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STATE-ROBUST OBSERVABILITY MEASURES FOR SENSOR SELECTION
IN NONLINEAR DYNAMIC SYSTEMS

Mohamad Kazmal, Sebastian Nugroth, Aleksandar Haber?, and Ahmad F. Taha!

Abstract—This paper explores the problem of selecting
sensor nodes for a general class of nonlinear dynamical net-
works. In particular, we study the problem by utilizing altered
definitions of observability and open-loop lifted observers. The
approach is performed by discretizing the system’s dynamics
using the implicit Runge-Kutta method and by introducing a
state-averaged observability measure. The observability mea-
sure is computed for a number of perturbed initial states in
the vicinity of the system’s true initial state. The sensor node
selection problem is revealed to retain the submodular and
modular properties of the original problem. This allows the
problem to be solved efficiently using a greedy algorithm with
a guaranteed performance bound while showing an augmented
robustness to unknown or uncertain initial conditions. The
validity of this approach is numerically demonstrated on a
H>/O> combustion reaction network.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

HE sensor selection problem is one of the fundamental
T control engineering problems. The problem is crucial
for the control, monitoring, and safe operation of a large
number of engineered systems, such as electric power grids
[1], municipal water networks [2], and transportation systems
[3]. From a control- and observability-based formulation, this
problem aims to find the optimal combination of sensor nodes
(graph nodes whose local states should be observed) that
optimize appropriate observability measures. The goal is to
make the system as observable as possible using a limited
number of sensors to be placed on select nodes in the network.

Sensor selection problems have gained considerable re-
search interest in recent years as a plethora of methods have
been proposed in the literature, especially for linear systems.
These methods can be categorized based on underlying math-
ematical approaches, such as network and graph theory [4],
[5], sparsity promoting algorithms [6], [7], semidefinite ap-
proximations and relaxations [8], heuristic optimization under
convex relaxations [9], greedy approach under submodular set
maximization [10], and mixed-integer optimization [1], [11].
Regardless, methods for solving sensor selection problems for
nonlinear dynamic networks are significantly less developed.
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Only a handful of methods have been proposed so far to
address this problem for nonlinear dynamic systems.

A sensor selection algorithm for target tracking in nonlinear
dynamic networks based on a generalized information gain is
proposed in [12]. Next, an empirical observability Gramian
approach is utilized in [13] for placing phasor measurement
units in transmission power networks. Another approach based
on an open-loop moving horizon estimation for sensor selec-
tion and state observation is proposed in [14]. The approach
presented in [14] is more numerically tractable than the
approaches based on empirical observability Gramians. A new
randomized algorithm is presented in [15] in which theoretical
bounds for eigenvalues and condition numbers of observability
Gramians are developed. A novel framework is proposed in
[16] for sensor selection and observer design. This approach is
developed by using the Lyapunov stability theory and mixed-
integer semidefinite optimization. Lastly, methods to place
actuators in nonlinear networks that are based on heuristically
solving mixed-integer nonlinear optimization problems have
been recently developed in [17].

Here it should be emphasized that most of the developed ap-
proaches for solving the sensor selection problems, especially
the ones involving mixed-integer programs, are not necessarily
efficient and scalable for large nonlinear dynamic networks.
The computational burden of the developed approaches be-
comes significant even for small or medium-sized nonlinear
networks. Another issue with sensor selection problems for
nonlinear networks is that, in practice, the initial states of
the system are usually not known a priori. This creates
model uncertainties and difficulties in formulating and solving
the sensor selection problem since the numerically tractable
observability-based approach [14] for nonlinear systems in-
volves a dependency on initial states. This implies that under
such state-dependency any perturbation to the initial state
tends to yield in most cases different sensor node selections
for the same nonlinear network modeled under similar system
parameters.

