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Abstract

We propose two linear bandits algorithms with

per-step complexity sublinear in the number of

arms K. The algorithms are designed for ap-

plications where the arm set is extremely large

and slowly changing. Our key realization is

that choosing an arm reduces to a maximum in-

ner product search (MIPS) problem, which can

be solved approximately without breaking re-

gret guarantees. Existing approximate MIPS

solvers run in sublinear time. We extend those

solvers and present theoretical guarantees for on-

line learning problems, where adaptivity (i.e., a

later step depends on the feedback in previous

steps) becomes a unique challenge. We then ex-

plicitly characterize the tradeoff between the per-

step complexity and regret. For sufficiently large

K, our algorithms have sublinear per-step com-

plexity and Õ(
√
T ) regret. Empirically, we eval-

uate our proposed algorithms in a synthetic envi-

ronment and a real-world online movie recom-

mendation problem. Our proposed algorithms

can deliver a more than 72 times speedup com-

pared to the linear time baselines while retaining

similar regret.

1. Introduction

Linear bandits problem is one of the most fundamental on-

line learning problems, with wide applications in recom-

mender systems, online advertisements, etc. (Deshpande

& Montanari, 2012). Such applications usually have an

extremely large set of items (e.g., millions of products to

be recommended), which also changes over time. Specif-

ically, we focus on two types of changes: (1) some new

arms are added from time to time (e.g., new movies added

to the database); and more generally (2) some new arms are
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added, and some old arms deleted (e.g., some new adver-

tisements to be shown and some old ones expired). Such

an extremely large arm set typically changes slowly, in the

sense that a relatively small number of arms are added or

deleted at every time step.

A linear scan is slow for an extremely large arm set. It is

thus demanding to design linear bandit algorithms that have

per-step time complexity sublinear in the number of arms

K, for an extremely large and slowly changing arm set.

Common algorithms for linear bandits have per-step time

complexity linear in K. For instance, Thompson Sampling

(TS) draws a random parameter estimate and selects the

best arm accordingly (Abeille & Lazaric, 2017). It needs

to scan the entire set of arms to choose the most promising

arm, which leads to time complexity linear in K.

In this paper, we propose two algorithms with per-step time

complexity sublinear in K, based on the observation below:

Key observation: The arm selection step in many linear

bandits algorithms reduces to an (exact) maximum inner

product search (MIPS) problem. The right way to approxi-

mately solve the MIPS problem, coupled with careful anal-

ysis, allows us to achieve sublinear per-step complexity and

desired regret guarantees.

Formally, given a set P ∈ R
d, |P | = K, and a query

q ∈ R
d, the MIPS problem aims to find the point p ∈ P

that maximizes p⊤q. The TS algorithm is an immediate ex-

ample of selecting arms by solving a MIPS problem. For

arms a with embedding xa, TS algorithm chooses the arm

that maximizes x⊤
a θ̃, for the random θ̃ drawn by TS.

More importantly, the exact solution of the MIPS prob-

lem is not necessary for obtaining an O(
√
T ) regret bound.

Take TS algorithm again as an example, the estimate θ̃ has

an estimation error (i.e., θ̃ 6= θ∗, where θ∗ is the true en-

vironment parameter that determines reward expectation).

By properly controlling the approximate MIPS accuracy,

the error of approximately solving MIPS can be smaller

than the estimation error of θ̃. The regret will therefore

stay in the same order as solving the MIPS exactly.

Many approaches were previously established to approx-

imately solve MIPS with time complexity sublinear in K.

While it seems promising to adopt those approximate MIPS
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solvers, there are still two challenges remaining:

Challenge 1. How to design (and analyze) approximate

MIPS solvers for a sequence of adaptive queries? Queries

are adaptive (i.e., later queries depend on the results of pre-

vious ones) for online learning problems. Existing prob-

abilistic guarantees for approximate MIPS solvers do not

allow the queries to be adaptive. In this paper, we pro-

vide an alternative scheme where a query is first rounded

to the nearest point in an ǫ-net before sending to the MIPS

solver. While this scheme is less accurate for a single query,

it allows for a better success guarantee when applied to an

adaptive sequence of T queries.

Challenge 2. How to characterize the connection between

per-step time complexity and regret? Intuitively, a faster

approximate MIPS solver is less accurate and thus leads to

larger regret, while an exact MIPS solver enjoys an optimal

regret but spends much more time. This tradeoff has not

been characterized. For the two algorithms in this paper,

we characterize this tradeoff, and furthermore, show that

it allows for O(K1−α(T )) per-step complexity for some

α(T ) > 0 while retaining Õ(
√
T ) regret.

As a summary, our main contributions are

1. We formally define the (c, r, ǫ)-MIPS problem (Def-

inition 3.1), and propose a scheme to approximately

solve MIPS for a sequence of adaptive queries (Algo-

rithm 1). In Theorem 3.3, we show that our proposed

algorithm has K1+o(1) preprocessing time complexity,

Kρq+o(log−0.45 K) query time complexity, with ρq < 1,

and Ko(1) time complexity for adding a new arm.

2. Building upon Algorithm 1, we propose a sublinear time

elimination-based algorithm (Algorithm 3) and a sublin-

ear time TS-based algorithm (Algorithm 4). We char-

acterize the tradeoff between the time complexity and

regret (Theorems 5.2 and 6.1). With a proper choice

of parameters and sufficiently large K, one can obtain

Õ(
√
T ) regret and sublinear per-step time complexity.

3. We evaluate our algorithms in a synthetic environ-

ment and a real-world movie recommendation problem.

Compared with the linear time complexity baselines,

our algorithms can offer a 72 times speedup when there

are 100,000 arms while obtaining similar regret.

2. Related Work

Linear bandits. Two popular lines of approaches have

been proposed for linear bandits: UCB-based and TS-based

algorithms. The UCB-based algorithm chooses the arm

with the largest plausible (according to the upper confi-

dence bound) expected reward. The first algorithm was

proposed by Auer (2002) under the name SupLinRel, and

extended by Chu et al. (2011) to be SupLinUCB. The al-

gorithms maintain a confidence interval estimation, and

eliminate the arms stage-by-stage. Subsequently, Abbasi-

Yadkori et al. (2011) presented an improved confidence

bound construction and proposed the OFUL algorithm.

It achieves O(d
√
T log T ) regret bound, which nearly

matches the information-theoretic lower bound Ω(d
√
T )

(Dani et al., 2008) up-to logarithmic factors.

TS algorithms maintain a posterior distribution of the envi-

ronment parameter, and sampling from the posterior to de-

termine the best arm. There is now a rich literature on both

Bayesian (Russo & Van Roy, 2014; 2016) and frequentist

(Kaufmann et al., 2012; Agrawal & Goyal, 2013; Gopalan

et al., 2014; Abeille & Lazaric, 2017) regret bounds. Our

work is based on the frequentist analysis for linear Thom-

son Sampling, introduced in (Abeille & Lazaric, 2017). For

an arm set A with K arms, all previously mentioned algo-

rithms have a Θ(K) per-step time complexity.

There are previous algorithms that achieve sublinear in K
complexity, but do not fit into our setting. (Todd, 2016;

Lattimore et al., 2020) show that the “optimal design” ap-

proach has constant per-step complexity, but does not work

for a changing arm set. (Liau et al., 2018) solves the multi-

arm bandits problem with constant per-step complexity and

constant space complexity, but the approach does not ex-

tend to the linear bandits problem.

Jun et al. (2017) considered accelerating a TS and a modi-

fied UCB algorithm to have Õ(Kρ) per-step time complex-

ity, with ρ = 1 − o(1). Their proposed algorithms, how-

ever, need Ω(K1+ρT ) time in preprocessing, as they need

to build a MIPS solver for each of the steps in T to deal

with adaptive queries. There is much room to improve on

the near quadratic dependency on K.

Max inner product search (MIPS). There has been a

large volume of work on (approximately) solving MIPS

(Teflioudi et al., 2015; Shen et al., 2015; Guo et al., 2016;

Li et al., 2017; Yu et al., 2017; Morozov & Babenko, 2018;

Abuzaid et al., 2019; Ding et al., 2019; Tan et al., 2019;

Zhou et al., 2019). It has also been demonstrated that

MIPS can be applied to various problems for acceleration,

e.g., quadratic regression (Yang et al., 2019), conditional

gradient methods (Xu et al., 2021), sparsification prob-

lems (Song et al., 2022), reinforcement learning (Shrivas-

tava et al., 2021), and deep learning (Spring & Shrivastava,

2017; Chen et al., 2019a;b; Kitaev et al., 2020; Chen et al.,

2020; Song et al., 2021a;b).

