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Abstract

Direct numerical simulation (DNS) of turbulent
flows is computationally expensive and is not prac-
tical for simulating flows at high Reynolds num-
bers. Low-resolution large eddy simulation (LES)
is a pragmatic alternative, but its success depends
on modeling of the small scale flow dynamics.
Reconstructing DNS from low-resolution LES is
critical for many scientific and engineering disci-
plines, but it poses many challenges to existing
super-resolution methods due to the complexity of
turbulent flows and computational cost of generat-
ing frequent LES data. In this work, we propose a
physics-guided neural network for reconstructing
frequent DNS from sparse LES data by enhancing
its spatial resolution and temporal frequency. Our
proposed method consists of a partial differential
equation (PDE)-based recurrent unit for captur-
ing underlying temporal processes and a physics-
guided super-resolution model that incorporates ad-
ditional physical constraints. We demonstrate the
effectiveness of both components in reconstructing
the data generated by simulating the Taylor-Green
Vortex sparse LES data. Moreover, we show that
the proposed recurrent unit can preserve the phys-
ical characteristics of turbulent flows by leverag-
ing the physical relationships in the Navier-Stokes
equation.

1 INTRODUCTION

Understanding turbulence is the key to our comprehension
of many natural and technological processes in engineering,
science, medicine and many other disciplines. Direct nu-
merical simulation (DNS) of the Navier-Stokes equations is
widely regarded as the methodology with the highest fidelity
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in capturing the dynamics of turbulent flows (Givi [1994]).
DNS is essentially a brute force computational methodology
to provide solution of the unsteady governing equations of
fluid flow at all temporal and spatial scales. Such simula-
tions can be very expensive at high Reynolds numbers. A
practical alternative, the large eddy simulation (LES) con-
centrates on the larger scale eddies and models the effects
of the subgrid-scale transport. By this filtering, LES can be
conducted on coarser grids as compared to those required by
DNS. The penalty is that LES-generated data are, generally,
of lower fidelity as compared to DNS (Nouri et al. [2017]).

Machine learning, especially super-resolution (SR) meth-
ods (Park et al. [2003]), has already shown tremendous
success in reconstructing high-resolution data in a variety of
commercial applications. The power of these models comes
mainly from the use of convolutional network layers (Al-
bawi et al. [2017]), which can extract the spatial texture
features and transform them through complex non-linear
mappings to recover high-resolution data. From the earli-
est end-to-end convolution-based SR model (Dong et al.
[2014]), many investigators have added skip-connections in
SR models (Zhang et al. [2018a], Van Duong et al. [2021],
Dai et al. [2019], Zhang et al. [2018b], Ahn et al. [2018],
Tai et al. [2017]) to bypass redundant low-resolution infor-
mation and promote the stability of optimizing deep net-
works. Moreover, advances in adversarial learning allow
preservation of high-level features extracted from target
high-resolution images through a separate discriminator net-
work (Ledig et al. [2017], Chen et al. [2018], Wang et al.
[2018a,b], Karras et al. [2017], Upadhyay and Awate [2019],
Cheng et al. [2021], Zhang et al. [2019]). Given their success
in computer vision, researchers begin to apply SR methods
to reconstruct turbulence data (Fukami et al. [2019], Obiols-
Sales et al. [2021], Deng et al. [2019], Stengel et al. [2020],
Venkatesh et al. [2021], Xie et al. [2018], Fukami et al.
[2020], Liu et al. [2020], Chen et al. [2021]).

However, existing SR methods face several challenges when
applied for reconstructing turbulent flows. Such flows in-
volve multiple physical variables and often exhibit complex
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dynamic patterns, i.e., multiple physical variables evolve
and interact at different scales. In the absence of underly-
ing physical processes, pure data-driven SR models require
a large number of training samples to capture the correct
physics. Due to the substantial computational cost in sim-
ulating turbulent flows, high-fidelity DNS data are rarely
available, and even the generation of high-quality LES at a
lower resolution can be expensive. Hence, low-resolution
LES data cannot be frequently generated for a large variety
of scenarios. When trained with limited data at discrete time
steps (i.e., when both LES and DNS are available), these
models can have degraded performances because they may
learn spurious patterns between sparse observations, and
such patterns are often not generalizable.

