20

21

22

23

24

25

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 138 (2022)

Robustness for Space-Bounded Statistical Zero
Knowledge

Eric Allender @& ®
Rutgers University, NJ, USA

Jacob Gray =94
University of Massachusetts, MA, USA

Saachi Mutreja &
University of California, Berkeley, CA, USA

Harsha Tirumala 84 @®
Rutgers University, NJ, USA

Pengxiang Wang &
University of Michigan, MI, USA

—— Abstract

We show that the space-bounded Statistical Zero Knowledge classes SZK and NISZK| are surprisingly
robust, in that the power of the verifier and simulator can be strengthened or weakened without
affecting the resulting class. Coupled with other recent characterizations of these classes [3], this
can be viewed as lending support to the conjecture that these classes may coincide with the
non-space-bounded classes SZK and NISZK, respectively.

2012 ACM Subject Classification Complexity Classes

Keywords and phrases Interactive Proofs

Funding FEric Allender: Supported in part by NSF Grants CCF-1909216 and CCF-1909683.
Jacob Gray: Supported in part by NSF grants CNS-215018 and CCF-1852215

Saachi Mutreja: Supported in part by NSF grants CNS-215018 and CCF-1852215

Harsha Tirumala: Supported in part by NSF Grants CCF-1909216 and CCF-1909683.
Pengziang Wang: Supported in part by NSF grants CNS-215018 and CCF-1852215

ISSN 1433-8092

mailto:allender@cs.rutgers.edu
http://www.cs.rutgers.edu/~allender
https://orcid.org/0000-0002-0650-028X
mailto:jacobg@umass.edu
http://reu.dimacs.rutgers.edu/~jg1884/
mailto:saachi@berkeley.edu
mailto:hs675@scarletmail.rutgers.edu
https://sites.google.com/view/harsha-srimath-tirumala/
https://orcid.org/0000-0002-4600-3675
mailto:wang.cs@yahoo.com

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Robustness for Space-Bounded Statistical Zero Knowledge

1 Introduction

The complexity class SZK (Statistical Zero Knowledge) and its “non-interactive” subclass
NISZK have been studied intensively by the research communities in cryptography and
computational complexity theory. In [11], a space-bounded version of SZK, denoted SZK_
was introduced, primarily as a tool for understanding the complexity of estimating the
entropy of distributions represented by very simple computational models (such as low-degree
polynomials, and NC° circuits). There, it was shown that SZK| contains many important
problems previously known to lie in SZK, such as Graph Isomorphism, Discrete Log, and
Decisional Diffie-Hellman. The corresponding “non-interactive” subclass of SZK| , denoted
NISZK,, was subsequently introduced in [1], primarily as a tool for clarifying the complexity
of computing time-bounded Kolmogorov complexity under very restrictive reducibilities (such
as projections). Just as every problem in SZK g@fo reduces to problems in NISZK [13], so
also every problem in SZKLgﬁtCO reduces to problems in NISZK|, and thus NISZK| contains
intractable problems if and only if SZK| does.

Very recently, all of these classes were given surprising new characterizations, in terms
of efficient reducibility to the Kolmogorov random strings. Let EK be the (undecidable)
promise problem (YEK’NEK) where Y7 contains all strings y such that K (y) > |y|/2 and
the NO instances Ng consists of those strings y where K(y) < |y|/2 — e(|y|) for some

approximation error term e(n), where e(n) = w(logn) and e(n) = n°™).
» Theorem 1. [8] Let A be a decidable promise problem. Then

A € NISZK if and only if A is reducible to Ry by randomized polynomial time reductions.
A € NISZKy, if and only if A is reducible to Ry by randomized AC° or logspace reductions.
A € SZK if and only if A is reducible to Ry by randomized polynomial time “Boolean
formula” reductions.

A € SZKy, if and only if A is reducible to Ry by randomized logspace “Boolean formula
reductions.

2

In all cases, the randomized reductions are restricted to be “honest”, so that on inputs of
length n all queries are of length > ne.

There are very few natural examples of computational problems A where the class of
problems reducible to A via polynomial-time reductions differs (or is conjectured to differ)
from the class or problems reducible to A via AC® reductions. For example the natural
complete problems for NISZK under <P reductions remain complete under AC? reductions.
Thus Theorem 1 gives rise to speculation that NISZK and NISZK| might be equal. (This
would also imply that SZK = SZK| .)

This motivates a closer examination of SZK, and NISZK, to answer questions that have
not been addressed by earlier work on these classes.

Our main results are:

1. The verifier and simulator may be very weak. NISZK_ and SZK| are defined in
terms of three algorithms: (1) A logspace-bounded werifier, who interacts with (2) a
computationally-unbounded prover, following the usual rules of an interactive proof, and
(3) a logspace-bounded simulator, who ensures the zero-knowledge aspects of the protocol.
(More formal definitions are to be found in Section 2.) We show that the verifier and
simulator can be restricted to lie in AC’. Let us explain why this is surprising.

The proof presented in [1], showing that EAyco is complete for NISZK , makes it clear
that the verifier and simulator can be restricted to lie in AC[@] (as was observed in [23]).

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang

But the proof in [1] (and a similar argument in [13]) relies heavily on hashing, and it is
known that, although there are families of universal hash functions in AC’[@®], no such
families lie in AC” [18]. We provide an alternative construction, which avoids hashing,
and allows the verifier and simulator to be very weak indeed.

2. The verifier and simulator may be somewhat stronger. The proof presented in

[1], showing that EAnco is complete for NISZK|, also makes it clear that the verifier and
simulator can be as powerful as @L, without leaving NISZK| . This is because the proof
relies on the fact that logspace computation lies in the complexity class PREN of functions
that have perfect randomized encodings [6], and @L also lies in PREN. Applebaum,
Ishai, and Kushilevitz defined PREN and the somewhat larger class SREN (for statistical
randomized encodings), in proving that there are one-way functions in SREN if and only
if there are one-way functions in NC°. They also showed that other important classes
of functions, such as NL and GapL, are contained in SREN.! We initially suspected that
NISZK| could be characterized using verifiers and simulators computable in GapL (or
even in the slightly larger class DET, consisting of problems that are <N reducible to
Gapl), since DET is known to be contained in NISZK [1].? However, we were unable to
reach that goal.
We were, however, able to show that the simulator and verifier can be as powerful as NL,
without making use of the properties of SREN. In fact, we go further in that direction.
We define the class PM, consisting of those problems that are g':r—reducible to the Perfect
Matching problem. PM contains NL [17], and is not known to lie in (uniform) NC (and it
is not known to be contained in SREN). We show that statistical zero knowledge protocols
defined using simulators and verifiers that are computable in PM yield only problems in
NISZK|.

3. The complexity of the simulator is key. As part of our attempt to characterize
NISZK| using simulators and verifiers computable in DET, we considered varying the
complexity of the simulator and the verifier separately. Among other things, we show
that the verifier can be as complex as DET if the simulator is logspace-computable.
In most cases of interest, the NISZK class defined with verifier and simulator lying in
some complexity class remains unchanged if the rules are changed so that the verifier is
significantly stronger or weaker.

We also establish some additional closure properties of NISZK| and SZK|, some of which are
required for the characterizations given in [3].

The rest of the paper is organized as follows: Section 3 will show how NISZK| can be
defined equivalently using an AC verifier and simulator. Section 4 will show that increasing
the power of the verifier and simulator to lie in PM does not increase the size of NISZK_
(where PM is the class of problems (containing NL) that are logspace Turing reducible to
Perfect Matching). Section 5 expands the list of problems known to lie in NISZK|. McKenzie
and Cook [19] studied different formulations of the problem of solving linear congruences.
These problems are not known to lie in DET, which is the largest well-studied subclass of P
known to be contained in NISZK| . However, these problems are randomly logspace-reducible
to DET [7]. We show that NISZK| is closed under randomized logspace reductions, and
hence show that these problems also reside in NISZK|. Section 6 shows that the complexity
of the simulator is more important than the complexity of the verifier, in non-interactive

! This is not stated explicitly for GapL, but it follows from [16, Theorem 1]. See also [10, Section 4.2].
2 More precisely, as observed in [2], the Rigid Graph (non-) Isomorphism problem is hard for DET [25],
and the Rigid Graph Non-Isomorphism problem is in NISZK_ [1, Corollary 23].

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

Robustness for Space-Bounded Statistical Zero Knowledge

zero-knowledge protocols. In particular, the verifier can be as powerful as DET, while still
defining only problems in NISZK|. Finally Section 7 will show that SZK| is closed under
logspace Boolean formula truth-table reductions.