For our theoretical analysis, we focus on reducing MIPS to

the nearest neighbor search (NNS) problem, where various

reductions have been previously proposed (Shrivastava &

Li, 2014; Bachrach et al., 2014; Neyshabur & Srebro, 2015;

Keivani et al., 2018). We then solve the NNS by Local-
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ity Sensitive Hashing (LSH) (Andoni & Indyk, 2006; Har-

Peled et al., 2012; Andoni et al., 2018; Yan et al., 2018), for

its rigorous theoretical guarantee on sublinear query time.

For our experiments, we use HNSW (Malkov & Yashunin,

2018) for its outstanding empirical performance.

3. MIPS Solver for Adaptive Queries

We start by formally defining the Maximum Inner Product

Search (MIPS) problem. Subsequently, we define adaptive

queries and show how it breaks existing MIPS solvers. We

then propose our solution to adaptive queries, which can

convert existing MIPS solvers to work for adaptive queries.

3.1. MIPS Problem and Sublinear Time Solver

Definition 3.1 ((c, r, ǫ)-MIPS problem). Let P ⊆ R
d be a

finite set of points with ‖p‖2 ≤ 1, ∀p ∈ P . Let q ∈ R
d

be the query with ‖q‖2 ≤ 1. The (c, r, ǫ)-approximated

max inner product search ((c, r, ǫ)-MIPS) aims to find p ∈
P such that 〈q, p〉 ≥ cr − ǫ if there exists p∗ ∈ P with

〈q, p∗〉 ≥ r + ǫ.

The definition is valid with r > 0, c ≤ 1, ǫ ≥ 0. Intuitively,

for any query q with unit norm, the (c, r, ǫ)-MIPS problem

defined above looks for a point p ∈ P with 〈p, q〉 ≥ r,

allowing for (1−c) multiplicative error and ǫ additive error.

See Figure 1 for illustration.

Approximately solving the MIPS problem with sublinear

time has been well studied. The next result is adapted from

(Andoni et al., 2017), which solves (c, r, 0)-MIPS in sub-

linear time with a success probability of at least 0.9.

Proposition 3.2 (Single Query MIPS solver S(c, r, 0)).
For a point set P ⊆ R

d with K points, there exists a data

structure S(c, r, 0) that solves (c, r, 0)-MIPS problem for

an arbitrary query q with at least 0.9 probability. It has the

following time complexity: Preprocessing: K1+o(1); Add

a Point to P : Ko(1); Query: Kρq+o(log−0.45 K), where

ρq = 4c′2

(1+c′2)2 and c′ =
√

3−cr
3−r .

Notice that for c < 1, we have c′ > 1 and ρq < 1.

The online nature of linear bandits calls for a MIPS algo-

rithm that can deal with a sequence of adaptive queries,

where the later queries depend on previous query results.

Such adaptive queries naturally arise when applying a

MIPS solver S to online learning problems - as will be dis-

cussed in later sections, one can query S with the current

parameter estimate θ̃t and S returns an arm at that should

be played. The query θ̃t depends on all previously played

arms aτ , τ < t, which are the results of previous queries.

As we illustrate in the next subsection, the adaptive queries

introduce a fundamental challenge that one can not apply

Inner Product

with Query 𝑞

Inner Product

with Query 𝑞

Different Points in 𝑃 Different Points in 𝑃

𝑟 + 𝜖

𝑐𝑟 − 𝜖

𝑟 + 𝜖

𝑐𝑟 − 𝜖

Figure 1: For query q, if there exists p∗ ∈ P that has inner

product 〈p, q〉 ≥ r + ǫ (i.e., the yellow point), then the

algorithm should return a point p ∈ P with 〈q, p〉 ≥ cr− ǫ
(i.e. green or yellow points in the left figure). Otherwise,

no point needs to be returned (i.e., no point needs to be

returned for the right-hand side figure).

union bound to extend the probabilistic guarantee for one

query to a sequence of adaptive queries.

3.2. Hardness of Adaptive Queries

To see how adaptive queries break union bound, consider

the following example.

A Thought Experiment: A black-box B has a unit norm

vector p ∈ R
10, drawn uniformly at random when B is

initialized. An agent C can send unit norm query q ∈ R
10

to B and B returns a scalar 〈q, p〉. Suppose that the agent

C can send 11 queries q1, · · · , q11 and its goal is to send a

query q∗ with 〈q∗, p〉 = 1.

For a single query q, it is probability 0 that q = q∗, as p is

drawn uniformly at random. What is the probability that C
can send such a query q∗ within the 11 queries?

Adaptive v.s. Non-adaptive: Consider the two settings -

(1) Non-adaptive queries: q1, · · · , q11 can have arbitrary

dependency on other queries, but can not depend on any

of the results that B returns; and (2) Adaptive queries: a

later query qi can be constructed based on previous queries’

result: 〈qj , p〉 , j < i.

For non-adaptive queries, each qi has probability 0 to be

q∗, and thus by union bound, it is probability 0 that C sends

q∗ within the 11 queries.

For adaptive queries, C can first send 10 linearly indepen-

dent queries q1, · · · , q10. With the results returned from

B, it can solve for p exactly, and send q11 = p which gives

〈q11, p〉 = 1. Therefore, by allowing the queries to be adap-

tive, C can send q∗ with probability 1. The drastic differ-

ence between probability 0 and probability 1 demonstrates

the unique challenge of adaptive queries.

The thought experiment above shows that the probabilistic

guarantee for one query cannot be extended to a sequence

of adaptive queries via union bound. In the next subsection,

we propose a scheme that builds upon S(c, r, 0) and solves

MIPS for adaptive queries.
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that rt = 〈θ∗, xat
〉+ ηt, where ηt is a mean 0 noise.

Assumption 4.2 (Subgaussian Noise). The noise satisfies,

E

[
exp (αηt)

∣∣∣ Ft−1

]
≤ exp

(
α2

2

)
, ∀α ∈ R, ∀t ∈ [T ],

with the filtration Ft−1 = σ (a1, r1, · · · , at−1, rt−1, at).

Assumption 4.3 (Bounded Parameters). We assume that

‖θ∗‖2 ≤ 1 and ‖xa‖2 ≤ 1, ∀a ∈ A.

The regret is defined as R(T ) :=
∑T

t=1 x
⊤
a∗
t
θ∗ − x⊤

at
θ∗,

where a∗t := argmaxa∈A x⊤
a θ

∗ is the optimal arm at time

step t. The goal of the online learner is to minimize the

regret R(T ).

5. Sublinear Time Elimination Algorithm

In this section, we focus on an arm set A that keeps grow-

ing and no arm is deleted. We present an elimination-based

algorithm that achieves sublinear per-step complexity. In-

tuitively, we adopt the MIPS solver to choose the arm with

approximately the highest uncertainty in o(K) time. The

elimination-based algorithm is additionally faster in later

stages, as many arms are eliminated.

We can estimate θ∗ with an online ridge regression,

θ̂t+1 =
(
X⊤

1:tX1:t + I
)−1

X⊤
1:tY1:t, (1)

where X1:t is the matrix whose rows are x⊤
a1
, · · · , x⊤

at
and

Y1:t = (r1, · · · , rt). As established in (Abbasi-Yadkori

et al., 2011), for any δ ∈ (0, 1), with probability at

least (1 − δ), for all t ≥ 1, we have ‖θ̂t − θ∗‖Vt ≤
β (δ), with Vt = I +

∑t−1
s=1 xsx

⊤
s and β(δ) = 1 +√

2 log
(
1
δ

)
+ d log

(
1 + T

d

)
.

In the standard linear bandits setting, the arm set A is fixed

and does not grow over time. An elimination-based algo-

rithm typically selects the arm a with the highest uncer-

tainty, measured by ‖xa‖V −1
t

, and periodically eliminates

the bad arms (i.e. the arms with x⊤
a θ̂t + β(δ)‖xa‖V −1

t

smaller than r , maxa x
⊤
a θ̂t − β(δ)‖xa‖V −1

t
). Af-

ter elimination, any remaining arm a costs at most C ·
β(δ)max ‖xa‖V −1

t
regret, whose summation over T can

be controlled by existing results.

