k · |S|1/(2c2−1)) by the guarantees of approximate nearest neighbor search [AR15] in
Theorem 4.1. Note that |S| ≤ dk/2 · |N |. Putting everything together, the total runtime is

O
(
dk/2 · |N | · nk + k · |S| · |S|1/(2c2−1)

)
= O

(
nk ·

(
12c · d

ε

)k
2
·(1+1/(2c2−1))

)
.

By modifying the size of the net, we can also find a sparse vector z that is arbitrarily close to the
sparse vector x as well.

Corollary 4.3. Suppose we are given A ∈ R
n×d and b ∈ R

n such that there exists a k-sparse vector x
satisfying Ax = b. There exists an algorithm that returns a k-sparse z satisfying ‖z − x‖2 ≤ ε in time

min
c≥1

O

(
nk ·

(
12c · d · κ · ‖b‖2

ε

) k
2
·(1+1/(2c2−1))

)

where κ = σmax(A)/σmin(A) where the ratio is over non-zero singular values.

Proof. We modify Algorithm 1 by setting ε′ = ε/κ in Theorem 4.2. This implies ‖Az − Ax‖2 ≤ ε/κ.
Letting A+ denote the pseudo-inverse of A, we have that

‖x− z‖2 = ‖A+A(x− z)‖2 ≤ ‖A+‖2‖A(x− z)‖2 ≤ κ · ε
κ
≤ ε,

as desired. The runtime follows from the parameter change.

Remark 4.4. By letting c = 2 and under the assumption ‖b‖2 = O(1), we achieve the runtime of
nk · (O(d)/ε)k/2·(1+1/7) . By letting c = Θ(1/

√
ε), we can achieve the runtime of nk · (O(d)/ε1.5)k/2·(1+ε).

In general, the best choice for c depends on the relationship between d and k.

Remark 4.5. Note that in Corollary 4.3, we can replace the parameter κ by the largest condition number
κ′ of any n× k submatrix of A since x− z is a k-sparse vector. This is an improvement as κ′ ≤ κ.

Now consider the setting where x is a binary signal or each coordinate has a finite number of choices
in general. This setting is motivated by a number of applications including wideband spectrum sensing,
wireless networks, group testing, error correcting codes, spectrum hole detection for cognitive radios, mas-
sive Multiple-Input Multiple-Output (MIMO) channels, etc. to name a few [CRTV05, RHE14, ALLP12,
DR13, EYOR13, KKLP16, Fos18, KE12, NR12, MYL+10].

In this setting, we can recover x perfectly in roughly O(d)k/2 time using Algorithm 2.

Theorem 4.6. Suppose we are given A ∈ R
n×d and b ∈ R

n such that there exists a unique k-sparse
vector x satisfying Ax = b. Furthermore, suppose that each coordinate of x must lie in the set {0} ∪ U .
Algorithm 2 recovers x exactly in time

nk(d|U |)k/2 +O(1) · (d|U |)k/2.

12

Algorithm 2 Compressed Sensing Upper Bound for Finite Valued Signals

1: Input: Matrix A ∈ R
n×d, vector b ∈ R

d, sparsity k, accuracy ε
2: procedure CompressedSensing-UpperBound-Finite(A, b, k, ε)
3: S ← ∅
4: for each choice T of k/2 columns of A do

5: for each w = (wi)i∈T ∈ Lk/2 do

6: b′ ←∑
i∈T wiA∗,i ⊲ A∗,i denotes the ith column of A

7: S ← S ∪ (b′, T, w)
8: end for

9: end for

10: D ← hashtable for the values {b′|(b′, T, w) ∈ S}
11: Best ←∞
12: for each (b′, T, w) ∈ S do

13: b′′ ← b− b′

14: (b′′, T ′′, w′′)← output of D on query b′′ ⊲ If b′′ is not in hash table, continue for loop on step
12

15: Best ← min(Best, ‖∑i∈T wiA∗,i +
∑

i∈T ′′ w′′
i A∗,i − b‖2)

16: if Best is updated then

17: Associate vector z =
∑

i∈T wiA∗,i +
∑

i∈T ′′ w′′
i A∗,i with Best

18: end if

19: end for

20: Return the vector z associated with the variable Best
21: end procedure

Proof. First we prove the approximation guarantee. Consider x = x1 + x2 be any decomposition of x
into sum of two k/2-sparse vectors. Consider the for loop in step 10 of Algorithm 2. We must consider
b′ = Ax1 at some iteration since we looped over all possible k/2 sparse vectors in step 4 of Algorithm 2.
For this choice of b′, we have that b′′ = b− b′ satisfies Ax2 = b′′. Therefore, the hash table D will return
x2 on query b′′. Finally since x1 and x2 have disjoint support, the vector z =

∑
i∈T wiA∗,i+

∑
i∈T ′′ w′′

i A∗,i

is indeed equal to x as desired.
We now analyze the runtime. Forming the set S takes time at most nk(d|U |)k/2 time and querying

the hash table takes O(1) time each in expectation. Thus the overall runtime is nk(d|U |)k/2 + O(1) ·
(d|U |)k/2.