2 Preliminaries

We assume familiarity with basic complexity classes L, NL, ®L and P, and circuit complexity
classes NC? and AC°. We assume knowledge of m-reducibility (many-one-reducibility) and
Turing-reducibility. #L is the class of functions that count the number of accepting paths
of NL machines, and GapL = {f — ¢ : f,g € #L}. The determinant is complete for GaplL,
and the complexity class DET is the class of languages NC'-Turing reducible to functions in
GapL.

Many of the problems we consider deal with entropy (also known as Shannon entropy).
The entropy of a distribution X (denoted H (X)) is the expected value of log(1/ Pr[X = z]).
Given two distributions X and Y, the statistical difference between the two is denoted
A(X,Y) and is equal to >, | Pr[X = o] — Pr[Y = a]|/2. Equivalently, for finite domains D,
A(X,Y) = maxscp{|Prx[S] — Pry[S]|}. This quantity is also known as the total variation
distance between X and Y. The support of X, denoted supp(X), is {x : Pr[X = z] > 0}.

» Definition 2. Promise Problem: a promise problem 11 is a pair of disjoint sets (Ily,IIx)
(the "YES" and "NO" instances, respectively). A solution for II is any set S such that
IIy C S, and SNII, = O.

» Definition 3. A branching program is a directed acyclic graph with a single source and
two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled with a
variable in {x1,...,x,} and has two edges leading out of it: one labeled 1 and one labeled 0.
A branching program computes a Boolean function f on input x = x;1 ...z, by first placing
a pebble on the source node. At any time when the pebble is on a node v labeled x;, the
pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if x; =1 (or
by the edge labeled 0 if x; = 0). If the pebble eventually reaches the sink labeled b, then
f(x) =b. Branching programs can also be used to compute functions f : {0,1}"™ — {0,1}",
by concatenating n branching programs p1,...,pn, where p; computes the function f;(x) =
the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of
these complezity classes, circuits, and branching programs, see the text by Vollmer [26].

» Definition 4. Non-interactive zero-knowledge proof (NISZK) [Adapted from [1, 13]]: A
non-interactive statistical zero-knowledge proof system for a promise problem II is defined
by a pair of deterministic polynomial time machines® (V,S) (the verifier and simulator,
respectively) and a probabilistic routine P (the prover) that is computationally unbounded,
together with a polynomial r(n) (which will give the size of the random reference string o),
such that:

1. (Completeness): For all x € Ty, the probability (over random o, and over the random
choices of P) that V(z,0, P(x,0)) accepts is at least 1 — 270Uz,

2. (Soundness): For all x € Ily, and for every possible prover P’, the probability that
V(z,0,P'(x,0)) accepts is at most 2-°U=D (Note P’ here can be malicious, meaning it
can try to fool the verifier)

3 In prior work on NISZK [13, 1], the verifier and simulator were said to be probabilistic machines. We
prefer to be explicit about the random input sequences provided to each machine, and thus the machines
can be viewed as deterministic machines taking a sequence of random bits as input.

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang

3. (Zero Knowledge): For all x € Ily, the statistical distance between the following two
distributions is bounded by 27 1%1:

a. Choose o < {0,1}"U=0) uniformly random, p < P(x,0), and output (p,o).
b. S(xz,r) (where the coins v for S are chosen uniformly at random).

It is known that changing the definition, to have the error probability in the soundness and
completeness conditions and in the simulator’s deviation be ﬁ results in an equivalent
definition [1, 13]. (See the comments after [1, Claim 39].) We will occasionally make use of
this equivalent formulation, when it is convenient.

NISZK is the class of promise problems for which there is a non-interactive statistical
zero knowledge proof system.

NISZKe denotes the class of problems in NISZK where the verifier V. and simulator S lie
in complexity class C.

» Definition 5. /1, 13] (EA and EANco). Consider Boolean circuits Cx : {0,1}™ — {0,1}"
representing distribution X. The promise problem EA is given by:

EAy = {(Cx,k) : H(X) > k+1}

EAy ={(Cx.,k): H(X) <k -1}

EAnco is the variant of EA where the distribution Cy is an NC° circuit with each output bit
depending on at most 4 input bits.

» Definition 6 (SDU and SDUyco). Consider Boolean circuits Cx : {0,1}™ — {0,1}"
representing distributions X. The promise problem SDU = (SDUy,SDUy) is given by:

SDUy := {CX : A(X, Un) < l/n}

SDUy = {Cx : A(X,U,) >1—1/n}.

SDUnco is the analogous problem, where the distributions X are represented by NC® circuits
where no output bit depends on more than four input bits.

» Theorem 7. [1, 3]: EAnco and SDUnco are complete for NISZK| . EAnco remains complete,
even if k is fized to k =n — 3.

» Definition 8. [11, 2/] (SD and SDgp). Consider a pair of Boolean circuits C1,Cy :
{0,1}™ — {0, 1}™ representing distributions X1, Xo. The promise problem SD is given by:

SDY = {(01,02) : A(Xl,XQ) > 2/3}
SDN = {(01,02) : A(Xl,XQ) < 1/3}
SDgp is the variant of SD where the distributions X1, Xo are represented by branching

programs.

2.1 Perfect Randomized Encodings

We will make use of the machinery of perfect randomized encodings [6].

» Definition 9. Let f: {0,1}" — {0,1}* be a function. We say that f : {0,1}" x {0,1}" —
{0,1}* is a perfect randomized encoding of f with blowup b if it is:

6

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

225
226

227

228

229

230

231

232

233

234

235

236

Robustness for Space-Bounded Statistical Zero Knowledge

Input independent: for every x,x’ € {0,1}" such that f(x) = f(2'), the random
variables f(x,Up,) and f(z',Uy,) are identically distributed.
Output Disjoint: for every x,x’ € {0,1}"™ such that f(z) # f(z), supp(f(z,Unm)) N

supp(f(z',Unm)) = 0. .
Uniform: for every x € {0,1}"™ the random variable f(x,U,,) is uniform over the set

PN

supp(f (2, Um))- A .
Balanced: for every x,z’ € {0,1}" |supp(f(z, Un))| = [supp(f(z',Un))| = b

The following property of perfect randomized encodings is established in [11].

» Lemma 10. Let f: {0,1}" — {0,1}¢ be a function and let f : {0,1}" x {0,1}™ — {0,1}*

~

be a perfect randomized encoding of f with blowup b. Then H(f(Uy,,Up,)) = H(f(U,))+logb.

3 Simulators and Verifiers in AC°

In this section, we show that NISZK| can be defined equivalently using verifiers and simulators
that are computable in AC®. The standard complete problems for NISZK and NISZK, take a
circuit C as input, where the circuit is viewed as representing a probability distribution X;
the goal is to approximate the entropy of X, or to estimate how far X is from the uniform
distribution. Earlier work [14, 1, 23] that had presented non-interactive zero-knowledge
protocols for these problems had made use of the fact that the verifier could compute hash
functions, and thereby convert low-entropy distributions to distributions with small support.
But an AC? verifier cannot compute hash functions [18].

Our approach is to “delegate” the problem of computing hash functions to a logspace
verifier, and then to make use of the uniform encoding of this verifier to obtain the desired
distributions via an AC® reduction. To this end, we begin by defining a suitably restricted
version of SDUyco and show that this restricted version remains complete for NISZK| under
AC® reductions (and even under projections).

With this new complete problem in hand, we provide a NISZK 5o protocol for the complete
problem, to conclude NISZK. = NISZK co.

» Definition 11. Consider an NC° circuit C : {0,1}™ — {0,1}" and the probability distri-
bution X on {0,1}" defined as C(U,,) - where Uy, denotes m uniformly random bits. For
some fized € > 0 (chosen later in Remark 16), we define:

1y

SDU'Nco’y = {X : A(C, Un) < on*

SDU'nco, v = {X : |supp(X)| < 277"}

We will show that SDU'yco is complete for NISZK| under uniform <P reductions. In
order to do so, we first show that SDU’yco is in NISZK| by providing a reduction to SDUpyco.

> Claim 12. SDU’Nco<PSDUyco, and thus SDU'yco € NISZK.

Proof. On a given probability distribution X defined on {0,1}" for SDU’yco, we claim that
the identity function f(X) = X is a reduction of SDU"yco to SDUyco. If X is a YES instance
for SDU"\co, then A(X,U,) < 2%, which clearly is a YES instance of SDUyco. If X is a
NO instance for SDU’yco, then |supp(X)| < 2"~"". Thus, if we let T be the complement of
supp(X), we have that, under the uniform distribution, a string « is in 7 with probability
>1- 2%, whereas this event has probability zero under X. Thus A(X,U,) > 1— 2%, easily
making it a NO instance of SDUpco. |

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang

3.1 Hardness for SDU’"\co

» Theorem 13. SDU'\co is hard for NISZK| under <P™ reductions.