Notice that the elimination requires a scan through all the

arms. It is thus an Θ(K) time operation, which we do not

hope to pay per-step. A common choice is to adopt stage-

wise elimination – initializing s = 1 and eliminating when

the uncertainty β(δ)‖xa‖V −1
t

of all arms falls below 2−s,

then increment s by 1. The elimination therefore only hap-

pens log T times. In the next subsection, however, we show

that such a simple strategy fails when A keeps growing.

5.1. Efficient Elimination with Heap

Elimination is necessary every time when A grows. As

new arms Anew coming, the elimination threshold r ,

maxa x
⊤
a θ̂t − β(δ)‖xa‖V −1

t
might significantly increase.

This typically happens when Anew contains an arm that is

much better than the previously optimal arm. When r in-

creases, some of arms that were not previously eliminated

should be eliminated – otherwise they might still be se-

lected according to the criterion argmaxa ‖xa‖V −1
t

but in-

curring a regret much larger than C · β(δ)‖xa‖V −1
t

, which

possibly leads to an unbounded regret.

The necessity to eliminate arms according to the newly

added arms calls for a more carefully designed data struc-

ture, which supports incremental elimination but avoids lin-

ear scanning through all arms A.

Our solution is presented in Algorithm 2, which partitions

the arm set A into sets Ψs. The arms reside in Ψs all have

uncertainty β(δ)‖xa‖V −1
t

smaller than 2−s.

More importantly, the arm set Ψs is augmented with a min

heap Hs, which stores arm a indexed by x⊤
a θ̂+2−s. When-

ever a larger r appears, Ψs can quickly compare the heap

top x⊤
a θ̂ + 2−s with r and eliminates the arm a as neces-

sary. This avoids the linear scan for A when the elimination

threshold r changes with the newly added arms Anew.

An important implication is that after elimination (line 9 –

14 of Algorithm 2), playing an arm a with the (approxi-

mately) largest uncertainty, the regret is again bounded by

C · β(δ)‖xa‖V −1
t

. Formally, at time step t, let st be the

minimum s such that Ψs is not empty, we have:

Lemma 5.1. For all a ∈ Ψst , x⊤
a∗
t
θ∗ − x⊤

a θ
∗ ≤ 4 · 2−st .

The approximate MIPS query step (line 15 – 18 of Algo-

rithm 2) can upper bound 2−st by 16 · β(δ)‖xat
‖V −1

t
, up

to some approximation error. It, therefore, retains the orig-

inal regret guarantee (by following existing bounds on the

summation of ‖xat‖V −1
t

over t), without linearly scanning

the arm set A at every step.

5.2. Algorithm and Its Regret, Time Complexity

Here we present the sublinear time elimination-based algo-

rithm, and its regret and time complexity.

The crux to achieve per-step o(K) time complexity is

twofold: (1) Selecting an arm that approximately has max-

imum uncertainty ‖xa‖V −1
t

=
〈
V −1
t , xax

⊤
a

〉
is a MIPS

problem. Algorithm 1 can solve it with sublinear time com-

plexity; (2) The elimination (line 11 and line 23) uses Algo-

rithm 2 as a sub-routine, and in total causes K1+o(1) com-

plexity, which the algorithm does not need to pay per-step.

Running Algorithm 3 for a linear bandits problem that sat-
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Algorithm 2 HEAP AUGMENTED ARM SET Ψs

1: Initialize

2: Input: stage index s, parameters d, β, η, δΨ
3: Initialize an adaptive MIPS solver Ms with(

1
4 ,

2−2s−2(1−η2)
d2β2 , 2−2s−2η2

d2β2 , δΨ

)

4: Initialize an empty min heap Hs

5: Add

6: Input: arm a, parameter estimate θ̂
7: Add point vec

(
xax

⊤
a /d

)
to Ms

8: Push (x⊤
a θ̂ + 2−s, a) to heap Hs, using scalar (x⊤

a θ̂ +
2−s) for ordering

9: Eliminate

10: Input: new elimination threshold r
11: while Heap Hs top is smaller than r do

12: v, a = Hs.pop()

13: Delete arm a from Ms

14: end while

15: Query

16: Input: V ∈ R
d×d

17: Query Ms with vec(V/d), denote the Ms output as a

18: Return: a if a is not null; otherwise return null

isfies Assumptions 4.1 to 4.3, we have the following result

for the regret and time complexity.

Theorem 5.2 (Regret and time complexity of Algorithm 3,

formal version see Theorem B.4). For any δ ∈ (0, 1), with

probability at least 1− δ, the regret is bounded by

R(T ) = Õ
(
d
√
T + η(T ) · T

)
,

with η(T ) controlling the approximate MIPS accuracy.

The per-step time complexity is K
1−Θ(

η(T )4

log2 T
)+o(log−0.45 K)

.

The overall time complexity overhead (e.g., initialization)

is K1+o(1).

η(T ) offers a trade-off between complexity and regret. The

following corollaries show examples of choosing η(T ).

Corollary 5.3. Given any T that does not scale with K,

one can choose η(T ) = 1√
T

. The regret bound is Õ(d
√
T ),

while the per-step complexity is K
1−Θ( 1

T2 log2 T
)

for suffi-

ciently large K. Note that this achieves per-step complexity

sublinear in K and retains the regret of O(
√
T ).

Corollary 5.4. Consider the regime where K is extremely

large and T = Θ(logγ K) for some constant γ. Choosing

η(T ) = T− 0.1
γ , the regret bound is Õ(T

1
2 +T 1− 0.1

γ ), while

the per-step complexity is o(K). It shows that it is possible

Algorithm 3 SUBLINEAR TIME ELIMINATION

1: Input: arm set A, time horizon T , desired failure prob-

ability bound δ, desired accuracy η(T )
2: Initialize V1 = I, s = 1,A1 = A
3: Set β( δ2 ) = 1 +

√
2 log

(
2
δ

)
+ d log

(
1 + T

d

)

4: Set smax =
⌈
log 1

8η(T )

⌉
, initialize Ψs for s ∈ [smax]

with
(
s, d, β( δ2 ), η(T ),

δ
2smax

)

5: Add all arms a ∈ A to Ψ0

6: for t = 1, 2, · · · , T do

7: /* Add new arms Anew */

8: For all a ∈ Anew, add a to Ψs with s =

min
(⌊

− log
(
β( δ2 )‖xa‖V −1

t

)⌋
, smax

)

9: Set r′ = maxa∈Anew

(
x⊤
at
θ̂t − β( δ2 )‖xa‖V −1

t

)

10: if r′ > r then

11: Set r = r′. For all s, Ψs eliminates arms with r
12: end if

13: /* Choose an arm in o(K) time */

14: Let st = argmins |Ψs| > 0

15: if st =
⌈
log 1

8η(T )

⌉
then

16: Let at be an random arm in Ψst

17: else

18: Let at be the result of querying Ψst with V −1
t

19: while at is null do

20: Set r′ = maxa∈Ψst

(
x⊤
at
θ̂t − β( δ2 )‖xa‖V −1

t

)

21: For all a ∈ Ψst , add a to new set Ψs′ with

s′ = min
(⌊

− log
(
β( δ2 )‖xa‖V −1

t

)⌋
, smax

)
,

and remove a from Ψst

22: if r′ > r then

23: r = r′. For all s, Ψs eliminate arms with r
24: end if

25: Let st = argmins |Ψs| > 0
26: Let at be the result of querying Ψst with V −1

t

27: end while

28: end if

29: Play arm at, observe reward rt
30: Update Vt+1 = Vt + xat

x⊤
at

31: Update θ̂t+1 according to Equation (1)

32: end for

to achieve both sublinear regret and sublinear time com-

plexity, for any large K and moderate T .

One additional benefit of Algorithm 3 is that the elimina-

tion typically removes many arms, which provides further

speedup. Such speedup does not show up in the theoreti-

cal analysis as it depends on the distribution of arms. The

acceleration brought by elimination is clearly presented in

our empirical evaluation (Section 7).

Such additional speedup, however, comes with the price



Linear Bandit Algorithms with Sublinear Time Complexity

that the elimination-based algorithm can not handle dele-

tions - as the remaining arms after elimination might get

deleted from A. In the next section, we present a sublinear

time TS that allows for both additions and deletions.