To partly address the aforementioned limitations, we ex-
tend observability-based sensor selection method introduced
in [14] by introducing state-averaged observability measures
for nonlinear networks. That is, instead of utilizing the observ-
ability measures associated with a single guess on the initial
state, we consider a state-averaged observability metric that
relies on several points located around the actual initial state.
This allows the constructed observability-based measures
to take into account the variabilities resulting from initial
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conditions perturbations on the sensor selection measures.
Accordingly, the main contributions of this paper are:

o We introduce a state-averaged observability measure for
sensor selection in nonlinear networks. We use a number
of points located around the nonlinear system’s initial
state. By relying on such local state-averaged observabil-
ity measure, we attain an optimal sensor selection that is
robust against unknown or uncertain initial conditions.

o We provide theoretical and numerical validation that
under such state-averaged observability measures the
submodularity and modularity of the sensor selection
objective function is retained. In particular, we leverage
the modularity and submodularity of the trace and log-
det measures of the constructed observability Gramian
to perform the sensor selection. Under such formulation,
greedy algorithms are employed to solve the combina-
torial set optimization problem and as a consequence
the selection problem is rendered scalable to large-scale
nonlinear dynamic networks.

e We evaluate the validity and robustness of the pro-
posed approach by providing descriptive numerical ex-
periments that showcase the proposed sensor selection
strategy. The method is tested on a nonlinear Hy/Oo
combustion reaction network.

This rest of the paper is organized as follows. Section
IT introduces the problem formulation. Section III presents
some theoretical results pertaining to the average observability
measures. Numerical results are presented in Section IV, and
Section V concludes the paper.

Paper’s Notation: Let R, R", and RP*? denote the set of
real numbers, and real-valued row vectors with size of n,
and p-by-q real matrices. The cardinality of the a set A/
is denoted by |N|. The symbol ® denotes the Kronecker
product. The identity matrix of size n is denoted by I,,. The
operators log-det(A) returns the logarithmic-determinant of
matrix A, trace(A) returns the trace of matrix of matrix A
and blkdiag(A) constructs a block diagonal matrix. For any
vectorx € R, ||||2 denotes the Euclidean norm of , defined
as ||z||2 ;== V& Tz, where =" is the transpose of .

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we introduce mathematical preliminaries and
define the problem of selecting sensor nodes. We consider
a general nonlinear dynamic network defined in (1) under a
continuous-time representation.

w(t) = f(z(t)), (la)

y(t) =T Cx(t), (1b)
where x € R™= is the global state and y € R™ is the global
output vector. The nonlinear mapping function f : R™ —
R™ is assumed to be smooth and at least twice continuously
differentiable. The measurement matrix C € R"™*"= s
assumed to be known. The matrix T := blkdiag{v;};2, €
R™*"v determines the configuration of the sensors—that is,
a node j is equipped with a sensor if 7; = 1. Otherwise, we
simply set «y; = 0. We define the parameterize vector -y that

represents the sensor selection, i.e, v = col{~; };Lil. Without
the loss of generality, we have assumed that the inputs are not
affecting the system dynamics.

The objective of the sensor selection problem for the
nonlinear dynamics (1) is to determine the combination of
sensors (the 1 and O patterns in <) such that an observability-
based metric is maximized under a sensor ratio constraint. As
such, in order to formulate the binary selection problem, we
refer to utilizing a discrete-time representation of the nonlinear
state model (1a).

There exists several methods that can be utilized to obtain
a discrete-time model. The choice of discretization method
must rely upon the system’s stiffness, desired accuracy, and
the performance of computation resources. In this paper, we
consider the discretization of (1) using the implicit Runge-
Kutta (IRK) method [18]. The main advantage of IRK method
is that it can be applied to a wider class of nonlinear dynamic
networks with various degree of stiffness. Readers can refer
to [19] for the discrete-time modeling techniques of nonlinear
systems. The methodology herein results in the following
implicit discrete-time state-space model

Crpsr =@ + 5 (F(Crps1) — F(C2pr1)) s
Copt1 = Tk + 15 (BF(CLps1) +5F (Cokr1)), ()