Remark 4.7. In the case of binary vectors, U = {1} so we achieve the runtime of (nk +O(1)) · dk/2.
Using Corollary 2.6, we can also get an algorithm for robust regression, formalizing the conditions of

Theorem 1.3.

Theorem 4.8. Suppose we are given A ∈ R
n×d and b ∈ R

n such that

min
S,x
‖S(Ax− b)‖2 = 0

where S is constrained to be a diagonal matrix with n− k one entries in the diagonal and k zero entries.
Algorithm 3 returns a diagonal matrix S′ with n − k one entries in the diagonal and k zero entries and
a x′ such that ‖S′(Ax′ − b)‖2 ≤ ε in time

min
c≥1

O

(
nk ·

(
12c · n · ‖b‖2

ε

) k
2
·(1+1/(2c2−1))

)
.

13

Algorithm 3 Robust Regression Upper Bound

1: Input: Matrix A ∈ R
n×d, vector b ∈ R

d, sparsity k, accuracy ε
2: procedure RobustRegression-UpperBound(A, b, k, ε)
3: if Columns of A span all of Rn then

4: Let x′ be such that Ax′ = b
5: Return any diagonal matrix S′ with n− k one entries on diagonal and x′

6: end if

7: Let X be such that XA = 0 with orthonormal rows
8: c← −Xb
9: z ← output of Algorithm 1 on input (X, c, k, ε)

10: x′ ← argminx′ ‖Ax′ − b− z‖2
11: S′ ← diagonal matrix with diagonal entry encoding the zero coordinates of z ⊲ Note z has k non

zero coordinates and thus, S′ has n− k ones on the diagonal and k zeros
12: Return S′ and x′

13: end procedure

Proof. We assume we are not in the if statement case in line 3 of Algorithm 3 since otherwise we are done.
Consider the quantities X and c associated with the robust regression instance arising from Corollary
2.6. Now from Corollary 2.6, we know the following statements: first, we know that all non zero singular
values of X must be 1 since XXT is the identity matrix and the non zero eigenvalues of XTX and XXT

are the same. Second, we know that ‖z − w‖2 ≤ ε where Xw = c. This implies that if Xz = c′ then
‖c − c′‖ ≤ ε. Therefore, we have Xz = c + e or in other words, X(z + b) = e for ‖e‖2 ≤ ε. Now write
z + b = v1 + v2 where v1 is the orthogonal projection of z + b onto the column span of A. We know that
Xv1 = 0 by definition and thus, there exists a x̃ such that Ax̃ = v1. This x̃ satisfies

‖Ax̃− (z + b)‖2 = ‖v2‖2 = ‖e‖2 ≤ ε.

Therefore, we know that x′ chosen in line 10 of Algorithm 3 satisfies ‖Ax′ − b− z‖2 ≤ ε as well. Finally,
z is a k-sparse vector since it is the output of Algorithm 1 which implies that our choice of S′ in line 11
of Algorithm 3 gives us

‖S′(Ax′ − b)‖2 ≤ ε

as desired.
We now compute the runtime of Algorithm 3. The runtime is dominated by the call to Algorithm

1. Note that our matrix X has all non-zero singular values equal to 1 so we can take κ in Theorem 4.2
(more specifically in Corollary 4.3) to be equal to 1. Furthermore, we can check that ‖c‖2 ≤ ‖b‖2.

Remark 4.9. The same comments as in Remark 4.4 apply, except we no longer have a κ dependency
and therefore do not need any assumptions on its value.

5 Sparse PCA

In this section we present our results for the sparse PCA problem which is defined as follows. Let A be
a PSD matrix of rank r. The goal of sparse PCA is to solve

max
‖v‖2=1, ‖v‖0≤k

vTAv. (3)

Sparse PCA is known to be NP-hard to solve exactly and approximate with a 1 − δ factor for some
small constant δ > 0 [CPR16b]. It is also known how to obtain a k-sparse unit vector v which achieves
at least a 1− ε approximation to the objective in time O((4/ε)r · n · k2) [APKD15].

14

We obtain an algorithm with an improved dependence on the exponent of 1/ε via a novel connection
to the computational geometry and our ideas from the prior sections. We need the following theorems
from [Cha18] about the runtime of approximating the diameter and the bichromatic farthest pair of point
sets.

Theorem 5.1. Consider P ⊂ R
d with |P | = n. Let

diam(P) = max
x,y∈P

‖x− y‖2

denote the diameter of P . There exists an algorithm which computes x′, y′ such that

‖x′ − y′‖2 ≥ (1− ε) diam(P)

in time Õ(nd/
√
ε+ (1/ε)d/2+1).

Theorem 5.2. Consider P,Q ⊂ R
d with |P ∪Q| = n. There exists an algorithm which computes x′ ∈ P

and y′ ∈ Q such that
‖x′ − y′‖2 ≥ (1− ε) max

x∈P,y∈Q
‖x− y‖

in time Õ(nd/
√
ε+ (1/ε)d/2+1).