6. Sublinear Time TS-based Algorithm

In this section, we present a Thompson Sampling (TS)

based algorithm with sublinear per-step time complexity. It

works for the general arm set changing, where arms can be

added to or deleted from A. The TS-based algorithm also

avoids paying the overhead for elimination (as required by

Algorithm 3), and therefore after initialization, the time

complexity for every time step is sublinear in K.

6.1. Algorithm and its Regret, Time Complexity

The linear TS algorithm (Abeille & Lazaric, 2017) main-

tains the estimation θ̂t as Equation (1). At each time step

t, a random θ̃t is constructed as θ̃t = θ̂t + β( δ
4T )V

−1/2
t ξt,

with ξt drawn from distribution DTS , which satisfies con-

centration and anti-concentration properties (see Defini-

tion B.1 in Appendix). For instance, DTS can simply be

a spherical Gaussian distribution.

After θ̃t is constructed, the standard linear TS algorithm

chooses the arm a that maximizes x⊤
a θ̃t. Algorithm 1 can

be naturally applied to solve this MIPS for arm selection.

See Algorithm 4 for detail.

Notice that Algorithm 4 assumes that the largest reward

expectation is non-negative, as it is more commonly seen

(e.g., when the reward corresponds to clicks, purchases,

or ratings). When the largest reward expectation is neg-

ative, we propose the following extension: we can trans-

form arm’s feature x to
[

x√
2
,
√
2
2

]
, observed reward rt to

be rt
2 + 1

2 . The corresponding θ∗ becomes
[

θ∗
√
2
,
√
2
2

]
. In

this way, the algorithm sees an environment with the largest

reward expectation being positive and properly makes arm

selection, while the true environment allows the largest re-

ward expectation to be negative.

Under Assumption 4.1 to 4.3, we can characterize the re-

gret and time complexity of Algorithm 4 as following:

Theorem 6.1 (Regret and time complexity of Algorithm 4,

formal version see Theorem B.5). For any δ ∈ (0, 1), with

probability at least 1− δ, the regret is bounded by

R(T ) = Õ
(
d3/2

√
T + η(T ) · T

)
,

with η(T ) controlling the approximate MIPS accuracy.

The per-step time complexity is K1−Θ(η(T )2)+o(log−0.45 K).

The time complexity of the data structure maintenance (line

4) is K1+o(1) which is paid once at initialization.

Algorithm 4 SUBLINEAR TIME THOMPSON SAMPLING

1: Input: arm set A, time horizon T , desired failure prob-

ability bound δ, desired accuracy η(T )

2: Set β( δ
4T ) = 1+

√
2 log

(
4T
δ

)
+ d log

(
d+T
d

)
, V1 = I

3: Preprocess xa, ∀a ∈ A with Algorithm 1 with
⌈

d
η(T )

⌉

independent copies. For the i-th copy Mi, use param-

eter
(
1− 1

i+1 ,
i·η(T )

d , η(T )
d , δ·η(T )

2d

)

4: Add all arms a ∈ A to all Mi

5: for t = 1, 2, · · · , T do

6: Add or delete the changing arms a for all Ms with

s ≤ ⌈d/η(T )⌉
7: Sample ξt ∼ DTS

8: Compute θ̃t = θ̂t + β( δ
4T )V

−1/2
t ξt

9: Query Algorithm 1 with θ̃t/‖θ̃t‖ and different m, set

at to be the non-null result with largest m
10: Play arm at and observe reward rt
11: Update Vt+1 = Vt + xtx

⊤
t

12: Update θ̂t+1 according to Equation (1)

13: end for

η(T ) offers a trade-off between complexity and regret. The

following corollaries show examples of choosing η(T ).

Corollary 6.2. For any T not scaling with K, one can

choose η(T ) = 1√
T

. The regret bound is Õ(d
3
2

√
T ), and

the per-step complexity is K1−Θ( 1
T ) for sufficiently large

K. Note that this retains the regret of the linear TS algo-

rithm and achieves per-step complexity sublinear in K.

Corollary 6.3. Consider the regime where K is extremely

large and T = Θ(logγ K) for some constant γ. Choosing

η(T ) = T− 0.2
γ , the regret bound is Õ(T

1
2 +T 1− 0.2

γ ), while

the per-step complexity is o(K).

7. Experiments

In this section, we empirically evaluate the performance of

our proposed algorithms in a synthetic environment and a

real-world problem on movie recommendation.

We adopt the following algorithms for evaluation:

• Sublinear Time Elimination (Sub-Elim): We imple-

ment Algorithm 3 and use HNSW algorithm (Malkov &

Yashunin, 2018) as the MIPS solver in Algorithm 2.

• Sublinear Time Thompson Sampling (Sub-TS): We

implement Algorithm 4 with HNSW as the MIPS solver.

• Baselines: We implement the linear time version of Al-

gorithms 3 and 4, where the MIPS step is solved by the

standard linear scan through all the arms. Such base-

lines allow us to evaluate the performance and accelera-
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Linear Elim Sub-Elim, shortlist 30 Linear TS Sub-TS, shortlist 30

K = 5, 000
Regret 3866± 195 3758± 190 582± 54 605± 59

Time (s) 11.74 2.22 (1.99) 30.08 19.41 (19.29)
Speedup ×1 ×5.28 (×5.89) ×1 ×1.55 (×1.56)

K = 100, 000
Regret 4804± 146 4701± 150 721± 92 734± 89

Time (s) 221.19 59.40 (3.04) 280.78 32.81 (29.10)
Speedup ×1 ×3.72 (×72.76) ×1 ×8.56 (×9.65)

Table 1: Synthetic Experiment - Impact of Different K. “Linear Elim” and “Linear TS” are baselines. “Sub-Elim” and

“Sub-TS” are Algorithms 3 and 4, with the shortlist being 30. “Regret” corresponds to the cumulative regret of 20,000

steps, with mean and standard deviation for 10 independent runs. The reported “Time” corresponds to the overall running

time of 20,000 steps, averaged over 10 independent runs. The running time excluding preprocessing is reported in the

bracket. The “Speedup” is the relative speedup compared with the corresponding baselines. The results demonstrate that

Sub-Elim and Sub-TS can deliver significant speedup (e.g., a 72.76 times speedup, excluding preprocessing) especially

when the number of arms K is large while obtaining a similar regret as the linear time baselines.

Algorithm Linear Elim Sub-Elim, shortlist 10 Sub-Elim, shortlist 100

Regret 4803± 146 4691± 133 4837± 143
Time(s) 221.19 59.07 (2.85) 59.84 (3.91)
Speedup ×1 ×3.74 (×77.61) ×3.69 (×56.57)

Algorithm Linear TS Sub-TS, shortlist 10 Sub-TS, shortlist 100

Regret 721± 92 736± 89 721± 92
Time(s) 280.78 31.44 (27.75) 36.35 (32.64)
Speedup ×1 ×8.93 (×10.12) ×7.72 (×8.60)

Table 2: Synthetic Experiment - Impact of Approxima-

tion Precision. The algorithms and “Regret”, “Time” and

“Speedup” are defined the same as in Table 1. Combin-

ing with the “shortlist 30” results in Table 1, it shows that

a lager shortlist size p (corresponds to a smaller η(T ) in

Algorithms 3 and 4) leads to longer running time. In our

evaluated settings, all different shortlist sizes p are large

enough to keep regret similar to the linear time baselines.

tion brought by adopting an approximate MIPS solver.

LSH is not used for our implementation as there is cur-

rently no efficient LSH implementation that supports dele-

tions. Note that this is purely an engineering issue - there

exist LSH constructions that theoretically support efficient

deletions (Andoni et al., 2017).

To control the tradeoff between MIPS accuracy and time

complexity, we construct the MIPS solver in the following

way: We first use the HNSW algorithm to retrieve a short-

list of p arms, then linearly scan the retrieved p arms for the

one with the largest inner product. A larger p gives higher

accuracy but slower speed. We take p from {10, 30, 100}
for our experiments. The choices of different p can be

viewed as different η(T ) for Algorithms 3 and 4.