T =T+ T (F(Cprr) +3F(Contr)) s

where 7" > 0 denotes the discretization period, & € N
is the discrete-time index such that x;, = «x(kT), and
C1,k+1,62,k+1 € R are auxiliary vectors for computing
T 141 provided that x, is given. Notice that in order to compute
Tx41, we first need to solve a system of nonlinear equations
that consists of the first two equations in (2). The unknowns
in this system are {1 x+1,C2,k+1. This layer of complexity
is necessary since the introduced discrete-time model can
accurately and in a numerically stable manner represent a
broad class of nonlinear networks, including networks with
stiff dynamics.

A. Initial State Estimation

Taking into account the model (2), the discrete-time equiv-
alent of nonlinear dynamic network (1) can be compactly
written in the following form

(3a)
(3b)

where the function f () in (3a) represents the implicit dy-
namics in (2). The proposed approach for sensor selection is
developed using the concept of an open-loop lifted observer
framework. To that end, we introduce the lifted vector y €
RN-"y that is constructed as § = col{@i}i\;—ll. The positive
integer N is the lifting window. For the sake of simplicity, it
is assumed temporarily that T" is fixed such that the output
measurement equation (3b) is reduced to yi = C’azk, where
C is obtained by compressing the zero rows of I'C. Now,

Tp+1 = Tk + f($k+1, i),
yr = I'Cxy,
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define the vector function h : R™ — RN-"v a5
ho(zxo) Yo go(xo)
hi(zo) Y1 g1(xo)
. = . - . ) 4
hy_1(xo) YN-_1 gn—1(x0)
—_————
h(zo) ] g(xo)
where h(xg) = col{h;(x¢)};'. The function g : R —

RN is constructed as g(xo) = col{g;(xo)} ', Where g; :
R — R™ and g; := Cx; forall i € {0,1,2,--- ,N — 1}.
It is understood from (3a) that g; is a function of only of the
initial state xg due to the fact that x; is a recursive function
of x( for each i. Consequently, we can write

h(zg) =0< g = g(xo). (5)
Since in practice the actual initial state is unknown a priori,
then for a fixed selection of sensors, & can be estimated by

solving the following nonlinear state estimation optimization
problem with a predefined weighting matrix @ > 0 such that

o) Qh(io)

subject to :fclo < g < &,

P1 inimize h(& 6
(P1) minimize (z (62)

(6b)
where &}, and &{ are respectively the lower and upper bounds
of g and @ € RN"™w*N-ny ig the weighting matrix. The
weight matrix () assigns weights to the measured states
such that P1, the initial state estimation problem, efficiently
reaches a solution.

B. Observability-based Sensor Node Selection

Observability of nonlinear discrete-time systems can be
quantified using the concept of uniform observability [20].
That is, the system (3a) with the measurement model (3b)
is said to be uniformly observable in X (X is the subset
representing a local operating region of (3a)) if there exists
a finite N € N such that the relation § = g () is injective
(one-to-one) with respect to ¢y € X for any given set of
measured outputs y. Accordingly, if g (-) is injective with
respect to xg, then xy can be uniquely determined from the
set of measurements Y.

As such, let J,(-) be a Jacobian matrix of the function g(-)
around . A sufficient condition for the mapping g(-) to be
injective is that the Jacobian matrix of g(+) is of full rank [20].

