
Interpretable Sparsification of Brain Graphs:
Better Practices and Effective Designs for Graph Neural Networks

Gaotang Li
University of Michigan, Ann Arbor

gaotang@umich.edu

Marlena Duda
Georgia State University

mduda@gsu.edu

Xiang Zhang
University of North Carolina,

Charlotte
xiang.zhang@uncc.edu

Danai Koutra
University of Michigan, Ann Arbor

dkoutra@umich.edu

Yujun Yan
Dartmouth College

yujun.yan@dartmouth.edu

ABSTRACT
Brain graphs, which model the structural and functional relation-
ships between brain regions, are crucial in neuroscientific and clin-
ical applications involving graph classification. However, dense
brain graphs pose computational challenges including high run-
time and memory usage and limited interpretability. In this paper,
we investigate effective designs in Graph Neural Networks (GNNs)
to sparsify brain graphs by eliminating noisy edges. While prior
works remove noisy edges based on explainability or task-irrelevant
properties, their effectiveness in enhancing performance with spar-
sified graphs is not guaranteed. Moreover, existing approaches often
overlook collective edge removal across multiple graphs.

To address these issues, we introduce an iterative framework
to analyze different sparsification models. Our findings are as fol-
lows: (i) methods prioritizing interpretability may not be suitable
for graph sparsification as they can degrade GNNs’ performance
in graph classification tasks; (ii) simultaneously learning edge se-
lection with GNN training is more beneficial than post-training;
(iii) a shared edge selection across graphs outperforms separate
selection for each graph; and (iv) task-relevant gradient information
aids in edge selection. Based on these insights, we propose a new
model, Interpretable Graph Sparsification (IGS), which enhances
graph classification performance by up to 5.1% with 55.0% fewer
edges. The retained edges identified by IGS provide neuroscientific
interpretations and are supported by well-established literature.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Applied
computing→ Bioinformatics.

KEYWORDS
Graph Neural Networks; Interpretability; Graph Sparsification

ACM Reference Format:
Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, and Yujun Yan.
2023. Interpretable Sparsification of Brain Graphs: Better Practices and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0103-0/23/08.
https://doi.org/10.1145/3580305.3599394

Effective Designs for Graph Neural Networks. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3580305.3599394

1 INTRODUCTION
Understanding how brain function emerges from the communica-
tion between neural elements remains a challenge in modern neu-
roscience [5]. Over the years, researchers have used brain graphs to
encode the correlations of brain activities and uncover interesting
connectivity patterns between brain regions. They find that the
topological properties of brain graphs are useful in predicting vari-
ous phenotypes and understanding brain activities [8, 13, 14, 26, 49],
which account for the wide usage of brain graphs in neuroscientific
research [39, 55, 70]. Adopting the graph representations (often
termed "connectomes"), many neuroscientific problems can be cast
as graph problems. In this paper, we focus on end-to-end brain
graph classification tasks since many brain graph classification
tasks have meaningful real-life clinical significance, such as provid-
ing a non-invasive neuroimaging biomarker for the identification
of certain psychiatric/neurological disorders at an early stage (e.g.
autism, Alzheimer’s disease) [48].

Despite the benefits of modeling brain data as graphs, even well-
preprocessed brain graphs pose serious challenges. A functional
MRI-based (fMRI) brain graph, which is usually computed as pair-
wise correlations of fMRI time-series data, is fully connected. The
resulting dense graph causes two unavoidable problems. First, it
inhibits the use of efficient sparse operations, which leads to large
time and memory consumption when the graphs are large [17, 70].
Second, the dense graph suffers from fMRI-related noise, making
it extremely hard to train a model that learns useful generaliza-
tion rules and provides good interpretability [41]. To this end, it is
crucial to make brain graphs more sparse and less noisy. The com-
mon practice in neuroscience is to remove the "weak" edges, whose
weights are below the predefined threshold [52]. However, direct
thresholding requires a wide search for the proper threshold [10],
and the sparsified graphs may lack useful edges and preserve sig-
nificant noise. To illustrate it, in Table 1, we show the performance
on the original graphs and sparsified graphs obtained using direct
thresholding in a classification task. It can be seen that direct thresh-
olding may drop important edges and/or keep unimportant edges,
which leads to a decrease in performance.

ar
X

iv
:2

30
6.

14
37

5v
1

 [c
s.L

G
]

26
 Ju

n
20

23

https://doi.org/10.1145/3580305.3599394
https://doi.org/10.1145/3580305.3599394

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, & Yujun Yan

Table 1: Brain graph classification performance (accuracy) on
the original graphs (Original) and sparsified graphs (Direct
threholding). Direct thresholding may keep unimportant
edges. Details about the data and experimental setup can be
found in Section 4.1.

PicVocab ReadEng

Original 52.7±3.77 55.4±3.51
Direct thresholding 52.0±5.51 54.8±3.19

Prior work related to graph sparsification generally falls into
two categories. The first line of work learns the relative importance
of the edges, which can be used to remove unimportant edges in
the graph sparsification process. These works usually focus on
interpretability explicitly, oftentimes referred to as “explainable
graph neural networks (explainable GNNs)” [74]. The core idea
embraced by this community is to identify small subgraphs that are
most accountable for model predictions. The relevance of the edges
to the final predictions is encoded into an edge importance mask, a
matrix that reveals the relative importance of the edges and can be
used to sparsify the graphs. These works show good interpretability
under various measures [51]. However, it remains unclear whether
better interpretability indicates better performance. The other line
of work tackles unsupervised graph sparsification [42], without
employing any label information. Somemethods reduce the number
of edges by approximating pairwise distances [50], cuts [33], or
eigenvalues [58]. These task-irrelevant methods may discard useful
task-specific edges for predictions. Fewer works are task-relevant,
primarily focusing on node classification [43, 77]. Consequently,
these works produce different edge importance masks for each
graph. However, in graph classification, individual masks can lead
to significantly longer training time and susceptibility to noise.
Conversely, a joint mask emerges as the preferred choice, offering
robustness against noise and greater interpretability.
This work. To assess the quality of the sparsified graphs obtained
from interpretable models in the graph classification task, we pro-
pose to evaluate the effectiveness of the sparsification algorithms
under an iterative framework. At each iteration, the sparsification
algorithms decide which edges to remove and feed the sparsified
graphs to the next iteration. We measure the effectiveness of a spar-
sification algorithm by computing the accuracy of the downstream
graph classification task at each iteration. An effective sparsification
algorithm should acquire the ability to identify and remove noisy
edges, resulting in a performance boost in the graph classification
task after several iterations (Section 4.2).

We utilize this iterative framework to evaluate two common
practices used in graph sparsification and graph explainability: (1)
obtaining the edge importance mask from a trained model and (2)
learning an edge importance mask for each graph individually [74].
For instance, GNNExplainer [72] learns a separate edge importance
mask for each graph after the model is trained. Through our empir-
ical analysis, we find that these practices are not helpful in graph
sparsification, as the sparsified graphs may lead to lower classifica-
tion accuracy. In contrast, we identify three key strategies that can
improve the performance. Specifically, we find that (S1) learning a
joint edge importance mask (S2) simultaneously with the train-
ing of the model helps improve the performance over the iterations,

as it passes task-relevant information through back-propagation.
Another strategy to incorporate the task-relevant information is
to (S3) initialize the mask with the gradient information from the
immediate previous iteration. This strategy is inspired by the ev-
idence in the computer vision domain that gradient information
may encode data and task-relevant information and may contribute
to the explainability of the model [1, 3, 27].

Based on the identified strategies, we propose a new Interpretable
model for brain Graph Sparsification, IGS. We evaluate our IGS
model on real-world brain graphs under the iterative framework
and find that it can benefit from iterative sparsification. IGS achieves
up to 5.1% improvement on graph classification tasks with graphs of
55.0% fewer edges than the original compared to strong baselines.

Our main contributions are summarized as follows:
• General framework.We propose a general iterative frame-
work to analyze the effectiveness of different graph sparsi-
fication models. We find that edge importance masks gen-
erated from interpretable models may not be suitable for
graph sparsification because they may not improve the per-
formance of graph classification tasks.
• New insights.We find that two practices commonly used in
graph sparsification and graph explainability are not helpful
under the iterative framework. Instead, we find that learning
a joint edge importance mask along with the training of
the model improves the classification performance during
iterative graph sparsification. Furthermore, incorporating
gradient information in mask learning also boosts the per-
formance in iterative sparsification.
• Effective model. Based on the insights, we propose a new
model, IGS, which can improve the performance (up to 5.1%)
with significantly sparser graphs (up to 55.0% less edges).
• Interpretability. Our IGS model learns to remove task-
irrelevant edges in the iterative process. The edges that are
retained by IGS have neuroscientific interpretations and are
well supported by well-established literature.