Synthetic Experiment For the synthetic experiment, we

first randomly generated a 16-dimensional vector θ∗ from

a Gaussian distribution N (0, I16). The arms A are gener-

Algorithm Linear Elim Sub-Elim, shortlist 30 Sub-Elim, shortlist 100

Regret 3847± 212 3795± 206 3806± 206
Time(s) 29.55 4.22 (3.47) 4.83 (4.09)
Speedup ×1 ×7.00 (×8.52) ×6.12 (×7.22)

Algorithm Linear TS Sub-TS, shortlist 30 Sub-TS, shortlist 100

Regret 1193± 66 1177± 66 1202± 68
Time(s) 29.83 19.59 (19.38) 20.63 (20.41)
Speedup ×1 ×1.52 (×1.54) ×1.45 (×1.46)

Table 3: Movie Recommendation - Running time and

regret. “Regret” corresponds to the cumulative regret of

20,000 recommendations, with mean and standard devi-

ation for 300 users. “Time” is the total running time

of making 20,000 recommendations, averaged over 300

users. The time excluding preprocessing is reported in the

bracket. The results show that “Sub-Elim” is more than 7

times faster; and “Sub-TS” can reduce 30% of the base-

line’s running time. Both have similar regret as baselines.

ated from the same distribution. The reward noise is unit

Gaussian. Further, over the time horizon T = 20, 000, a

batch of Cchange = 2 arms are generated and included into

the arm set A every 20 steps. The final arm set size is K.

Our first result (Table 1) demonstrates the efficiency of

Sub-Elim and Sub-TS with different numbers of arms K.

In particular, when the number of arms K is large, the Sub-

Elim is able to deliver a 72.76 times speedup (excluding the

preprocessing time) while retaining the regret of the linear

time implementation.

We further evaluate the impact of different choices of short-

list size p (i.e., a larger p corresponding to a more accu-

rate approximate MIPS solver) and the results are presented

in Table 2. Moreover, we evaluate our algorithms with

Cchange ∈ {2, 10, 50} and show that all our algorithms

can deliver stable speedup in the evaluated settings. We

also test Algorithm 4 when there are both additions and



Linear Bandit Algorithms with Sublinear Time Complexity

deletions, which demonstrates a speedup and comparable

regret as baselines. The results are deferred to Appendix C.

Movie Recommendation The testing environment is de-

rived from a popular recommendation dataset: Movielens-

1M (Harper & Konstan, 2015). The dataset contains over 1

million ratings of 3,952 movies by more than 6,000 users.

The environment construction is similar to (Qin et al.,

2014). We preserve the ratings of 300 users (each with

more than 100 ratings) for testing. With the ratings of more

than 5,700 remaining users, we create a 16-dimensional

feature for each of the movies by matrix factorization. The

movies’ features are used as arms’ features (xt(i)).

The algorithm starts with 1, 952 movies, and interacts with

the user for 20, 000 times (i.e., time horizon T = 20, 000).

2 new movies are included for every 20 steps, which in the

end leads to all 3,952 movies. In each time step, the regret

is 1 if the recommended movie has a rating smaller than 4

or no rating, and otherwise, the regret is 0.

The average regret (and standard deviation) and the running

time are reported in Table 3. Our empirical results demon-

strate the acceleration and great empirical performance of

the proposed sublinear time algorithms.
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A. Proof for Section 3

A.1. Proof of Proposition 3.2

Andoni et al. (2017) proposed a data structure that solves the approximate nearest neighbor (ANN) search problem. We

therefore first present a transformation, which converts a MIPS problem into the nearest neighbor search problem. The

transformation is proposed in (Bachrach et al., 2014).

A (c′, r′)-approximate nearest neighbor search problem aims to find p′ ∈ P ′ ⊆ R
d+3 for a query q′ ∈ R

d+3 such that

‖p′−q′‖2 ≤ c′r′, if there exists p̃ ∈ P ′ such that ‖p̃−q′‖2 ≤ r′. Recall that for MIPS problem, we have ‖p‖2 ≤ 1, ∀p ∈ P
and ‖q‖2 ≤ 1 by Definition 3.1. We take the following transformation

p′ =

[
1

2
;
p

2
;

√
3− ‖p‖22

4
; 0

]
∈ R

d+3, ∀p ∈ P ;

q′ =

[
1

2
;
q

2
; 0;

√
3− ‖q‖22

4

]
∈ R

d+3.

Let P ′ = {p′ | ∀p ∈ P}. Then for any point p′ ∈ P ′ and any query q′, we have

‖p′ − q′‖22 = ‖p′‖22 + ‖q′‖22 − 2 〈p′, q′〉

=
3− 〈p, q〉

2
.

Therefore the original (c, r, 0)-MIPS is equivalent to (c′, r′)-ANN with c′ =
√
3− cr/

√
3− r and r′ =

√
3−r
2 . For

c ∈ [0, 1) and r ∈ (0, 1], we have r′ ∈ [1,
√
3/2), c′r′ ∈ (1,

√
3/2] and c′ ∈ (1,

√
3/2].

Andoni et al. (2017) constructed a data structure that solves (c′, r′)-ANN with constant success probability. It has K1+o(1)

preprocessing time complexity, Kρq+o(1) query time complexity and Ko(1) time complexity for adding a new point to P .

The rest of our proof follows the same procedure as (Andoni et al., 2017), but aims to give a more explicit characterization

for the o(1) term in the query time complexity, which turns out to be o
(
log−0.45 K

)
. This more explicit form is useful

when ρq is very close to 1 (i.e., ρq = 1− o(1)).

Short description of the data structure construction.

The proposed data structure stores all data points P in a tree, with depth M and branching factor at most B.

During preprocessing, each tree node n draws a unit norm vector un uniformly at random. Each point p ∈ P will traverse

down the tree from the root, the point p will descend through a node n if the inner product 〈p, un〉 ≥ ηu, where ηu is a

scalar parameter that is shared for the entire tree (i.e., all nodes use the same ηu). The point can descend through multiple

nodes at the same level, and will possibly reach multiple leave nodes in the end. The leave nodes will store all the points p
that reached it during preprocessing.

During query time, a query q will also descend from the root, and go down through the nodes with 〈q, un〉 ≥ ηq . Similar

to a point p in the preprocessing stage, the query q will possibly reach multiple leave nodes in the end. It will then linearly

scan through all the points p stored in the corresponding leave nodes. It will stop scanning and return the first point p that

solves the (c′, r′)-ANN problem.

We will omit much detail of the proof but highlight the difference. One can check the full proof in Section 3.3.3 of

(Andoni et al., 2017). Define F (η) := Pz∼N(0,1)d [〈z, u〉 ≥ η], where u is an arbitrary point on the unit sphere. Define

G(s, η, σ) = Pz∼N(0,1)d [〈z, u〉 ≥ η and 〈z, v〉 ≥ σ], where u, v are two points on the unit sphere with ‖u− v‖2 = s.

Preprocessing time complexity

We now prove the preprocessing time complexity. Notice that F (ηu) is the probability of one point p ∈ P descends from

a node to a child node.
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Lemma A.1. The data structure construction has the following complexity in expectation:

Time : K1+o(1) ·B ·
M∑

i=0

· (B · F (ηu))
i
.

Space : K1+o(1) ·M · (B · F (ηu))
M

.

Proof. The analysis for space complexity is presented in Lemma 3.7 in (Andoni et al., 2017). We show the time complexity

analysis in a similar way.

In the preprocessing of P , a point p ∈ P in expectation descends to B · F (ηu) nodes from one node. Thus the expected

number of points at depth-i is K · (B · F (ηu))
i
. Each point in at one node incurs a time complexity of B ·Ko(1). In our

regime of interest, K is extremely large and we treat the dimension d as Ko(1).

There is an over-estimation at the depth-M node. Since there is no further branching in such nodes, each point at one depth-

M node only incurs Ko(1) time complexity, instead of B ·Ko(1). This over-estimation does not hurt further analysis. �

Next, we show that the preprocessing time complexity is the same as the space complexity.

Lemma A.2. Both time and space compelxity of data structure construction are K1+o(1) · (B · F (ηu))
M

.

Proof. As suggested in (Andoni et al., 2017), we set M =
√
logK, which immediately implies K1+o(1) · (B · F (ηu))

M

space complexity.

For time complexity, we have

M∑

i=0

(B · F (ηu))
i = O(1)(B · F (ηu))

M .

This follows from F (ηu) ≥ G(r, ηu, ηq), and thus B · F (ηu) ≥ B · G(r, ηu, ηq), where in the analysis of (Andoni et al.,

2017) it sets B · G(r, ηu, ηq) ≥ 100. In the proof of the optimal ρu, ρq trade-off by Andoni et al. (2017), it showed that

when ρu = 0 (which is the setting we adopted), the specified M,B leads to

BM = Kc0 .

