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Abstract

Despite increased interest in wearables as tools

for detecting various health conditions, there

are not as of yet any large public benchmarks

for such mobile sensing data. The few datasets

that are available do not contain data from

more than dozens of individuals, do not con-

tain high-resolution raw data or do not include

dataloaders for easy integration into machine

learning pipelines. Here, we present Home-

kit2020: the first large-scale public benchmark

for time series classification of wearable sen-

sor data. Our dataset contains over 14 million

hours of minute-level multimodal Fitbit data,

symptom reports, and ground-truth laboratory

PCR influenza test results, along with an eval-

uation framework that mimics realistic model

deployments and efficiently characterizes sta-

tistical uncertainty in model selection in the

presence of extreme class imbalance. Further-

more, we implement and evaluate nine neural

and non-neural time series classification mod-

els on our benchmark across 450 total training

runs in order to establish state of the art per-

formance.

Data and Code Availability This paper uses
data from the Homekit2020 Flu Study, which is avail-
able on Synapse. We make all code used in this pa-

per (including training scripts, data processing, and
model hyperparameter configurations) available at
this GitHub repository.

Institutional Review Board (IRB) The study
that collected the data presented here was approved
by the Western Institutional Review Board (WIRB,
Puyallup, WA, USA) and the University of Washing-
ton IRB (Study #1271380).

1. Introduction

In the wake of the COVID-19 pandemic, there has
been increased interest in using time series sensor
data from wearables to detect respiratory viral in-
fections (Alavi et al., 2022; Ates et al., 2021; Con-
roy et al., 2021; Kolbeinsson et al., 2021; Liu et al.,
2022; Mishra et al., 2020; Natarajan et al., 2020; Quer
et al., 2022; Föll et al., 2022; Mason et al., 2022; Grze-
siak et al., 2021; Merrill and Althoff, 2023). If suc-
cessful, this technology could enable high-frequency
monitoring of vulnerable populations and warn users
of potential infections before they transmit a virus
to others. However, despite the significant inter-
est in and high potential impact of this research, to
date, there are no standardized tasks, evaluations,
code packages, or benchmark datasets for this domain
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(Nestor et al., 2021; Xu et al., 2021). As a result, it
is typically impossible to compare methods or per-
formance across publications, leading to duplicated
efforts and little to no community consensus on how
models should be evaluated.

There are multiple reasons for the scarcity of avail-
able wearable datasets. First, these datasets can
be expensive and time-consuming to collect. Unlike
in other domains of machine learning such as natu-
ral language processing and computer vision, where
ground-truth labels can often be generated after cor-
pus creation through post-hoc annotation, there is
no way to recover ground-truth health information
from raw time series data (e.g. a positive test for
influenza). Therefore, labels must be collected along
with raw data (e.g. with self-administered home test
kits, costly lab tests, or surveys). Furthermore, wear-
able data and associated health labels constitute sen-
sitive protected health information, which means that
data can only be shared publicly with the informed
consent of study participants. This has prevented
many research groups from sharing their datasets.

Those datasets which are public are typically quite
small (e.g. fewer than forty infected participants;
(Mishra et al., 2020)) or only contain manually fea-
turized and highly aggregated data that are not
suitable as inputs for training deep learning mod-
els (Wang et al., 2016; Xu et al., 2022). Further-
more, these data are not preprocessed for deep learn-
ing tasks (Alavi et al., 2022) (e.g. windowed, missing
values filled, reproducibly split into train/test sets).
Collectively, these limitations present a significant
barrier to entry for new researchers in machine learn-
ing for wearables, who must obtain IRB approval, re-
cruit and manage participants, collect and clean data,
and develop their own data processing pipelines. It
is commonly reported for research groups to spend
years preparing data before they can evaluate their
first model (Xu et al., 2021).

Furthermore, most mobile sensing applications in-
volve datasets that are markedly different from ex-
isting time series classification benchmarks. A popu-
lar recent time series classification benchmark is the
UEA multivariate time series classification archive
(Bagnall et al., 2018). Unlike the high-resolution
time series relevant to mobile sensing (e.g. more
than 10,000 observations for even a single week of
minute-by-minute data), datasets in this benchmark
are significantly shorter (fewer than 2,000 observa-
tions). Further, none of them contain any examples
with missing data, which is endemic in virtually all

wearable datasets. As a result, it is not known how
well time series classification methods transfer to mo-
bile sensing applications.

In this paper, we address the aforementioned chal-
lenges by sharing the Homekit2020 benchmark 1,
a publicly available collection of 592,000 days of
minute-level-resolution Fitbit data across 3 channels
(sleep, heart rate, and step count) from 5,196 partic-
ipants, combined with high-quality PCR assay test
results for influenza. We describe the study protocol
and data processing, and provide instructions for ac-
cessing the data (Section 3). This dataset is ten times
larger than the largest public wearable device dataset
to date (by 4237 participants) and additionally in-
cludes gold-standard laboratory tests instead of sub-
jective self-reports. We go on to formalize two evalu-
ation methods for cross-validating multivariate time
series models on these data (Section 4.1) and provide
a series of benchmark tasks for behavioral modeling
in the context of influenza detection (Section 4.2). Fi-
nally, we evaluate several neural and non-neural base-
lines on our benchmark in order to establish baseline
performance on this benchmark by evaluating SOTA
models from influenza detection and time series clas-
sification (Section 5). We make code and detailed
instructions for obtaining data available at https:

//github.com/behavioral-data/Homekit2020.

2. Related Work

Detecting Viral Infections with Wearables.
There is a significant body of recent work on detecting
respiratory viral infections with data from wearables
(Alavi et al., 2022; Ates et al., 2021; Conroy et al.,
2021; Kolbeinsson et al., 2021; Liu et al., 2022; Mishra
et al., 2020; Natarajan et al., 2020; Quer et al., 2022;
Föll et al., 2022; Mason et al., 2022; Grzesiak et al.,
2021; Merrill and Althoff, 2023). Notably, each pub-
lication uses unique datasets, tasks, and evaluation
metrics, further underscoring the need for a consis-
tent public benchmark to facilitate comparisons be-
tween models. Methods range from non-neural mod-
els like XGBoost trained on day-level data (Grzesiak
et al., 2021) to complex neural methods trained on
raw minute-level-resolution sensor data (Merrill and

1. A non-public version of this dataset was previously used in
a paper focused on pretraining and transfer learning meth-
ods (Merrill and Althoff, 2023). Here, we share these data
publicly with additional baselines, tasks, a code library, an
expanded evaluation framework, and detailed documenta-
tion.
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Althoff, 2023). Furthermore, these sensitive human
subjects’ data are not typically shared with the pub-
lic. We note that while Kolbeinsson et al. (2021) uses
the dataset presented in this paper, it does not make
it public and focuses instead on distinct pretraining
and downstream tasks rather than benchmarking.