The Jacobian matrix J,(-) € RN-"*"= ig given as

dg(zo) —col dgi(xo) R
d:IﬁO 85130 i=0 ’

For each i € {0,1,2,--- ,N — 1}, the term 99:(@o) iy (7)
. . amg
is equivalent to

Jy(xo0) := 7

3gi(:co) - 0 é = 8$1 - H a$]+1 (8)
dxy  Oxp 8330 ox;
It is important to mention that the computatlon of 6““ in

(8) requires the knowledge of «; for all j. The value of m J ‘can
be obtained by simulating (3a) with the initial condition x.
Taking into account the parameterized measurement equation
(3b), the Jacobian matrix J(-) in (7) around a specific initial

state & is given as
Jg(fYa:f:O) = [I® FC] X é(:i())a
where £ : R™ — RN £(d0) = col{&;(d0)} 5,

©))

and

& = g”mco . Next, we define the matrix function W (-) : R"= —
R™= %"= ag the following
W (x0) == J, (w0)Jy (o). (10)

The matrix W (x) is fundamental for the analysis and
solving the system of nonlinear equations as well as for the
development of methods presented in this paper. Namely,
the spectral properties of the matrix W (x() determine the
convergence properties of the Newton’s method used for
solving the system of nonlinear equations (5) [21]. Note that,
in a general case, this matrix is not equal to the observability
Gramian for linear systems, since constructing it involves the
computation of partial derivatives of the IRK equations (2).
Also, motivated by the fact that this matrix is closely related to
the empirical observability Gramian [13], [14], we will refer
to this matrix as the observability Gramian of the discrete-
time system (3a)-(3b). Notice that the Gramian matrix (10)
contains the matrix C, which is a function of the vector ~.

To that end, the sensor selection problem can be mathemat-
ically formulated as follows. Let X = {& 01), 2% ...,:i((JQ)}
be a set of initial conditions of the dynamics (3a) (3b). This
set of initial conditions is chosen by the user. Furthermore, let
r be the final number of sensor nodes that is also specified by
the user. Then, the sensor nodes are selected as the solution
of the following integer optimization problem

(P2) maximize O (v,X) (11a)
Y
subject to Z% =r, v€{0,1}"™, (11b)
i=1
where O (v, X) is a user-selected function that quantifies the

observability of the system.

The main idea of our approach is to incorporate a number
of initial conditions into the function O(-) that quantifies
the system observability. This is because the “exact” initial
condition of the system is usually uncertain. By relying on a
state-averaged observability matrix that is constructed under
several predictions/perturbations of the initial state, the sensor
selection procedure becomes less sensitive to uncertainties on
initial states that are necessary to solve the system of nonlinear
equations.

One approach for tackling sensor selection problems within
networks, is posing such combinatorial problem as a constraint
set maximization problem [10], [22]. The rationality behind
such approach is later evident when solving to the sensor
selection problem, where underlying set function properties
allow for a scalable solution to the optimization problem. As
such, the sensor node selection problem P2 can be rewritten
as a set maximization problem P 3 by defining the set function
O(S) : 2V —» Rwith V := {i € N|0 < i < n,}. Herein, the
set V denotes the set of all possible combinations of sensor
locations.

(P3) O5 = maécicr\r}lize f(S), subject to |S|=r. (12)
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In the context of sensor selection, P3 translates to the
problem of finding the best sensor configuration S containing
7 number of sensors such that a particular observability metric
is maximized. The variable I is encoded in the set S, such
that for each sensor node a value of +; is attributed to the set
S at location j.

III. OBSERVABILITY-BASED SENSOR SELECTION

In this section, we introduce several observability measures,
quantify their properties, and present our approach for solving
the problem (11). Our approach is based on defining a state-
averaged observability measure and using a greedy algorithm
to efficiently solve the sensor selection problem. The jus-
tification of using the greedy algorithm will be established
by showing that the introduced set function measures retain
set function properties—modularity or submodularity. For the
development of our approach we need to obtain a closed-form
expression for (10). The following proposition establishes this
expression.