We now show Theorem 1.5. The main idea behind our algorithm is to note that since A = BTB, we
have vTAv = ‖Bv‖22. Now we employ a trick from our previous algorithmic result: we partition v into the
difference of two k/2 sparse vectors x1−x2. This gives us v

TAv = ‖Bx1−Bx2‖22. Thus, maximizing the
original quadratic form over A reduces to maximizing the distance between the points {Bx1} and {Bx2}
where x1 and x2 range over all k/2 sparse vectors. To do this, we invoke the Bichromatic-Farthest-Pair
guarantee from [Cha18] to find the best pair of k/2 sparse vectors, say y1,−y2.

One technical issue is we must ensure the supports of y1 and y2 are disjoint. Since we have to maximize
over unit norm vectors v, if the supports of y1 and y2 overlap then we cannot say anything about the
norm of y1− y2. To get around this, we first randomly partition [n] into two disjoint sets and only search
over k/2 sparse y1 with support completely contained in the first set and vice versa for y2. We formalize
the argument below.

Theorem 5.3. Algorithm 4 returns a unit vector u satisfying ‖u‖0 ≤ k such that

uTAu ≥ (1− ε) max
‖v‖2=1 ,‖v‖0≤k

vTAv

with probability 1− exp(−Ω(kε2)). The runtime is

Õ

(
k2

ε
·
(
r
(nκ

ε

)k(1+ε)/2
+

(
1

ε

)r/2+1
))

where κ is the ratio of the largest and smallest non-zero singular values of A.

Proof. We first prove the approximation guarantee. Let v be the optimum k-sparse unit vector. Note
that with probability 1−exp(−Ω(kε2)), via a Chernoff bound, both U1 and U2 contain at least k(1−ε)/2
number of support indices of v. We now condition in this event. Let v = x1 − x2 be a decomposition of
v into the difference of two vectors such that the support of x1 is contained entirely in U1 and similarly,
the support of x2 is contained entirely in U2. We know that we will loop over some z ∈ N ′ in step 9 and
some T1 in step 12 of Algorithm 4 which satisfies |‖x1‖22 − z| ≤ ε/2 and T exactly encodes the support
of x1. Similarly, we will loop over some T2 in step 20 of Algorithm 4 such that T2 exactly encodes the
support of x2. Now let y1 and y2 satisfy the following:

15

• |‖y1‖22 − ‖x1‖22| ≤ ε/2, |‖y2‖22 − ‖x2‖22| ≤ ε/2,

• the supports of y1 and y2 exactly match those of x1 and x2 respectively, and

• ‖y1 − x1‖2 ≤ δ, ‖y2 − x2‖2 ≤ δ.

Such a y1, y2 exist because of the net N and we looped over all choices k1, k2 such that k1 + k2 = k. We
know that w = y1 − y2 satisfies

‖w‖22 = ‖y1‖22 + ‖y2‖22 ≥ 1− ε,

since y1, y2 have disjoint support. Furthermore, we have

‖B(x1 − y1)‖ ≤ ε/κ

and
‖B(x2 − y2)‖ ≤ ε/κ

by our choice of δ in the net N . Furthermore,

vTAv = vTBTBv = ‖Bv‖22 = ‖Bx1 −Bx2‖22
so by the above calculations,

wTAw = ‖By1 −By2‖22 ≥ (1− ε)‖Bx1 −Bx2‖22 = vTAv.

The guarantees of Bichromatic-Farthest-Pair imply that we find a w′ such that

w′TAw′ ≥ (1− ε)wTAw ≥ (1−O(ε))vTAv

in step 29 of Algorithm 4. Furthermore, w′ has norm at least 1− ε by our requirements on y1 and y2 in
Algorithm 4 so we get the desired approximation.

We now analyze the runtime. The runtime is consists of guessing over k1 a k2 with is O(k2) time and
guessing over z which has O(1/ε) choices. Looping over the choices of k1 columns (or k2 columns) is time
O(nk(1+ε)/2(κ/ε)k(1+ε)/2). The total number of points in the each instance of Bichromatic-Farthest-Pair
used is O(nk(1+ε)/2(κ/ε)k(1+ε)/2) and all vectors in the instance are in dimension r. Invoking Theorem
5.2, the overall runtime is Õ(k2/ε · (r(nκ/ε)k(1+ε)/2 + (1/ε)r/2+1)).

Remark 5.4. Note that we can think of the parameter k as much smaller than r. Thus the dominant
term in our runtime is (1/ε)r/2+1 which improves upon the dependence of (4/ε)r as (4/ε)r ≫ (1/ε)r/2+1.

5.1 Sparse PCA with Limited Alphabet

In this section, we consider a slight variation of SparsePCA where the entries in v are limited to a small
alphabet. Formally, we consider the problem of

max
∀i:vi∈{−L,...,L}, ‖v‖0≤k

vTAv

where A is a n×n PSD matrix of rank r. This formulation is motivated by its connection the the Densest
k-Subgraph problem where we wish to maximize vTAv over vectors v with a limited range of choices per
coordinate but the matrix A is not necessarily PSD which holds in our case; see [CPR16a] for more
information about the Densest k-Subgraph problem.

For a relaxation of this version, we can also obtain an algorithm with an exponentially better depen-
dence on ε than the result from [APKD15] via a novel connection to the computational geometry problem
of Diameter.