Existing Datasets. The closest public dataset is a
collection of raw wearable data and COVID-19 diag-
noses provided by Mishra et al. (2020). In comparison
with Homekit2020, this dataset uses self-reported di-
agnoses rather than ground-truth PCR assays, has
substantially fewer infected individuals (32 versus
206), and is not packaged with a pip-installable eval-
uation toolkit that allows ML researchers to rapidly
experiment. Another related dataset is GLOBEM
from Xu et al. (2022), which provides a multi-year
aggregated dataset of phone sensor readings from 497
users and participant responses to surveys about their
mental health. In comparison, our dataset contains
roughly ten times the number of unique users, and
three times the total quantity of data (Table 1). The
CrossCheck dataset from Wang et al. (2016) contains
smartphone sensor data and labels for schizophrenic
relapse and relevant symptoms, but only provides
data from 36 patients, and all data is aggregated at
the hour level.

Bagnall et al. (2018) provide the most popular
benchmark for multivariate time series classification
models, but none of the component datasets match
the characteristics of wearable data. Specifically, the
time series in Bagnall et al. (2018) are shorter (fewer
than 2,000 observations in length), do not contain
missing data (which are quite common in sensing ap-
plications), and do not exhibit significant class im-
balance (compared to the substantial imbalance in
realistic tasks for wearable data (Section 4.3)).

3. The Homekit 2020 Dataset and

Toolkit

3.1. Study Description

Homekit2020 is a 4-month prospective decentralized
study run on the Evidation Studies platform (Kot-
nik et al., 2022). The aim of the study is to un-
derstand if data from consumer wearables and self-
reported symptoms can be used to detect the onset
of a respiratory illness.

Feature Description

# of participants 5034
# of participants who tested flu positive 206
Mean number of days of data 114
Mean % of missing data per day (±SD) 9.8% (21%)
Daily Questionnaire completion rate 85%
Mean age (±SD) 37.7 (10.2)
% female 72%
Mean BMI (±SD) 30.3 (20.3)
# of US States Represented 50
% White participants 94.1%
% Black participants 4.6%
% Asian participants 4.2%

Table 1: Summary statistics for the Homekit2020 Flu
Monitoring Study (Section 3)

3.2. Study Demographics and Statistics

The study involved 5, 034 participants, who were re-
cruited from the Evidation platform, targeting adults
(age ≥ 18 years) residing in the United States with an
active Fitbit wearable sensor connection. Study en-
rollment began in December 2019, shortly after the
2019-2020 influenza season began. All eligible par-
ticipants owned a wearable Fitbit device capable of
capturing steps, sleep and heart rate data, and agreed
to wear the device as much as possible for the dura-
tion of the study. Dataset statistics are summarized
in Table 1. Overall, the fraction of missing data was
low (9.8%, translating to an average of 21.6 hours of
data per day) and the Daily Questionnaire comple-
tion rate was high (85%). While this study repre-
sents the largest public dataset of its kind, and par-
ticipants were spread across 50 US states, limitations
include that the study sample skewed white and fe-
male. Often, mobile health datasets include largely
very healthy individuals, limiting the representation
of and value to the broader population. However, in
our dataset, the mean BMI is 30.3, which is similar
to the average BMI in the U.S. population (29.1 for
men, and 29.6 for women).

3.3. Study Flow

During the enrollment period, participants signed
an electronic informed consent, completed a base-
line survey, and activated and connected their wear-
able Fitbit devices to the Evidation studies platform.
Over the following 4 months of the study (120 days),
each participant was sent a daily survey that asked
about the presence of any influenza-like illness (ILI)
symptoms in the past 24 hours. Participants who in-
dicated they had experienced ILI symptoms in the
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previous 24 hours were given the Daily Follow-up
A survey, which included items to assess symptom
onset and severity, and were directed to open their
flu@home test kit and self-administer the flu@home
test. At the lab, PCR testing was performed to
detect the presence of different types of respiratory
viruses. If participants reported not experiencing ILI
symptoms over the past 24 hours or were recover-
ing from severe ILI symptoms, they were given the
Daily Follow-up B survey which asked about quality
of life indicators and, if applicable, about residual ILI
symptom severity upon recovery.
Participants who completed the flu@home test

were also asked to complete a follow-up survey (Re-
covery & flu@home Experience Survey) 14 days later,
which asked questions about their current health sta-
tus including potential recovery. Fitbit devices were
worn for the entirety of the study, and for an ad-
ditional month after the end of the 120-day survey
period. The devices captured data at minute-level
granularity for steps, sleep and heart rate. The data
were also aggregated to day-level features as shown
in Table 2.
An overview of the study design for data collec-

tion is shown in Figure 1. More details about the
dataset, study design, data collection, demographics
and potential biases can be found in our Appendix.

3.4. Raw Data Description

The raw data consists of a) the three wearable sen-
sor channels: heart rate, steps and sleep, all at the
minute-level resolution, b) a comprehensive initial
questionnaire c) daily surveys on ILI symptoms and
d) results from the PCR diagnostic tests including
the type of virus detected.

3.5. Data Processing

As part of this data release, we provide versions of
the raw data that are preprocessed and stored for
compatibility with Pytorch dataloaders, as well as a
set of day-level manually defined features.

3.5.1. Minute Level Data

Some processing is necessary before these data can
be passed to a model. We take the following steps to
prepare the raw signals for our experiments:

1. The sleep state data stream is split into three
binary signals which indicate if the study partic-
ipant is in light sleep, deep sleep, or awake.

2. The heart rate, step count, and sleep state
streams are resampled to a period of one minute.
Within each one-minute window, these streams
are aggregated by their mean, sum, and maxi-
mum respectively. Missing data are filled with
zeros.

3. Three binary channels - one for each data stream
- are added to the time series to indicate if data
is missing within each period.