Proposition 1: The parametrized observability Gramian
for the nonlinear discrete-time dynamic networks (3a) with
parametrized measurement model (3b) around a particular
initial state o can be expressed as follows

M-1 O T By
W (v, &) Z%(Z( O) c}cj%;>, (13)
1=0

where ¢; € R+ is the j-th row of C.
Proof: From (9) and (10), it follows that

W (7, ) = gT(.@O) [ToTC]' [I®2TC]¢&(d0)

Z ¢l (@
S €7 a)
=0

M—1 ny

=D gl (@o)e] ¢iéildo),

i=0 j=1
which holds since I'? = T'. Since (14) is equivalent to (13),
then the proof is complete. [ ]

0)C T T2CE;(20)

Ty

> vief ¢ | &i#@o)
J=1

(14)

A. Modular & Submodular Set Functions

There exist several observability measures and metrics.
Usually, these measures are expressed on the basis of the rank,
smallest eigenvalue, condition number, trace, and determinant
of an appropriate matrix—see [13] and the references therein.
Such measures have set function properties, modularity and
submodularity, that allow greedy algorithm to solve the
optimal sensor selection problem. The following definition
characterizes modular and submodular set functions [10], [23].

Definition 1: A set function O : 2Y — R is said to be
modular if and only if for any S C V and weight function
w : V — R it holds that

O(8) = w(0) +Zw s

seS

(15a)

and O(-) is said to be submodular if and only if for any A, B C
V given that A C B, it holds that for all s ¢ B
O(AU{s}) —O(A) > O(BU{s}) — O(B). (15b)

As seen from (15b), for any submodular function, the
addition of an element s to a smaller subset 4 yields a greater
reward compared to adding the same element to a bigger
subset B. This notion is normally termed as diminishing return
property [10]. Aside from modularity and submodularity, the
notion of monotone increasing and decreasing functions are
also important to achieve scalable sensor selection.

Definition 2: A set function O : 2¥ — R is called
monotone increasing if, for A, B C V, A C B implies
O(B) > O(A) and called monotone decreasing if A C B
implies O(A) > O(B).

In retrospect with the sensor selection problem posed in
P3, the parametrized observability Gramian associated with
S C V around a presumed initial state & is defined as

M-1
Z (Z (fi)TC;ijz) :
jes \ i=0
It is worthwhile to note that the notation j € S corresponds
to every activated sensor such that «; = 1. If the chosen
form of the function £(-) renders P3 to be submodular and
monotone increasing, then the greedy algorithm can be used to
efficiently determine sensor locations. The greedy algorithm is
summarized in Algorithm 1. If the function O(+) is submodular
and monotone increasing, and if the set of sensor locations
computed using the greedy algorithm is S, then we have the
following performance guarantee [24]
o*-0(S) <r1>r 1
< < -
O —-00) — T ~ e’
where O is the optimal value of P4 and e ~ 2.71828.
Note that the above worst-case bound is merely theoretical.
For submodular set maximization it has been shown that an
accuracy of 99% is achieved [10].

W (S, i) := (16)

Algorithm 1: Greedy Algorithm [10]

1 input: r, V
2 initialize: S + 0, k + 1

3 while £ < r do

4 | compute: G, = O(SU{a}) —O(S),Va e V\S
5 assign: S «+ S U {arg max,cy\ s Gk

6 update: k < k+ 1

7 output: S

B. State-Averaged Observability Sensor Selection

Ideally, the parametrized Gramian (13) should be con-
structed using the system’s actual initial state x(. Nonetheless,
this state is usually unknown or only some vector entries
are known a priori. In practice, we only have a guess of
the initial state, that is denoted by &g. To minimize the
variability from quantifying the observability around &, we
opt to use a state-averaged observability metric which, instead
of computing the observability Gramian around a single guess
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of initial state &, alternatively it is computed by takm%
into account several points of presumed initial states mo
for k € {1,2,--- ,q}. Using this concept of state-averaged
observability, we introduce the following metric

X)=¢ S (WS, a())
k=1

where L(-) is an appropriate function mapping matrix into a
scalar

M-—1
WS, 2(7) =Y (Z (ff“))Tcché‘E“)) GE)
=0

jes

a7

This form of the Gramian matrix is established on the basis
of Proposition 1. Using this new measure, P3 is developed
further into the following set optimization problem

Z/:( W(S)), (19)

\S|:T,8§V.