16

Algorithm 4 Sparse PCA Upper Bound

1: Input: PSD Matrix A ∈ R
n×n of rank r, sparsity k, accuracy ε

2: procedure SparsePCA-UpperBound(A, k, ε)
3: Compute B such that BTB ← A ⊲ B is a r × n matrix
4: κ← σmax(A)/σmin(A) ⊲ The min /max is over non-zero singular values
5: δ ← ε/κ
6: U1 ∪ U2 ← random partition of [n] into two disjoint subsets
7: N ′ ← ε/2-net of the unit interval [0, 1]
8: for each choice of k1, k2 such that k1 + k2 = k and k1, k2 ≥ k(1− ε)/2 do

9: for each choice of z ∈ N ′ do

10: S1 ← ∅
11: S2 ← ∅
12: for every choice T of k1 columns of B restricted to the indices in U1 do ⊲ BT is r × k1

matrix restricted to columns in T
13: N ← δ-net of ball of radius 1 in R

k1

14: for each y ∈ N do

15: if ‖y‖22 ∈ [z − ε/2, z + ε/2] then
16: S1 ← S1 ∩ {BT y}
17: end if

18: end for

19: end for

20: for every choice T of k2 columns of B restricted to the indices in U1 do ⊲ BT is r × k2
matrix restricted to columns in T

21: N ← δ-net of ball of radius 1 in R
k2

22: for each y ∈ N do

23: if ‖y‖22 ∈ [1− z − ε/2, 1 − z + ε/2] then
24: S2 ← S2 ∩ {−BT y}
25: end if

26: end for

27: end for

28: (BT1
y1,−BT2

y2)← solution of Bichromatic-Farthest-Pair on the pair (S1, S2)
29: w = (y1 − y2)/‖y1 − y1‖2
30: Keep track of the maximum value of wTAw encountered
31: end for

32: end for

33: Return w that maximizes wTAw over all w’s observed
34: end procedure

Theorem 5.5. Algorithm 5 returns a u satisfying ‖u‖0 ≤ k such that

uTAu ≥ (1− ε) max
∀i:vi∈{−L,...,L} ,‖v‖0≤k

vTAv

and all the entries of u are in the set {−2L, . . . , 2L} in time Õ((1/ε)r/2+1 + rk · ((2L+ 1)n)k/2/
√
ε).

Proof of Theorem 5.5. We prove correctness first. Consider the optimal v and let v = x1 + x2 for k/2
sparse vectors x1, x2. Note that

OPT = vTAv = vTBTBv

17

Algorithm 5 Sparse PCA Limited Alphabet Upper Bound

1: Input: PSD Matrix A ∈ R
n×n of rank r, sparsity k, accuracy ε

2: procedure SparsePCA-UpperBound-Limited(A, k, ε)
3: Compute B such that BTB ← A ⊲ B is a r × n matrix
4: S ← ∅
5: for every choice T of k/2 columns of B do ⊲ BT is r × k/2 matrix restricted to columns in T
6: for each w = (wi)i∈T ∈ {−L, . . . , L}k/2 do

7: y ←∑
i∈T wiA∗,i ⊲ A∗,i denotes the ith column of A

8: S ← S ∪ {BT y}
9: end for

10: end for

11: (By,By′)← solution of Diameter on S using Theorem 5.1
12: Return u = y − y′

13: end procedure

= xT1 B
TBx1 + 2x1B

TBx2 + xT2 B
TBx2

= ‖Bx1‖22 + ‖Bx2‖22 + 2〈Bx1, Bx2〉.

Letting x′2 = −x2, we get
vTAv = ‖Bx1 −Bx′2‖22.

Now consider y, y′ returned by Algorithm 5. From the guarantees of Diameter, it follows that

uTBu = ‖By −By′‖22 ≥ (1− ε)‖Bx1 −Bx′2‖22 = (1− ε)OPT.

Finally, u is k sparse and its entries belong to {−2L, · · · , 2L}. The runtime follows from Theorem 5.1
using the fact that |S| = ((2L + 1)d)k/2.

Acknowledgments

Eric Price is supported by NSF awards CCF-2008868, CCF-1751040 (CAREER), and NSF IFML 2019844.
Sandeep Silwal is supported by an NSF Graduate Research Fellowship under Grant No. 1745302, NSF
TRIPODS program (award DMS-2022448), NSF award CCF-2006798, and Simons Investigator Award.
Samson Zhou is supported by a Simons Investigator Award of David P. Woodruff.

References

[ALLP12] Erik Axell, Geert Leus, Erik G. Larsson, and H. Vincent Poor. Spectrum sensing for cognitive
radio : State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29:101–116,
2012. 12

[APKD15] Megasthenis Asteris, Dimitris S. Papailiopoulos, Anastasios Kyrillidis, and Alexandros G.
Dimakis. Sparse PCA via bipartite matchings. In Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Systems, pages 766–774,
2015. 5, 14, 16

[AR15] Alexandr Andoni and Ilya P. Razenshteyn. Optimal data-dependent hashing for approximate
near neighbors. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC, pages 793–801, 2015. 10, 12

18

[AW08] Arash A. Amini and Martin J. Wainwright. High-dimensional analysis of semidefinite relax-
ations for sparse principal components. In 2008 IEEE international symposium on information
theory, pages 2454–2458, 2008. 5