In this work, we propose a new physics-guided neural net-
work framework for spatial and temporal super-resolution.
The idea is to leverage underlying physical relationships
to guide the learning of generalizable spatial and tempo-
ral patterns in the reconstruction process. In particular, our
framework consists of two components, physics-guided re-
current unit (PRU) and physics-guided super resolution
model (PGSR). The PRU structure is designed based on
the underlying partial differential equation (PDE), and is
responsible for capturing the temporal dynamics of turbu-
lent flows from sparse data. The PGSR model incorporates
additional physical constraints to improve the reconstruction
from the available LES data. Our evaluation of the Taylor-
Green Vortex data (Brachet et al. [1984]) has demonstrated
the superiority of PRU and PGSR in modeling the turbulent
flows. At the same time, we also verify that the proposed
method can preserve the physical properties of turbulent
flows.

Our contributions can be summarized as:

• We propose innovative physics-guided PRU and PGSR
architectures to capture the temporal and spatial pat-
terns of the turbulent flows, respectively.

• We design a unified neural network framework com-
bining PGSR and PRU to effectively simulate and re-
construct high-resolution frequent turbulent flows.

• We evaluate our model in a series of experiments. The
experimental results demonstrate that our approaches
have significant superiority compared with existing
methods in both DNS simulation from historical data
and DNS reconstruction from sparse LES data.

2 PROBLEM DEFINITION

Our objective is to reconstruct frequent high-resolution flow
data from low-resolution and sparse LES data. In partic-
ular, we consider a general three-dimensional vortex flow
over space and time Q(x, y, z, t), where (x, y, z) denotes
the spatial coordinates, t represents the time step (in sec-
onds), and Q(x, y, z, t) consists of multiple variables that

describe turbulent transport, such as the velocity along with
different directions and the thermodynamic pressure. We
represent low-resolution LES data as QLR(x, y, z, t), which
are available at sparse time steps, e.g., starting from a time
step t0, the LES is generated with a time interval of d at
{t0, t0 + d, t0 + 2d, ...}. The flow variables in Q(x, y, z, t)
also follow the Navier-Stokes equation, which governs the
transport of these variables in space (x, y, z) and time (t).
Boundary conditions are specified near the boundary of the
domain to describe the interaction of the flow with the ex-
ternal environment. More details about the flow dataset will
be provided in Section 4.1.
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Figure 1: The proposed physics-guided neural networks
framework combining PRU and PGSR for reconstructing
turbulent flows Q.

Our proposed framework consists of two structural compo-
nents, PGSR and PRU, which are illustrated in Fig. 1. Start-
ing from an initial time step t0, the proposed method will
follow a two-step process: (i) the PGSR model is used to re-
construct high-resolution Q(x, y, z, t) when low-resolution
LES data are available. (ii) Then PRU is used to estimate
Q(x, y, z, t+ 1) from Q(x, y, z, t) until the next LES sam-
ple is available. In the following, we will describe these two
components: PRU and PGSR.

3.1 PHYSICS-GUIDED RECURRENT UNIT (PRU)

Physical variables Q in turbulent flows interact with each
other and evolve at different speeds for different locations.
Temporal neural network models, e.g., long-short term mem-
ory (LSTM) (Hochreiter and Schmidhuber [1997]), have
sophisticated structures and thus heavily rely on large repre-
sentative training data that are sampled at the high temporal
frequency to capture the underlying continuous patterns
over time. Given sparse and limited LES data, we come up
the PRU structure as a more accurate and reliable way to
predict the future flow variables by leveraging the continu-
ous physical relationship described by the underlying PDE.
This helps bridge the gap between discrete data samples
and continuous flow dynamics. The proposed PRU structure



is inspired by our previous work on combining machine
learning and physical equations Jia et al. [2019], Bao et al.
[2021], Jia et al. [2021], Willard et al. [2021]. The PRU
structure is also generally applicable to many dynamical
systems with governing PDEs.