Proof. In order to show that SDU'yco is hard for NISZK|, we will show that the reduction
given in [1] proving the hardness of SDUyco for NISZK| actually produces an instance of
SDU’Nco.

Let II be an arbitrary promise problem in NISZK| with proof system (P, V') and simulator
S. Let = be an instance of II. Let M,(r) denote a machine that simulates S(z) with
randomness 7 to obtain a transcript (o, p) - if V(z, 0, p) accepts then M, (r) outputs o; else
it outputs 017!, We will assume without loss of generality that |o| = n* for some constant k.

It was shown in [14, Lemma 3.1] that for the promise problem EA, there is an NISZK
protocol with completeness error, soundness error and simulator deviation all bounded from
above by 27" for inputs of length m. Furthermore, as noted in the paragraph before Claim
38 in [1], the proof carries over to show that EAgp has an NISZK| protocol with the same
parameters. Thus, any problem in NISZK| can be recognized with exponentially small
error parameters by reducing the problem to EAgp and then running the above protocol for
EAgp on that instance. In particular, this holds for EAyco. In what follows, let M, be the
distribution described in the preceding paragraph, assuming that the simulator S and verifier
V' yield a protocol with these exponentially small error parameters.

> Claim 14. If 2 € Hygs then A(M,(r),U,x) < 1/2"71. And if z € Ilyo then
| supp (M, (r))] < 277" for e < 1.

Proof. For z € Iy gg, claim 38 of [1] shows that A(M,(r),U,x) < 1/2"71 establishing the
first part of the claim.

For x € Il yo, from the soundness guarantee of the NISZK| protocol for EAyco, we know
that, for at least a 1 — 5 fraction of the shared reference strings o € {0, 1}”k7 there is no
message p that the prover can send that will cause V to accept. Thus there are at most
27" =" outputs of M, (r) other than 0"". For e < +, we have |supp(M,(r))| < on"-nt 4

The above claim talks about the distribution M, (r) where M is a logspace machine. We
will instead consider an NC° distribution with similar properties that can be constructed
using projections. This distribution (denoted by C;) is a perfect randomized encoding of
M. (r). We make use of the following construction:

» Lemma 15. [1, Lemma 35]. There is a function computable in AC® (in fact, it can be a
projection) that takes as input a branching program Q of size | computing a function f and
produces as output a list p; of NCO circuits, where p; computes the i-th bit of a function f
that is a perfect randomized encoding of f that has blowup b = 2((5)-D2((-1)*-1) (and thus
the length of f(r) =logb+ |f(r)|). Each p; depends on at most four input bits from (z,r)
(where r is the sequence of random bits in the randomized encoding).

The properties of perfect randomized encodings (see Definition 9) imply that the range of f
(and thus also the range of C,;) can be partitioned into equal sized pieces corresponding to each
value of f(r). Thus, let a1, as, .., a; be the range of f(r), and let [a] = {f(r,s) : f(r) = a}.
It follows that |[a]| = b. For a given «, and for a given f of length logb we denote by af3
the 8-th element of [@]. Since the simulator S runs in logspace, each bit of M,(r) can be
simulated with a branching program @),. Furthermore, it is straightforward to see that there
is an AC%-computable function that takes z as input and produces an encoding of @, as

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

Robustness for Space-Bounded Statistical Zero Knowledge

output, and it can even be seen that this function can be a projection. Let the list of NC°
circuits produced from @, by the construction of Lemma 15 be denoted C,.

We show that this distribution C, is an instance of SDU'yco if 2 € II. For = € Iy gg, we
have A(M,(r), Uy) < 1/2"1, and we want to show A(Cy(r), Uipgppnr) < 1/2"71. Thus it
will suffice to observe that A(M,(r), Uyk) = A(Cy(r), Upg pinr) < 1/2771

To see this, note that

1 1 11
A(Ca(r) Uiogpint) = D | Pr[Ce = aB] = o |/2= 30 Y | PrlMa = o] 5 — 55| /2
af B«

=S| Pe[M, = a] - 2%|/2 = A(M,(r),Up).

Thus, for x € Ilygg, C; is a YES instance for SDU’co.

For z € llno, Claim 14 shows that | supp(M,(r))| < 2n" =" Since the NC° circuit C,, is
a perfect randomized encoding of M, (r), we have that the support of C, for z € o is
bounded from above by b x 27" =7 Note that log b is polynomial in n; let g(n) = logb. Let
7(n) denote the length of the output of C; r(n) = g(n) + n*. Thus the size of supp(Cy) <
gn* —nta(n) — gr(n)—n < gr(n)—r(n)‘ (if 1/€ is chosen to be greater than the degree of r), and
hence C;, is a NO instance for SDU'yco. |

» Remark 16. Here is how we pick € in the definition of SDU’'yco. SDUpco is in NISZK| via
some simulator and verifier, where the error parameters are exponentially small, and the
shared reference strings o have length n* on inputs of length n. Now we pick € > 0 so that
€ < 1/k (as in Claim 14) and also 1/e is greater than the degree of r (as in the last sentence
of the proof of Theorem 13).

3.2 NISZK,co protocol for SDU'yco on input X represented by circuit C

3.2.1 Non Interactive proof system

1. Let C take inputs of length m and produce outputs of length n, and let o be the reference
string of length n.

2. If there is no r such that C(r) = o, then the prover sends L. Otherwise, the prover picks
an element 7 uniformly at random from p ~ {r|C(r) = ¢} and sends it to the verifier.

3. V accepts iff C(r) = 0. (Since C is an NC° circuit, this can be accomplished in AC® —
this step can not be accomplished in NC since it depends on all of the bits of 0.)

3.2.2 Simulator for SDU'\co proof system, on input X represented by
circuit C

1. Pick a random s of length m and compute v = C(s).

2. Output (s,7).

3.3 Proofs of Zero Knowledge, Completeness and Soundness

3.3.1 Completeness

> Claim 17. If X € SDU'yco,y, then the verifier accepts with probability > 1 — 2,{; .

Proof. If X is a YES instance, then A(X,U,) < . This implies |supp(X)| > 2"(1 — 5=),

which immediately implies the stated lower bound on the verifier’s probability of acceptance.
<

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang

3.3.2 Soundness

> Claim 18. If X € SDU'yco n, then for every prover, the probability that the verifier

accepts is at most 2%

Proof. For every o ¢ supp(X), no prover can make the verifier accept. If X € SDU'yco n,
the probability that o & supp(X) is greater than 1 — 2% <

3.3.3 Statistical Zero-Knowledge

> Claim 19. For X € SDU'ncoy, A((p,0), (5,7)) = O(z++).

Proof. Recall that o ~ {0,1}", s ~ {0,1}™, p ~ {r : C(r) = o} and v = C(s). In order
to provide an upper bound on A((p, o), (s,7)), we consider the element wise probability of
each distribution and show that for X € SDU'yco y the claim holds. For a € {0,1}™ and
be {0,1}"™ we have :

1
A((p’ O-)a (Sa,)/)) = Z § |PI‘[(p,o‘) = (aa b)] - Pr[(s,fy) = (aa b)]‘
(a;b)
Let us consider an element b € {0,1}". Let A, = {a1, az, .., a, } be the pre-images of b under
C ie. for 1 <i < ky it holds that C(a;) = b. Let 5, = PI} [C(y) = b]. Then kp2™™ = Gy
y~Unm

(since exactly kp elements of {0,1}™ are mapped to b under C). Let B = {b|-3y : C(y) = b}.
Since A(C(Upn),Uyp) < 2”%, it follows that ‘2%‘ < L. We have :

Al o), (5,7) = 3 51 Prl(p.0) = (@ b)] ~ Prl(s,7) = (a,B)])
(ab)
=3 2 IP.0) = (@ b)] - Prl(s7) = (@,b)]
(a,b):beB
b5 Y IPH(p.0) = (@,b)] — Pr((s.) = (a.0)
(a,b):b¢B

For (a,b) satisfying b € B, we have Pr[(s,v) = (a,b)] = Pr[(p,0) = (a,b)] = 0. For b ¢ B
and a satisfying C'(a) # b we again have Pr[(s,v) = (a,b)] = Pr[(p,0) = (a,b)] = 0. For
(a,b) : C(a) = b we have Pr[(s,v) = (a,b)] = 27™ since s ~ U, and picking s fixes b. We
also have Pr[(p,o) = (a,b)] = 2];) since o ~ U,, and then the prover picks p uniformly from
Ap. This gives us

1 o
A((p70)7(877)) = 5 Z ’2 _T
(a,b):C(a)=b b
B 1 Z — 9—m-n
2 (a,b):C(a)=b By
1 2—m
=5 D I
(a,b):C(a)=b
1 . 1
< 5 Z |ﬂb -2 | = A(C(Um)v Un) < one
(a,b):C(a)=b

where the first inequality holds since 8 > 2™ whenever 3, # 0. Thus we have :

A((p,0), (5,7)) = 0(2%).

