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—— Abstract

Blank, in his Ph.D. thesis on determining whether a planar closed curve ~ is self-overlapping,
constructed a combinatorial word geometrically over the faces of v by drawing cuts from each face to
a point at infinity and tracing their intersection points with . Independently, Nie, in an unpublished
manuscript, gave an algorithm to determine the minimum area swept out by any homotopy from a
closed curve v to a point. Nie constructed a combinatorial word algebraically over the faces of v
inspired by ideas from geometric group theory, followed by dynamic programming over the subwords.
In this paper, we examine the definitions of the two words and prove the equivalence between Blank’s
word and Nie’s word under the right assumptions.
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1 Introduction

A closed curve in the plane is a continuous map ~ from the circle S! to the plane R%. In
this paper, we are given a generic planar curve meaning there are finitely many self-crossing
points in the curve, and each of them is a transverse intersection.

In order to work with planar curves, one must choose a representation. Blank [1]
determines if a curve is self-overlapping—boundary of an immersed disk—by checking
whether a property holds on a combinatorial word, constructed by drawing cables from each
face to infinity then traversing the curve and recording the signed intersection sequence of
the curve and the cables. Nie [3] computes the minimum null homotopy area by performing
dynamic programming on a combinatorial word. Nie represents a curve algebraically as a
word in 71 (7). Motivated by simplifying Nie’s proof of correctness, we show that Blank and
Nie’s word constructions are equivalent under modest assumptions.

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Curves and Words

We now describe Blank’s word construction [1, page 5]. Let v be a generic closed curve in
the plane. Pick a point in the unbounded face of v and call it the basepoint py. From each
bounded face f;, pick a representative point p;. Now connect each p; to py by a simple path
in such a way that no two paths intersect each other. We call the collection of such simple
paths a cable system, denoted as II, and each individual path 7; from p; to pg as a cable.

Orient each m; from p; to pg. Now traverse v from an arbitrary starting point of v and
construct a cyclic word by writing down the indices of -y crossing the cables 7; in the order
they appear on 7y; each index i has a positive sign if we cross m; from right to left and a
negative sign if from left to right. We denote negative crossing with an overline i. We call
the resulting combinatorial word over the faces a Blank word of v with respect to 11, denoted
as [v] g(IT). Figure 1 provides an example. Note that changing the starting point corresponds
to a cyclic permutation of the word. Words with this property are called cyclic words. We
make additional assumptions to organize the cable system onto a tree, an organized cable
system is said to be managed.

Figure 1 A curve v with labeled faces and edges, I1, is drawn in blue. The Blank word of
corresponding to I, is [y]s(Il,) = [2314234].

We next describe Nie’s word construction [3]. Choose a point p; for each bounded face f;
of «; denote the collection of points as P. Consider the punctured plane X :=R?\ P and
its fundamental group 71(X). Choose a basepoint xg in X and a set of generators ¥ for
71(X), where each z; in ¥ represents the generator of m1(R? \ {p;}, 79) =2 Z. These choices,
along with a choice of a path from zg to each p;, determine a map from each generator
of m (R?\ {p;}) into m1(X) [4]. The fundamental group 7 (X) is a free group over such
generators, and the curve v can be represented as a word over generators of w1 (X). Elements
of 7 (X) are free words.

Consider the curve v as a four-regular plane graph. Decompose v into a spanning tree T
and the complementary cotree (spanning tree of the dual graph) T*, the trees (T, T*) are
a lree-colree pair [2]. There are two natural sets of generators for m(X): (1) the set of all
cotree edges, and (2) the set of all face boundaries. We describe the change-of-basis between
the two sets of generators in graph-theoretic terms. Traverse ~y from some arbitrary starting
point and orient each edge of v accordingly. For each face f;, define the boundary operator 0
by mapping face f; to the signed cyclic sequence of edges around face f;, where each edge is
signed positively if it is oriented counter-clockwise and negatively otherwise.

Now, write the curve ~ as a cyclic word over the cotree edges T by traversing vy, ignoring
all tree edges in 7. We perform the following procedure inductively on the cotree 7™ to
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construct another cyclic word, this time as an element in the free group over the faces of ~.
Starting from the leaves f of T, rewrite each edge e bounding the face f as a singleton word,
with positive sign if edge e is oriented counter-clockwise, or with negative sign otherwise.
Next, for any internal node f of T*, the boundary df consists of a sequence of (1) tree edges,
(2) cotree edges to children of f in T* denoted as ey, ea,...,e., and (3) (a unique) cotree
edge to parent of f denoted as ey : Of = [eferea...e;].

We inductively rewrite each child cotree edge e; as a free word w; over the faces. Such words
are face words. We emphasize that each word for the child cotree edge constructed inductively
is a free word, not a cyclic word. Choose a particular but arbitrary way to break the cyclic
sequence of faces and rewrite the equation: ey = Wy -----w;11-(w;)"-Of - (w;)" - wj_1--- - Wy,
where w; = (w;)'(w;)" is a particular way of breaking the face word w; in two.

€1

fl es

€2
start

Figure 2 A curve v with labeled faces and edges and tree in red. One cycle flattening of the
boundaries gives 9(f1) = esézeieq, I(f2) = e2,9(f3) = €3 and I(f4) = €4. Write v = e1ezezes then
use the boundaries to change the basis. The Nie word of v is [y]n(X) = [2314234].

This gives us a free word over the faces for edge ey, and, by induction, we have rewritten ~y
as a free word over the faces. Finally, we can turn the free word back into a cyclic word, by
observing that the cyclic permutation of the constructed free word over the faces does not
affect the element we are getting in 71 (X) (but as a side effect of choosing the basepoint pg
of 7). We call the resulting signed sequence of faces the Nie word and denoted as [v]n(2),
where Y. is the choices we made when breaking up the cyclic word at each cotree edge, referred
to as a cycle flattening. Notice that the definition of [y]y depends on how we choose to break
the cyclic edge sequences, and thus is not well-defined without specifying the choices. The
proof follows by induction.

» Theorem 1 (Word Equivalence). Let v be any plane curve. For a Nie word [y]n(X) with a
fized cycle flattening X, there is a managed cable system I1 such that the Blank word [v]g(II)
is equal to [y]n(X). Conversely, any managed cable system I induces a cycle flattening X
such that [v]g(I) and [y]n(X) are equal.
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