2 NOTATION AND PRELIMINARIES
In this section, we introduce key notations, provide a brief back-
ground on GNNs, and formally define the problem that we investi-
gate.
Notations.We consider a set of graphs G. Each graph𝐺𝑖 (V, E𝑖) ∈
G in this set has 𝑛 nodes, and the corresponding node set and edge
set are denoted asV and E𝑖 , respectively. The graphs share the same
set of nodes. The set of neighboring nodes of node 𝑣 is denoted as
N𝑣 . We focus on the setting where the input graphs are weighted,
and we represent the weighted adjacency matrix of each input
graph 𝐺𝑖 as A𝑖 ∈ R𝑛×𝑛 . The node features in 𝐺𝑖 are represented
by a matrix X𝑖 ∈ R𝑛×𝑑 , where its 𝑗-th row X𝑖 [𝑗, :] represents the
features of the 𝑗-th node, and 𝑑 refers to the dimensionality of
the node features. For conciseness, we use X(𝑙)

𝑖
to represent the

node representations/output at the 𝑙-th layer of a GNN. Given our
emphasis on graph classification problems, we denote the number
of classes as 𝑘 , the set of labels as Y, and associate each graph 𝐺𝑖

with a corresponding label 𝑦𝑖 ∈ Y.
We also leverage gradient information [56] in this work: ∇𝑓𝑗 (𝐺𝑖)

denotes the gradients of the output in class 𝑗 with respect to the

Interpretable Sparsification of Brain Graphs:
Better Practices and Effective Designs for Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

D

A

CB
E

D

A

CB
E

D

A

CB
E

D

A

CB
E

 Important Edge Removed Edge
 Noisy Edge Thickness - Value of Edge Weight

Post-Training
GNN
Model

A B C D E

A 0.7 0.4 0.2 0.3 0.8

B 0.4 0.6 0.3 0.9 0.4

C 0.2 0.3 0.4 0.1 0.9

D 0.3 0.9 0.1 0.3 0.7

E 0.8 0.4 0.9 0.7 0.6

During-Training

Edge Importance Mask

D

A

CB
E

Feed as the Input Graph for the next Iteration

Sparsifying

Input Graphs One Input Graph Instance Sparsified Graph

Figure 1: General iterative framework of sparsification. This framework progressively eliminates noisy edges from input brain
graphs by learning an edge importance mask for each/all graph(s). The edge importance mask(s) can be generated from a
well-trained GNN model or trained simultaneously with a GNN model. Important edges are depicted in orange, while noisy
edges are shown in grey. Dashed lines with purple crosses represent the removed edges in the sparsified graphs.

input graph 𝐺𝑖 . These gradients are obtained through backpropa-
gation and are referred to as the gradient map.
Supervised Graph Classifcation. Given a set of graphs
{𝐺1,𝐺2, · · · ,𝐺𝑡 } and their labels {𝑦1, 𝑦2, · · · , 𝑦𝑡 } for training, we
aim to learn a function 𝑓 : G → Y, such that the loss E(L(𝑦𝑖 , 𝑦𝑖)) is
minimized, where E denotes expectation, L denotes a loss function,
and 𝑦𝑖 = 𝑓 (𝐺𝑖) denotes the predicted label of 𝐺𝑖 .
GNNs for Graph Classification. An 𝐿-layer GNN model [35, 62,
67, 69, 70] often follows the message-passing framework, which
consists of three components [21]: (1) neighborhood propagation
and aggregation: m(𝑙)𝑣 = AGGREGATE(X(𝑙)

𝑖
[𝑢, :], 𝑢 ∈ N𝑣); (2) combi-

nation: X(𝑙+1)
𝑖
[𝑣, :] = COMBINE(X(𝑙)

𝑖
[𝑣, :], m(𝑙)𝑣), where AGGREGATE and

COMBINE are learnable functions; (3) global pooling. x𝐺𝑖 = Pooling

(X(L)
𝑖
}), where the Pooling function operates on all node repre-

sentations, including options like Global_mean, Global_max or
other complex pooling functions [37, 73]. The loss is given by 𝐿 =
1

𝑁𝐺

∑
𝐺𝑖 ∈GtrainCrossEntropy (Softmax(x𝐺𝑖), 𝑦𝑖), where Gtrain rep-

resents the set of training graphs and 𝑁𝐺 = |Gtrain |. Though our
framework does not rely on specific GNNs, we illustrate the effec-
tiveness of our framework using the GCN model proposed in [35].

The performance of GNN models heavily depends on the quality
of the input graphs. Messages propagated through noisy edges can
significantly affect the quality of the learned representations [70].
Inspired by this observation, we focus on the following problem:
Problem: Interpretable, Task-relevant Graph Sparsification.

Given a set of input graphs G = {𝐺1,𝐺2, · · · ,𝐺𝑡 } and the corre-
sponding labelsY = {𝑦1, 𝑦2, · · · , 𝑦𝑡 }, we seek to learn a set of graph-
specific edge importance masks {M1,M2, · · · ,M𝑡 } ∈ {0, 1}𝑛×𝑛 ,
OR a joint edge importance maskM ∈ {0, 1}𝑛×𝑛 shared by all
graphs, which can be used to remove the noisy edges and retain the
most task-relevant ones. This should lead to enhanced classifica-
tion performance on sparsified graphs. Edge masks that effectively
identify task-relevant edges are considered to be interpretable.

3 PROPOSED METHOD: IGS
In this section, we introduce our proposed iterative framework for
evaluating various sparsification methods. Furthermore, we intro-
duce IGS, a novel and interpretable graph sparsification approach
that incorporates three key strategies: (S1) joint mask learning, (S2)
simultaneous learning with the GNN model, and (S3) utilization
of gradient information. We provide detailed explanations of these
strategies in the following subsections.

3.1 Iterative Framework
Figure 1 illustrates the general iterative framework. At a high level,
given a sparsification method, our framework iteratively removes
unimportant edges based on the edge importance masks generated
by the method at each iteration. In detail, the method can generate
either a separate edge importance maskM𝑖 for each input graph𝐺𝑖

or a joint edge importance maskM shared by all input graphs G =

{𝐺1,𝐺2, · · · }. These edge importance masks indicate the relevance
of edges to the task’s labels. In our setting, we also allow training
the masks simultaneously with the model. Ideal edge masks are
binary, where zeros represent unimportant edges to be removed. In
reality, many models (e.g.GNNs [72, 76]) learn soft edge importance
masks with values between [0,1]. In each iteration, our framework
removes either the edges with zero values in the masks (if binary)
or a fixed percentage 𝑝 of edges with the lowest importance scores
in the masks. We present the framework of iterative sparsification
in Algorithm 1, where G𝑖 denotes the set of sparsified graphs at
iteration 𝑖 , and 𝐺𝑖

𝑗
denotes the 𝑗-th graph in the set G𝑖 .

Though existing works [28, 51] have proposed different ways to
define the "importance" of an edge and thus they generate different
sparse graphs, we believe that a direct and effective way to evaluate
these methods is to track the performance of these sparsified graphs
under this iterative framework. The trend of the performance re-
veals the relevance of the remaining edges to the predicted labels.