4. The data are grouped into one-week rolling win-
dows and saved in the Petastorm format, which
extends Apache Parquet to natively support
multidimensional arrays and enable fast data
loading into Pytorch via Spark.

3.5.2. Hour Level Data

Some models are not designed to accept inputs as
large as one week’s worth of minute-level raw wear-
able data (Section 4.4), such as transformer models
that scale quadratically with the input length. Ac-
cordingly, we also provide a dataset that is identical
to the minute-level data (Section 3.5.1) but is sub-
sampled at the hour level.

3.5.3. Day Level Data

Many contemporary models for the classification of
time series data from wearables rely on manually de-
fined features (Zhang et al., 2021; Nair et al., 2019;
Lin et al., 2020; Hafiz et al., 2020; Buda et al., 2021;
Mairittha et al., 2021; Meegahapola et al., 2021). In
order to facilitate the comparison of these models
with neural models that operate on raw data, we pro-
vide a set of features (queried through the Fitbit API)
that are calculated for every user every day (Table 2).

3.6. Data Availability

All data, including raw data, daily surveys, lab test
results, and processed data (Section 3.5) are avail-
able through Synapse at (link withheld to protect
anonymity). Note that there is no easily identifiable
information in this dataset and that all study par-
ticipants in this dataset have consented to their data
being shared. Due to the sensitive nature of these
data, researchers must verify their identities through
Synapse, submit a brief (1-3 paragraph) research
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Screener

Informed Consent 
Form

Connect Fitbit
+

Baseline Survey

Daily Surveys
1 - 120

Daily Survey B 
healthy

Recovery Survey

First Daily Survey

Daily Survey B
Recovering

07/06/2020

Participant

Data Collection

Enrolled

12/13/2019 02/02/2020Enrollment
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Flu Kit Triggered
from symptom severity

Daily Survey A
Symptomatic Day 

Fitbit Worn
1-120 days 

Final Survey

✓ Flu+
+

flu@home RDT
& in-app survey

Figure 1: An overview of the study design used for Homekit2020. If a participant reported symptoms on a
given day (highlighted in orange) they were sent a test-kit the following day (grey). The symp-
tomatic period (yellow) lasted until the participant reported no symptoms (blue). (Section 3.1)

Feature Name Feature Description

Resting heart rate (HR) Avg. HR while still
Main minutes in bed Longest period in bed
Sleep efficiency Time sleeping over time in bed
Nap count Number of naps
Total asleep minutes Total time spent sleeping
Total in bed minutes Total time spent in bed
Active calories Calories burned from exercise
Calories out Total calories burned
Base metabolic rate Calories passively burned
Sedentary minutes Time spent not moving
Lightly active minutes Time spent lightly active
Fairly active minutes Time spent lightly exercising
Very active minutes Time spent actively exercising
Missing HR Indicates missing HR data
Missing sleep Indicates missing sleep data
Missing steps Indicates missing steps
Missing day Indicates missing all data

Table 2: Summary of day level features (Section
3.5.3), calculated for every user and on each
day. “Missing” features are binary variables
which are 1 if more than one hour of data is
missing, and 0 otherwise.

plan, and accept certain terms and conditions includ-
ing an agreement to never attempt to de-identify the
data.

We also provide detailed instructions for fetching
and installing the data via the Synapse API in this

project’s main GitHub repository: https://github.
com/behavioral-data/Homekit2020.

3.7. Adding New Models

We provide preprocessed data, evaluation tasks, and
predefined metrics to make it possible to evaluate new
models on these data in fewer than a dozen lines of
code (see GitHub for examples). The repository is
structured as a Python library and can be installed
with a single pip command. All code is available un-
der the MIT License.

4. Benchmark Design

Here we provide an overview of the Homekit2020
benchmark for influenza detection.

4.1. Cross-Validation Schemes

It can be difficult to define tasks that faithfully repli-
cate real-world conditions. Frequently, mobile sens-
ing models:

• train on data from the future (e.g. by training
on a user’s data from the end of the collection
period and evaluating on data from the begin-
ning (Wang et al., 2016)).
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• use data collected in laboratory settings with
limited ecological validity (e.g. collecting voice
samples from COVID-19 patients in a lab (Ismail
et al., 2020)).

• make predictions only if a user supplies sufficient
data by using a device frequently or regularly
responding to surveys (e.g. by filtering users by
study compliance (Malik et al., 2020; Merrill and
Althoff, 2023; Wang et al., 2014)).

These practices may overestimate performance in di-
agnostic settings where a model would only have ac-
cess to data from the past, rely on in-situ data, and
would be most useful if it could function even in the
presence of commonly missing data, including sur-
veys (Nestor et al., 2021; Ismail et al., 2020). There-
fore, we formally define two cross-validation schemes
inspired by “real-world” deployment scenarios (Fig-
ure 2)

Temporal Split. As first proposed in Merrill and
Althoff (2023), we structure our prediction tasks to
emulate the following realistic scenario:

Given training data from the first half of
a flu season, how well can a model predict
symptoms and infections in the second half
of the flu season for every user on every day?

This scenario is based around surveillance testing,
where a population is frequently tested and positive
individuals are asked to undertake additional testing
or self-isolate (Mercer and Salit, 2021; Merrill and Al-
thoff, 2023). Results on tasks with this data split can
be used to assess a model’s ability to generalize with
respect to distributional shifts over time (e.g. sea-
sonal variations in behavior such as spending more
time inside during the early winter than the spring).

User Split. For this set of prediction tasks the model
is trained on data from one subset of participants and
is tested on data from a distinct subset of partici-
pants. Its premise is the following scenario:

Given training data from one randomly se-
lected subset of study participants, how well
can a model predict symptoms and infec-
tions in a distinct subset for every user on
every day?

We note that it would be desirable to evaluate a
model on a test set with users who were both unseen
and temporally separated from training data. How-
ever, this would limit us to training on half as much

7 Day Window

Train Test

Train

Test

Temporal Split User Split

Figure 2: We evaluate models with two cross-
validation schemes which are designed to
reflect real world conditions (Section 4.1).

data and would not produce results that are directly
comparable to those we report here.

Results on tasks with this data split can be used
to assess a model’s ability to generalize to new users.