The c0 is a constant not depending on K. For M =
√
logK, we have B = K

c′

M = Ko(1). Putting these together, we have

the time complexity to be K1+o(1)(B · F (ηu))
M . �

With the choice of ηu = 0, the complexity K1+o(1)(B · F (ηu))
M is K1+o(1) (see detailed proof in Section 3.3.3 (Andoni

et al., 2017)). It therefore achieves the K1+o(1) time complexity.

Query time complexity

Here we show the Kρq+o(log−0.45 K) query complexity extended from (Andoni et al., 2017), where the query complexity

was presented as Kρq+o(1). Note that this is not an improvement over the original analysis. We are only more explicit

about the o(1) term which is necessary for our case.

During query time, the query q recursively descends from the root, with each descending happening with probability F (ηq).
According to the Lemma 3.8 of (Andoni et al., 2017), the query time complexity is

d ·B · (B · F (ηq))
M +K · d · (B ·G(c′r′, ηu, ηq))

M ,

where F (ηq) denotes the probability of the query descending from one node to one of its child node, and G(c′r′, ηu, ηq)
denotes the probability of a query and a qualifying point (i.e., distance smaller than c′r′) in P both descending to a child

node. In the proof of query time complexity, Andoni et al. (2017) take that F (ηu)
M = K−σ and F (ηq)

M = K−τ .

We first present a stronger version of Lemma 3.1 in (Andoni et al., 2017),

F (ηq) = e−(1+o(η−9/5
q ))·

η2
q
2 ,
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where the original Lemma 3.1 states F (ηq) = e−(1+o(1))·
η2
q
2 . This stronger version of Lemma 3.1 follows immediately

from a tight Gaussian tail bound. As ηq → ∞, we have

(
1

ηq
− 1

η3q

)
e−η2

q/2

√
2π

≤ F (ηq) ≤
1

ηq
· e

−η2
q/2

√
2π

.

Follow the same analysis as in (Andoni et al., 2017), the stronger version of Lemma 3.1 implies a stronger version of

Lemma 3.2 of (Andoni et al., 2017),

G(c′r′, ηu, ηq) = e
−(1+o(η−9/5

q ))·
η2
u+η2

q−2α(c′r′)ηuηq

2β2(c′r′) ,

where α(s) = 1 − s2

2 is the cosine of the angle between two points on a unit Euclidean sphere with distance s be-

tween them, and β(s) =
√
1− α2(s) is the sine of the same angle. Note that the original Lemma 3.2 is G(s, η, σ) =

e
−(1+o(1))· η

2+σ2−2α(s)ησ

2β2(s) . By requiring that F (ηq)
M = K ·G(c′r′, ηu, ηq)

M , as ηq → ∞, we have

σ + τ − 2α(c′r′) · √στ

β2(c′r′)
− 1 =

(
1 + o

(
η−9/5
q

))
τ.

As suggested in (Andoni et al., 2017), to have ηu = 0, we should set
√
τ = α(r′)β(c′r′)

1−α(r′)α(c′r′) . With the transformation (from

MIPS to ANN) proposed previously, we have r′ ∈ [1,
√
3/2), c′r′ ∈ (1,

√
3/2]. Therefore τ is bounded by constants as

τ ∈ [0.06, 0.34], and we have

τ =
σ + τ − 2α(c′r′) · √στ

β2(c′r′)
− 1 + o

(
η−9/5
q

)
.

Notice that with F (ηq)
M = K−τ and τ bounded by constants, we have ηq = Ω(log1/4 K) and therefore,

τ =
σ + τ − 2α(c′r′) · √στ

β2(c′r′)
− 1 + o

(
log−0.45 K

)
. (2)

In the original analysis by (Andoni et al., 2017), the result was

τ =
σ + τ − 2α(c′r′) · √στ

β2(c′r′)
− 1 + o (1) .

Therefore from Equation (2), we have that, up to o
(
log−0.45 K

)
terms,

√
σ = α(c′r′)

√
τ + β(c′r′)

Further, with r′ ∈ [1,
√

3/2), c′r′ ∈ (1,
√

3/2], we have the following term also bounded by constants:

σ + τ − α(r′)
√
στ

β(r′)2
∈ [0.97, 1.34].

The rest of analysis follows the same as Section 3.3.3 in (Andoni et al., 2017), with all o(1) replaced by o(log−0.45 K). As

a result, the query time is Kρq+o(log−0.45 K).

Time complexity for adding a new point to P

Adding a point to the data structure takes Ko(1) ·B ·∑M
i=0 · (B · F (ηu))

i
time. We have proven in the Preprocessing time

complexity that it is Ko(1) under the choice of ηu = 0. Therefore the complexity of adding a new point is Ko(1).
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A.2. Proof of Theorem 3.3

Proof. Denote Q to be the unit l2 ball in R
d centered at 0. We have qt ∈ Q, ∀t ∈ [T ]. We can discretize Q into lattice Q̂

with precision ǫ
d . Note that every point in Q̂ has all its coordinates being multiples of ǫ

d . We can then bound the size of Q̂

to be

∣∣∣Q̂
∣∣∣ ≤

(
2d
ǫ

)d
.

The probability of all κ copies of S(c, r, 0) fail for any q̂ ∈ Q̂ and any point p ∈ p is

P

(
∃q̂ ∈ Q̂, p ∈ p s.t. all S(c, r, 0, δ) fail on p, q̂

)
≤ K

(
2d

ǫ

)d

0.1κ ≤ δ.

the last inequality follows from κ = d log
(
Kd
ǫδ

)
≥ log

(
1
K

(
2d
ǫ

)−d
δ
)
/ log (0.1).

For any query q ∈ Q, rounding it to the nearest point q̂ ∈ Q̂, it induces ǫ additive error for inner product (recall that

‖p‖ ≤ 1, ∀p ∈ P ). Thus, for arbitrary query sequence from Q, running κ copies of S(c, r, 0) solves (c, r, ǫ)-MIPS

problem successfully for all the queries with probability at least 1− δ. This completes the proof. �

B. Proof for Sections 5 and 6

B.1. Definition of TS distribution

Definition B.1 (Abeille & Lazaric (2017)). DTS is a multivariate distribution on R
d absolutely continuous with respect to

the Lebesgue measure which satisfies the following properties:

1. (anti-concentration) there exists a strictly positive probability p such that for any u ∈ R
d with ‖u‖2 = 1,

Pξ∼DTS

(
u⊤ξ ≥ 1

)
≥ p.

2. (concentration) there exists b, b′ positive constants such that ∀δ ∈ (0, 1)

Pξ∼DTS

(
‖ξ‖ ≤

√
bd log

b′d

δ

)
≥ 1− δ.

B.2. Technical Lemma

We first present 2 previously established supporting lemmas on bounding ‖θ̂t− θ‖Vt and
∑T

t=1 ‖xt‖V −1
t

, which are useful

for proving Theorems 5.2 and 6.1.

Lemma B.2 (Thm. 2 of (Abbasi-Yadkori et al., 2011)). With Assumption 4.1 to 4.3, for the θ̂t estimation according to

Equation (1) and for any δ > 0, with probability at least 1− δ for all t ≥ 0, we have

‖θ̂t − θ∗‖Vt ≤ 1 +

√
2 log

(
1

δ

)
+ d log

(
1 +

T

d

)
.

Lemma B.3 (Lemma 4 of (Abbasi-Yadkori et al., 2011)). Let {xt} be a sequence in R
d. For Vt = I +

∑t−1
s=1 xsx

⊤
s , we

have

T∑

t=1

‖xt‖2V −1
t

≤ 2d log

(
1 +

T

d

)
.



Linear Bandit Algorithms with Sublinear Time Complexity

B.3. Proof of Lemma 5.1

Proof. Let a∗t be the optimal arm (whose feature is xa∗
t
) at time t and suppose Ψs∗ is the set that contains a∗. Let t1 be the

time step that a∗t is placed to Ψs∗ , and t2 is the time that the played arm a is placed in Ψst , we have

x⊤
a∗
t
θ∗ ≤ x⊤

a∗
t
θ̂t1 + β(δ)‖xa∗

t
‖V −1

t1

≤ x⊤
a∗
t
θ̂t1 + 2−s∗

(a)

≤ r + 2−s∗ + 2−s∗

(b)

≤ x⊤
a θ̂t2 + 2−st + 2 · 2−s∗

≤ x⊤
a θ

∗ + β(δ)‖xa‖V −1
t2

+ 2−st + 2 · 2−s∗

≤ x⊤
a θ

∗ + 2 · 2−st + 2 · 2−s∗

(c)

≤ x⊤
a θ

∗ + 4 · 2−st .