[BGM20] Tamara Broderick, Ryan Giordano, and Rachael Meager. An automatic finite-sample robust-
ness metric: Can dropping a little data change conclusions. arXiv preprint arXiv:2011.14999,
page 16, 2020. 23

[BJK15] Kush Bhatia, Prateek Jain, and Purushottam Kar. Robust regression via hard thresholding.
In Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems, pages 721–729, 2015. 4, 24

[BJKK17] Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, and Purushottam Kar. Consis-
tent robust regression. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems, pages 2110–2119, 2017. 4, 24

[BP21] Ainesh Bakshi and Adarsh Prasad. Robust linear regression: optimal rates in polynomial
time. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
102–115, 2021. 4

[CAT+20] Yeshwanth Cherapanamjeri, Efe Aras, Nilesh Tripuraneni, Michael I. Jordan, Nicolas Flam-
marion, and Peter L. Bartlett. Optimal robust linear regression in nearly linear time. CoRR,
abs/2007.08137, 2020. 4

[CBZ+22] Agniva Chowdhury, Aritra Bose, Samson Zhou, David P. Woodruff, and Petros Drineas.
A fast, provably accurate approximation algorithm for sparse principal component analysis
reveals human genetic variation across the world. In Research in Computational Molecular
Biology - 26th Annual International Conference, RECOMB, Proceedings, pages 86–106, 2022.
5

[CDS98] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition by
basis pursuit. SIAM J. Sci. Comput., 20(1):33–61, 1998. 4

[CDWZ20] Agniva Chowdhury, Petros Drineas, David P. Woodruff, and Samson Zhou. Approximation
algorithms for sparse principal component analysis. CoRR, abs/2006.12748, 2020. 5

[Cha18] Timothy M. Chan. Applications of chebyshev polynomials to low-dimensional computational
geometry. J. Comput. Geom., 9:3–20, 2018. 15

[CJ95] Jorge Cadima and Ian T. Jolliffe. Loading and correlations in the interpretation of principle
compenents. Journal of applied Statistics, 22(2):203–214, 1995. 5

[CP86] Thomas F Coleman and Alex Pothen. The null space problem i. complexity. SIAM Journal
on Algebraic Discrete Methods, 7(4):527–537, 1986. 5

[CPR16a] Siu On Chan, Dimitris Papailliopoulos, and Aviad Rubinstein. On the approximability of
sparse PCA. In Proceedings of the 29th Conference on Learning Theory, COLT, pages 623–
646, 2016. 5, 16

[CPR16b] Siu On Chan, Dimitris Papailliopoulos, and Aviad Rubinstein. On the approximability of
sparse pca. In COLT, 2016. 14

19

[CRTV05] Emmanuel J. Candès, Mark Rudelson, Terence Tao, and Roman Vershynin. Error correction
via linear programming. In FOCS 2005, 2005. 12

[CT07] Emmanuel Candes and Terence Tao. The dantzig selector: Statistical estimation when p is
much larger than n. The annals of Statistics, 35(6):2313–2351, 2007. 4

[CW15] Kenneth L. Clarkson and David P. Woodruff. Sketching for M -estimators: A unified approach
to robust regression. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 921–939, 2015. 2

[CWW19] Kenneth L. Clarkson, Ruosong Wang, and David P. Woodruff. Dimensionality reduction for
tukey regression. In Proceedings of the 36th International Conference on Machine Learning,
ICML, 2019. 2

[CYW19] Yichen Chen, Yinyu Ye, and Mengdi Wang. Approximation hardness for A class of sparse
optimization problems. J. Mach. Learn. Res., 20:38:1–38:27, 2019. 4

[dBEG08] Alexandre d’Aspremont, Francis Bach, and Laurent El Ghaoui. Optimal solutions for sparse
principal component analysis. Journal of Machine Learning Research, 9(7), 2008. 5

[dGJL07] Alexandre d’Aspremont, Laurent El Ghaoui, Michael I. Jordan, and Gert R. G. Lanckriet. A
direct formulation for sparse PCA using semidefinite programming. SIAM Rev., 49(3):434–
448, 2007. 5

[DH14] Laurent Demanet and Paul Hand. Scaling law for recovering the sparsest element in a sub-
space. Information and Inference: A Journal of the IMA, 3(4):295–309, 2014. 5, 25

[dKNS20] Tommaso d’Orsi, Pravesh K. Kothari, Gleb Novikov, and David Steurer. Sparse PCA: al-
gorithms, adversarial perturbations and certificates. In 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS, pages 553–564, 2020. 5

[DKS19] Ilias Diakonikolas, Weihao Kong, and Alistair Stewart. Efficient algorithms and lower bounds
for robust linear regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 2745–2754, 2019. 4

[DMA97] Geoff Davis, Stephane Mallat, and Marco Avellaneda. Adaptive greedy approximations.
Constructive approximation, 13(1):57–98, 1997. 4

[DR13] Przemyslaw Dymarski and Rafal Romaniuk. Sparse signal modeling in a scalable celp coder.
21st European Signal Processing Conference (EUSIPCO 2013), pages 1–5, 2013. 12