10

349

350

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

Robustness for Space-Bounded Statistical Zero Knowledge

4 Simulator and Verifier in PM

In this section, we show that NISZK| can be defined equivalently using verifiers and simulators
that lie in the class PM of problems that logspace-Turing reduce to Perfect Matching. (PM
is not known to lie in (uniform) NC.) That is, we can increase the computational power of
the simulator and the verifier from L to PM without affecting the power of noninteractive
statistical zero knowledge protocols.

The Perfect Matching problem is the well-known problem of deciding, given an undirected
graph G with 2n vertices, if there is a set of n edges covering all of the vertices. We define a
corresponding complexity class PM as follows:

PM := {A: A <% Perfect Matching}

It is known that NL C PM [17].
Our argument proceeds by first observing? that NISZK, = NISZK4,, and then making
use of the details of the argument that Perfect Matching is in @L/poly [5].

» Proposition 20. NISZKg = NISZK,

Proof. It suffices to show NISZKgL C NISZKL. We do this by showing that the problem
EANco is hard for NISZKg,; this suffices since EAnco is complete for NISZK,. The proof
of [1, Theorem 26] (showing that EAyco is complete for NISZK, involves (a) building a
branching program to simulate a logspace computation called M, that is constructed from a
logspace-computable simulator and verifier, and (b) constructing an NC-computable perfect
randomized encoding of M, using the fact that L C PREN, where PREN is the class
defined in [6], consisting of all problems with perfect randomized encodings. But Theorem
4.18 in [6] shows the stronger result that &L lies in PREN, and hence the argument of
[1, Theorem 26] carries over immediately, to reduce any problem in NISZKg to EAyco (by
modifying step (a), to build a parity branching program for M, that is constructed from a
@L simulator and verifier). <

We also rely on the following lemma:

» Lemma 21. Adapted from [5, Section 3] and [20, Section 4]: Let W = (w1, wa, -+ ,Wyk+3)
be a sequence of n* 3 weight functions, where each w; : [(3)] — [4n?] is a distinct weight
assignment to edges in n-vertex graphs. Let (G,w;) denote the result of weighting the edges
of G using weight assignment w;. Then there is a function f in GapL, such that, if (G, w;)
has a unique perfect matching of weight j, then f(G,W,i,j) € {1,—1}, and if G has no
perfect matching, then for every (W,i,j), it holds that f(G,W,i,5) = 0. Furthermore, if W
is chosen uniformly at random, then with probability > 1 — 2_"k, for each n-vertex graph G:

If G has no perfect matching then ViVj f(G,W,i,j) = 0.
If G has a perfect matching then 3i such that (G,w;) has a unique minimum-weight
matching, and hence 335 f(G,W,1i,5) € {1,—1}.

Thus if we define g(G,W) to be 1 —11; ;(1 — f(G,W,i,5)?), we have that g € GapL and with
probability > 1 — g (for randomly-chosen W), g(G,W) =1 if G has a perfect matching,
and g(G,W) = 0 otherwise.

4 This equality was previously observed in [23].

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang

Note that this lemma is saying that most W constitute a good “advice string”, in the sense
that g(G, W) provides the correct answer to the question “Does G have a perfect matching?”
for every graph G with n vertices.

» Corollary 22. For every language A € PM there is a language B € ®L such that, if x € A,
then Pryy, (4,215 [(x,W) € B]>1-2"" and ifz & A, then Pryy (sn2)ms [(x,W) € B] <

9%

Proof. Let A be in PM, where there is a logspace oracle machine M accepting A with an
oracle P for Perfect Matching. We may assume without loss of generality that all queries
made by M on inputs of length n have the same number of vertices p(n). This is because G
has a perfect matching ifft GU {z1 — y1,x2 — y2, ..., xx — yr} has a perfect matching. (Le., we
can “pad” the queries, to make them all the same length.)

Let C = {(G,W) : g(G,W) =1 mod 2}, where g is the function from Lemma 21. Clearly,
C € @L. Now, a logspace oracle machine with input (z, W) and oracle C' can simulate
the computation of MT on z; each time M poses the query “Is G € P”, instead we ask if
(G,W) € C. Then with high probability (over the random choice of W) all of the queries
will be answered correctly and hence this routine will accept if and only if z € A, by
Lemma 21. Let B be the language accepted by this logspace oracle machine. We see that

Bel®c Lol — @L, where the last equality is from [15]. <
» Theorem 23. NISZK_ = NISZKppy

Proof. We show that NISZKpy C NISZKg), and then appeal to Proposition 20.

Let IT be an arbitrary problem in NISZKpp, and let (S, P, V') be the PM simulator, prover,
and verifier for II, respectively. Let S’ and V' be the @L languages that are probabilistic
realizations of S,V respectively, guaranteed by Corollary 22. We now define a NISZK,
protocol (S”, P", V") for II.

On input = with shared randomness oW, the prover P” sends the same message p =
P(x,0) as the original prover sends. The verifier V", returns the value of V' ((z, o, p), W),
which with high probability is equal to V(z, o, p). The simulator S”, given as input z and
random sequence rW, executes S’((x,r, i), W) for each bit position i to obtain a bit that
(with high probability) is equal to the i*® bit of S(z,r), which is a string of the form (o, p),
and outputs (¢ W, p).

Now we will analyze the properties of (S”, P"”, V"):

Completeness: Suppose = € Ily, then Pr,[V(z,0, P(z,0)) = 1] > 1 —279™)_ Since
vy € {0,1}" : Pryy [V(y) = V'(y, W)] > 1 — 27" we have:

Pr[V' (0, P"(2,0)),W) = 1] > [L = 27001 — 27| = 1 - 2700

Soundness: Suppose z € Iy, then Pr,[Vp : V(z,0,p) = 0] > 1 — 279" Since
Yy € {0,137 : Priy [V(y) = V'(y, W)] > 1 — 277" we have:

Pr|vp: V/((w,0,p), W) = 0] > [1 = 270)[1 — 27| = 1 — 2700

Statistical Zero-Knowledge: Suppose x € IIy. Let S* denote the distribution on strings

of the form (o, p) that S(x,r) produces, where r is uniformly generated, and let P* denote
the distribution on strings given by (o, P(x,c)) where ¢ is chosen uniformly at random.
Similarly, let S”* denote the distribution on strings of the form (cW,p) that S”(z,rW)

11

12

429

430

431

432

433

434

435

436
437

438

439

440

441

442

443

444

4

i

5

446

447

448

449

450

451

452

453

454

455

456

457

458

Robustness for Space-Bounded Statistical Zero Knowledge

produces, where r and W are chosen uniformly, and let P”"* be the distribution given by
(oW, P"(x,cW)). Let A= {(cW,p) : FiTr S(x,r); # S ((z,r,i), W)}.
Since Pryy [ViVr : S(z,7); = S'((x,7,1), W)] > 1 — 2790 we have:

1
A(S”*,P”*) _ 5 Z |PI‘[SN* — (orW,p)] — PI‘[P’/* — (O'VV,Z))H
(cW,p)

< SO 4 S |Prls™ = (oTW,p)] — PP = (oW,p)))|

(cW,p)€eA

=204 Y [PiS* = (0,p)] ~ Pr[P* = (o0,p)]| Pr{IV])
(cW,p)EA

<2700 4 ; Pr[W% (Z) | Pr[S* = (0,p)] — Pr[P* = (0,p)]|

_ 2—0(71) + A(S*7P*) _ 2—O(n)

Therefore (S”, P", V") is a NISZKg_ protocol deciding II. <

5 Additional problems in NISZK,

In this section, we give additional examples of problems in P that lie in NISZK,. These
problems are not known to lie in (uniform) NC. Our main tool is to show that NISZK is
closed under a class of randomized reductions.

The following definition is from [3]:

» Definition 24. A promise problem A = (Y, N) is <BPl_reducible to B = (Y', N') with
threshold 6 if there is a logspace-computable function f and there is a polynomial p such that

x €Y dmplies Pr,cio 1y00en0 [f(7,7) € Y] > 0.
x € N implies Pr,c(o1yr0=) [f(,7) € N']=>0.

Note, in particular, that the logspace machine computing the reduction has two-way access
to the random bits r; this is consistent with the model of probabilistic logspace that is used
in defining NISZK, .

» Theorem 25. NISZK, is closed under §7'3an reductions with threshold 1 — —L

nw(l) "

Proof. Let II<BPLEAy o, via logspace-computable function f. Let (S, Vi, Py) be the NISZK
proof system for EAyco.