3.2 Strategies
3.2.1 Trained Mask (S1+S2). We aim to learn a joint edge impor-
tance maskM ∈ {0, 1}𝑛×𝑛 along with the training of a GNNmodel,

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, & Yujun Yan

A B C D E

A 0.3 0.4 0.1 0.2 0.3

B 0.4 0.6 0.2 0.6 0.4

C 0.1 0.2 0.4 0.2 0.8

D 0.2 0.6 0.1 0.1 0.5

E 0.3 0.4 0.8 0.5 0.6

Step 1: GNN Training With Edge Importance Mask

Input Graphs Initialized Edge Mask Trained Edge Mask

Step 2: Sparsification

Sparsified Graphs

Trained Model

Step 3: Normal Training with Sparsified Graphs

Validation Loss/Accuracy

Test Loss/Accuracy

Stopping Criterion

Normal Training With Sparsified Graphs

Step 4: Leveraging Gradient Information

Trained
Model

Logit 0
Output

Logit 1
Output

BackPropogation

Gradient 0

Data

Gradient 1

Data

AbSum

Unified
Gradient0

Unified
Gradient1

Joint
Gradient

Map

Step 5: Proceed to the next Iteration

Sparsified Graphs As the Input Graph

Joint
Gradient

Map

Joint Gradient Map to Initialize the Edge Importance Mask

A B C D E

A 0.7 0.4 0.2 0.3 0.8

B 0.4 0.6 0.3 0.9 0.4

C 0.2 0.3 0.4 0.1 0.9

D 0.3 0.9 0.1 0.3 0.7

E 0.8 0.4 0.9 0.7 0.6
D

A

CB
E

D

A

CB
E

D

A

CB
E

D

A

CB
E

D

A

CB
E

D

A

CB
E

D

A

CB
E

D

A

CB
E

D

A

CB
E

D

A

CB
E

D

A

C
B

E

D

A

C
B

E

 Important Edge
 Noisy Edge

 Removed Edge
 Thickness - Value of Edge Weight

Figure 2: Training process of IGS. At iteration 𝑖, IGS takes a set of input graphs and initializes its joint edge importance mask
using the joint gradient map from the previous iteration. It trains the GNN model and the edge importance mask together,
followed by sparsifying all input graphs using the obtained mask. Normal training is then conducted on the sparsified graphs.
The gradient information is later extracted by computing a joint gradient map. Finally, IGS feeds the sparsified graphs to the
next iteration and uses the joint gradient map to initialize the subsequent joint edge importance mask. IGS is model-agnostic
and can be seamlessly integrated with existing GNN models.

as shown in Figure 2. Each entry inM represents if the correspond-
ing edge in the original input graph should be kept (value 1) or
not (value 0). Directly learning the discrete edge mask is hard as
it cannot generate gradients to propagate back. Thus, at each it-
eration, we learn a soft version ofM, where each entry is within
[0, 1] and reflects the relative importance of each edge. Consider-
ing the symmetric nature of the adjacency matrix for undirected
brain graphs, we require the learned edge importance mask to be
symmetric. We design the soft edge importance mask as 𝜎 (Φ𝑇 +Φ),

where Φ is a matrix to be learned and 𝜎 is the Sigmoid function. A
good initialization of Φ can boost the performance and accelerate
the training speed. Thus, we initialize this matrix with the gradient
map (Section 3.2.2) from the previous iteration (Step 5 in Figure 2).
Furthermore, following [72], we regularize the training of Φ by re-
quiring 𝜎 (Φ𝑇 +Φ) to be sparse. Thus we apply a 𝑙1 regularization on
𝜎 (Φ𝑇 + Φ). In summary, we have the following training objective:

minL(𝑓 (A ⊙ 𝜎 (Φ𝑇 + Φ),X),Y) + 𝜆
∑︁
𝑖 𝑗

𝜎 (Φ𝑇 + Φ)𝑖 𝑗 (1)

Interpretable Sparsification of Brain Graphs:
Better Practices and Effective Designs for Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Algorithm 1 Iterative Sparsification Framework

INPUT: Sparsification Method 𝑆 , Input Graph Set G1, Graph
Labels Y, Training Set Index 1Train, Validation Set Index 1Val,
Number of Iterations 𝑁 , a GNN model
1: for i = 1, . . . , N do
2: if 𝑆. MaskTime () == PostTrain then
3: GNN_Trained← Train (GNN, G𝑖 [1Train],Y[1Train])
4: if 𝑆. MaskType () == Individual then
5: // Individual Edge Importance Mask:
6: M 𝑗 = 𝑆. MaskTrain (GNN_Trained, 𝐺𝑖

𝑗
, 𝑦𝑖)

7: 𝐺𝑖+1
𝑗
←M 𝑗 ⊙ 𝐺𝑖

𝑗
, ∀𝑗

8: else
9: // Joint Edge Importance Mask:
10: M = 𝑆. MaskTrain (GNN_Trained, G𝑖 , Y, 1Train)
11: 𝐺𝑖+1

𝑗
←M ⊙ 𝐺𝑖

𝑗
, ∀𝑗

12: else
13: // Joint Edge Importance Mask:
14: M = 𝑆. MaskTrain (GNN, G𝑖 , Y, 1Train)
15: 𝐺𝑖+1

𝑗
←M ⊙ 𝐺𝑖

𝑗
, ∀𝑗

16: Validation loss 𝐿𝑖 = Train&Val (GNN,
17: G𝑖+1, Y, 1Train, 1Val)
OUTPUT: G𝑖 with smallest 𝐿𝑖

where ⊙ denotes the Hadamard product; L is the Cross-Entropy
loss; 𝜆 is the regularization coefficient. We optimize the joint mask
across all training samples in a batch-training fashion to achieve
our objective of learning a shared mask. Subsequently, we convert
this soft mask into an indicator matrix by assigning zero values to
the lowest 𝑝 percentage of elements:

M[𝑖, 𝑗] =
{
0 if 𝜎 (Φ𝑇 + Φ)𝑖 𝑗 in lowest 𝑝%
1 otherwise

(2)

The indicator matrix M can then be used to sparsify the input
graph through an element-wise multiplication, e.g. 𝐺 ′

𝑖
=M ⊙ 𝐺𝑖 .

3.2.2 Joint Gradient Information (S3). Inspired from the evidence
in the computer vision domain that gradient information may en-
code data and task-relevant information and may contribute to
the explainability of the model [1, 3, 27], we utilize the gradient
information, i.e., gradient maps to initialize and guide the learning
of the edge importance mask.

Step 4 in Figure 2 illustrates the general idea of generating a joint
gradientmap by combining gradient information from each training
graph. Each training graph 𝐺𝑖 has 𝑘 gradient maps ∇𝑓𝑗 (𝐺𝑖), 𝑗 =
1, 2, · · · , 𝑘 , each corresponding to the output in class 𝑗 (Section 2).
Instead of using the “saliency maps” [56], which consider only the
gradient maps from the predicted class, we leverage all the gradient
maps as they provide meaningful knowledge. For 𝐺1, . . . ,𝐺𝑛 ∈
Gtrain, we compute the unified mask of class j as the sum of the
absolute values of each gradient map, represented as⋃

𝑓𝑗 =

𝑡∑︁
𝑖=1
|∇𝑓𝑗 (𝐺𝑖) | (3)

By summing the unified masks of all classes, we generate the joint
edge gradient map denoted as T =

∑𝑘
𝑗=1

⋃
𝑓𝑗 .

3.2.3 Algorithm. We incorporate these three strategies into IGS
and outline our method in Algorithm 2:

Algorithm 2 Interpretable Graph Sparsification: IGS

INPUT: Input Graph Dataset G1, Training Set Index 1Train,
Validation Set Index 1Val, Removing Percentage 𝑝 , Number of
Iterations 𝑁 , GNN model, Regularization Coeffient 𝜆

for i = 1, . . . , N do
// Step 1: GNN Training with Edge Importance Mask
if 𝑖 == 1 then

Initialize Φ using Xavier normal initiation.
else

Initialize Φ using the previous joint gradient map T(𝑖)

𝜎 (Φ𝑇 + Φ) ← Train (GNN, G𝑖 , Y, 1train, 𝜆). (Equation (1))
Obtain joint Edge Importance MaskM following Equation (2)
// Step 2: Sparsification
𝐺𝑖+1
𝑗
←M ⊙ 𝐺𝑖

𝑗
, ∀𝑗

// Step 3: Normal Training with Sparsified Graphs
Validation loss 𝐿𝑖 , GNN_Trained = Train&Val (GNN,
G𝑖+1, Y, 1Train, 1Val)
// Step 4: Leveraging Gradient Information
T(𝑖+1) ← JointGradient(GNN_Trained, G𝑖+1,1Train)

OUTPUT: G𝑖 with smallest 𝐿𝑖

4 EMPIRICAL ANALYSIS
In this section, we aim to answer the following research ques-
tions using our iterative framework: (Q1) Is learning a joint edge
importance mask better than learning a separate mask for each
graph? (Q2) Does simultaneous training of the edge importance
mask with the model yield better performance than training the
mask separately from the trained model? (Q3) Does the gradient
information help with graph sparsification? (Q4) Is our method IGS
interpretable?