[EYOR13] Alexander Ens, Adnan Yousaf, Thomas Ostertag, and Leonhard Michael Reindl. Optimized
sinus wave generation with compressed sensing for radar applications, 2013. 12

[FF93] LLdiko E. Frank and Jerome H. Friedman. A statistical view of some chemometrics regression
tools. Technometrics, 35(2):109–135, 1993. 4

[FKT15] Dean P. Foster, Howard J. Karloff, and Justin Thaler. Variable selection is hard. In Proceedings
of The 28th Conference on Learning Theory, COLT, volume 40, pages 696–709, 2015. 2, 4

[FL01] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American statistical Association, 96(456):1348–1360, 2001.
4

20

[Fos18] Sophie Marie Fosson. Non-convex lasso-kind approach to compressed sensing for finite-valued
signals. arXiv: Optimization and Control, 2018. 12

[GV21] Aparna Gupte and Vinod Vaikuntanathan. The fine-grained hardness of sparse linear regres-
sion, 2021. 2, 4, 8, 9, 10

[HIM18] Sariel Har-Peled, Piotr Indyk, and Sepideh Mahabadi. Approximate sparse linear regres-
sion. In 45th International Colloquium on Automata, Languages, and Programming, ICALP,
volume 107, pages 77:1–77:14, 2018. 4

[HK70] Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthog-
onal problems. Technometrics, 12(1):55–67, 1970. 2

[JLST21] Arun Jambulapati, Jerry Li, Tselil Schramm, and Kevin Tian. Robust regression revisited:
Acceleration and improved estimation rates. arXiv preprint arXiv:2106.11938, 2021. 4

[Jol95] Ian T. Jolliffe. Rotation of principal components: choice of normalization constraints. Journal
of Applied Statistics, 22(1):29–35, 1995. 5

[JTU03] Ian T. Jolliffe, Nickolay T. Trendafilov, and Mudassir Uddin. A modified principal component
technique based on the lasso. Journal of computational and Graphical Statistics, 12(3):531–
547, 2003. 5

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009. 24

[KE12] Nazim Burak Karahanoglu and Hakan Erdogan. A* orthogonal matching pursuit: Best-first
search for compressed sensing signal recovery. Digit. Signal Process., 22:555–568, 2012. 12

[KKK19] Sushrut Karmalkar, Adam R. Klivans, and Pravesh Kothari. List-decodable linear regression.
In Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems, NeurIPS, pages 7423–7432, 2019. 4

[KKLP16] Sandra Keiper, Gitta Kutyniok, Dae Gwan Lee, and Götz E. Pfander. Compressed sensing
for finite-valued signals. arXiv: Optimization and Control, 2016. 12

[KKM18] Adam R. Klivans, Pravesh K. Kothari, and Raghu Meka. Efficient algorithms for outlier-
robust regression. In Conference On Learning Theory, COLT, pages 1420–1430, 2018. 4

[LW15] Po-Ling Loh and Martin J. Wainwright. Regularized m-estimators with nonconvexity: Sta-
tistical and algorithmic theory for local optima. The Journal of Machine Learning Research,
16(1):559–616, 2015. 4

[Mag17] Malik Magdon-Ismail. Np-hardness and inapproximability of sparse PCA. Inf. Process. Lett.,
126:35–38, 2017. 5

[Mah15] Sepideh Mahabadi. Approximate nearest line search in high dimensions. In Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 337–354,
2015. 4

[MWA06] Baback Moghaddam, Yair Weiss, and Shai Avidan. Generalized spectral bounds for sparse
LDA. InMachine Learning, Proceedings of the Twenty-Third International Conference ICML,
pages 641–648, 2006. 5

21

[MYL+10] Jia Meng, Wotao Yin, Husheng Li, Ekram Hossain, and Zhu Han. Collaborative spectrum
sensing from sparse observations using matrix completion for cognitive radio networks. 2010
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3114–3117,
2010. 12

[Nat95] Balas K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput.,
24(2):227–234, 1995. 4

[NR12] Ukash Nakarmi and Nazanin Rahnavard. Bcs: Compressive sensing for binary sparse signals.
MILCOM 2012 - 2012 IEEE Military Communications Conference, pages 1–5, 2012. 12

[OWZ15] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Hardness of max-2lin and max-3lin over integers,
reals, and large cyclic groups. ACM Trans. Comput. Theory, 7(2):9:1–9:16, 2015. 1, 2, 5, 6

[RHE14] Marco Rossi, Alexander M. Haimovich, and Yonina C. Eldar. Spatial compressive sensing for
mimo radar. IEEE Transactions on Signal Processing, 62:419–430, 2014. 12

[SBRJ19] Arun Sai Suggala, Kush Bhatia, Pradeep Ravikumar, and Prateek Jain. Adaptive hard
thresholding for near-optimal consistent robust regression. In Conference on Learning Theory,
COLT, pages 2892–2897, 2019. 4, 24

[SH08] Haipeng Shen and Jianhua Z. Huang. Sparse principal component analysis via regularized
low rank matrix approximation. Journal of multivariate analysis, 99(6):1015–1034, 2008. 5

[SKPB12] Christoph Studer, Patrick Kuppinger, Graeme Pope, and Helmut Bölcskei. Recovery of
sparsely corrupted signals. IEEE Trans. Inf. Theory, 58(5):3115–3130, 2012. 4

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996. 2, 4

[TWZ+22] Murad Tukan, Xuan Wu, Samson Zhou, Vladimir Braverman, and Dan Feldman. New coresets
for projective clustering and applications. In International Conference on Artificial Intelli-
gence and Statistics, AISTATS, 2022. 2

[ZH05] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the royal statistical society: series B (statistical methodology), 67(2):301–320, 2005. 5

[ZHT06] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Journal
of computational and graphical statistics, 15(2):265–286, 2006. 5

[ZJS20] Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt. Robust estimation via generalized quasi-
gradients. CoRR, abs/2005.14073, 2020. 4

A NP Hardness Result

We give an alternate proof of NP hardness for robust regression based on exact cover.