(P4) maX}smlze oS

subject to (19b)

C. Modularity & Submodularity of the Proposed Measures

In the sequel we will analyze the modularity and submod-
ularity properties of the average observability metrics (17).
We will analyze the cases when the function £(-) is trace,
and log-det. The following Lemma provides support to the
analysis on the modularity, submodularity, and monotonicity
properties of the average observability metric O(-), when the
function £(-) in P4 takes the form of the trace and log-det.

Lemma 1: For set functions £1, Lo, ..., Ly : 2¥ — Rthat
are submodular. Any conic combination, that is, any weighted
non-negative sum defined as

q
S)i=_ wiLy,
=1

is submodular, such that w, > 0V k.

Proof: We prove the submodularity of a non-negative
weighted sum from the definition of submodularity. As such,
from Def. 1, we have A, B C V given that A C 15, and that
foralls ¢ B

Lr(AU{s}) = Li(A) > Lp(BU {s}) — Lx(B),

then under a conic combination and based on Def. 1 the
following holds true

(20)

5 wn (L4l AU {5}) - £e(A)
> zq: Wi (ﬁk(B U {S}) - Ek(B))a

forany A,B C V giventhat A C B,and forall s ¢ B. H

Conic combinations along with set restrictions and contrac-
tions are submodularity preserving operations [25]. Lemma 1
shows that submodularity of the original submodular functions
is retained under a non-negative weighted sum and thus
formulates the rationale behind developing a state-averaged
observability metric. As such, the following proposition shows
that the state-averaged trace(.) metric is modular.

Proposition 2: A set function O :2Y — R defined by

1< .
OS):=- trace (W(“) S ) , 21
(S) . ; (S)
for S C V is modular.
Proof: For any S C V, observe that
1< -
- Z trace (W(”) (8))
4 k=1
_1 zq:trace Z <1sz:1 (g(ﬁ)) c; cjg( ))
q k=1 JES \i=
= Z ( Ztrace < (5(”)) c; cjfl(”))) ,
JES =
thus showing that trace(-) is a linear matrix function and
therefore is modular. |

The state-averaged log-det(-) observability metric is submod-
ular and monotone increasing.
Proposition 3: A set function O : 2 — R characterized by

- é i log det (VVW (3)) :

for § C V is submodular and monotone increasing.

Proof: For brevity we do not provide the full proof
regarding the submodularity and the increasing monotonicity
of the log-det(:). Such metric is well studied in the field
of submodular optimization and is proved therein—readers
are referred to [10], [26]-[28]. For the state-averaged ob-
servability metric O(S) in (22) and based on Lemma 1, the
submodularity of the set function log-det(-) under a non-
negative weighted sum is preserved and thus it is submodular.

|
The following section showcases the robustness of the sensor
selection problem that is based on the proposed average
observability metrics and that is solved via greedy heuristics.

(22)

IV. NUMERICAL STUDIES

In this section, we numerically validate and investigate
the effectiveness of the averaged-observability based sensor
selection framework. To numerically test our methods, we
choose a general nonlinear model of a combustion reaction
network. Consider the following list of V,. chemical reactions

ZjSRi = ijiRi7 7=12,...,
i=1 i=1

where ¢;; and wj; are stoichiometric coefficients and R;,
i1 € {1,2,--- ,ng,}, are chemical species (notice that the
number of chemical species is equal to the global state
dimension). With the chemical reactions described in (23),
we associate a state-space model. In this representation, the
states are concentrations of chemical species. The resulting
state equation has the following form [29], [30]

©(t) = Oy (x(t)) , (24)
where ¢ (z) = [t (®),¢2 () ..., ¥n, ()]7, and © =

v X Ny —
[wji — q]‘i} € R"= ,and x = [xl,xg, - ,J)nl,], where x;,
1 € {1,2,--- ,n,} are concentrations of chemical species,