Algorithm 1 Simulator S(z,ro’) Algorithm 2 Verifier V(z. (0.0).p)

(O’,p) — Sl(f(zval)aT)Q return V; z.00). o
return ((o,0'),p); t Vi((f(z,0'),0,p))

Algorithm 3 Prover P(x, (0,0"))
return Py ((f(z,0'),0));

We now claim that (S, P,V) is a NISZK| protocol for II.
It is apparent that S and V are computable in logspace. We just need to go through
completeness, soundness, and statistical zero-knowledge of this protocol.

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang

Completeness: Suppose z is YES instance of II. Then with probability 1 — ﬁ (over
randomness of o’): f(z,0’) is a YES instance of EAyco. Thus for a randomly chosen o

1

PHVA(f(2,0"),0, Pu(f(@,0"),0)) = 1) 21— —

Soundness: Suppose x is NO instance of II. Then with probability 1 — ﬁ (over
randomness of o’): f(z,0’) is a NO instance of EAyco. Thus for a randomly chosen o:

Pr[Vi(f(z,0"),0, Pi(f(z,0"),0)) =0 >1— —
Statistical Zero-Knowledge: If z is a YES instance, f(x,0’) is a YES instance of EAyco
with probability close to 1. For any YES instance y of EAyco, the distribution given by
S7 on input y is exponentially close the the distribution on transcripts (o, p) induced by
(V1, P1) on input y. Thus the distribution on (c¢’, p) induced by (V, P) has distance at
most ﬁ from the distribution produced by S on input . The claim now follows by
the comments regarding error probabilities in Definition 4.

<

McKenzie and Cook [19] defined and studied the problems LCON, LCONX and LCONNULL.

LCON is the problem of determining if a system of linear congruences over the integers mod
q has a solution. LCONX is the problem of finding a solution, if one exists, and LCONNULL
is the problem of computing a spanning set for the null space of the system.

These problems are known to lie in uniform NC? [19], but are not known to lie in uniform
NC2, although Arvind and Vijayaraghavan showed that there is a set B in L% C DET C NC?
such that € LCON if and only if (z, W) € B, where W is a randomly-chosen weight function
[7]. (The probability of error is exponentially small.) The mapping x +— (z, W) is clearly a
<BPL reduction. Since DET C NISZK, [1], it follows that

LCON e NISZK.

The arguments in [7] carry over to LCONX and LCONNULL as well.

» Corollary 26. LCON € NISZK,. LCONX € NISZK_. LCONNULL € NISZK, .

6 Varying the Power of the Verifier

In this section, we show that the computational complexity of the simulator is more important
than the computational complexity of the verifier, in non-interactive protocols. The results in
this section were motivated by our attempts to show that NISZK, = NISZKpgt. Although we
were unable to reach this goal, we were able to show that the verifier could be as powerful as
DET, if the simulator was restricted to be no more powerful than NL. The general approach
here is to replace a powerful verifier with a weaker verifier, by requiring the prover to provide
a proof to convince a weak verifier that the more powerful verifier would accept.

We define NISZK 4, as the class of problems with a NISZK protocol where the simulator
is in A and the verifier is in B (and hence NISZK4 = NISZK,4 4). We will consider the
case where A C B C NISZK 4 and A, B are both classes of functions that are closed under
composition.

» Theorem 27. NISZK 4 g = NISZK 4

13

14

497

498

499

500

501

502

503

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

522

523

524

525

Robustness for Space-Bounded Statistical Zero Knowledge

Proof. Let II be an arbitrary promise problem in NISZK 4 p with (S1, Vi, P1) being the A
simulator, B verifier, and prover for II’s proof system, where the reference string has length
p1(|z|) and the prover’s messages have length ¢;(|z|). Since V3 € B C NISZK 4, L(V1) has
a proof system (S3, Vs, Py), where the reference string has length po(|z|) and the prover’s
messages have length ¢a(]z).

> Lemma 28. We may assume without loss of generality that p1(n) > p2(n) + g2(n).

Proof. If it is not the case that p1(n) > p2(n) + g2(n), then let r(n) = p2(n) + g2(n) — p1(n).
Consider a new proof system (S, Vy, P{) that is identical to (S1, Vi, P1), except that the
reference string now has length p;(n) + r(n) (where P/ and V{ ignore the additional r(n)
random bits). The simulator S; uses an additional r(n) random bits and simply appends
those bits to the output of S;. The language L(V7) is still in NISZK 4, with a proof system
(54, V4, P) where the reference string still has length pa(n), since membership in L(V{) does
not depend on the “new” r(n) random bits, and hence S}, V4 and Pj, given input (z, or,p)
behave exactly as Ss, Vo and Py behave when given input (x, o, p). <

Then IT has the following NISZK 4 proof system:
Algorithm 4 Simulator S(z,71,72)

Data: z € [y Uy, Algorithm 5 Verifier
(0,p) « Si(z,71); V(z,(a,0"),(p.p))
(0, p) < S2((x,0,p),72); return Vs((z,0,p), 0", p')

return ((o,0"), (p,p’));

Algorithm 6 Prover P(z,00")

Data: x € Iy, UTly,, 0 € {0,1}7(2D) & ¢ {0, 1}P2(=D
if z € IIy.s then

p <+ Pi(z,0);

p — Py((z,0,p),0');

return (p,p’);

else
| return 1, 1;

end

Correctness: Suppose x € Ily.s, then given random o, with probability (1 — WM)
(z,0,Pi(x,0)) € L(V1) which means with probability (1 — m) it holds that
((z,0,p),0', Py(x,0, Pi(x,0)) € L(V3). So the probability that V accepts is at least:

1 1 1
(= 560e0) ~ so0ermrenraten) = ! ~ 300D

Soundness: Suppose x € IIy. When given a random o, we have that with probability less
than W Jp such that (z,0,p) € L(V1). For (z,0,p) ¢ L(V1), the probability that
there is a p such that ((z,0,p),0’,p’) € L(V2) is at most m (given random
c'). So the probability that V rejects is at least:

R N 1 B 1
(1= 550 ~ Sotmt=nrmn) = 1 ~ 200D

Statistical Zero-Knowledge: Let P} denote the distribution that samples ¢ and outputs

(0, Pi(x,0)). Similarly, let P (o,p) denote the distribution that samples ¢’ and outputs
(00', Po((x,0,p),0’). P* will be defined as the distribution ((c¢’), P(x,c,0'))) where o

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

551

552
553

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang

and ¢’ are chosen uniformly at random. In the same way, let S* refer to the distribution
produced by S on input z, let S} refer to the distribution produced by S;(x), and let
S5 (o, p) be the distribution induced by S5 on input (z, 0, p). Now we can partition the
set of possible outcomes ((a, '), (p,p’)) of S* and P* into 3 blocks:

1. ((o,0"), (p,p")) such that Vi(z, o, p) accepts and Va((z,0,p),c’,p’) accepts.
2. ((o,0"),(p,p")) such that Vi(z, 0, p) accepts and Va((z,0,p),0’,p’) rejects.
3. ((o,0"),(p,p’)) such that Vi(z,o,p) rejects.

We will call these blocks Ay, Ao, and Az respectively. Then by definition:

M PY =5 Y [Pris - Prl]

]6{1 2,3} yEA;

= Y P -Belll g Y3 (Bl + Prly]

yEA j€{2,3} y€A;

We concentrate first on A;.

> [Prlyl - Brly]]

yEA
- (> [Brlylo’ Erl(o")]~ Pala 1 a1))
(0'/71’/) {(o,p):y:((o,a/),(p,p’))eAl}
Here
ZPr a,0), (p,p))]
(o,p)
and

ZPr a,a'), (p,p))]-

(o,p)

We define 6(o”,p’) := | Prg-[(0’,p')] = Prp-[(0’,p)]|. Let us examine a single term of the
sum (%), for y = ((o,0), (p,p")):

| Priyle’, p' Pr{(e”,p')] = Prlylo’, '] Pr{(o”, p')]]
— [(Prlyle’.) Pr(e”. ") - Prlylo’f] Pr((o")])+

(Brlylo’, P Prl(o”, p)] = Prlylo”, p'] 1;5[(0',29')])\
= |(Brl(0,)] ~ (o)) Br{(o')] + Exl (o) 211" 5] — Bxl(e”, /)
<| Igff[(mp)] - 1;11“[(0729)]! Pr{(e”,)] + Elﬂ(mP)H Pri(e’,p')] - Pr((o”, p)]]

=| Igfr[(ff, p)l - 1;11“[(07 p)]| Pxl(o",)] + }215[(07 p)lé(a’,p')