Problem A.1 (Exact Cover). Given a collection S of subsets of X, determine if there exists a sub
collection S′ of S such that every member of X belongs to exactly one set in S′.

22

Problem A.2 (Robust Regression, Zero Cost Decision Version). Given A ∈ R
n×d, b ∈ R

n, and integer
0 < k ≤ n, determine if there exists T ⊂ [n] satisfying |T | = k such that

min
y∈Rd

‖(Ay − b)T ‖ = 0 (4)

where (Ax − b)T denotes that we only measure the loss on the coordinates in T . The coordinates not in
T are called ignored.

Lemma A.1. Problem A.1 is reducible to Problem A.2.

Proof. Consider an exact cover instance given by S,X. Let n = 2|S| + |X| and d = |S|. We form the
matrix A ∈ R

n×d as follows. We have a variable yi for the i th set in S for all i. The first 2|S| × |S|
block of A will be the constraints yi = 0 and 1− yi = 0. This also defines the b vector for this part of the
matrix. The next |X|× |S| block of A will be the indicator matrix for the sets in S. That is, each column
will be a {0, 1} vector indicating which elements of X are in the set corresponding to the column. The
part of the b vector for this block of A will all 1′s. Finally, we set k = |X|+ |S|.

We now claim that Eq. (4) is equal to 0 iff an exact cover exists. In particular, we claim that Eq. (4)
is equal to 0 iff y is the indicator vector for which sets in S to pick to be part of S′, the exact cover. First,
note that if an exact cover exists, letting yi = 1 for the sets that are part of S′ (and thus ignoring the
yi = 0 constraints), and letting yi = 0 for sets that are not part of S′ (and again ignoring the 1− yi = 0
constraints) results in (Ay − b)T = 0. Note that we have chosen to ignore exactly n − k = |S| many
constraints, one for each yi.

We now show the other direction. Suppose that Eq. (4) holds. We first show that y must only have
0, 1 entries. Let’s focus on the first 2|S| constraints of A. If both of the constraints yi = 0 and 1− yi = 0
are not ignored for some i, then we automatically induce a non zero cost. Since we are assuming Eq.
(4) holds, it implies that all variables yi must only have one of yi = 0 or 1 − yi = 0 present in T for
all i and furthermore, only these types of constraints must be ignored in T . Therefore, y ∈ {0, 1}n and
y represents an indicator vector for the second |X| × |S| block of A. Since the b vector for this block
is the all 1’s vector, this automatically implies that the sets chosen by y forms an exact cover of X, as
desired.

B Simple Counter Examples to Natural Algorithms for Robust Regression

In this section, we present particularly simple counter examples to natural algorithms for robust regression
which have also been studied in applied works.

Greedy algorithm. First consider a greedy algorithm which fits a best fit linear regression on all data
points and removes the k data points with the largest residuals, such as in Algorithm 1. Variants of this
algorithm have been used in applied works such as [BGM20] to find the ‘most influential’ data points in
econometric data analysis.

Now consider the following (x, y) data pairs: (0, 10), (1, 0), (2, 0), (3, 0). We can generalize this example
to any total number of data points by having multiple copies of each data point. Consider the simplest
k = 1 case of robust regression where we wish to remove one point to minimize the regression loss. In
the example given, it is clear that if we remove (0, 10), zero loss is achieved by the line y = 0. The best
fit on all of the points is given by y = 7 − 3x. We can check the residual for the (0, 10) data point is 3
while the residual for (1, 0) is 4. Thus, the greedy algorithm removes (1, 0) which results in a suboptmial
algorithm which performs arbitrarily worse compared to the true solution with 0 loss.

23

1. Given A ∈ R
n×d and b ∈ R

d, y = argminx ‖Ax− b‖2.

2. Let S be the n × n identity matrix and let p1, . . . , pk be the indices of the k coordinates of
Ay − b largest in magnitude.

3. For i ∈ [k], set Spi,pi = 0.

4. Output S and y.

Figure 1: Greedy algorithm for robust regression

Alternating minimization. We now consider another natural algorithm which performs alternating
minimization: starting from an arbitrary S, it optimizes for x given the choice of S. Then using the
resulting x, it optimizes for S and continues in this loop for a specified number of iterations. See
Algorithm 2 for more details.

1. Given A ∈ R
n×d and b ∈ R

d, and number of iterations T , set S to be an arbitrary n×n diagonal
matrix with n− k ones on the diagonal and k zeros.