Most PDEs can be represented in the form of Qt =
f(t,Q; θ), where Qt is the temporal derivative of Q, and
f(t,Q; θ) is a non-linear function (parameterized by coef-
ficient θ) that summarizes the current value of Q and its
spatial context. For example, the incompressible Navier-
Stokes equation for the velocity field can be expressed as:

f(Q) =
−1

ρ
∇p+ ν∆Q− (Q.∇)Q, (1)

where ρ, p, and ν denote the fluid density, the thermody-
namic pressure, and the viscosity, respectively. Since the
function f(Q) in the Navier-Stokes equation is independent
of time t, we omit the independent variable t in the function
f(·). Here p is treated as a known variable, and θ = {ρ, ν}.
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Figure 2: Diagram for the physical recurrent unit, which
iteratively estimates the temporal derivative and the inter-
mediate state variable.

The PRU structure is inspired by the classical numerical
Runge–Kutta (RK) methods (Butcher [2007]), which have
been used in temporal discretization for the approximate
solutions of differential equations. As shown in Fig. 2, the
central idea of PRU is to interpolate virtual intermediate
variables and create smaller intervals between two time
steps which facilitate refining the gradient of flow variables
over time. Starting from a time step t, PRU estimates N − 1
intermediate state variables Q(t, 1), ..., Q(t,N − 1) and
N intermediate temporal derivatives Qt,1, ..., Qt,N before
reaching the next step t+ 1.

In particular, PRU interpolates intermediate state variables
by iteratively following a two-step process: for n from
1 to N , (i) PRU first estimates the temporal derivative
Qt,n = f(Q(t, n − 1)) at the previous intermediate flow
state Q(t, n− 1), and Q(t, 0) = Q(t). We will discuss
more details about how to compute the function f(·) later.
(ii) Then PRU computes the next intermediate state variable

Q(t, n) by moving the flow data Q(t) along the direction
of obtained temporal derivatives. In our tests, we follow the
most popular 4th order RK method for computing the three
intermediate state variables, as follows:

Q(t, 1) = Q(t) + ∆t
Qt,1

2
,

Q(t, 2) = Q(t) + ∆t
Qt,2

2
,

Q(t, 3) = Q(t) + ∆tQt,3,

(2)

The temporal derivative Qt,4 is then computed from the
last intermediate point, as f(Q(t, 3)). The 4th order RK
method has the total accumulated error of O(∆t4), where
∆t represents the time interval between consecutive time
steps.

Finally, PRU combines all the intermediate temporal deriva-
tives as a composite gradient to predict the flow variables at
the next time step Q(t+ 1), as follows:

PRU(Q̂(t+ 1)|Q(t)) = Q(t) +
N∑

n=1

wnQt,n, (3)

where {wn}Nn=1 are the trainable model parameters. Given
a series of high-fidelity DNS training data of T time steps,
the PRU structure can be trained by minimizing the mean
squared error (MSE) between the predicted flow variables
and true DNS values, as

∑
t ||PRU(Q̂(t+1)|Q(t))−Q(t+

1)||2/T .

In the following, we will describe two major issues in com-
puting the function f(·): (i) estimating spatial derivatives
in the function f(·), and (ii) preserving boundary condi-
tions. We will also investigate the stability of this method
for long-term prediction with a simple case study.

3.1.1 Spatial derivative approximation

The proposed PRU evaluates the function f(·) explicitly
for estimating the temporal derivatives of intermediate state
variables. In many general PDEs (e.g., the Navier-Stokes
equation), f(Q) contains spatial derivatives of Q. One pop-
ular approach for evaluating the spatial derivatives is through
the finite difference methods (FDMs), which approximate
variable derivatives of a function on predefined mesh points
by solving algebraic equations containing finite differences
and values from nearby points. For example, the first and
second order spatial derivatives along the x dimension in
Eq. 1 (represented as Qx and Qxx) can be estimated by the



FDMs as follows:

Qx(xi, yj , zk, tn)

≈Q(xi+1, yj , zk, tn)−Q(xi−1, yj , zk, tn)

2∆x
,

Qxx(xi, yj , zk, tn)

≈ [Q(xi+1, yj , zk, tn)− 2Q(xi, yj , zk, tn)

+Q(xi−1, yj , zk, tn)]/(∆x)2.

(4)

The approximation used in FDMs results in an error com-
pared to the exact solution, which can be estimated through
Taylor expansions. Instead of using FDMs for every mesh
point, we propose to build a spatial difference (SD) layer
using convolutional neural network (CNN) layers. The CNN
layers have the expressive power to capture the relationships
defined in FDMs (Eq. 4) while also being more flexible in
learning other non-linear relationships from data.