15

16 Robustness for Space-Bounded Statistical Zero Knowledge

554 Thus (*) is no more than
. /A
>N | Brl(e,p)] = Brl(e p))| Exl(o”, p)]
(e",p") (o,p)
/ /
556 + Z Z E}‘[(O—a p)}d(a D)
(o,p") {(o,p):y=((0,0"),(p,p")) €A1}
< Pr| -P é(o’,p’
557 ZI lr (0.p)] Plf[(a,p)]|+ > (o', p)
(o,p) {(¢’,p"):3(o.p) ((0,0"),(p,p’)) €A1}
o5 = 2A(S7 (), Py (z)) + > i(o’,p")
{(e".p"):3(e,p) ((0,0"):(p:p"))E€AL}
2

59 Somt Z oo’ p") (%)
560 {(¢",p"):3(o:p) ((0,07),(p,p"))EAL}
s61 Let us consider a single term 6(o’,p’) in the summation in (xx). Recalling that the
562 probability that S(z) = ((o,0"),(p,p’)) is equal to the probability that S;(z) = (o,p)
563 and Ss(x,0,p) = (¢/,p'), we have
564 * Z Pl“ U U))]

Up)
= >_ Pil((0.0"), (0.2')(o,) Exl(o. p)]

(o:p)
=Y Pr [(0'D) Pr[()]

53 (U»p

567 (a,p)

568 and similarly Prp«[(c’,p’)] = Z(U’p) Prps (o [(0'p)] Pre;[(0,p)]. Thus

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 17

569 5(0/7p/) = |Pr[a’,p/] - PI‘[O’I,p/H
570 =| Z Pr [(e”,)] Pxl(o,p)] > Pr [(o',p)]Prlo,p|
59 (o—p)P;(U’p) Py
5n = Z b (o,]Pr[(ff,p)] - > Pr [(¢',p)]Pr((o,p)]
(,) Pz (a',p) Sl
72 + Z Pr (¢!, p)]Pr((o,p)] = > Pr [(o/,p))] Pr((o,p)]]
P2 (G,p) Sl PQ (O}P) Pl
(o.p) (o.p)
= Pr [(¢/,p)]— Pr [(¢',p)]) Pr[(o,
[(P (@B = Pr[(@5)])Bri(e.p)
(o.p)
+ Pr [(¢’,p)](Pr[(c,p)] — Pr|(o,
574 (Z) P;(U)p)[(P)](s;[(p)] Pl*[()|
o5 <>l Pr l(o',p)] - Pf(’;p)[(a’,p’)]}g’l*r[(cr,p)]
(op) 2 2
+ (o', p"]| Pr[(o, p)] — Pr[(o,
576 (UZ: P (J’p p)H s [(p)] Pf[(p)”
577 = Z 2A(S5(0,p), Ps(o,p)) Pr[(U)]
(o,p)
st + Y Pr [(o,p)]|Prl(o,p)] - Prl(o,p)]|
P (o,p) 57 Py
(mp)
/ /
579 < Z |(1 o)l S* U p =+ Z P; (0 g,p)” IS)TI‘[(U’p)] - glf[(aap)”
_ 2 / /
0 = Slele (e ta(eh T > P;f()(f,p)[(ﬂ)] gfr[(a,p)] - Elf[(a,p)ﬂ
581 (o.p)
582 where the last inequality holds, since the summation in (%) is taken over tuples, such
583 that each (z,0,p) is a YES instance of L(V;).
584 Replacing each term in (x*) with this upper bound, thus yields the following upper bound
585 on (*)
2 2 P " o)) P P
o0 ol T (Z) Sl o Qe+ (2 (Z) P;(;p)[(g)] Sfr[(U,p)] - P1£[(U7p)]’
o’,p’ o,p

587

) 9 . 9p2(lz)+az2(l=|)
” = Sfel T gleltp (e (el T > ZP*@,

)] Brl(ep)] = Brl(e.)]

(o) p)
(Iel)+ 212
2 2.9m(zh+ax(s .

59“ = ol T gl radey T 2200)
” 9 9.om(eh+a(z) o

< — _—
o = ofel ¥ oleltm (et () T 3]
593

< 2 2 2
594 >~ ﬁ + W + W
505 where the last inequality follows from Lemma 28. Thus, A; contributes only a negligible

596 quantity to A(S*, P*).

18

597

598

599

600

601

602

603

604

605

606

607

608

609

610

612

613

614

615

616

617

618

619

620

621

622

623

624

Robustness for Space-Bounded Statistical Zero Knowledge

We now move on to consider A, and As.

. 1 1
llz*r[y € Ag] = Z Pr[Va(z, 0,p) rejects] < Z G -
{(o.p):(z,0,p)eL(V1)} (o.p)

IN

2lzl”

2
Ef[y € AQ] = Z (Pr[‘/g(l‘, va) rejeCtS} + A(S;(a‘,p),P;(o‘,p))) < w
{(o.p):(z,0,p)€L(V1)}

A similar and simpler calculation shows that Prp-[y € As] < ﬁ and Prg«[y € As3] < 2|21,‘ ,
to complete the proof.

A

» Corollary 29. NISZK = NISZKxco = NISZKaco pet = NISZKnp pET

The proof of Theorem 27 did not make use of the condition that the verifier is at least as
powerful as the simulator. Thus, maintaining the condition that A C B C NISZK 4, we also
have the following corollary:

» Corollary 30. NISZKp = NISZKp 4
» Corollary 31. NISZK4 g C NISZKp 4

» Corollary 32. NISZKper = NISZKpger aco

7 SZK, closure under <k, .. reductions

Although our focus in this paper has been on NISZK| ; in this section we report on a closure
property of the closely-related class SZK|.
The authors of [11], after defining the class SZK, wrote:

We also mention that all the known closure and equivalence properties of SZK (e.g.
closure under complement [21], equivalence between honest and dishonest verifiers
[14], and equivalence between public and private coins [21]) also hold for the class
SZK..

In this section, we consider a variant of a closure property of SZK (closure under gf)’f_tt
[24]), and show that it also holds® for SZK| . Although our proof follows the general approach
of the proof of [24, Theorem 4.9], there are some technicalities with showing that certain
computations can be accomplished in logspace (and for dealing with distributions represented
by branching programs instead of circuits) that require proof. (The characterization of SZK
in terms of reducibility to the Kolmogorov-random strings presented in [3] relies on this
closure property.)

5 We observe that open questions about closure properties of NISZK also translate to open questions
about NISZK, . NISZK is not known to be closed under union [22], and neither is NISZK_. Neither is
known to be closed under complementation. Both are closed under conjunctive logspace-truth-table
reductions.

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang

» Definition 33. (From [2/, Definition 4.7]) For a promise problem I, the characteristic
function of I is the map X : {0,1}* — {0,1,%} given by

1 Zf.”[: c Hyes,
Xn(x) =40 ifx €Iy,

* otherwise.

» Definition 34. Logspace Boolean formula truth-table reduction (<t .. reduction): We
say a promise problem Il logspace Boolean formula truth-table reduces to I if there
exists a logspace-computable function f, which on input x produces a tuple (y1,...,Ym) and
a Boolean formula ¢ (with m input gates) such that:

S Hch - ¢(XF(ZJ1), ,XF(ym)) =1

xelly, = gf)(Xp(yl), RN Xp(ym)) =0

We begin by proving a logspace analogue of a result from [24], used to make statistically
close pairs of distributions closer and statistically far pairs of distributions farther.

» Lemma 35. (Polarization Lemma, adapted from [24, Lemma 3.3]) There is a logspace-
computable function that takes a triple (Py, P, 1"'), where Py and Py are branching programs,
and outputs a pair of branching programs (Q1,Q2) such that:

1

AP, Py) < =

3 = A(Q1,Qq) <27F

2

A(Pl,PQ) > g — A(Ql,Qg) >1-— 2_k
To prove this, we adapt the same method as in [24] and alternate two different procedures,
one to drive pairs with large statistical distance closer to 1, and one to drive distributions

with small statistical distance closer to 0. The following lemma will do the former:

» Lemma 36. (Direct Product Lemma, from [24, Lemma 3.4]) Let X and Y be distributions
such that A(X,Y) =e. Then for all k,

ke > A(@FX,@%Y) > 1 — 2exp(—ke?/2)

The proof of this statement follows from [24]. To use this for Lemma 35, we note that a
branching program for ®* P can easily be created in logspace from a branching program P
by simply copying and concatenating k independent copies of P together.