Additionally, our tasks only use data from the
seven days prior to a predicted event so that no infor-
mation from the future informs a prediction about the
past. We also include no explicit information about
a user’s identity (e.g. participant id or demograph-
ics) to encourage models to learn generalizable motifs
about activity data rather than facets of individual
users’ behavior. This evaluation setting follows exist-
ing best-practice recommendations and avoids falsely
overstating the level of performance (Nestor et al.,
2021).

4.2. Tasks

We evaluate methods on the five behavioral modeling
tasks from Merrill and Althoff (2023) using a rolling
seven day window of data for each prediction (Figure
2):

• Flu Positivity: Will the participant produce
a nasal swab that tests positive for the flu to-
day? This task emulates existing surveillance
studies for both flu and COVID-19 where users
are frequently tested for respiratory viral infec-
tion (Chu et al., 2020; Fusco et al., 2020).

• Severe Fever: Will the participant report a se-
vere fever (defined as three or more on a four-
point Likert scale) today?

• Severe Cough: Will the participant report a
severe cough (defined as three or more on a four-
point Likert scale) today?

• Severe Fatigue: Will the participant report se-
vere fatigue (defined as three or more on a four-
point Likert scale) today?
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• Flu Symptoms: Will the participant report
two or more flu symptoms (including cough,
fever, and fatigue) of any severity today? This
prediction is important because preliminary
screening for flu typically recommends a patient
for additional treatment or testing if they re-
port some combination of two or more symptoms
(CDC, 2021b), and this was the criterion used in
the flu monitoring study that produced the eval-
uation dataset as well.

4.3. Class Imbalance Presents a Problem for
Comparing Model Performance

Extreme class imbalance makes rigorously compar-
ing model performance on individual tasks challeng-
ing, as it leads to large confidence intervals across
many common test statistics for evaluation metrics.
For example, under the DeLong test, a common test
for comparing the ROC AUC of two classifiers, the
variance of the difference in AUCs is proportional to

1
(N−m)m , where N is the size of the dataset and m is

the number of true positive examples (DeLong et al.,
1988). This quantity is maximized when m = 1, or
when there is only one true positive example in the
data set.

As noted in Merrill and Althoff (2023), population
health datasets like this regularly exhibit extreme
class imbalances since, intuitively, most people are
not sick on any given day. According to the CDC, the
average American has a 10% chance of a symptomatic
flu infection in a 365-day period (CDC, 2021a). This
corresponds to a 1:3,650 class imbalance, similar to
the 1:2,760 ratio in our dataset.

4.3.1. Model Selection on Individual Tasks

Stochastic optimizers induce training variance, there-
fore making it difficult to compare the performance
across methods. This problem is exacerbated by
class imbalance He and Garcia (2009). Frequently,
machine learning benchmarks report the average
and standard error scores across n randomly-seeded
model runs (Dodge et al., 2020; Colas et al., 2018).
These statistics can be used to construct a confi-
dence interval (CI) of a model’s performance with a t-
distribution. However, such confidence estimates un-
realistically assume normally-distributed test scores
and provide unreliable error bounds for small values
of n.

Input: model list F = [f1, ..., fn], evaluation func-
tion E, number of bootstraps N , test data D
Output: 95% CI of f evaluated with M on D
S ← empty list
for i = 1 to N do

F ′ ← sample with replacement from F

D′ ← sample with replacement from D

ModelScores ← empty list
for f ′ ∈ F ′ do
append E(f ′,D′) to ModelScore

end for
append mean of ModelScores to S

end for
lower bound ← 2.5-th percentile of S
upper bound ← 97.5-th percentile of S

Algorithm 1: Hierarchical bootstrapping of a list of
models (Section 4.3.1)

To ensure sound evaluation of the reported base-
lines, we obtain nonparametric estimates of the aver-
age performance of n = 5 models with 200 hierarchi-
cal bootstraps Ren et al. (2010). This approach re-
laxes the normal assumption of t-distribution, and as
illustrated in figure 3, produces a tighter bound com-
pared to independently averaging the bootstrapped
CIs of the n = 5 models. Algorithm 4.3.1 summa-
rizes our approach to obtain a 95% CI.

InceptionTime CNN
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
 A

U
C

bootstrapping
hierarchical
bootstrapping

Figure 3: Confidence intervals estimated using differ-
ent strategies on the Flu Positivity task.

4.3.2. Model Selection Across Tasks

Often when selecting a machine learning classifier we
are interested not only in how it may perform on a
given task but also in how it should perform on an
arbitrary, possibly new, task. We employ critical dif-
ference plots (Brazdil and Soares, 2000) to aggregate
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model performance across all tasks and both cross-
validation splits. The plots first apply Friedman’s
statistic (Friedman, 1940) to test the null hypothe-
sis that there is no difference between the relative
performance of models, and then deploy pairwise sig-
nificance tests (e.g. Wilcoxon signed rank) between
classifiers (Figure 4).

4.4. Models

We evaluate the following baseline models to establish
the state of the art on this benchmark:

• XGBoost (day): How well does a strong non-
neural baseline perform? While neural models
have surpassed non-neural classifiers in most CV
and NLP applications, XGBoost is still com-
monly used in many contemporary sensing stud-
ies (e.g., (Zhang et al., 2021; Nair et al., 2019; Lin
et al., 2020; Hafiz et al., 2020; Buda et al., 2021;
Mairittha et al., 2021; Meegahapola et al., 2021))
in part due to its ease of use. Since boosted trees
expectedly do not scale well to the thousands of
observations in raw time series data, we concate-
nate the day-level featurized data (Section 3.5.3)
within each window. We also include a version of
this model trained on resampled hour-level raw
data (XGBoost (hour)).

• CNN: How well does a simple CNN perform on
this dataset? 1D CNNs are frequently used in
timeseries classification (Pyrkov et al., 2018; Ki-
ranyaz et al., 2021), and have been applied to
data from wearable devices before (Liu et al.,
2022; Shen et al., 2019; Natarajan et al., 2020).
We train this model on minute-level data because
smaller inputs (e.g. day level (Section 3.5.3) or
hour level (Section 3.5.3)) compress to a small
number of spatial dimensions after only a few
layers of a standard CNN.