4.1 Setup
4.1.1 Dataset. We use the WU-Minn Human Connectome Project
(HCP) 1200 Subjects Data Release as our benchmark dataset to
evaluate our method and baselines [61]. The pre-processed brain
graphs can be obtained from ConnectomeDB [45]. These brain
graphs are derived from the resting-state functional magnetic reso-
nance imaging (rs-fMRI) of 812 subjects, where no explicit task is
being performed. Predictions using rs-fMRI are generally harder
than task-based fMRI [44]. The obtained brain graphs are fully con-
nected, and the edge weights are computed from the correlation
of the rs-fMRI time series between each pair of brain regions [57].
The parcellation of the brain is completed using Group-ICA with
100 components [9, 20, 22–24, 54], which results in 100 brain re-
gions comprising the nodes of our brain graphs. Additionally, a set
of cognitive assessments were performed on each subject, which
we utilized as cognitive labels in our prediction tasks. Specifically,

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, & Yujun Yan

we utilize the scores from the following cognitive domains as our
labels, which incorporate age adjustment [45]:
• PicVocab (Picture Vocabulary) assesses language/vocabulary
comprehension. The respondent is presented with an audio
recording of a word and four photographic images on the
computer screen and is asked to select the picture that most
closely matches the word’s meaning.
• ReadEng (Oral Reading Recognition) assesses lan-
guage/reading decoding. The participant is asked to read
and pronounce letters and words as accurately as possible.
The test administrator scores them as right or wrong.
• PicSeq (Picture Sequence Memory) assesses the Open of
episodic memory. It involves recalling an increasingly
lengthy series of illustrated objects and activities presented
in a particular order on the computer screen.
• ListSort (List Sorting) assesses workingmemory and requires
the participant to sequence different visually- and orally-
presented stimuli.
• CardSort (Dimensional Change Card Sort) assesses the cog-
nitive flexibility. Participants are asked to match a series of
bivalent test pictures (e.g., yellow balls and blue trucks) to
the target pictures, according to color or shape. Scoring is
based on a combination of accuracy and reaction time.
• Flanker (Flanker Task) measures a participant’s attention and
inhibitory control. The test requires the participant to focus
on a given stimulus while inhibiting attention to stimuli
flanking it. Scoring is based on a combination of accuracy
and reaction time.

More details can be found in ConnectomeDB [45]. These scores are
continuous. In order to use them for graph classification, we assign
the subjects achieving scores in the top third to the first class and
the ones in the bottom third to the second class.

4.1.2 Baselines. We outline the baselines used in our experiments.

Grad-Indi [7]. This method obtains the edge importance mask
for each individual graph from a trained GNN model. In contrast
to the gradient information (Strategy S3) proposed in Section 3.2.2,
a gradient map of each sample is generated for the predicted class
𝐶𝑖 : T𝑖 = ∇𝑓𝐶𝑖

(𝐺𝑖) ⊙ ∇𝑓𝐶𝑖
(𝐺𝑖) [7]. Later, the edge importance mask

M𝑖 for 𝐺𝑖 is generated based on Equation (2).

Grad-Joint. We adapt Grad-Indi [7] to incorporate our proposed
strategies (S1+S3) and learn an edge importance mask shared by
all graphs from a trained GNN model. Specifically, we leverage the
method described in Section 3.2.2 that generates the joint gradient
map to obtain the joint importance mask.

Grad-Trained. We further modify Grad-Indi [7] to train the joint
edge mask concurrently with the GNN training (S2). We also use the
joint gradient map (Section 3.2.2) to initialize the edge importance
mask (Strategies S1+S2+S3). The main differences of Grad-Trained
from IGS are that: (1) it does not require symmetry of the edgemask;
(2) it does not require edge mask sparsity (without 𝑙1 regularization).

GNNExplainer-Indi [72]. This method trains an edge important
mask for each individual graph after the GNN model is trained. We
follow the code provided by [40].

GNNExplainer-Joint. Adapted from [72], this model trains a joint
edge important mask for all graphs (Strategy S1).

GNNExplainer-Trained. Adapted from [72], this method simul-
taneously trains a joint edge important mask and the GNN model
(Strategies S1+S2). Compared with IGS, this method does not use
gradient information.

BrainNNExplainer [18]. This method (also known as IBGNN)
trains a joint edge important mask for all graphs after the GNN is
trained. It is slightly different from GNNExplainer-Joint in terms
of objective functions. We follow the original setup in [18].

BrainGNN [38]. This method does not explicitly perform the
graph sparsification task, but uses node pooling to identify impor-
tant subgraphs. It learns to preserve important nodes and all the
connections between them. We follow the original setup in [38].

4.1.3 Training Setup. To fairly evaluate different methods under
the iterative framework, we adopt the same GNN architecture [34],
hyper-parameter settings, and training framework. We set the num-
ber of convolutional layers to four, the dimension of the hidden
layers to 256, the dropout rate to 0.5, the batch size to 16, the opti-
mizer to Adam, the learning rate to 0.001, and the regularization
coefficient 𝜆 to 0.0001. Note that though we use the GNN from [34],
IGS is model-agnostic, and we provide the results of other back-
bone GNNs in Table 4. For each prediction task, we shuffle the
data and take four different data splits. The train/val/test split is
0.7/0.15/0.15. To reduce the influence of imbalances, we manually
ensure each split has equal labels. In each iteration, we adopt early
stopping [53] and set the patience to 100 epochs. We stop training
if we cannot observe a decrease in validation loss in the latest 100
epochs. We fix the removing ratio 𝑝% to be 5% per iteration. In the
iterative sparsification, we run a total of 55 iterations and use the
validation loss of the sparsified graphs as the criterion to select
the best iteration (Step 3 in Figure 2). We present the average and
standard deviation of test accuracies over four splits, using the
model obtained from the best iteration. The code is available at
https://github.com/motivationss/IGS.git.

4.2 (Q1-Q3) Graph Classification under the
Iterative Framework

In Table 2, we present the results of IGS with the eight baselines
mentioned in section 4.1.2. The first row represents the prediction
task we study; the second row represents the performance averaged
across four different splits using the original graph; and the rest
of the rows denote the performance of other baselines. Notably,
for better comparison across different baselines, the last column
shows the average rank of each method. Below we present our
observations from Table 2:

First, learning a joint mask contributes to a better performance
than learning a mask for each graph separately. We can start by
comparing the performance between GNNExplainer-Joint and
GNNExplainer-Indi as well as Grad-Joint and Grad-Indi. The
performance disparity between the methods in each pair is notable
and consistent across all prediction tasks. Notably, Grad-Joint
(rank: 4.33) outperforms Grad-Indi (rank: 7.67) by a considerable
margin, while GNNExplainer-Joint (rank: 4.67) ranks significantly

https://github.com/motivationss/IGS.git

Interpretable Sparsification of Brain Graphs:
Better Practices and Effective Designs for Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 2: Results of test accuracies of different approaches evaluated on six prediction tasks (PicVocab, ReadEng, PicSeq, ListSort,
CardSort, and Flanker) across four data splits generated by different random seeds. We report the mean and standard deviation
for each of them. The first row denotes the performance using the original graph trained by GCN [34]; the last column denotes
the average rank of each method. The best result is marked in bold.

PicVocab ReadEng PicSeq ListSort CardSort Flanker Average Rank

GCN (Original Graphs) 52.7±3.77 55.4±3.51 51.9±2.18 52.1±2.55 56.6±6.50 48.91±5.83 -

Grad-Indi 53.4±1.65 53.7±9.48 49.3±3.71 48.7±6.94 46.9±4.65 50.7±2.76 7.67
Grad-Joint 57.8±3.34 58.2±3.08 50.1±6.17 48.9±5.10 52.4±5.02 51.5±3.94 4.33
Grad-Trained 55.5±5.29 60.0±1.36 49.5±4.12 50.2±2.20 56.3±7.66 51.6±4.03 3.83
GNNExplainer-Indi 49.7±3.86 55.3±4.06 48.9±3.29 44.8±3.76 52.1±3.86 47.3±1.58 8.33
GNNExplainer-Joint 56.4±7.94 55.8±7.33 52.0±2.84 50.1±3.01 53.5±8.32 50.3±5.81 4.67
GNNExplainer-Trained 56.8±3.10 59.2±2.96 51.4±3.51 51.2±2.01 56.0±4.71 50.9±2.01 3.17
BrainNNExplainer 57.0±3.77 55.7±5.76 50.3±1.47 49.8±4.47 52.4±3.63 50.9±3.95 4.83
BrainGNN 53.0±3.25 47.5±3.00 50.7±3.13 50.9±3.13 50.1±1.12 49.0±6.22 6.67
IGS 57.8±3.10 60.1±2.78 53.0±4.66 51.8±2.12 57.0±5.49 52.1±1.97 1.00

higher than GNNExplainer-Indi (rank: 8.33). Using a joint mask
instead of individual masks can provide up to 6.7% boost in accuracy,
validating our intuition in section 3.2.2 that a joint mask is more
robust to sample-wise noise.