We now introduce a lemma to push close distributions closer:

» Lemma 37. (XOR Lemma, adapted from [24, Lemma 3.5]) There is a logspace-computable
function that maps a triple (Py, Py, 1), where Py and Py are branching programs, to a pair
of branching programs (Qo, Q1) such that A(Qo, Q1) = A(Po, P)F. Specifically, Qo and Q;
are defined as follows:

Qo = ® Py iy nr{y€{0,1}": @icpys = 0}
i€ k]

Q1= Py iy <r{ye{0, 1} @iy =1}
i€ (k]

19

20

660

661

662

663

664

665

666

667

668

669

670

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

Robustness for Space-Bounded Statistical Zero Knowledge

Proof. The proof that A(Qo, Q1) = A(Py, P1)* follows from [24, Proposition 3.6]. To finish
proving this lemma, we show a logspace-computable mapping between (Py, P;,1%) and
(Qo,Q1)-

Let £ and w be the max length and width between Py and P;. We describe the structure
of Qq, with @, differing in a small step: to begin with, Qg reads the k — 1 random bits
Y1,---,Yx—1. For each of the random bits, it can pick the correct of two different branches,
one having Py built in at the end and the other having P;. We will read y;, branch to Py
or P; (and output the distribution accordingly), then unconditionally branch to reading yo
and repeat until we reach y;_1 and branch to Py or P;. We then unconditionally branch to
y1 and start computing the parity, and at the end we will be able to decide the value of y;

which will allow us to branch to the final copy of Py or P;.
1 1] ()

, .

Figure 1 Branching program for Qo of Lemma 37

Creating (Qo, Q1) can be done in logspace, requiring logspace to create the section to
compute y; and logspace to copy the independent copies of Py and P;.
<

We now have the tools to prove Lemma 35.
Proof. (of Lemma 35) From [24, Section 3.2], we know that we can polarize (Py, Py, 1%) by:

Letting | = [logy /3 6k], j = 31

Applying Lemma 37 to (Py, Py, 1%) to get (P}, P})
Applying Lemma 36: P} = @/ P}, P;' = @I P]
Applying Lemma 37 to (PY, Py, 1¥) to get (Qo, Q1)

Each step is computable in logspace, and since logspace is closed under composition, this
completes our proof. <

We also mention the following lemma, which will be useful in evaluating the Boolean
formula given by the <k, .. reduction.

» Lemma 38. There is a function in NC that takes as input a Boolean formula ¢ (with m
input bits) and produces as output an equivalent formula v with the following properties:

1. The depth of ¥ is O(logm).

2. Y is a tree with alternating levels of AND and OR gates.

3. The tree’s non-leaf structure is always the same for a fized input length.
4. All NOT gates are located just before the leaves.

Proof. Although this lemma does not seem to have appeared explicitly in the literature,
it is known to researchers, and is closely related to results in [12] (see Theorems 5.6 and
6.3, and Lemma 3.3) and in [4] (see Lemma 5). Alternatively, one can derive this by using
the fact that the Boolean formula evaluation problem lies in NC! [8, 9], and thus there is
an alternating Turing machine M running in O(logn) time that takes as input a Boolean

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710
711

712

713

714

715

716

717

718

719

720

721

722

723
724

725

726

727

728

729

730

731

732

733

734

735

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang

formula 1 and an assignment « to the variables of ¢, and returns ¥ («). We may assume
without loss of generality that M alternates between existential and universal states at each
step, and that M runs for exactly clogn steps on each path (for some constant c), and that
M accesses its input (via the address tape that is part of the alternating Turing machine
model) only at a halting step, and that M records the sequence of states that it has visited
along the current path in the current configuration. Thus the configuration graph of M, on
inputs of length n, corresponds to a formula of O(logn) depth having the desired structure,
and this formula can be constructed in NC'. Given a formula ¢, an NC! machine can thus
build this formula, and hardwire in the bits that correspond to the description of ¢, and
identify the remaining input variables (corresponding to M reading the bits of «) with the
variables of ¢. The resulting formula is equivalent to ¢ and satisfies the conditions of the
lemma. <

» Definition 39. (From [2/, Definition 4.8]) For a promise problem I, we define a new
promise problem ®(II) as follows:

(I)(H)Yes = {(¢7I17- <. 71'm) : (ZS(XH(xl)w . 5Xﬂ(xm)) = 1}

(M no = {(D, x1, ..., 2m) : &(Xu(z1),. .., Xu(xm)) =0}
» Theorem 40. SZK| is closed under §tf_tt reductions.

To begin the proof of this theorem, we first note that as in the proof of [24, Lemma 4.10],
given two SDgp pairs, we can create a new pair which is in SDgp y, if both of the original
two pairs are (which we will use to compute ANDs of queries.) We can also compute in
logspace the OR query for two queries by creating a pair (P; ® S1, P, ® S3). We prove that
these operations produce an output with the correct statistical difference with the following
two claims:

> Claim 41, {(y1,y2)| Xspge (1) V Xspgp (y2) = 1} <4, SDgp.

Proof. Let y; = (A;,B1) and y2 = (As, B2). Let p > 0 be a parameter, where we are
guaranteed that:

(Ai, B;) € SDgpy = A(A;,B;) >1—p
(A;, B;) € SDgp, Ny = A(A;,B;) <p
Then consider:
y= (A1 ® Az, B1 ® By)
Let us analyze the Yes and No instance of Xspg, (y1) V Xspge (y2):

YES: A(Al & Ag,Bl & Bg) Z max{A(Al & Bg,Bl & Bg)7A(Bl & AQ,Bl (9 BQ)} =
max{A(A1, B1),A(As, B2)} > 1 —p.
NO: A(Al ® Az, B1 ® BQ) < A(A]_,Bl) + A(AQ,BQ) < 2p.

The second equality is from [24, Fact 2.3]. <

In our Boolean formula, we will have only d = O(log m) depth, so we have this OR operation
for at most % levels (and the soundness gap doubles at every level). Since p = 2%,1 at the
beginning, the gap (for NO instance) will be upper bounded at the end by:

at1 1 mOW

<2777 — = <1/3.
2m 2m /

21

22

736

737

738

739

740

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

Robustness for Space-Bounded Statistical Zero Knowledge

> Claim 42. {(ylay2)|XSDBp(y1) A\ XSDBP (yg) = 1} Slr‘n SDgp.

Proof. Let y; = (A1, B1) and yo = (Ag, B). Let p > 0 be a parameter, where we are
guaranteed that:

(AZ,BIL) S SDBP,Y — A(A“Bz) >1 —p

(Ai,Bi) S SDBP,N — A(Az,Bz) <p

We can construct a pair of BPs y = (A4, B) whose statistical difference is exactly
A(A1,By) - A(Ag, By)

The pair (A4, B) we construct is analogous to (Qo, Q1) in Lemma 37, and can be created
in logspace with 2 random bits by, b;. We have A = (A1, As) if b = 0 and A = (Bq, Ba) if
bo =]., while B = (Al,Bg) if b2 is 0 and (AQ,Bl) if bl =1.

Let us analyze the Yes and No instance of Xspg, (y1) A Xspgp (y2):

YES: A(Al,Bl) . A(AQ,BQ) > (1 7]))2.
NO: A(Al,Bl) . A(A27 BQ) < IIlaX{A(Al, Bl)7 A(AQ,BQ)} <Dp.

<

In our Boolean formula we will have only d = O(logm) depth, so we have this AND operation

% levels (and the completeness gap squares itself at every level). Since p = o

for at most 5

at the beginning, the gap (for YES instance) will be lower bounded at the end by:
1 it 1 ,,,0m 1

>(1—2*m)22 :(1_27» > (1

)2""/m ~ (1)1/m > g

~om e 3
Proof. (of Theorem 40) Now suppose that we are given a promise problem II such that
II Slt_)fftt SDgp. We want to show II SILD SDgp, which by SZK| ’s closure under SI';l reductions
implies IT € SZK,.

We follow the steps below on input x to create an SDgp instance (Fp, Fy) which is in
SDBp7y if x € Ily:

1. Run the L machine for the S{;f_tt reduction on = to get queries (q1,...,qm) and the
formula ¢.

2. Build ¥ from ¢ using Lemma 38. Replace negated queries —¢q; with the query produced by
the reduction from SDgp y to SDgp n on ¢;, and then apply Lemma 35 (the Polarization
Lemma) with k¥ = n on these queries to get (y1,...,yx). Pad the output bits of each
branching program so each branching program has m output bits.

3. Build the template tree T. At the leaf level, for each variable in v, we will plug in the
corresponding query y;. By Lemma 38 the tree is full.

4. Given z and designated output position j of Fy or Fi, there is a logspace computation
which finds the original output bit from y; ... y,, that bit j was copied from. This machine
traverses down the template tree from the output bit and records the following;:

The node that the computation is currently at on the template tree, with the path
taken depending on j.

The position of the random bits used to decide which path to take when we reach
nodes corresponding to AND.

This takes O(logm) space. We can use this algorithm to copy and compute each output
bit of Fy and F}, creating (Fp, Fy) in logspace.