• Transformer Hour Level: Transformers are
increasingly seen as strong models for a variety
of tasks across many data modalities (e.g. text
(Devlin et al., 2018), images (Dosovitskiy et al.,
2021), and audio (Liu et al., 2020)). One chal-
lenge of training these models on raw time series
data is their quadratic memory complexity with
respect to input length. This makes it computa-
tionally infeasible to train such a model on high-
resolution raw data (e.g. a week-long window
with 10,080 observations) (Beltagy et al., 2020).
To compensate for this limitation, we train this

model on the resampled hour-level data (Sec-
tion 3.5.2) which has a comparatively small di-
mensionality (168 observations in the case of a
one-week window).

• CNN-Transformer: By applying a series of
transformer blocks to the CNN output, a model
may learn relationships between the spatial fea-
tures provided by its CNN encoder (Merrill and
Althoff, 2023).

• ResNet: While ResNet is generally considered
to be far from the state of the art in the computer
vision community, it is still viewed as a compet-
itive model for multivariate time series classifi-
cation (He et al., 2015). For example, it is the
highest-ranking neural model on the UEA mul-
tivariate time series classification archive (Ruiz
et al., 2021). We additionally include a version
of ResNet trained on the resampled hour-level
data (ResNet (hour)).

• InceptionTime: How well does a state of the
art time series classification model perform on
this task? InceptionTime (Ismail Fawaz et al.,
2020)) uses an ensemble of convolutions at dif-
ferent temporal resolutions to extract relevant
features. It is the top-performing neural model
in Ruiz et al. (2021)’s comparison of multivariate
time series classification models.

4.5. Metrics

We use three methods to evaluate models: ROC
AUC, Precision-Recall AUC (PR AUC), and Preci-
sion at k%. ROC AUC is useful because its mag-
nitude is not dependent on class balance, allowing us
to compare performance across different tasks. Con-
versely, PR AUC reflects a model’s ability to cor-
rectly retrieve positive examples and is impacted by
class balance. In some applications, such as allocat-
ing scarce antivirals, allocating additional testing, or
selecting clinical trial participants selecting the most
at-risk members of a population may be more impor-
tant than identifying all diseased individuals. Preci-
sion at k% allows us to measure performance among
a model’s most confident predictions on a test set
of N examples: Precision @ k% = 1

n

∑
n

i=1 yi where
n = ⌊k% of N⌋ and yi is the list of N ground truth
binary labels in decreasing order of the model’s con-
fidence.

8



Homekit2020

12345678

CNN (hour)
ResNet

XGBoost (hour)
XGBoost (day) Transformer (hour)

CNN
CNN-Transformer
InceptionTime

(a) Critical Difference w.r.t. PR AUC

12345678

CNN (hour)
ResNet

XGBoost (hour)
CNN Transformer (hour)

XGBoost (day)
CNN-Transformer
InceptionTime

(b) Critical Difference w.r.t. ROC AUC

Figure 4: Critical difference diagrams with respect
to precision-recall AUC and ROC AUC.
Numbers indicate each model’s average
ranking on tasks (Section 4.2), while the
thick dark line connects models which are
not significantly different from one another.

5. Results

The Homekit2020 benchmark shows that training on
high-frequency time series improves model perfor-
mance, that there is a 100x lift above random per-
formance within highly-confident model predictions,
and that classifying data from new users is roughly
as challenging as modeling data from the future.

High-frequency data can outperform XGBoost
trained on coarse data. As mentioned in Sec-
tion 4.3, the substantial class imbalance inherent in
these data limits comparisons between classifiers on
individual tasks. However, we find that Inception-
Time (trained on minute-level data)(Ismail Fawaz
et al., 2020) ranks first across most tasks with re-
spect to ROC AUC and first across four tasks in PR
AUC (Table 3). Notably, it significantly outranks
ResNet, CNN, XGBoost (hour) and CNN (hour).
(Figure 4(a)) with respect to PR AUC. There is less
separability between models with respect to ROC (al-
though InceptionTime still performs best on most
tasks).

In Figure 5 we report model performance with hier-
archically bootstrapped confidence intervals (Section
4.3.1). Notably, despite its popularity in mobile sens-
ing literature (Section 2), XGBoost is outperformed

by a neural method in all but two cases. This in-
dicates that neural models trained on raw time se-
ries generally perform better than non-neural mod-
els trained on aggregated time series data. Overall
these are very challenging tasks with limited perfor-
mance. There is potential for these models to be
useful, but future work should establish “how good is
good enough” as current methods may not be better
than symptomatic screening.

Precision on confident test examples indicates
substantial lift over random baseline. In some
epidemiological settings (e.g. allocating scarce antivi-
rals or selecting clinical trial participants) identifying
the most at-risk individuals in a population may be
more important than identifying all diseased individ-
uals. In Figure 6, we focus on precision among the
model’s most confident predictions (as determined
by the softmax output of each model) using Preci-
sion at k%. We compare model performance to a
random baseline (equal to the condition’s prevalence
rate) and an “oracle” model which is able to per-
fectly rank test examples (Figure 6) While there is
still substantial room for improvement at higher k

(as shown by decreasing model performance), some
models show significant lift over the random baseline
on many tasks. For example, the CNN-Transformer
achieves 3.9% precision at k%=0.05%, a 100x lift over
the baseline prevalence of 0.036%.

Classifying data from new users is roughly as
hard as classifying data from the future. It is
notable that model ROC AUC performance is compa-
rable between the temporal and user splits. This indi-
cates that learning to classify data “from the future”
(as in the temporally split task) is roughly as diffi-
cult as learning to make predictions about a different
subset of users (as in the user split task). Future
work could characterize this relationship by studying
changes in performance with respect to data quality,
temporal distance between train and test points, and
demographic similarity between users.