Ny, (23)
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Fig. 1. State trajectories of the simulated H2/O2 combustion network

under perturbed initial conditions. The states are concentrations of Ha and
O2 chemical species.
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Fig. 2. Selected sensor nodes resulting from state-averaged observability
measures and observability measures that are based on a single randomly
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averaged metrics. Left figure depicts that of log-det and right is that of
trace.

and finally v;, j = 1,2, ..., N, are the polynomial functions
of concentrations defined as follows

¥ (@) =v; [[2F =0 [[«™, r=1,2,..., N, (25)
=1 =1

where v;,b; € Ry are the forward and backward reaction
rates that are computed on the basis of the Arrhenius law.

In this paper, we consider an Hs/O5 combustion network.
This network has 27 reactions and 9 chemical species. The
reaction rates are computed using the Cantera software [31].
We use a chemical reaction network model described in the
Cantera database file “h202.cti”. In our computations, we
assume a temperature of 2500 [K] and an initial pressure equal
to the atmospheric pressure. We have chosen a smaller com-
bustion network in order to be able to compare our methods
with randomized sensor node placements. To discretize the

;
a0k I Average
Random
25 - o 1
I Variations
g2 (a) log-det
T 151 J
10 1
5| I—:. 1
0
4 5 6
Number of Sensor Nodes
;
2000 - I Average
[ JRandom
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o
& 1000l (b) trace
| I'1 e
0
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Number of Sensor Nodes
Fig. 3.  Gain on observability measures with additional sensor node

selections. The average (red) represents that of state-averaged observability
and that of perturbed single guesses is represented by an average gain
(yellow) and the max and min variations on that gain (green).

dynamics we use a discretization constant of 7 = 1 - 10712
and we assume the observation window of N = 1000. We have
chosen such value of the discretization constant by analyzing
an initial condition response of the system.

We assume x = 10 and states are selected as random pertur-
bations of the “true” state x = [2, 0, 0, 1, 0, 0, 0, 0.2, 0]T.
The random perturbations are drawn from a uniform pertur-
bation on the interval [0, p]. Fig. 1 depicts the state trajectories
of Hy and Oy from the simulated Hs /O combustion network
under uniform perturbation interval with p = 2. We note that
for each state, different state trajectories are obtained when
starting with different initial condition. That is, for each initial
condition, the trajectory of the system tends to a different
attractor. In dynamical systems, a basin of attractor is a state
condition that the systems tends towards as it evolves over a
time period [32]. This suggests that the nonlinear system (24)
has several basins of attraction and as such, we investigate
how such perturbed state trajectories affect the sensor node
selection model and asses the robustness of the proposed state-
averaged observability measures.

A. Robust Observability-based Sensor Node Selection

Our first goal is to determine optimal sensor locations using
the greedy algorithm and the proposed state-averaged observ-
ability measures. These observability measures are computed
on the basis of the perturbed states (the “true” state is not
used to compute the observability measure). Fig. 2 represents
the sensed node locations determined by solving P4 based on
the state-averaged observability metrics (log-det, trace) and
that on the observability metrics that are associated with a
single guess of the perturbed initial state. It can be pointed
out that starting with different initial guesses, the optimal
set of selected nodes is also different. The different selection
as compared to that of the averaged metric are pointed by
arrows. We note here that to evaluate the robustness of the
state-averaged metric, we perform P4 based on a random
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Fig. 4. Relative error on initial state estimation. Histograms represent the error from randomly selected nodes with specified sensor fractions. The lines

represent the error under the optimal solutions to problem P4.

generation of x = 10 initial guesses, such that the same
solution is obtained for each generated initial guesses. Thus,
showing that the proposed metrics are robust to choice and
perturbations of the initial conditions.