Second, training the mask and the GNN model simultaneously
yields better results than obtaining the mask from the trained
model. We can see this by comparing the performance between
the Trained and the Joint variants of Grad and GNNExplainer.
Changing from post-training to joint-training can provide up to
3.4% performance improvements, as demonstrated in the ReadEng
task by the two variants of GNNExplainer. Even though in some
tasks the post-training approach may outperform the trained ap-
proach (e.g. Grad-Joint and Grad-Trained in the PicVocab task),
the trained approach has a higher average rank than the post-
training approach (e.g. 3.83 vs. 4.33 for Grad and 3.17 vs. 4.67 for
GNNExplainer). In addition, the better performance of IGS over
BrainNNExplainer also demonstrates the effectiveness of obtain-
ing the edge mask during training rather than after training.

Third, incorporating gradient information helps improve clas-
sification performance. We can see this by first comparing
the performance of Grad-Joint and Grad-Trained against the
original graphs. The use of gradient information can provide
up to 5.1% higher accuracy, though the improvement depends
on the task. Furthermore, since the main difference between
GNNExplainer-Trained and IGS lies in the use of gradient infor-
mation, the consistent superior performance of IGS strengthens
this conclusion.

Fourth, we compare the performance of the baselines against the
performance of the original graphs (second row). Grad-Indi [7]
and GNNExplainer-Indi [72] are implementations that faithfully
follow their original formulation or are provided directly by the
authors. These two approaches fail to achieve any performance
improvements through iterative sparsification, with the exception
of Grad-Indi in the task of PicVocab and ReadEng. This raises the
question of whether these existing instance-level approaches can
identify the most meaningful edges in noisy graphs. These methods
may be vulnerable to severe sample-wise noise. On the contrary,
with our suggested modifications, the joint and trained versions

can remove the noise and provide up to 5.1% performance boost
compared to the base GCN method applied to the original graphs.
However, the improvement is dataset-dependent. For instance,
GNNExplainer-Trained provides decent performance boosts in
PicVocab, ReadEng, and Flanker, but degrades in PicSeq, ListSort,
and CardSort.

Finally, our proposed approach, IGS, achieves the best perfor-
mance across all prediction tasks, demonstrated by its highest rank
among all methods. Compared with the performance on the origi-
nal graphs, IGS can provide consistent performance boost across
all prediction tasks, with the exception of ListSort, which is a chal-
lenging task that no baseline surpasses the original performance.
Furthermore, using the sparsified graph identified by IGS generally
results in less variance in accuracy and leads to better stability when
compared to the original graphs, with the exception on the PicSeq
task. In addition, the superior performance of IGS over BrainGNN
demonstrates the effectiveness of using edge importance masks as
opposed to node pooling.
Graph Sparsity. In Table 3, we present the final average sparsity of
the graphs obtained by IGS over four data splits. We observe that
with significantly fewer edges retained, IGS can still achieve up to
5.1% performance boost.

Table 3: Final sparsity of the sparsified brain graphs identified
by IGS averaged over different splits. The initial sparsity is
50% by thresholding. IGS can remove more than half of the
edges while achieving up to 5.1% performance boost.

PicVocab ReadEng PicSeq ListSort CardSort Flanker

Sparsity(%) 22.5 35.5 35.5 30.0 25.0 25.0

4.3 (Q4) Interpretability of IGS
We now evaluate the interpretability of the edge masks derived for
each of our prediction tasks.
Setup. We assign anatomical labels to each of the 100 components
comprising the nodes of our brain networks by computing the

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, & Yujun Yan

A
D

C
O

D
F

D
A

F
P

L
A

S
O

V
1

V
2

AD
CO
DF
DA

FP

LA
SO
V1
V2 0.0

0.1

0.2

0.3

0.4

0.5

A
D

C
O

D
F

D
A

F
P

L
A

S
O

V
1

V
2

AD
CO
DF
DA

FP

LA
SO
V1
V2 0.0

0.1

0.2

0.3

0.4

0.5

A
D

C
O

D
F

D
A

F
P

L
A

S
O

V
1

V
2

AD
CO
DF
DA

FP

LA
SO
V1
V2 0.0

0.1

0.2

0.3

0.4

0.5

A
D

C
O

D
F

D
A

F
P

L
A

S
O

V
1

V
2

AD
CO
DF
DA
FP
LA
SO
V1
V2

0.0

0.1

0.2

0.3

0.4

0.5

A
D

C
O

D
F

D
A

F
P

L
A

S
O

V
1

V
2

AD
CO
DF
DA
FP
LA
SO
V1
V2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
D

C
O

D
F

D
A

F
P

L
A

S
O

V
1

V
2

AD
CO
DF
DA
FP
LA
SO
V1
V2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 3: Weighted brain network edge masks at both node (top row) and subnetwork level (bottom row - computed as the
average of corresponding edges) for PicVocab task. Early, middle, and final phases of training are depicted from left to right,
and high-importance subnetworks are highlighted in red. We find that IGS gradually removes noisy edges and its final edge
importance mask can provide high-quality interpretations. Highlighted (Orange) label names represent the regions that are
meaningful in this task. Brain network labels and abbreviations: Auditory (AD), Cingulo-Opercular (CO), Dorsal Attention
(DA), Default (DF), Frontoparietal (FP), Language (LA), Somatomotor (SO), Visual 1 (V1), Visual 2 (V2).

largest overlap between regions identified in the Cole-Anticevic
parcellation [30]. We then obtained the edge masks from the best-
performing iteration of each prediction task and assessed the
highest-weighted edges in each mask.
Results. Since our IGSmodel performed best in the language-related
prediction tasks, ReadEng and PicVocab, we focus our interpretabil-
ity analysis on this domain. There is ample evidence in the neu-
roscience literature that supports the existence of an intrinsic lan-
guage network that is perceptible during resting state [11, 36, 59];
thus, it is unsurprising that our rs-fMRI based brain networks are
predictive of language task performance. It has also been well es-
tablished for over a century that the language centers (including
Broca’s area, Wernicke’s area, the angular gyrus, etc.) are character-
istically left-lateralized in the brain [12, 65]. In both ReadEng and
PicVocab, the majority of the highest weighted edges retained in
the masks involved brain regions localized to the left hemisphere,
falling in line with the expectations for a language task.

PicVocab. Figures 3 and 4 depict the progression of the edgemasks
at both the node and subnetwork level over the training iterations
towards optimal edge mask in both the ReadEng and PicVocab tasks.
Evaluating the edge masks at the subnetwork level offers valuable
insights into which functional connections are most important for
the prediction of each task. The PicVocab edge mask homed in
on functional connections involving the Cingulo-Opercular (CO)
network, specifically between CO and the Dorsal Attention (DA),

Visual1 (V1), Visual2 (V2) and Frontoparietal (FP) networks. The CO
network has been shown to be implicated in word recognition [60],
and its synchrony with other brain networks identified here may
represent the stream of neural processing related to the PicVocab
task, in which subjects respond to an auditory stimulus of a word
and are prompted to choose the image that best represents the
word. Connectivity between the Auditory (AD) and V2 networks is
also evident in the PicVocab edge mask, suggesting the upstream
integration of auditory and visual stimuli involved in the PicVocab
task are also predictive of task performance.

ReadEng. The IGS model also found edge mask connections be-
tween the V1 network and the CO, Language (LA) and DA networks,
as well as CO-LA and CO-AD connections, to be most predictive of
ReadEng performance. This task involves the subject reading aloud
words presented on a screen. From our results, it follows that the
ability of Vis1 to integrate with networks responsible for language
processing (LA and CO) and attention (DA), as well as the capacity
for functional synchrony between the language-related networks
(CO-LA), would be predictive of overall ReadEng performance. The
importance of the additional CO-AD connectivity identified by our
model also suggests that the ability of the CO language network
to integrate with auditory centers may be involved in the neural
processes responsible for the proper pronunciation of the words
given by visual cues.

Interpretable Sparsification of Brain Graphs:
Better Practices and Effective Designs for Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Key take-aways. Overall, in addition to the IGS model’s superior
classification performance, our results suggest that the iterative
pruning of the IGS edge masks during training does indeed re-
tain important and neurologically meaningful edges while remov-
ing noisy connections. While it has been shown in the literature
that resting-state connectivity can be used to predict task perfor-
mance [6, 32, 46], the ability of the IGSmodel to sparsify the resting
state brain graph to clearly task-relevant edges for prediction of
task performance further underscores the interpretability of the
resultant edge masks.