6. Limitations

The Homekit 2020 Benchmark provides the largest
mobile sensing dataset for infectious disease detec-
tion, a set of tasks for rigorously evaluating time se-
ries classification models, and a pip-installable toolkit
for running experiments on the dataset. However, our
benchmark is not without limitations. Study partic-
ipants were recruited across 50 U.S. states, but were
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Figure 5: Model performance across all cross-validation splits (Section 4.1) and tasks (Section 4.2). Confi-
dence intervals are calculated with hierarchical bootstrapping (Section 4.3.1)
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ROC AUC
Flu Positivity Severe Fever Severe Cough Severe Fatigue Flu Symptoms
Temp. User Temp. User Temp. User Temp. User Temp. User

XGBoost (day) 0.566 0.561 0.638 0.686 0.667 0.656 0.693 0.709 0.616 0.652

XGBoost (hour) 0.683 0.679 0.680 0.670 0.640 0.677 0.652 0.639 0.599 0.596
CNN 0.716 0.732 0.715 0.717 0.647 0.663 0.677 0.655 0.613 0.603
CNN (hour) 0.497 0.480 0.648 0.534 0.590 0.604 0.501 0.576 0.563 0.603
Transformer (hour) 0.856 0.761 0.721 0.731 0.662 0.666 0.659 0.654 0.588 0.593
CNN-Transformer 0.876 0.795 0.737 0.734 0.669 0.646 0.685 0.673 0.608 0.617
ResNet 0.548 0.486 0.671 0.614 0.622 0.601 0.631 0.686 0.568 0.554
ResNet (hour) 0.794 0.812 0.746 0.762 0.669 0.670 0.682 0.694 0.618 0.633
InceptionTime 0.709 0.735 0.742 0.779 0.712 0.714 0.707 0.693 0.641 0.650

PR AUC
Flu Positivity Severe Fever Severe Cough Severe Fatigue Flu Symptoms
Temp. User Temp. User Temp. User Temp. User Temp. User

XGBoost (day) 0.001 0.001 0.007 0.011 0.009 0.017 0.024 0.037 0.034 0.050
XGBoost (hour) 0.001 0.019 0.007 0.009 0.007 0.017 0.016 0.020 0.022 0.030
CNN 0.001 0.013 0.027 0.027 0.012 0.021 0.023 0.024 0.031 0.040
CNN (hour) 0.000 0.000 0.010 0.003 0.007 0.012 0.006 0.014 0.023 0.039
Transformer (hour) 0.005 0.011 0.036 0.057 0.010 0.013 0.019 0.019 0.024 0.025
CNN-Transformer 0.012 0.013 0.046 0.047 0.015 0.019 0.030 0.035 0.032 0.049
ResNet 0.000 0.001 0.004 0.005 0.009 0.008 0.010 0.040 0.021 0.026
ResNet (hour) 0.002 0.005 0.018 0.046 0.013 0.022 0.021 0.033 0.033 0.047
InceptionTime 0.003 0.010 0.009 0.044 0.015 0.046 0.024 0.038 0.036 0.065

Table 3: Hierarchically Bootstrapped ROC/PR AUC across all tasks. “Temp.” indicates temporal split,
while “User” indicates user split (Section 4.1). InceptionTime Ismail Fawaz et al. (2020) consistently
performs best.

disproportionately white and female (Table 1). While
a user’s skin color has been shown to not be a signif-
icant source of bias in photoplethysmography (PPG)
heart rate measurements (Bent et al., 2020), we en-
courage users of this benchmark to evaluate sensing
technologies on a diverse pool of participants wher-
ever possible. Future data collection should place an
even greater emphasis on collecting data from a rep-
resentative population sample.
The authors emphasize that scores on this bench-

mark may not be indicative of real-world perfor-
mance. This benchmark contains data from one
brand of wearable (Fitbit), one flu season, and a
non-representative sample of the population. Method
tested against this benchmark should undergo testing
through clinical trials before large-scale deployment,
e.g. as a feature in a commercial wearable.

7. Conclusion

We propose the Homekit2020 Benchmark and provide
models, data processing code, and 14 million hours
of wearable data with high-quality laboratory PCR
results for influenza. Our hope is that this bench-
mark will provide a test bed for machine learning
on wearable data for health, and accelerate progress
in this important research area. Our results high-

light future opportunities for modeling these data,
including performance improvements from modeling
high-frequency raw wearable data with neural meth-
ods. We believe that this benchmark can be used
to study and evaluate machine learning methods
for modeling behavioral and health data, including
self-supervision, transfer learning and few/zero-shot
learning methods.
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López de Mántaras, and Enric Plaza, editors, Ma-
chine Learning: ECML 2000. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2000.

Teodora Sandra Buda, Mohammed Khwaja, and
Aleksandar Matic. Outliers in Smartphone Sen-
sor Data Reveal Outliers in Daily Happiness. Pro-
ceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies, 2021. ISSN 2474-
9567.

CDC. Estimated Flu-Related Illnesses, Medical vis-
its, Hospitalizations, and Deaths in the United
States — 2018–2019 Flu Season | CDC, 2021a.

CDC. Influenza Signs and Symptoms and the Role
of Laboratory Diagnostics, 2021b.

CDC. CDC Museum COVID-19 Timeline, 2023.
URL https://www.cdc.gov/museum/timeline/

covid19.html.

Helen Y. Chu, Janet A. Englund, Lea M. Starita,
Michael Famulare, Elisabeth Brandstetter, Deb-
orah A. Nickerson, Mark J. Rieder, Amanda
Adler, Kirsten Lacombe, Ashley E. Kim, Chelsey
Graham, Jennifer Logue, Caitlin R. Wolf, Jes-
sica Heimonen, Denise J. McCulloch, Peter D.
Han, Thomas R. Sibley, Jover Lee, Misja Il-
cisin, Kairsten Fay, Roy Burstein, Beth Mar-
tin, Christina M. Lockwood, Matthew Thompson,
Barry Lutz, Michael Jackson, James P. Hughes,
Michael Boeckh, Jay Shendure, and Trevor Bed-
ford. Early Detection of Covid-19 through a City-
wide Pandemic Surveillance Platform. New Eng-
land Journal of Medicine, 2020.

Cédric Colas, Olivier Sigaud, and Pierre-Yves
Oudeyer. How Many Random Seeds? Statistical
Power Analysis in Deep Reinforcement Learning
Experiments, July 2018. URL http://arxiv.org/

abs/1806.08295. arXiv:1806.08295 [cs, stat].

Bryan Conroy, Ikaro Silva, Golbarg Mehraei, Robert
Damiano, Brian Gross, Emmanuele Salvati, Ting
Feng, Jeffrey Schneider, Niels Olson, Anne Rizzo,
Catherine Curtin, Joseph Frassica, and Daniel Mc-
farlane. Real-time infection prediction with wear-
able physiological monitoring and AI: Aiding mili-
tary workforce readiness during COVID-1. Techni-
cal report, 2021. URL https://europepmc.org/

article/PPR/PPR382715. Type: article.