2. While # of iterations < T :

(a) Set y = argminx ‖SAx− Sb‖2. (Optimize over x)

(b) Let p1, . . . , pk be the indices of the k coordiantes Ay − b largest in magnitude.

(c) For i ∈ [k], set Spi,pi = 0. (Optimize over S)

3. Output S and y = argminx ‖SAx− Sb‖2.

Figure 2: Alternating minimization algorithm for robust regression

This class of algorithms is widely used in practice; for example, it was a key component in the winning
submission for the Netflix Prize Competition [KBV09]. Alternating algorithms have also been considered
for robust regression in the distributional setting [BJK15, BJKK17, SBRJ19]. Alternating minimization
algorithms are especially useful where one is interested in minimizing a complex function of various
parameters with the property that minimizing over specific subsets of the variables is tractable. Indeed,
this is the case here: given S, finding x is just an instance of linear least squares with no restrictions and
given x, the best S is given by discarding the k datapoints with the largest loss.

Our example for the greedy algorithm again serves as a simple counter example for the proposed
alternating minimization algorithm for the most basic case of k = 1 in the robust regression problem.
Suppose we start with the matrix S which removes or ignores the point (1, 0). Doing so gives us the
best fit line y = 9.29x − 3.57. However for this line, one can check that the point (1, 0) would still have
the largest residual among all four points. Therefore, the alternating minimization algorithm would not
make any further progress as it would continue to select the point (1, 0) to remove in all future iterations.
We can check that if we started by removing the point (2, 0) instead, the point (1, 0) would still have the
largest residual among all four data points in the resulting best fit line. Thus, we are back in the first case
considered. If we start by removing (3, 0), then (3, 0) will have the largest residual among all four data
points so the alternating minimization algorithm is again stuck. Therefore, the alternating minimization
algorithm is guaranteed to return a suboptmial solution if we do not initialize S with the optimal choice.

24

C Polynomial-time Algorithm for Planted Instance of Robust Regression

In this section, we show that if the columns of the input matrix A are generated from a normal distribution
and the measurement vector b has Hamming distance at most k from a planted solution b′ that lies in the
column span of A, then there is a polynomial time algorithm that solves the robust regression problem:

Theorem C.1. Let C be a fixed constant and k ≤ C
√
n log n. Let the columns of an input matrix

A ∈ R
n×d be drawn independent and identically distributed from N (0, In). Let b′ ∈ R

n lie in the column
span of A. Then given a vector b such that ‖b − b′‖0 ≤ k, there exists an algorithm that solves n linear
programs and then uses polynomial time to solve the sparse linear regression problem with probability at
least 2/3, i.e., the algorithm finds a diagonal matrix S ∈ R

n×n with n − k nonzero entries along that
diagonal that are set to 1 and a vector x ∈ R

d such that ‖S(Ax− b)‖ = 0.

Our result is motivated by the following result of [DH14] which solve the problem of sparsest non-zero
vector in a subspace in a planted setting as well.

Lemma C.2 (Theorem 1 in [DH14]). Given a basis of vectors w1, . . . , wd+1 ∈ R
n for a subspace spanned

by vectors v, v1, . . . , vd ∈ R
n, where vi ∼ N (0, In) for all i ∈ [d], then there exists an absolute constant

C > 0 and an algorithm that solves n linear programs and uniquely recovers the vector v with probability
at least 2/3, for ‖v‖0 ≤ C

√
n log n.

Proof of Theorem C.1. Given a matrix A whose columns u1, . . . , ud ∼ N (0, In) ∈ R
n and a vector b ∈ R

n

such that there exists a vector b′ ∈ R
n in the column span of A with ‖b−b′‖0 ≤ k, we construct the vectors

w1, . . . , wd+1 by taking an arbitrary basis over the d + 1 vectors b, u1, . . . , ud. The vectors w1, . . . , wd+1

also form a basis for the subspace spanned by the vectors b − b′, u1, . . . , ud, since b′ is in the column
span of A and thus spanned by u1, . . . , ud. Since ‖b − b′‖0 ≤ k, then by Lemma C.2, there exists an
algorithm that solves n linear programs and uniquely recovers the vector b− b′ with probability at least
2/3. Because we are given b as input, we can thus determine the vector b′, as well as a vector x ∈ R

d

such that Ax = b′. By setting S to be the diagonal matrix S with at most k zeros and at least n− k ones
on the diagonal such that the zero entries on the diagonal of S are located precisely in the coordinates
for which b− b′ is nonzero, then we have ‖S(Ax− b)‖ = ‖S(b− b′)‖ = 0, since S(b− b′) = 0n.

25

	1 Introduction
	1.1 Our Results
	1.2 Prior Works

	2 Bicriteria Hardness of Approximation
	2.1 Bicriteria Hardness of Approximation for Robust Regression
	2.2 Bicriteria Hardness of Approximation for Sparse Regression

	3 Fine-Grained Hardness
	4 Upper Bounds
	5 Sparse PCA
	5.1 Sparse PCA with Limited Alphabet

	A NP Hardness Result
	B Simple Counter Examples to Natural Algorithms for Robust Regression
	C Polynomial-time Algorithm for Planted Instance of Robust Regression