5 RELATEDWORK

5.1 Graph Explainability
Our work is related to explainable GNNs given that we identify
important edges/subgraphs that account for the model predictions.
Some explainable GNNs are “perturbation-based”, where the goal
is to investigate the relation between output and input variations.
GNNExplainer [72] learns a soft mask for the nodes and edges,
which explains the predictions of a well-trained GNN model. Sub-
graphX [75] explains its predictions by efficiently exploring differ-
ent subgraphs with a Monte Carlo tree search. Another approach
for explainable GNNs is surrogate-based; the methods in this cat-
egory generally construct a simple and interpretable surrogate
model to approximate the output of the original model in certain
neighborhoods [74]. For instance, GraphLime [29] considers the
N-hop neighboring nodes of the target node and then trains a
nonlinear surrogate model to fit the local neighborhood predic-
tions; RelEx [76] first uses a GNN to fit the BFS-generated datasets
and then generates soft masks to explain the predictions; PGM-
Explainer [64] generates local datasets based on the influence of
randomly perturbing the node features, shrinks the size of the
datasets via the Grow-Shrink algorithm, and employs a Bayesian
network to fit the datasets. In general, most of these methods focus
on the node classification task and make explanations for a single
graph, which is not applicable to our setting. Others only apply
to simple graphs, which cannot handle signed and weighted brain
graphs [29, 75]. Additionally, most methods generate explanations
after a GNN is trained. Though some methods achieve decent re-
sults in explainability-related metrics (e.g. fidelity scores [51]), it
remains unclear whether their explanations can necessarily remove
noise and retain the “important” part of the original graph, which
improves the classification accuracy.

5.2 Graph Sparsification
Compared to the explainable GNN methods, graph sparsifica-
tion methods explicitly aim to sparsify graphs. Most of the ex-
isting methods are unsupervised [77]. Conventional methods re-
duce the size of the graph through approximating pairwise dis-
tances [50], preserving various kinds of graph cuts [33], node de-
gree distributions [19, 63], and using some graph-spectrum based
approachse [2, 15, 16]. These methods aim at preserving the struc-
tural information of the original input graph without using the label
information, and they assume that the input graph is unweighted.
Relatively fewer supervised works have been proposed. For exam-
ple, NeuralSparse [77] builds a parametrized network to learn a

k-neighbor subgraph by limiting each node to have at most 𝑘 edges.
On top of NeuralSparse, PTDNet [43] removes the k-neighbor as-
sumption, and instead, it employs a low-rank constraint on the
learned subgraph to discourage edges connecting multiple com-
munities. Graph Condensation [31] proposes to parameterize the
condensed graph structure as a function of condensed node fea-
tures and optimizes a gradient-matching training objective. Despite
the new insights offered by these methods, most of them focus
exclusively on node classification, and their training objectives are
built on top of that. A work that shares similarity to our proposed
method, IGS, is BrainNNExplainer [18] (also known as IBGNN). It is
inspired by GNNExplainer [72] and obtains the joint edge mask in a
post-training fashion. On the other hand, our proposedmethod, IGS,
trains a joint edge mask along with the backbone model and incor-
porates gradient information in an iterative manner. Another line
of work leverages node pooling to identify important subgraphs,
and learns to preserve important nodes and all the connections be-
tween them. One representative work is BrainGNN [38]. However,
the connections between preserved nodes are not necessarily all
informative, and some may contain noise.

5.3 Saliency Maps
Saliency maps are first proposed to explain the deep convolutional
neural network models in image classification tasks [56]. Specif-
ically, the method proposes to use the gradients backpropagated
from the predicted class as the explanations. Recently, [7] introduces
the concept of saliency maps to graph neural networks, employing
squared gradients to explain the underlying model. Additionally,
[4] suggests using graph saliency to identify regions of interest
(ROIs). In general, the gradients backpropagated from the output
logits can serve as the importance indicators for model predictions.
In this work, inspired by the line of saliency-related works, we
leverage the gradient information to guide our model.

6 CONCLUSIONS
In this paper, we studied neural-network-based graph sparsifica-
tion for brain graphs. By introducing an iterative sparsification
framework, we identified several effective strategies for GNNs to
filter out noisy edges and improve the graph classification perfor-
mance.We combined these strategies into a new interpretable graph
classification model, IGS, which improves the graph classification
performance by up to 5.1% with 55% fewer edges than the original
graphs. The retained edges identified by IGS provide neuroscientific
interpretations and are supported by well-established literature.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive feedback. This
material is based upon work supported by the National Science Foundation
under IIS 2212143, CAREER Grant No. IIS 1845491, a Precision Health In-
vestigator Award at the University of Michigan, and AWS Cloud Credits for
Research. Data were provided [in part] by the Human Connectome Project,
WU-Minn Consortium (PIs: D. Van Essen and K. Ugurbil; 1U54MH091657)
funded by the 16 NIH Institutes and Centers that support the NIH Blue-
print for Neuroscience Research; and by the McDonnell Center for Systems
Neuroscience at Washington University. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, & Yujun Yan

authors and do not necessarily reflect the views of the National Science
Foundation or other funding parties.

REFERENCES
[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and

Been Kim. 2018. Sanity checks for saliency maps. Advances in neural information
processing systems 31 (2018).

[2] Bijaya Adhikari, Yao Zhang, Sorour E Amiri, Aditya Bharadwaj, and B Aditya
Prakash. 2017. Propagation-based temporal network summarization. IEEE Trans-
actions on Knowledge and Data Engineering 30, 4 (2017), 729–742.

[3] Ahmed Alqaraawi, Martin Schuessler, Philipp Weiß, Enrico Costanza, and Nadia
Berthouze. 2020. Evaluating saliency map explanations for convolutional neural
networks: a user study. In Proceedings of the 25th International Conference on
Intelligent User Interfaces. 275–285.

[4] Salim Arslan, Sofia Ira Ktena, Ben Glocker, and Daniel Rueckert. 2018. Graph
saliency maps through spectral convolutional networks: Application to sex clas-
sification with brain connectivity. In Graphs in Biomedical Image Analysis and
Integrating Medical Imaging and Non-Imaging Modalities: Second International
Workshop, GRAIL 2018 and First International Workshop, Beyond MIC 2018, Held in
Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 2.
Springer, 3–13.

[5] Andrea Avena-Koenigsberger, Bratislav Misic, and Olaf Sporns. 2018. Communi-
cation dynamics in complex brain networks. Nature reviews neuroscience 19, 1
(2018), 17–33.

[6] Antonello Baldassarre, Christopher M Lewis, Giorgia Committeri, Abraham Z
Snyder, Gian Luca Romani, and Maurizio Corbetta. 2012. Individual variability
in functional connectivity predicts performance of a perceptual task. Proceedings
of the National Academy of Sciences 109, 9 (2012), 3516–3521.

[7] Federico Baldassarre and Hossein Azizpour. 2019. Explainability techniques for
graph convolutional networks. arXiv preprint arXiv:1905.13686 (2019).

[8] Danielle Smith Bassett and ED Bullmore. 2006. Small-world brain networks. The
neuroscientist 12, 6 (2006), 512–523.

[9] Christian F Beckmann and Stephen M Smith. 2004. Probabilistic independent
component analysis for functional magnetic resonance imaging. IEEE transactions
on medical imaging 23, 2 (2004), 137–152.

[10] Cécile Bordier, Carlo Nicolini, and Angelo Bifone. 2017. Graph analysis and
modularity of brain functional connectivity networks: searching for the optimal
threshold. Frontiers in neuroscience 11 (2017), 441.

[11] Paulo Branco, Daniela Seixas, and Sao L Castro. 2020. Mapping language with
resting-state functional magnetic resonance imaging: A study on the functional
profile of the language network. Human Brain Mapping 41, 2 (2020), 545–560.

[12] Paul Broca. 1861. Remarques sur le siège de la faculté du langage articulé, suivies
d’une observation d’aphémie (perte de la parole). Bulletin et Memoires de la
Societe anatomique de Paris 6 (1861), 330–357.

[13] Ed Bullmore and Olaf Sporns. 2009. Complex brain networks: graph theoretical
analysis of structural and functional systems. Nature reviews neuroscience 10, 3
(2009), 186–198.

[14] Edward T Bullmore and Danielle S Bassett. 2011. Brain graphs: graphical models
of the human brain connectome. Annual review of clinical psychology 7 (2011),
113–140.

[15] Daniele Calandriello, Alessandro Lazaric, Ioannis Koutis, and Michal Valko. 2018.
Improved large-scale graph learning through ridge spectral sparsification. In
International Conference on Machine Learning. PMLR, 688–697.