12



Homekit2020

Elizabeth R. DeLong, David M. DeLong, and
Daniel L. Clarke-Pearson. Comparing the Areas
under Two or More Correlated Receiver Operat-
ing Characteristic Curves: A Nonparametric Ap-
proach. Biometrics, 1988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language under-
standing. In NAACL-HLT, 2018.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-Tuning Pretrained Language Models: Weight
Initializations, Data Orders, and Early Stopping,
February 2020. URL http://arxiv.org/abs/

2002.06305. arXiv:2002.06305 [cs].

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An
Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. Technical
Report arXiv:2010.11929, arXiv, June 2021.
URL http://arxiv.org/abs/2010.11929.
arXiv:2010.11929 [cs] type: article.

Milton Friedman. A Comparison of Alternative Tests
of Significance for the Problem of $m$ Rankings.
pages 86–92, 1940. ISSN 0003-4851, 2168-8990.

F. M. Fusco, M. Pisaturo, V. Iodice, R. Bellopede,
O. Tambaro, G. Parrella, G. Di Flumeri, R. Vigli-
etti, R. Pisapia, M. A. Carleo, M. Boccardi,
L. Atripaldi, B. Chignoli, N. Maturo, C. Rescigno,
V. Esposito, R. Dell’Aversano, V. Sangiovanni, and
R. Punzi. COVID-19 among healthcare workers in
a specialist infectious diseases setting in Naples,
Southern Italy: results of a cross-sectional surveil-
lance study. Journal of Hospital Infection, 2020.
ISSN 0195-6701.

Simon Föll, Adrian Lisson, Martin Maritsch, Karsten
Klingberg, Vera Lehmann, Thomas Züger, David
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Appendix A. Adding New Models to Homekit2020

Homekit2020 is both a dataset, a Python package, and a command line utility for training neural models on
sensor data. We have structured the package so that it is trivial to implement a new model by subclassing
the provided model class and implementing a forward pass in PyTorch:

1 from src.models.models import ClassificationModel

2 import torch.nn as nn

3

4 class FluLSTM(ClassificationModel):

5

6 def __init__(self, **kwargs) -> None:

7 super().__init__(**kwargs, hidden_dim : int = 32,

8 embedding_dim : int = 128)

9 self.lstm = nn.LSTM(hidden_dim, embedding_dim)

10 self.criterion = nn.CrossEntropyLoss()

11

12 def forward(self, x,labels):

13 preds = self.lstm(x)

14 loss = self.criterion(preds,labels)

15 return loss, preds

The model can then be evaluated on any of our tasks from the command line:

1

2 python src/models/train.py fit --model.class_path path.to.FluLSTM\

3 --config configs/tasks/PredictFluPos.yaml

Appendix B. A note on the 2019-2020 Flu Season and COVID-19

Epidemiologists are still studying the early days of the COVID-19 pandemic, but CDC consensus is that
significant community transmission was not prevalent in the United States until the last week of March
2020 CDC (2023). Importantly, a typical flu season peaks in February. In our dataset the last flu-positive
result was logged on March 21, 2020 with a peak around February 1, 2020. These facts combined lead us to
believe that while there may have been some overlap with COVID cases, the disease was likely not nearly
as prevalent within our population as it would have been during, say, the Omicron wave in Summer 2021.

We should also note that while there were several high-profile early outbreaks of COVID-19 in the United
States during March and April 2020 (e.g. Washington State, New York City) participants in this study were
geographically dispersed throughout all 50 states (Table 1).
Nonetheless, it is possible that some self-reported symptoms reflect an early COVID-19 infection. Impor-

tantly, nowhere in the paper do we claim that symptoms are necessarily caused by any particular disease,
be it influenza, RSV, or COVID-19. Symptomatic reports should be taken at face value. For example, if a
study participant reports fatigue then it should be assumed that participant was fatigued and nothing more.

Appendix C. Study overview

Homekit2020 is a 4-month prospective observational decentralized cohort study run on the Evidation Studies
platform (Evidation Inc., San Mateo, CA) Kotnik et al. (2022) platform. The aim of the study is to
understand if data from consumer wearables and self-reported symptoms can be used to detect the onset of
a respiratory illness. The study had 3 objectives, defined in the study protocol before the study started and
accompanied by statistical analysis plans (SAP). The objectives were:

17



Homekit2020

• To develop a database of everyday behavior data associated with participants who reported their health
status and activity data over the study duration.

• To Investigate the effectiveness of using behavioral and physiological data derived from wearable devices
to develop classification models for flu and non-flu respiratory viral infections (RVI) at varying levels of
training label confidence.

• To develop a regression model for states with most flu cases to forecast influenza-like illness (ILI)
infection rates.

The study protocol was not pre-registered on any public register.

Funding. The study was supported by the Biomedical Advanced Research and Development Authority
(BARDA Contract Number 75A50119C00036) and Audere.

Ethical Review. All enrolled participants completed an online informed consent form agreeing to study
protocols. The study was approved by Western Institutional Review Board, Inc. (Puyallup, WA).

C.1. Study design

Duration. Recruitment started on December 13th 2019 and completed on February 2nd 2020. Wearable
data collection started on the date of recruitment. The study ran from December 2019 to June 2020 with
daily surveys and minute-level wearable data collection. At the end of the study, participants were asked to
complete a final survey which asked questions about their overall experience with the study including their
influenza vaccination history for the 2019-2020 flu season.

Recruitment. The study involved 5, 196 participants, who were recruited from the Evidation platform,
targeting adults (age ≥ 18 years) residing in the United States with an active Fitbit wearable sensor con-
nection. Study enrollment began in December 2019, shortly after the 2019-2020 influenza season began. All
eligible participants owned a wearable Fitbit device capable of capturing steps, sleep and heart rate data,
and agreed to wear the device as much as possible for the duration of the study.

Inclusion/Exclusion criteria. The criteria for selection were:

• currently living in the United States

• ability to read, speak, and understand English

• own and regularly wear a Fitbit device that tracks steps, sleep, and heart rate

• having not been diagnosed with the flu in the 3 months before the start of the study

• willingness to complete a daily online survey for the duration of the study

• have an iPhone, iPad, or Android smartphone or tablet

• willingness to download an app if they experience flu-like symptoms

• willingness to complete an at-home flu test kit and send sample to a laboratory using a pre-paid shipping
label

The criteria for exclusion were:

• diagnosed with flu by a healthcare professional in the past three months

• currently enrolled in another flu study being conducted by Evidation Health.
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Figure C.7: Participant demographics of Homekit2020. The cohort is skewed young, overweight, female,
white, and college educated compared to the general US population. Overrepresented demo-
graphics are highlighted in gray.