3.1.2 Boundary Condition and Augmentation

Boundary conditions are critical in turbulent flow simulation
as they describe how the turbulent flows interact with the
external environment. Here we consider the periodic bound-
ary condition in our flow data. It is defined in a specified
periodic domain indicating that it repeats its own values
in all directions. The formal definition of a cubic periodic
boundary condition is given below:

Q(Lx, y, z, t) = Q(Rx, y, z, t),

Q(x, Ly, z, t) = Q(x,Ry, z, t),

Q(x, y,Rz, t) = Q(x, y,Rz, t),

(5)

where Lx, Ly, Lz are the three left boundaries with respect
with x, y, z coordinates and Rx, Ry, Rz are the three right
boundaries with respect with x, y, z coordinates. Standard
padding strategies for CNN (e.g., same padding) do not
satisfy the periodic value requirement. In order to handle
this issue, we make a data augmentation for each of the
6 faces (of the 3D cubic data) with an additional 2 layers
of data during the training stage and adopt a 5 × 5 CNN
filter size. The augmented locations will be removed from
reconstructed data.

3.1.3 Stability

The classical 4th order RK suffers from the stability issue if
the step size is not properly chosen. Consider a simple scalar
example Qt = λQ. The 4th order RK for this equation can
be written as

Q((n+ 1)∆t)

≈ (1 + λ∆t+
λ∆t2

2
+

λ∆t3

6
+

λ∆t4

24
)Q(n∆t).

(6)
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Figure 3: Illustration of data augmentation on a 2-D exam-
ple. The left diagram represents the up and low boundary
augmentation. The middle diagram represents the left and
right boundary augmentation. And the right diagram repre-
sents the corner boundary augmentation. Rectangles carry-
ing identical numbers have the same value.

Let’s denote R(∆t)= 1 + ∆t + ∆t2

2 + ∆t3

6 + ∆t4

24 , and
we have Q((n + 1)∆t) = R(∆t)Q(n∆t). The analytical
solution is Q((n + 1)∆t) = exp(λ∆t)Q(n∆t), and thus
the accumulated error is

errn+1 = (exp(λ∆t)−R(∆t))errn. (7)

This indicates that errn+1 = O(∆t5)errn according to
Taylor expansion. When the interval d of LES data is large,
the accumulated error may get amplified at every time step
and then lead to an explosion. Additional complexity arises
when f consists of multiple evaluations of spatial deriva-
tives. This requires the access to LES data at a reasonably
frequent time interval to avoid significantly large reconstruc-
tion errors.

Algorithm 1 The flow of the proposed PRU.

Create and initialize 5 × 5 filters for 1st and 2nd order
spatial derivatives
for epoch = 1 : number of training iterations do

for t = 1 : number of time steps do
Make data augmentation for Q(t) (Section 3.1.2).
Calculate Qt,1,Qt,2,Qt,3,Qt,4 following Eq. 2 and
evaluate f accordingly.
Calculate Q̂(t + 1) following Eq. 3 and remove
augmented data over boundaries.
Use the predicted Q̂(t + 1) as the input flow data
for time t+ 1.

end for
Update trainable filters and weights.

end for

3.2 PHYSICS GUIDED SUPER RESOLUTION
(PGSR)

The PGSR model aims to incorporate additional physical
constraints to regularize the standard super-resolution model.
In particular, we consider two important physical constraints,



the divergence-free property for the incompressible flow and
the zero-mean property for the Taylor-Green Vortex (Bra-
chet et al. [1984]).

First, the incompressible flow follows the divergence-free
property in the velocity field. Thus, we can represent the
inherent physical relationship of the velocity field as:

∇ ·V =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (8)

where we represent the velocity vector V(x, t) along 3-
D dimensions (x ≡ x, y, z) by u, v, and w, respectively.
Then we use a second-order central finite difference approx-
imation to estimate the partial derivatives and employ this
divergent free property as a physical loss in the training
process, as follows:

LPhy =
∑

(x,y,z)

[
∇ · V̂(x, t)

]2
/M, (9)

where M is the number of spatial locations in the high-
resolution data, and V̂ represents the reconstructed velocity
field at high resolution. Such physical constraint can help
reduce the search space for model parameters such that the
reconstructed high-resolution data follow the divergence-
free property which is enforced in incompressible flows.