[16] Alireza Chakeri, Hamidreza Farhidzadeh, and Lawrence O Hall. 2016. Spectral
sparsification in spectral clustering. In 2016 23rd international conference on
pattern recognition (icpr). IEEE, 2301–2306.

[17] Moo K Chung. 2018. Statistical challenges of big brain network data. Statistics &
probability letters 136 (2018), 78–82.

[18] Hejie Cui, Wei Dai, Yanqiao Zhu, Xiaoxiao Li, Lifang He, and Carl Yang. 2021.
Brainnnexplainer: An interpretable graph neural network framework for brain
network based disease analysis. arXiv preprint arXiv:2107.05097 (2021).

[19] Talya Eden, Shweta Jain, Ali Pinar, Dana Ron, and C Seshadhri. 2018. Provable
and practical approximations for the degree distribution using sublinear graph
samples. In Proceedings of the 2018 World Wide Web Conference. 449–458.

[20] Bruce Fischl. 2012. FreeSurfer. Neuroimage 62, 2 (2012), 774–781.
[21] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. ICML (2017).
[22] Matthew F Glasser, Timothy S Coalson, Emma C Robinson, Carl D Hacker, John

Harwell, Essa Yacoub, Kamil Ugurbil, Jesper Andersson, Christian F Beckmann,
Mark Jenkinson, et al. 2016. A multi-modal parcellation of human cerebral cortex.
Nature 536, 7615 (2016), 171–178.

[23] Matthew F Glasser, Stamatios N Sotiropoulos, J Anthony Wilson, Timothy S
Coalson, Bruce Fischl, Jesper L Andersson, Junqian Xu, Saad Jbabdi, Matthew
Webster, Jonathan R Polimeni, et al. 2013. The minimal preprocessing pipelines
for the Human Connectome Project. Neuroimage 80 (2013), 105–124.

[24] Ludovica Griffanti, Gholamreza Salimi-Khorshidi, Christian F Beckmann, Ed-
ward J Auerbach, Gwenaëlle Douaud, Claire E Sexton, Enikő Zsoldos, Klaus P

Ebmeier, Nicola Filippini, Clare E Mackay, et al. 2014. ICA-based artefact removal
and accelerated fMRI acquisition for improved resting state network imaging.
Neuroimage 95 (2014), 232–247.

[25] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[26] Christopher J Honey, Olaf Sporns, Leila Cammoun, Xavier Gigandet, Jean-
Philippe Thiran, Reto Meuli, and Patric Hagmann. 2009. Predicting human
resting-state functional connectivity from structural connectivity. Proceedings of
the National Academy of Sciences 106, 6 (2009), 2035–2040.

[27] Seunghoon Hong, Tackgeun You, Suha Kwak, and Bohyung Han. 2015. Online
tracking by learning discriminative saliency map with convolutional neural
network. In International conference on machine learning. PMLR, 597–606.

[28] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. 2019. A
benchmark for interpretability methods in deep neural networks. Advances in
neural information processing systems 32 (2019).

[29] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. 2022.
Graphlime: Local interpretable model explanations for graph neural networks.
IEEE Transactions on Knowledge and Data Engineering (2022).

[30] Jie Lisa Ji, Marjolein Spronk, Kaustubh Kulkarni, Grega Repovš, Alan Anticevic,
and Michael W Cole. 2019. Mapping the human brain’s cortical-subcortical
functional network organization. Neuroimage 185 (2019), 35–57.

[31] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil
Shah. 2021. Graph condensation for graph neural networks. arXiv preprint
arXiv:2110.07580 (2021).

[32] O Parker Jones, NL Voets, JE Adcock, R Stacey, and S Jbabdi. 2017. Resting
connectivity predicts task activation in pre-surgical populations. NeuroImage:
Clinical 13 (2017), 378–385.

[33] David R Karger. 1994. Random sampling in cut, flow, and network design prob-
lems. In Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing. 648–657.

[34] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[35] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[36] Julian Klingbeil, Max Wawrzyniak, Anika Stockert, and Dorothee Saur. 2019.
Resting-state functional connectivity: An emerging method for the study of
language networks in post-stroke aphasia. Brain and cognition 131 (2019), 22–33.

[37] Boris Knyazev, Graham W Taylor, and Mohamed Amer. 2019. Understanding
attention and generalization in graph neural networks. Advances in neural
information processing systems 32 (2019).

[38] Xiaoxiao Li, Yuan Zhou, Nicha Dvornek, Muhan Zhang, Siyuan Gao, Juntang
Zhuang, Dustin Scheinost, Lawrence H Staib, Pamela Ventola, and James S Dun-
can. 2021. Braingnn: Interpretable brain graph neural network for fmri analysis.
Medical Image Analysis 74 (2021), 102233.

[39] Martin A Lindquist. 2008. The statistical analysis of fMRI data. Statistical science
23, 4 (2008), 439–464.

[40] Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang
Yu, Zhao Xu, Jingtun Zhang, Yi Liu, et al. 2021. DIG: A turnkey library for diving
into graph deep learning research. The Journal of Machine Learning Research 22,
1 (2021), 10873–10881.

[41] Thomas T Liu. 2016. Noise contributions to the fMRI signal: An overview.
NeuroImage 143 (2016), 141–151.

[42] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph summa-
rization methods and applications: A survey. ACM computing surveys (CSUR) 51,
3 (2018), 1–34.

[43] Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen,
and Xiang Zhang. 2021. Learning to drop: Robust graph neural network via
topological denoising. In Proceedings of the 14th ACM international conference on
web search and data mining. 779–787.

[44] Han Lv, Zhenchang Wang, Elizabeth Tong, Leanne M Williams, Greg Zaharchuk,
Michael Zeineh, Andrea N Goldstein-Piekarski, Tali M Ball, Chengde Liao, and
MaxWintermark. 2018. Resting-state functional MRI: everything that nonexperts
have always wanted to know. American Journal of Neuroradiology 39, 8 (2018),
1390–1399.

[45] Daniel S Marcus, John Harwell, Timothy Olsen, Michael Hodge, Matthew F
Glasser, Fred Prior, Mark Jenkinson, Timothy Laumann, Sandra W Curtiss, and
David C Van Essen. 2011. Informatics and data mining tools and strategies for
the human connectome project. Frontiers in neuroinformatics 5 (2011), 4.

[46] Maarten Mennes, Clare Kelly, Xi-Nian Zuo, Adriana Di Martino, Bharat B Biswal,
F Xavier Castellanos, and Michael P Milham. 2010. Inter-individual differences
in resting-state functional connectivity predict task-induced BOLD activity. Neu-
roimage 50, 4 (2010), 1690–1701.

[47] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 33. 4602–4609.

Interpretable Sparsification of Brain Graphs:
Better Practices and Effective Designs for Graph Neural Networks KDD ’23, August 6–10, 2023, Long Beach, CA, USA

[48] Angela M Muller and Martin Meyer. 2014. Language in the brain at rest: new
insights from resting state data and graph theoretical analysis. Frontiers in human
neuroscience 8 (2014), 228.

[49] Chang-hyun Park, Soo Yong Kim, Yun-Hee Kim, and Kyungsik Kim. 2008. Com-
parison of the small-world topology between anatomical and functional connec-
tivity in the human brain. Physica A: statistical mechanics and its applications
387, 23 (2008), 5958–5962.

[50] David Peleg and Alejandro A Schäffer. 1989. Graph spanners. Journal of graph
theory 13, 1 (1989), 99–116.

[51] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko
Hoffmann. 2019. Explainability methods for graph convolutional neural net-
works. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 10772–10781.

[52] Jonathan D Power, Alexander L Cohen, Steven M Nelson, Gagan S Wig,
Kelly Anne Barnes, Jessica A Church, Alecia C Vogel, Timothy O Laumann,
Fran M Miezin, Bradley L Schlaggar, et al. 2011. Functional network organization
of the human brain. Neuron 72, 4 (2011), 665–678.

[53] Lutz Prechelt. 2012. Early stopping—but when? Neural networks: tricks of the
trade: second edition (2012), 53–67.

[54] Emma C Robinson, Saad Jbabdi, Matthew F Glasser, Jesper Andersson, Gregory C
Burgess, Michael P Harms, Stephen M Smith, David C Van Essen, and Mark
Jenkinson. 2014. MSM: a new flexible framework formultimodal surfacematching.
Neuroimage 100 (2014), 414–426.