Study Procedures. During the enrollment period, participants signed an electronic informed consent,
completed a baseline survey, activated and connected their wearable Fitbit devices to the Evidation studies
platform. Over the following 4 months of the study (120 days), each participant was sent a daily survey that
asked about the presence of any influenza-like illness (ILI) symptoms in the past 24 hours. Participants who
indicated they had experienced ILI symptoms in the previous 24 hours were given daily follow up surveys to
learn more about their symptoms. If symptoms were present, they were directed to self-administered a flu
test, which would give both an immediate results for generic influenza infection, and later be analyzed at a
lab to determine the specific type of virus. Participants were compensated for taking part in the study.

Demographics and Representatives. The study aimed at enrolling a convenience sample of the popu-
lation. The sample is not representative of the US population as it skews young, overweight, female, white,
college educated, as noted in Figure C.7. Further studies should be aimed at correcting this bias by recruiting
a more representative population.

Completion metrics. Adherence to protocol was high across the board, with minimal missing data across
data sources, as shown in Figure C.8

Appendix D. Datasheet for Homekit2020

To aid reproducibility, we borrow the datasheet for datasets 2 to report details about our dataset in a
standadized way.

2. Gebru, Timnit, et al. 2018. Datasheets for Datasets. arXiv preprint arXiv:1803.09010
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Figure C.8: Key completion metrics for the dataset

D.1. Dataset

• Why was the dataset created? This dataset was created to:

– develop a database of everyday behavior data associated with participants who reported their
health status and activity data over the study duration

– investigate the effectiveness of using behavioral and physiological data derived from wearable de-
vices to develop classification models for flu and non-flu RVI at varying levels of training label
confidence.

– develop a regression model for states with most flu cases to forecast ILI infe ction rates

• Who funded the creation of the dataset? The study was supported by the Biomedical Advanced
Research and Development Authority (BARDA) and Audere.

• What are the instances? How many instances of each type are there? Instances consist of
the 5, 196 participants who took part in the study, of which 5, 034 consented to data sharing. Of those,
1, 001 reported symptoms and were tested for viral infection. Of those tested, 149 had influenza A virus,
57 had influenza B, and 21 had RSV.

• How was the data collected? The activity and sleep data were collected passively from personal
Fitbit devices through the Fitbit API. Daily surveys were completed by participants through Evidation’s
study platform. Test kits were self-administered and then sent for analysis in an approved lab. All
collection (passive and active) was consented to by participants through the informed e-consent at the
beginning of the study.

• Over what time-frame was the data collected? Data were collected over a five month period from
December 2020 to June 2020.

• Does the dataset contain all possible instances? No, this dataset only contain a subset of the
population and possible health outcomes.

• Is there information missing from the dataset and why? While key completion metrics were
high across the board (see C.8), there is information missing, mostly due to participants not filling in
surveys or not wearing their devices. A small number of missing data can be attributed to rejected test
kits and invalid lab results.

• Other comments about data collection? N/A
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• How is the dataset distributed? Who is supporting/ hosting/ maintaining the dataset?
The dataset is available to qualified researchers on the Synapse platform at .

• If the dataset relates to people (e.g., their attributes) or was generated by people, were
they informed about the data collection? Yes, all participants were explicitly told what data
would be collected and e-consented to participate in the study. The study was approved by Western
Institutional Review Board, Inc. (Puyallup, WA).

• Does the dataset contain information that might be considered sensitive or confidential?
The full dataset includes information about demographics and medical history. We purposefully limited
the type of data that was collected to reduce the collection of sensitive data. The dataset is coded, which
means that all PII (personal identifiable information) is removed or replaced with random identifiers.

D.2. Hyper-parameter search space

All models in this paper were trained with a randomized hyperparameter sweep using a withheld validation
set. For CNN modules, we experimented with kernel sizes as large as 63, stride sizes as large as 256, depths
as deep as eight layers, and as many as 32 output channels. For transformer modules, we experimented pre-
computed and fixed positional embeddings, up to twelve layers of stacked transformers, and up to nine-head
attention. We also tried dropout rates between 0.0 and 0.5. In total, over five hundred model configurations
were tested before setting on the final configuration of kernel sizes of 5,5,2, stride sizes of 5,3,2, output
channels of 8,16,32, two transformer layers each with four heads, and dropout of 0.4. We tried Adam
learning rates from 1 to 1e−6, and found that 5e−4 worked best. This relatively small learning rate seemed
to be important for limiting overfitting. We also conducted a hyperparameter sweep for XGBoost models,
and that η = 1 and a maximum depth of six worked best. Further, we experimented with window sizes
ranging from three to ten days, and found that the model overfitted on both ends of this range, with best
performance at seven days. ResNet hyperparameters were borrowed from Ruiz et al. (2021). Our transformer
classifier used a learning rate of 2e− 3 and nine blocks. All neural models were trained with early stopping
such that training ended once ROC AUC on the validation set decreased for two consecutive epochs.

D.3. Software and Hardware specifications

The full conda environment for these experiments is specified in our github repository: Need to update
All models were trained on a virtual machine with one Nvidia RTX9000, 5 cpu cores, and 64GB of RAM.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-
tions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] All data, including raw data,
daily surveys, lab test results, and processed data are available through Synapse at https://www.
synapse.org/#!Synapse:syn22803188. The code is available in the project’s GitHub repository:
https://github.com/behavioral-data/Homekit2020.
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(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?
[Yes] This is detailed in the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple
times)? [No] However, we quantify statistical uncertainty with respect to model rankings in our
critical difference plots (Section 5)

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes] This is detailed in the Appendix.

3. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] This is detailed in the Appendix.

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] All data,
including raw data, daily surveys, lab test results, and processed data are available through Synapse
at https://www.synapse.org/#!Synapse:syn22803188. The code is available in the project’s
GitHub repository: https://github.com/behavioral-data/Homekit2020.

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-
ing/curating? [Yes] These are detailed in the Section C of the Appendix.

(e) Did you discuss whether the data you are using/curating contains personally identifiable infor-
mation or offensive content? [Yes] This is done in section D of the Appendix (Datasheet for
Homekit2020).
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