Inequality (a) holds as r ≥ x⊤
a∗
t
θ̂t1 − 2−s∗ (since r is always greater than x⊤

a∗
t
θ̂t1 − 2−s∗ after a∗t advances to a Ψs∗ );

inequality (b) holds as arm a is not eliminated from Ψst ; inequality (c) holds as st ≤ s∗. This completes the proof. �

B.4. Proof of Theorem 5.2

We first state the formal version of Theorem 5.2.

Theorem B.4 (Formal version of Theorem 5.2). For any δ ∈ (0, 1), with probability at least 1−δ, the regret of Algorithm 3

is bounded by

R(T ) ≤ 16β(δ/2)

√
Td log

(
1 +

T

d

)
+ 64η(T ) · T,

with β(δ/2) = 1 +
√
2 log

(
2
δ

)
+ d log

(
1 + T

d

)
. η(T ) ∈ (0, 1) controls the approximate MIPS accuracy.

The per-step time complexity is K
1−Θ(

η(T )4

log2 T
)+o(log−0.45 K)

. The overall time complexity overhead (e.g., initialization) is

K1+o(1).

Proof of Theorem B.4 - time complexity We break the time complexity into two parts:

Overhead for maintaining Ψs: This part contains the overhead induced by maintaining Ψs, which includes lines 5, 8-11,

19-24 of Algorithm 3. Line 5 is intializing all the initial K arms, which takes O(K logK) for the heap related operations,

and O(κ ·K1+o(1)) time to add all a ∈ A to the adaptive MIPS solver M0. For lines 8-9 and 19-20, it only happens when

an arm a needs to be added (or advanced) to another Ψs. Notice that each arm can only be added (or advanced) to a Ψs for⌈
log 1

8η(T )

⌉
+ 1 times. Therefore all the arms in total will induce an κ ·K1+o(1) · log 1

8η(T ) time complexity in overhead.

Further for line 10-11 and 21-24, it only happens when an arm needs to be eliminated. Both the heap Hs and the adaptive

MIPS solver Ms need to be updated, which in total induces an κ·K1+o(1)+O(K ·logK) overhead for all the arms (since all

the arms can only be eliminated once). The overall overhead complexity is therefore κ ·K1+o(1) · log 1
8η(T ) +O(K · logK),

rearranging the terms gives K1+o(1).

Time complexity for selecting an arm: This includes lines 18 and 26. With the construction of the adaptive

MIPS solver M (Algorithm 1), the query time complexity is given by κ · Kρq+o(log−0.45 K). Plug in (c, r, ǫ) =

(1/4, 2−2s(1−η(T )2)
d2β(δ/2)2 , 2−2sη(T )2

d2β(δ/2)2 ) and s ≤
⌈
log 1

8η(T )

⌉
, we have κ = K

O( 1√
log K

)
, and ρq = 4c′2

(1+c′2)2 , with c′ = 1+Θ(η(T )2

log T )

(see Theorem 3.3). Thus we have ρq = 1−Θ( η(T )4

log2 T
), which gives the per-step time complexity K

1−Θ(
η(T )4

log2 T
)+o(log−0.45 K)

.

Therefore the overhead is K1+o(1) and the per-step complexity is K
1−Θ(

η(T )4

log2 T
)+o(log−0.45 K)

.
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Proof of Theorem 5.2 - regret bound

Proof. With failure probability being δ
2smax

for Algorithm 1 and β(δ/2) in Algorithm 3, with probability at least 1− δ, all

queries to Algorithm 1 (line 18 and line 26 of Algorithm 3) are answered correctly and Lemma B.2 holds for all t ∈ [T ].
Conditioning on those success events, we proceed to the regret bound.

Suppose at time t, the played arm at is chosen from set Ψst . We have that

β(δ/2)2
〈
vec(xatx

⊤
at
), vec(V −1

t )
〉
≤ 2−2st .

By Lemma 5.1, we know that

x⊤
a∗
t
θ∗ − x⊤

at
θ∗ ≤ 4 · 2−st

When st =
⌈
log 1

8η(T )

⌉
, we have 2−st ≤ 8η(T )

x⊤
a∗
t
θ∗ − x⊤

at
θ∗ ≤ 32η(T ) (3)

For stage st <
⌈
log 1

8η(T )

⌉
, since the action at is the result of querying Mst , we have

β(δ/2)2‖xat‖2V −1
t

≥ 1

4
· 2−2st−2 − 5

4
η(T )2 =⇒ β(δ/2)‖xat‖V −1

t
≥ 2−st−2 − 2η(T ),

where we used the fact that 2−st−2 ≥ 2η(T ) and
√
a− b ≥ √

a−
√
b for all a ≥ b. Combining the results, we have

x⊤
a∗
t
θ∗ − x⊤

at
θ∗ ≤ 4 · 2−st ≤ 16β(δ/2)‖xat‖V −1

t
+ 32η(T ). (4)

Combining Equations (3) and (4) and summing over t, we have

R(T ) ≤ 16β(δ/2)

T∑

t=1

‖xat‖V −1
t

+ 32η(T )T + 32η(T )T

≤ 16β(δ/2)

√
Td log

(
1 +

T

d

)
+ 64η(T )T.

The second inequality is by Lemma B.3. This completes the proof.

�

B.5. Proof of Theorem 6.1

We first state the formal version of Theorem 6.1.

Theorem B.5 (Formal version of Theorem 6.1). For any δ ∈ (0, 1), with probability at least 1−δ, the regret of Algorithm 4

is bounded by

R(T ) ≤4γ(δ/4T )

p

(√
2Td log

(
1 +

T

d

)
+

√
8T log

4

δ

)

+ (γ(δ/4T ) + β(δ/4T ))

√
2Td log

(
1 +

T

d

)

+
6(1 + γ(δ/4T ) + β(δ/4T ))

p
· η(T )

d
· T,

where β(δ/4T ) = 1 +
√
2 log 4T

δ + d log
(
1 + T

d

)
, γ(δ/4T ) = β(δ/4T )

√
bd log b′d

δ/4T , with b, b′, p are constants defined

in Definition B.1. η(T ) ∈ (0, 1) controls the approximate MIPS accuracy.

The per-step time complexity is K1−Θ(η(T )2)+o(log−0.45 K). The time complexity of the data structure maintenance (line 4)

is K1+o(1) which is paid once at initialization.
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Proof of Theorem B.5 - time complexity We first show the per-step complexity. The per-step time complexity is

κKρq+o(log−0.45 K) log d
η(T ) , as each query to Algorithm 1 has complexity κKρq+o(log−0.45 K) and line 8 of Algorithm 4

requires a binary search which induces another factor of log d
η(T ) . By setting (c, r, ǫ) = (1 − 1

i+1 ,
i·η(T )

d , η(T )
d ), we have

κ = O(logKT ) = K
O( 1√

log K
)

and ρ = 4c′2

(1+c′2)2 , with c′ = 1 + Θ(η(T )) (see Theorem 3.3). It then implies ρq =

1−Θ(η(T )2), which corresponds to the per-step time complexity in Theorem 6.1. Notice that for Line 6 in Algorithm 4,

adding new arms to and deleting arms from all Mi takes at most CchangeK
o(1)

⌈
d

η(t)

⌉
time, which is negligible comparing

with K1−Θ(η(T )2)+o(log−0.45 K).

Next we prove the preprocessing time complexity. By Theorem 3.3, the preprocessing time complexity is κK1+o(1).

With κ = Ko(1) log T , the complexity becomes K1+o(1) · log T . Note that in line 5,
⌈

d
η(T )

⌉
copies of Algo-

rithm 1 are constructed. Therefore the preprocessing time complexity is dK1+o(1) log T
η(T ) and the per-step complexity is

K1−Θ(η(T )2)+o(log−0.45 K) · log T · log d
η(T ) , which can be further simplified as K1+o(1) preprocessing complexity and

K1−Θ(η(T )2)+o(log−0.45 K) per-step complexity.