[55] Tara Safavi, Chandra Sripada, and Danai Koutra. 2017. Scalable hashing-based
network discovery. In 2017 IEEE International Conference on Data Mining (ICDM).
IEEE, 405–414.

[56] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep inside
convolutional networks: Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034 (2013).

[57] Stephen M Smith, Thomas E Nichols, Diego Vidaurre, Anderson MWinkler, Tim-
othy EJ Behrens, Matthew F Glasser, Kamil Ugurbil, Deanna M Barch, David C
Van Essen, and Karla L Miller. 2015. A positive-negative mode of population
covariation links brain connectivity, demographics and behavior. Nature neuro-
science 18, 11 (2015), 1565–1567.

[58] Daniel A Spielman and Shang-Hua Teng. 2011. Spectral sparsification of graphs.
SIAM J. Comput. 40, 4 (2011), 981–1025.

[59] Dardo Tomasi and Nora D Volkow. 2012. Resting functional connectivity of
language networks: characterization and reproducibility. Molecular psychiatry
17, 8 (2012), 841–854.

[60] Kenneth I Vaden, Stefanie E Kuchinsky, Stephanie L Cute, Jayne B Ahlstrom,
Judy R Dubno, and Mark A Eckert. 2013. The cingulo-opercular network provides
word-recognition benefit. Journal of Neuroscience 33, 48 (2013), 18979–18986.

[61] David C Van Essen, Kamil Ugurbil, Edward Auerbach, Deanna Barch, Timothy EJ
Behrens, Richard Bucholz, Acer Chang, Liyong Chen, Maurizio Corbetta, San-
dra W Curtiss, et al. 2012. The Human Connectome Project: a data acquisition
perspective. Neuroimage 62, 4 (2012), 2222–2231.

[62] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. International Confer-
ence on Learning Representations (ICLR) (2018). https://openreview.net/forum?
id=rJXMpikCZ

[63] Elli Voudigari, Nikos Salamanos, Theodore Papageorgiou, and Emmanuel J Yan-
nakoudakis. 2016. Rank degree: An efficient algorithm for graph sampling. In
2016 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM). IEEE, 120–129.

[64] Minh Vu and My T Thai. 2020. Pgm-explainer: Probabilistic graphical model
explanations for graph neural networks. Advances in neural information processing
systems 33 (2020), 12225–12235.

[65] Carl Wernicke. 1874. Der aphasische Symptomencomplex: eine psychologische
Studie auf anatomischer Basis. Cohn & Weigert.

[66] Shaokai Wu and Fengyu Yang. 2023. Boosting Detection in Crowd Analysis
via Underutilized Output Features. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 15609–15618.

[67] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks? International Conference on Learning Representations
(2018).

[68] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[69] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra.
2021. Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph
Convolutional Neural Networks. arXiv preprint arXiv:2102.06462 (2021).

[70] Yujun Yan, Jiong Zhu, Marlena Duda, Eric Solarz, Chandra Sripada, and Danai
Koutra. 2019. Groupinn: Grouping-based interpretable neural network for clas-
sification of limited, noisy brain data. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining. 772–782.

[71] Fengyu Yang and Chenyan Ma. 2022. Sparse and Complete Latent Organization
for Geospatial Semantic Segmentation. 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2022), 1799–1808.

[72] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. Gnnexplainer: Generating explanations for graph neural networks. Ad-
vances in neural information processing systems 32 (2019).

[73] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with differentiable
pooling. Advances in neural information processing systems 31 (2018).

[74] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. 2022. Explainability in graph
neural networks: A taxonomic survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2022).

[75] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. 2021. On explain-
ability of graph neural networks via subgraph explorations. In International
Conference on Machine Learning. PMLR, 12241–12252.

[76] Yue Zhang, David Defazio, and Arti Ramesh. 2021. Relex: A model-agnostic
relational model explainer. In Proceedings of the 2021 AAAI/ACM Conference on
AI, Ethics, and Society. 1042–1049.

[77] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu,
Haifeng Chen, and Wei Wang. 2020. Robust graph representation learning via
neural sparsification. In International Conference on Machine Learning. PMLR,
11458–11468.

A IGS WITH OTHER BACKBONE GNNS
In Table 4, we present the results of IGS evaluated on different GNN
backbones (noted by “- IGS”) and compare it against the original
performance (noted by “Original Graphs”). Specifically, we consider
three additional GNN models: GraphSAGE [25], GraphConv [47],
and GIN [68]. The experimental and hyperparameter settings follow
those in Section 4.1. Compared with the performance of the orig-
inal graphs, the sparsified graphs obtained from IGS consistently
contribute to performance gains across all GNN backbones and
prediction tasks. It provides an average of 4.72% increase in the test
accuracies for GraphSage, an average of 1.92% increase in the test
accuracies for GraphConv, and an average of 1.45% increase in the
test accuracies for GIN. This demonstrates that the improvements
achieved by IGS are model-agnostic.

B ADDITIONAL STUDIES ON
INTERPRETABILITY

In Figure 4, we provide the interpretability analysis for the ReadEng
task, following the same setting as Figure 3. The “ReadEng” task
involves the subjects reading aloud words presented on a screen. As
can be seen in Figure 4, the IGS model effectively identifies the sig-
nificance of interactions between the visual (Vis1) network and the
Cingulo-Opercular (CO), Language (LA), and Dorsal Attention (DA)
networks for this prediction task. Furthermore, it elucidates that
the functional synchrony between the language-related networks
(CO-LA, CO-AD) is accountable for this task.

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, & Yujun Yan

Table 4: Performance of IGS with different GNN backbones, following the same setup in Section 4.1. The performance improve-
ments achieved by IGS are model-agnostic.

PicVocab ReadEng PicSeq ListSort CardSort Flanker

GraphSage (Original Graphs) 56.2±5.47 49.6±2.37 48.1±4.92 50.6±0.63 50.3±1.75 49.0±2.04
GraphSage - IGS 60.9±4.27 56.4±2.27 55.1±3.52 52.6±1.66 54.4±11.8 52.7±2.40

GraphConv (Original Graphs) 53.2±6.70 54.9±5.06 48.2±1.19 49.4±0.63 50.6±2.93 49.4±2.54
GraphConv - IGS 57.1±8.21 55.9±3.41 52.3±1.93 50.7±2.19 50.8±7.70 50.4±9.37

GIN (Original Graphs) 55.8±5.42 56.4±6.94 49.9±3.53 52.6±2.84 55.0±3.00 48.5±3.83
GIN - IGS 59.3±5.83 56.7±5.54 51.0±3.28 54.1±5.70 55.0±6.47 50.8±4.80

A
D

C
O

D
F

D
A

F
P

L
A

S
O

V
1

V
2

AD
CO
DF
DA

FP

LA
SO
V1
V2 0.0

0.1

0.2

0.3

0.4

0.5

A
D

C
O

D
F

D
A

F
P

L
A

S
O

V
1

V
2

AD
CO
DF
DA

FP

LA
SO
V1
V2 0.0

0.1

0.2

0.3

0.4

0.5

A
D

C
O

D
F

D
A

F
P

L
A

S
O

V
1

V
2

AD
CO
DF
DA

FP

LA
SO
V1
V2 0.0

0.1

0.2

0.3

0.4

0.5

A
D

C
O

D
F

D
A

F
P

L
A

S
O

V
1

V
2

AD
CO
DF
DA
FP
LA
SO
V1
V2

0.0

0.1

0.2

0.3

0.4

0.5

A
D

C
O

D
F

D
A

F
P

L
A

S
O

V
1

V
2

AD
CO
DF
DA
FP
LA
SO
V1
V2

0.0

0.1

0.2

0.3

0.4

0.5

A
D

C
O

D
F

D
A

F
P

L
A

S
O

V
1

V
2

AD
CO
DF
DA
FP
LA
SO
V1
V2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 4: Weighted brain network edge masks at both node (top row) and subnetwork level (bottom row) for the ReadEng task,
following the same setup in Section 4.3.

	Abstract
	1 Introduction
	2 Notation and Preliminaries
	3 Proposed Method: IGS
	3.1 Iterative Framework
	3.2 Strategies

	4 Empirical Analysis
	4.1 Setup
	4.2 (Q1-Q3) Graph Classification under the Iterative Framework
	4.3 (Q4) Interpretability of IGS

	5 Related Work
	5.1 Graph Explainability
	5.2 Graph Sparsification
	5.3 Saliency Maps

	6 Conclusions
	References
	A IGS with Other Backbone GNNs
	B Additional Studies on interpretability