Understanding the underlying theory that allows us to
optimally choose of x for a specified p and ensure robustness
on S§* from initial state perturbations is outside the scope
of this paper and will be investigated in future work. For
now we note that for the presented general nonlinear network
a choice of K 10, that is greater than the number of
sensed node n,, = 9, results in robust optimal sensor node
selections for a range of p < 20, which is a relatively high
perturbation given the true state. As such, one can infer that the
perturbation magnitude is not the critical factor for the choice
of x. The authors suggest that this is related to the number of
states/sensor nodes and the stability of the state trajectories
resulting from the perturbed states.

To further understand the performance of the state-averaged
observability measure as compared with that based on a single
initial guess, we investigate the variations on information
gain of the observability matrix. Fig. 3 depicts the gain on
the observability metrics resulting from an additional sensor
selection relative to the prior number of sensed nodes. This
variability in gain value for each of the log-det and trace
metrics based on single initial conditions represents where the
change in sensed nodes occurs. For under states with different
gain values, a sensed node might be forfeited for another. It
can be depicted that the when average of the gain resulting
single perturbed initial conditions is different than that of the
state-average metric, a different sensed node is chosen. For
example looking at the log-det metric and when the number
of nodes chosen is nodes 4 and 5, this average is not the
same. Then, when we look back at Fig. 2 we notice the this
is where the sensed nodes chosen is different than the state-
averaged metric. We note, that the reason for this variability,
that is postulated to be consequence of the perturbed state

trajectories, is not fully investigated for that is out of the
scope of this work. We here investigate the effects of the
perturbations on the sensor selections and the robustness of
the proposed state-averaged observability measures.

B. Sensor Selections on Initial State Estimation

The second goal is to estimate the “true” state, using the
optimally selected sensors and to show that an optimal solution
is obtained using a greedy heuristic approach. By showing
optimality of the greedy approach, we numerically validate
the modularity and submodularity of the state-averaged ob-
servability measures.

We determine the optimal location of sensor nodes, then
we compute the state estimate for this selection by solving
P1 with Q = I. State estimation results are also computed
for randomly generated sensor locations under a fixed sensor
fraction. The least-squares problem P1 is solved using the
MATLAB function 1sgnonlin which implements the trust-
region-reflective algorithm. We show the results for the two
metrics, log-det and trace. We quantify the final estimation
performance by computing the relative estimation error using
the following formula e = ||@we — &[5 / || % uel|o, Where
Tirue 1S the true state that we want to estimate and & is
its estimate computed by solving the nonlinear least squares
problem for the fixed sensor location.

Fig. 4 shows computed relative errors for different fraction
of sensor nodes. The errors represented by the histograms
are computed for a random selection of sensor location for
specified sensor fractions. At the same time we compute the
relative error produced by the state-averaged approach for
the two measures (red and yellow vertical lines). The log-
det and trace measures produce optimal results for each of the
specified sensor fraction. This shows that the greedy algorithm
indeed results in optimal sensor placement under the state-
averaged approach. Thereby providing numerical proof that
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submodularity and modularity is retained. And on this note,
we conclude this section.

V. PAPER SUMMARY AND FUTURE WORK

This paper investigates the robustness of an observability-
based sensor selection problem towards unknown initial con-
ditions. Specifically, our approach is built upon the open-
loop lifted observer framework in which the parameterized
observability Gramian is constructed. To accommodate the
inaccuracy when quantifying the observability due to uncer-
tain initial states, we introduce state-averaged observability
measures. The proposed sensor selection problem posed under
trace and log-det measures is shown to retain the modularity
or submodularity properties. Greedy heuristics are employed
to efficiently solve the optimization problem and render it scal-
able to larger nonlinear systems. Numerical results showcase
the validity and effectiveness of proposed approach. For our
future work, we will further investigate the relation between
the proposed average observability metrics and empirical
observability Gramian for discrete-time systems, and how
to normalize nonlinear systems that have several basins of
attraction such that the sensor placement is not affected.
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