Proof of Theorem B.5 - regret bound By setting the MIPS solver M’s success probability to be at least 1− δ·η(T )
2d , we

have the all queries (line 9 of Algorithm 4) are answered correctly with probability at least 1 − δ
2 .Further, note that with

setting of γ (δ/4T ) , β(δ/4T ), with probability at least 1− δ
2 , for all t ≤ T , we have

‖θ̂t − θ∗‖Vt
≤ β(δ/4T ), ‖θ̃t − θ̂t‖Vt

≤ γ(δ/4T ),

with the first inequality comes from Lemma B.3, and the second one follows from the concentration part of Definition B.1.

The rest of the proof only considers the case when the events above hold, which happens with probability at least 1− δ.

The regret analysis is similar to the one in (Abeille & Lazaric, 2017). We start with the regret decomposition

R(T ) =
T∑

t=1

(
x⊤
a∗
t
θ∗ − x⊤

at
θ̃t

)

︸ ︷︷ ︸
RTS(T )

+
T∑

t=1

(
x⊤
at
θ̃t − x⊤

at
θ∗
)

︸ ︷︷ ︸
RRLS(T )

,

where the RRLS(T ) is the regret induced by the “regularized least square” estimation, and RTS(T ) measures the regret of

making decision based on the θ̃t drawn by TS.

Bounding RRLS(T ).

RRLS(T ) ≤
T∑

t=1

∣∣∣x⊤
at

(
θ̃t − θ̂t

)∣∣∣+
T∑

t=1

∣∣∣x⊤
at

(
θ̂t − θ∗

)∣∣∣

≤
T∑

t=1

‖xat‖V −1
t

(
‖θ̃t − θ̂t‖Vt + ‖θ̂t − θ∗‖Vt

)

≤ (γ(δ/4T ) + β(δ/4T ))
T∑

t=1

‖xat
‖V −1

t

≤ (γ(δ/4T ) + β(δ/4T ))

√
2Td log

(
1 +

T

d

)
.

The last inequality follows from Lemma B.3.

Bounding RTS(T ). At time t, denote Jt(θ) := maxa∈A x⊤
a θ. Suppose Algorithm 4 selects at. Define ∆t := Jt(θ̃t) −

x⊤
at
θ̃t, which is the approximation error solving MIPS approximately for θ̃t. Denote RTS

t = x⊤
a∗
t
θ∗ − x⊤

at
θ̃t, we have

RTS
t ≤ Jt(θ

∗)− Jt(θ̃t) + ∆t.
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Define Ct =
{
θ | ‖θ − θ̂t‖Vt ≤ γ(δ/4T )

}
, which implies θ̃t ∈ Ct for all t ∈ [T ]. Then

RTS
t ≤ Jt(θ

∗)− inf
θ∈Ct

Jt(θ) + ∆t.

We denote θ̃t is optimistic if Jt(θ̃t) ≥ Jt(θ
∗). For any step t, θ̃t is optimistic with probability at least p/2, where p is

defined in Definition B.1 (see Lemma 3 of (Abeille & Lazaric, 2017)). Condition on θ̃t being optimistic, we have

RTS
t ≤ Jt(θ̃t)− inf

θ∈Ct

Jt(θ) + ∆t

≤ x⊤
at
θ̃t − inf

θ∈Ct

max
a∈A

x⊤
a θ + 2∆t

≤ x⊤
at
θ̃t − inf

θ∈Ct

x⊤
at
θ + 2∆t

≤ sup
θ∈Ct

‖xat‖V −1
t

‖θ̃t − θ‖Vt + 2∆t

≤ 2γ(δ/4T )‖xat
‖V −1

t
+ 2∆t.

Note that the right-hand side is always positive, taking expectation with regard to θ̃t we have

RTS
t ≤ Eθ̃t

[
2γ(δ/4T )‖xat

‖V −1
t

+ 2∆t

∣∣∣ θ̃t is optimistic
]

≤ 2

p
Eθ̃t

[
2γ(δ/4T )‖xat

‖V −1
t

+ 2∆t

]
.

Next we proceed to bound ∆t. Note that as ‖θ∗‖2 ≤ 1, ‖θ̂t − θ∗‖Vt
≤ β(δ/4T ), ‖θ̃t − θ̂t‖Vt

≤ γ(δ/4T ). For all t ∈ [T ],

the multiplicative error (introduced by MIPS according to the parameter in Algorithm 4, line 9) for Jt(θ̃t) is at most

(1 + β(δ/4T ) + γ(δ/4T ))η(T )
d and the additive error ǫ induces another 2(1 + β(δ/4T ) + γ(δ/4T ))η(T )

d approximation

error.

Therefore for all t ∈ [T ], we have

∆t ≤ 3 (1 + γ(δ/4T ) + β(δ/4T ))
η(T )

d
.

It thus implies

RTS(T ) ≤4γ(δ/4T )

p

T∑

t=1

Eθ̃t

[
‖xat

‖V −1
t

]

+
6 (1 + γ(δ/4T ) + β(δ/4T ))

p
η(T )T

≤4γ(δ/4T )

p

(√
2Td log

(
1 +

T

d

)
+

√
8T log

4

δ

)

+
6 (1 + γ(δ/4T ) + β(δ/4T ))

p
· η(T )

d
· T.

The second inequality follows from Azuma’s inequality on bounding the difference between
∑T

t=1 Eθ̃t

[
‖xat

‖V −1
t

]
and

∑T
t=1 ‖xat‖V −1

t
. Combining the bound for RRLS(T ) and RTS(T ) completes the proof.

C. Deferred Experiment Results

Here we present the deferred experiment results.

Synthetic Experiment - Addition and Deletion We empirically evaluate the performance of Sub-TS when there are

both arm additions to and deletions from A. The environment is set as specified in Section 7. Further, we set the number

of arms K to be 10,000. For every 20 time steps, there are 2 arms newly generated from the unit spherical Gaussian

distribution, and 2 random arms in A get deleted. The time horizon is set to 20,000 and the results are in Table 4.
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Algorithm Linear TS Sub-TS, shortlist 10 Sub-TS, shortlist 30 Sub-TS, shortlist 100

Regret 612± 43 640± 42 612± 43 612± 43
Time(s) 44.80 25.49 (25.23) 26.37 (26.11) 29.69 (29.43)
Speedup ×1 ×1.75 (×1.77) ×1.70 (×1.72) ×1.51 (×1.52)

Table 4: Synthetic Experiment - Addition and Deletion. The algorithms and “Regret”, “Time” and “Speedup” are

defined the same as in Table 1. We see that the Sub-TS is able to handle arms’ changing, including both additions and

deletions, and delivers around 1.51 – 1.77 times speedup.

Synthetic Experiment - Impact of Cchange Here we empirically evaluate the impact of different numbers of arms’

changing. The environment is set as specified in Section 7. Further, we set the initial number of arms to be 10,000. For

every 20 time steps, there are Cchange arms newly generated from the Gaussian distribution and included into A. The time

horizon is set to 20,000 and the results are in Table 5.

Linear Elim Sub-Elim, shortlist 30 Linear TS Sub-TS, shortlist 30

Cchange = 2
Regret 4433± 399 4393± 392 566± 52 566± 52

Time (s) 35.72 2.85 (2.10) 45.54 21.01 (20.76)
Speedup ×1 ×12.53 (×17.01) ×1 ×2.17 (×2.19)

Cchange = 10
Regret 4428± 224 4345± 244 639± 54 638± 54

Time (s) 36.22 3.04 (2.30) 55.99 24.91 (24.65)
Speed-up ×1 ×11.91 (×15.75) ×1 ×2.25 (2.27)

Cchange = 50
Regret 4106± 154 4062± 169 581± 45 619± 62

Time (s) 36.59 3.94 (3.20) 106.96 48.87 (48.62)
Speedup ×1 ×9.28 (×11.43) ×1 ×2.19 (×2.20)

Table 5: Synthetic Experiment - Impact of Different Cchange. The algorithms and “Regret”, “Time” and “Speedup”

are defined the same as in Table 1. Notice that Linear Elim and Sub-Elim are not much affected by Cchange, as they will

have already removed many arms in the later stages, and therefore the newly added arms do not affect the running time by

much. The running time of Linear TS and Sub-TS, however, is significantly affected by Cchange, as they are running on an

increasingly large arm set. The Despite the impact on their individually running time, our algorithms are shown to deliver

stable speedup in all evaluated settings.