Second, to preserve the zero-mean property of the in a com-
pressible flow, we also implement an extra network layer
by reducing the mean value of reconstructed flows in the
generative process Q̂0 = g(Q̂). We do not include the
zero-mean constraint directly in the loss function because
the obtained model cannot preserve the zero-mean property
for the long-term testing phase. On the other hand, direct
MSE minimization using Q̂0 as output leads to an unstable
training process because the original output Q̂ can have ar-
bitrarily large values. Hence, we iteratively train the PGSR
model to reduce (i) the gap between Q̂ and the true DNS,
(ii) the gap between Q̂ and its resulted Q̂0, and finally use
Q̂0 as the output.

Additionally, we also introduce a degradation process to
enforce the consistency between the reconstructed data and
the input LES data, similar to Chen et al. [2021]. We cre-
ate the PGSR model based on the popular SR model SR-
GAN (Ledig et al. [2017]). The methods we used to include
physical constraints can easily be applied into enhance other
SR models as well.

4 EXPERIMENT

In this section, we evaluate the performance of our method
on a Taylor-Green vortex (TGV) (Brachet et al. [1984])
dataset and compare the results with existing well-used
methods. We first introduce the dataset used in our tests,
and discuss the experimental design and evaluation targets.
Then we will provide experimental results and our analysis.

4.1 DATASET

We consider a variant of the Taylor-Green vortex (TGV).
This is a three-dimensional incompressible flow and is sim-
ulated within a box with periodic boundary conditions. The
TGV provides a suitable setting for our demonstration as
it exhibits several salient features of turbulent transport. In
this flow, the original vortex collapses into turbulent worm-
like structures which become progressively more turbulent
until viscosity eventually dissipates the large scale vortical
structures. We compare our proposed method against sev-
eral existing super-resolution algorithms to reconstruct the
DNS data of TGV.

The TGV is produced by a solution of the constant density
Navier-Stokes equation:

∂V
∂t

+ (V.∇)V =
−1

ρ
∇p+ ν∆V. (10)

The evolution of the TGV includes enhancement of vortic-
ity stretching and the consequent production of small-scale
eddies. Initially, large vortices are placed in a cubic peri-
odic domain of [−π, π] (in all three-directions), with initial
conditions:

u(x, y, z, 0) = sin(x) cos(y) cos(z) (11)
v(x, y, z, t) = − cos(x) sin(y) cos(z) (12)
w(x, y, z, t) = 0. (13)

Then the value of the Reynolds number is set to Re = 1600.
We have LES and DNS results of TGV at several times steps.
For each time step, we consider the three components of the
velocity along the x, y, and z axis, denoted by u, v, and w,
respectively. Our objective is to reconstruct the DNS results
of the velocity field (u, v, w) using LES data. In particular,
QLR represents the LES values of the velocity field while
the target Q represents the high-fidelity DNS of the velocity
field. Here both LES and DNS data are generated along
65 grid points along the z axis under equal intervals. The
LES and DNS are conducted on 32-by-32 and 128-by-128
grid points, respectively, along the xy directions. Hence, the
DNS data is of 16 times higher resolution compared to LES
data.

4.2 EXPERIMENTAL DESIGN

We train the proposed method using the TGV data from
a consecutive 20-seconds period (with 20 time steps) and
then apply the trained model to the next 50 seconds’ testing
data and measure the performance. 1 We evaluate the per-
formance of DNS prediction using two different evaluation

1Code for the experiment is available at
drive.google.com/drive/folders/11PTaEjsBkgd6PAAYm
WH_KDzTg90IvrJn?usp=sharing



(a) RMSE in u Channel. (b) RMSE in v Channel. (c) RMSE in w Channel.

(d) SSIM in u Channel. (e) SSIM in v Channel. (f) SSIM in w Channel.

Figure 4: Change of RMSE/SSIM values produced by different DNS prediction models from the 1st to 50th time steps in a
testing period with true DNS data for 5 time steps. (a)-(c) show the changes of RMSE values, and (d)-(f) show the changes
of SSIM values for (u,v,w) three different channels.

(a) RMSE in u Channel. (b) RMSE in v Channel. (c) RMSE in w Channel.

(d) SSIM in u Channel. (e) SSIM in v Channel. (f) SSIM in w Channel.