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang

For step 4, we give an algorithm Eval(z, j,1,y1,...,ym) to compute the jth output bit of
Fy or Fy on z, for a formula 1) satisfying the properties of Lemma 38, a list of SDgp queries
(Y1,---,Ym), and j. Without loss of generality, we lay out the algorithm to compute only
F()(LL‘)

Outline of Eval(x, j, ¥, Y1, ..., Ym) :

The idea is to compute the jth output bit of Fy by recursively calculating which query
output bit it was copied from. To do this, first notice that the AND and OR operations
produce branching programs where each output bit is copied from exactly one output bit of
one of the query branching programs, so composing these operations together tells us that
every output bit in Fj is copied from exactly one output bit from one query. By Lemma 38
and our AND and OR operations preserving the number of output bits, we also have that
if every BP has [output bits, Fy will have 2¢] = |¢|l output bits, where a is the depth of
1. This can be used to recursively calculate which query the jth bit is from: for an OR
gate, divide the output bits into fourths, and decide which fourth the jth bit falls into (with
each fourth corresponding to one BP, or two fourths corresponding to a subtree.) For an
AND gate, divide the output into fourths, decide which fourth the jth bit falls into, and
then use the 4 random bits for the XOR operation to compute which fourth corresponds to
which branching programs (2 fourths will correspond to 1 BP or subtree, and the other 2
fourths will correspond to the 2 BPs from the other subtree.) If j is updated recursively,
then at the query level, we can directly return the j’th output bit. This can be done in
logspace, requiring a logspace path of “lefts” and “rights” to track the current gate, logspace
to record and update j’, logspace to compute 2% at each level, and logspace to compute
which subtree/query the output bit comes from at each level.

The resulting BP will be two distributions that will be in SDgp,y <= x € Ily. By this
process II g';n SDgp. <

Acknowledgments

This work was done in part while EA and HT were visiting the Simons Institute for the
Theory of Computing. This work was carried out while JG, SM, and PW were participants
in the 2022 DIMACS REU program at Rutgers University. We thank Yuval Ishai for helpful
conversations about SREN, and we thank Markus Lohrey, Sam Buss, and Dave Barrington
for useful discussions about Lemma 38. We also thank the anonymous referees for helpful
comments.

—— References

1 Eric Allender, John Gouwar, Shuichi Hirahara, and Caleb Robelle. Cryptographic hardness
under projections for time-bounded Kolmogorov complexity. Theoretical Computer Science,
940:206-224, 2023. doi:10.1016/j.tcs.2022.10.040.

2 Eric Allender and Shuichi Hirahara. New insights on the (non-) hardness of circuit minimization
and related problems. ACM Transactions on Computation Theory (TOCT), 11(4):1-27, 2019.

3 Eric Allender, Shuichi Hirahara, and Harsha Tirumala. Kolmogorov complexity characterizes
statistical zero knowledge. In 14th Innovations in Theoretical Computer Science Confer-
ence (ITCS), volume 251 of LIPIcs, pages 3:1-3:19. Schloss Dagstuhl - Leibniz-Zentrum fir
Informatik, 2023. doi:10.4230/LIPIcs.ITCS.2023.3.

4 Eric Allender and Ian Mertz. Complexity of regular functions. Journal of Computer and
System Sciences, 104:5-16, 2019. Language and Automata Theory and Applications - LATA
2015. doi:https://doi.org/10.1016/j.jcss.2016.10.005.

23

https://doi.org/10.1016/j.tcs.2022.10.040
https://doi.org/10.4230/LIPIcs.ITCS.2023.3
https://doi.org/https://doi.org/10.1016/j.jcss.2016.10.005

24

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

Robustness for Space-Bounded Statistical Zero Knowledge

10

11

12

13

14

15

16

17

18

19

20

21

22

Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting uniform
and nonuniform upper bounds. Journal of Computer and System Sciences, 59(2):164—181,
1999. doi:https://doi.org/10.1006/jcss.1999.1646.

Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC°. SIAM Journal
on Computing, 36(4):845-888, 2006. doi:10.1137/S0097539705446950.

V. Arvind and T. C. Vijayaraghavan. Classifying problems on linear congruences and abelian
permutation groups using logspace counting classes. computational complexity, 19(1):57-98,
November 2009. doi:10.1007/s00037-009-0280-6.

Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing (STOC), pages 123-131. ACM, 1987.
doi:10.1145/28395.28409.

Samuel R Buss. Algorithms for Boolean formula evaluation and for tree contraction. Arithmetic,
Proof Theory, and Computational Complexity, 23:96-115, 1993.

Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient multi-party com-
putation over rings. In Proc. International Conference on the Theory and Applications of
Cryptographic Techniques; Advances in Cryptology (EUROCRYPT), volume 2656 of Lecture
Notes in Computer Science, pages 596—613. Springer, 2003. doi:10.1007/3-540-39200-9_37.

Zeev Dvir, Dan Gutfreund, Guy N Rothblum, and Salil P Vadhan. On approximating the
entropy of polynomial mappings. In Second Symposium on Innovations in Computer Science,
pages 460-475. Tsinghua University Press, 2011.

Moses Ganardi and Markus Lohrey. A universal tree balancing theorem. ACM Transactions
on Computation Theory, 11(1):1:1-1:25, 2019. doi:10.1145/3278158.

Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero knowledge be made
non-interactive? or On the relationship of SZK and NISZK. In Annual International Cryptology
Conference, pages 467-484. Springer, 1999. doi:10.1007/3-540-48405-1_30.

Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-knowledge
equals general statistical zero-knowledge. In Proceedings of the 30th Annual ACM Symposium on
the Theory of Computing (STOC), pages 399-408. ACM, 1998. doi:10.1145/276698.276852.
Ulrich Hertrampf, Steffen Reith, and Heribert Vollmer. A note on closure properties of
logspace MOD classes. Information Processing Letters, 75(3):91-93, 2000. doi:10.1016/
50020-0190(00) 00091-0.

Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In Proc. International Conference on Automata, Languages, and
Programming (ICALP), volume 2380 of Lecture Notes in Computer Science, pages 244-256.
Springer, 2002. doi:10.1007/3-540-45465-9_22.

Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random
NC. Combinatorica, 6(1):35-48, 1986. doi:10.1007/BF02579407.

Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform,
and learnability. J. ACM, 40(3):607—620, 1993. doi:10.1145/174130.174138.

Pierre McKenzie and Stephen A. Cook. The parallel complexity of Abelian permutation group
problems. STAM Journal on Computing, 16(5):880-909, 1987. doi:10.1137/0216058.

Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 345-354. ACM, 1987. doi:10.1145/28395.383347.

Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. Journal of
Computer and System Sciences, 60(1):47-108, 2000. doi:10.1006/jcss.1999.1664.

Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge proofs
for lattice problems. In Proc. Advances in Cryptology: 28th Annual International Cryptology
Conference (CRYPTO), volume 5157 of Lecture Notes in Computer Science, pages 536-553.
Springer, 2008. doi:10.1007/978-3-540-85174-5_30.

https://doi.org/https://doi.org/10.1006/jcss.1999.1646
https://doi.org/10.1137/S0097539705446950
https://doi.org/10.1007/s00037-009-0280-6
https://doi.org/10.1145/28395.28409
https://doi.org/10.1007/3-540-39200-9_37
https://doi.org/10.1145/3278158
https://doi.org/10.1007/3-540-48405-1_30
https://doi.org/10.1145/276698.276852
https://doi.org/10.1016/S0020-0190(00)00091-0
https://doi.org/10.1016/S0020-0190(00)00091-0
https://doi.org/10.1016/S0020-0190(00)00091-0
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/BF02579407
https://doi.org/10.1145/174130.174138
https://doi.org/10.1137/0216058
https://doi.org/10.1145/28395.383347
https://doi.org/10.1006/jcss.1999.1664
https://doi.org/10.1007/978-3-540-85174-5_30

872

873

874

875

876

877

878

879

880

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 25

23

24

25

26

Vishal Ramesh, Sasha Sami, and Noah Singer. Simple reductions to circuit minimization:
DIMACS REU report. Technical report, DIMACS, Rutgers University, 2021. Internal
document.

Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J. ACM,
50(2):196-249, 2003. doi:10.1145/636865.636868.

Jacobo Tordn. On the hardness of graph isomorphism. SIAM Journal on Computing,
33(5):1093-1108, 2004. doi:10.1137/5009753970241096X.

Heribert Vollmer. Introduction to circuit complezity: a uniform approach. Springer Science &
Business Media, 1999. doi:10.1007/978-3-662-03927-4.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1145/636865.636868
https://doi.org/10.1137/S009753970241096X
https://doi.org/10.1007/978-3-662-03927-4