Figure 5: Change of RMSE/SSIM values produced by different DNS prediction models from the 1st to 50th time steps in a
testing period with true DNS data for 10 time steps. (a)-(c) show the changes of RMSE values, and (d)-(f) show the changes
of SSIM values for (u,v,w) three different channels.

metrics, root mean squared error (RMSE) and structural
similarity index measure (SSIM) (Wang et al. [2004]). We
use RMSE to measure the difference (error) between re-
constructed data and target DNS data. The lower value of

RMSE indicates better reconstruction performance at the
pixel level. SSIM is used to appraise the structural similarity
between reconstructed data and target DNS on three aspects:
luminance, contrast, and overall structure.



(a) RMSE in u Channel. (b) RMSE in v Channel. (c) RMSE in w Channel.

(d) SSIM in u Channel. (e) SSIM in v Channel. (f) SSIM in w Channel.

Figure 6: Change of RMSE/SSIM for different models over time using sparse LES data with the interval of 5 time steps.
(a)-(c) show the changes of RMSE values, and (d)-(f) show the changes of SSIM values for the three different channels
(u,v,w).

Table 1: The prediction performance of reconstructing DNS
data measured in terms of RMSE and SSIM. The perfor-
mance is measured on (u, v, w) channels with DNS interval
d as 5 or 10. The upper half is the average results using the
LES interval of d = 5, the bottom half is the average results
using the LES interval of d = 10.

Method RMSE SSIM
TM (0.019,0.019,0.019) (0.972,0.973,0.967)
rTM (0.013,0.012,0.015) (0.983,0.984,0.980)
PRU (0.005,0.005,0.005) (0.996,0.996,0.997)
TM (0.038,0.038,0.036) (0.930,0.930,0.917)
rTM (0.022,0.022,0.025) (0.964,0.966,0.954)
PRU (0.012,0.012,0.009) (0.988,0.988,0.991)

Our evaluations aim to answer several questions as listed
below:

E1: Whether PRU alone can effectively predict the next
high-resolution DNS using the previous DNS data? We
compare PRU with two pure data-driven baseline models,
transition model (TM) and recurrent transition model (rTM).
The TM method predicts the flow variables Q(t+1) at next
step using an UNet-style encoder-decoder convolutional
structure from the flow variables Q(t) at the previous time.
The rTM method further extends TM with a recurrent layer.

E2: Whether the predictions made by PRU can preserve
physical properties of DNS? Besides RMSE and SSIM, we

also measure the turbulent kinetic energy of the predicted
flows and compare it with that of the true DNS.

E3: How is the reconstruction performance combining PRU
and PGSR using sparse low-resolution LES data? We com-
bine PRU and PGSR (PGSR-PRU) for reconstructing DNS
from sparse LES samples. Since we have already compared
PRU with other temporal transition models in E1, here we
compare to a baseline SRGAN-TM, which uses our base
SR model SRGAN for reconstructing DNS from LES and
use TM to predict DNS when LES is not available. We
also compare to another two baselines PGSR (LES) and its
extension rPGSR (LES). The rPGSR(LES) method has an-
other recurrent layer over time. Different from PGSR-PRU
and SRGAN-TM, these two methods apply the SR model
using LES data at all the time steps, thus can be consid-
ered as the upper bound for this test. Our goal is to verify
that PGSR-PRU can produce comparable performance with
PGSR (LES) and rPGSR (LES) while outperforming other
baselines.

E4: How is the reconstruction performance of PGSR com-
pared to other SR methods? We compare PGSR with two
well-used SR methods: RCAN (Zhang et al. [2018a]) and
SRGAN (Ledig et al. [2017]). We also compare it with
DCS/MS (Fukami et al. [2019]), which is a popular SR
approach for turbulent flows reconstruction. Additionally,
we compare to a variant of PGSR, termed PGSR-D, which
only adds the degradation loss to the SRGAN model without
using any physical constraints.



Table 2: Reconstruction performance on (u, v, w) using LES
channels by RMSE and SSIM. SRGAN-TM and PGSR-
PRU (proposed) are evaluated using sparse LES data with
the interval of 5 steps, the upper half is the average results
of a total of 50 time steps, the bottom half is the average
results of the first 15 time steps.

Method RMSE SSIM
PGSR(LES) (0.112,0.114,0.133) (0.771,0.774,0.667)
rPGSR(LES) (0.114,0.114,0.129) (0.772,0.773,0.669)
SRGAN-TM (0.118,0.115,0.147) (0.769,0.767,0.647)
PGSR-PRU (0.111,0.113,0.128) (0.782,0.781,0.681)
PGSR(LES) (0.088,0.088,0.101) (0.846,0.849,0.801)
rPGSR(LES) (0.091,0.086,0.099) (0.848,0.855,0.811)
SRGAN-TM (0.091,0.088,0.105) (0.848,0.849,0.794)
PGSR-PRU (0.081,0.081,0.091) (0.864,0.866,0.833)

4.3 RESULTS

4.3.1 DNS generation using PRU

Here we assume that we have true DNS data with an interval
of d time steps (d = 5 or 10) and we implement PRU and
other baselines to predict DNS for the missing time steps.
We summarize the performance of PRU and baselines in
Table 1 and show their performance change on each channel
over time in Figs. 4 and 5. For both cases (with the true
DNS interval d sets to a larger value 10 or a smaller value
5), PRU produces better performance than baselines over all
the time steps. It confirms the effectiveness of PRU in the
long-term prediction of DNS from historical flow data (E1).

Besides, we compute the kinetic energy of the flow data
predicted by PRU and baselines and measure the gap with
the kinetic energy of the true DNS data. The proposed PRU
reduces the kinetic energy gap with the true DNS by 30%
and 67% compared to TM and rTM, respectively. It confirms
that PRU can better preserve underlying physical character-
istics of turbulent flows (E2).

4.3.2 DNS reconstruction using PGSR-PRU

We implement the DNS reconstruction using PGSR-PRU
and SRGAN-TM using the LES data for every five time
steps (E3). As shown in Table 2 and Fig. 6, PGSR-PRU
produces better performance than SRGAN-TM. Particularly
in the first 15 time steps, it is more clear to see PGSRN-PRU
can obtain lower RMSE and higher SSIM values. Fig. 6 also
shows that the reconstruction performance gets degraded
over time because the LES data have a significant difference
with the training period. More interestingly, we notice that
PGSR-PRU even outperforms PGSR (LES) and rPGSR
(LES). This is because LES data often miss many important
physical components compared to the true DNS, which
makes SR models difficult to recover flow data directly

Table 3: Evaluation of SR models in terms of the reconstruc-
tion RMSE and SSIM on (u, v, w) channels using LES data.
The performance is measured on the testing data of the first
5 time steps.

Method RMSE SSIM
RCAN (0.061,0.061,0.075) (0.891,0.891,0.863)
DCS/MS (0.085,0.086,0.115) (0.896,0.897,0.845)
SRGAN (0.065,0.062,0.067) (0.901,0.913,0.875)
PGSR-D (0.057,0.052,0.053) (0.914,0.923,0.900)
PGSR (0.053,0.050,0.051) (0.924,0.935,0.911)

from LES data. We also show three sets of examples of
reconstructed slides of flow data in Fig. 7. It is clear to
observe that PGSR-PRU can better capture the detailed flow
patterns compared to other methods as it incorporates the
underlying Navier-Stokes equation through PRU.

4.3.3 DNS reconstruction using PGSR

As shown in Table 3, PGSR achieves better performance
than other baselines in terms of both RMSE and SSIM. In
particular, we can observe the improvement from SRGAN
to PGSR-D and from PGSR-D to PGSR. This confirms the
effectiveness of the degradation process and the physical
constraints used in PGSR (E4).

5 CONCLUSION

We propose a physics-guided neural network framework
for predicting high-resolution flow data at high temporal
frequency. The PRU structure leverages the physical knowl-
edge embodied in the Navier-Stokes equation to capture
the flow dynamics over time while the PGSR model in-
corporates additional physical constraints to improve the
reconstruction from the LES data. We have demonstrated
the superiority of PRU in predicting future DNS data from
historical DNS data. We also show that PGSR-PRU can
effectively reconstruct DNS from sparse LES series.

More importantly, the proposed method is generally appli-
cable to many scientific problems with similar properties,
e.g., complex temporal dynamics, and the availability of
low-resolution simulations with reduced accuracy. The PRU
structure can also be used as a building block to enhance
existing deep learning models for modeling of complex
dynamics with the guidance of known governing PDEs.
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