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REALIZING A FAKE PROJECTIVE PLANE AS A
DEGREE 25 SURFACE IN P°

LEV BORISOV AND ZACHARY LIHN

ABSTRACT. Fake projective planes are smooth complex surfaces of
general type with Betti numbers equal to that of the usual projec-
tive plane. Recent explicit constructions of fake projective planes
embed them via their bicanonical embedding in P?. In this paper,
we study Keum’s fake projective plane (a = 7,p = 2,{7}, D327)
and use the equations of [1] to construct an embedding of fake
projective plane in P°. We also simplify the 84 cubic equations
defining the fake projective plane in PY.

1. INTRODUCTION

The Enriques-Kodaira classification splits compact complex sur-
faces S into 10 classes based largely on their Kodaira dimension k().
While surfaces with Kodaira dimension < 2 are better understood,
those of general type with maximum Kodaira dimension k(S) = 2 still
need a detailed classification.

To each minimal model of a surface S one associates a triple of
numerical invariants (py,q, K2), where p, = h%(S, Kg) is the geo-
metric genus, ¢ = h'(S,Og) is the irregularity, and K2 is the self-
intersection number of the canonical class Kg. These determine all the
other classical invariants such as the topological Euler characteristic
etop(S) = 12x(Os) — K% and the plurigenera P,,(S) = h%(S, mKs) [6].
It turns out that producing surfaces with low p, and ¢ is quite diffi-
cult and a complete classification appears far away [2]. In the case of
py = q¢ = 0, one has the Bogomolov-Miyaoka-Yau inequality K% < 9.
The focus of this paper is the extreme case of surfaces with p, = ¢ =0
and K2 = 9. These are the fake projective planes (often called FPPs

for short) which by definition are complex projective surfaces of general
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type with Hodge diamond

which is the same as that of CP?. The existence of a fake projective
plane was first proved by Mumford [13] by expressing the surface as a
quotient of a 2-adic analog of the complex two-dimensional ball

B2 ={(z,2) € C*: |z1]* + > < 1}
by a finitely generated group.

The general theory ensures that each fake projective plane is alge-
braic. By Noether’s formula we know that ¢ = 9 and so all FPPs have
c? = 3¢y = 9, where ¢y, ¢y are the Chern numbers. This implies that
each FPP is a quotient of 8% by an infinite discrete group [15]. These
ball quotients are determined by their fundamental group up to holo-
morphic or anti-holomorphic isomorphism [12] and come in complex
conjugate pairs [8]. Each of the groups are arithmetic [9] and come in
a finite list of classes [14].

Based on the work of Prasad and Yeung [14], a complete classifi-
cation was obtained by Cartwright and Steger [3]. All fake projective
planes are quotients of B? by explicit co-compact torsion-free arith-
metic subgroups of PU(2, 1). The classification was accomplished with
significant use of computer calculations. There are 50 conjugate pairs
of fake projective planes split among 28 classes. Each FPP is a ball
quotient B%/T" where T is the fundamental group, and where the auto-
morphism group is N(I')/I" with N(I") the normalizer of I" in PU(2,1).
The torsion of the Picard group of P, is equal to the abelianization
of I'. Various cover relations between related surfaces are also known

3]

1.1. The Geometry of Keum’s Fake Projective Plane. In this
paper, we will focus on the fake projective plane (a = 7,p = 2, {7}, D32;)
in Cartwright-Steger classification. First constructed in [7], it is named
Keum’s fake projective plane and we will denote it by P%_ . Its auto-
morphism group has maximum order among all FPPs; being equal to
the semi-direct product of a normal cyclic subgroup C7 of order 7 and
a non-normal cyclic subgroup Cj of order 3. By the Cartwright-Steger
classification, there are three other fake projective planes in its class
including Mumford’s first fake projective plane.
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For the rest of this paper, we will let K denote the canonical class
of Keum’s fake projective plane. The minimal resolution Y of the
quotient P4, /C7 by the subgroup C7 of its automorphism group has
interesting geometry which we describe briefly.

Recall that a singular point of type %(1, a) is a cyclic quotient sin-
gularity given local analytically by the action (z,y) — (Cx, (%) on C?
for ¢ a primitive mth root of unity. Y has three singular points of type
1(1,3) permuted by the residual Cs automorphism group of P%.,,,. It
is also a Dolgachev surface fibered over P!, with generic fibers of genus
1, two multiple fibers, three nodal fibers, and one fiber of type Iy. The
two multiple fibers are 2F3 and 3F5, which have multiplicity 2 and 3
respectively. The reductions F3 and Fj are linearly equivalent to 3Ky
and 2Ky . We refer to [7, 1] for more details.

1.2. Explicit Construction of P%_, . In [1], Keum’s fake projective

plane was explicitly constructed via its bicanonical embedding as the
vanishing set of 84 cubic equations in P°. One first constructs a bira-
tional model Y, of Y as a system of quadrics in 8 variables defined over
Q(v/=7). Included is a construction of the double and triple fibers and
the C'5 action on Y. A degree 7 extension of the field of rational func-
tions of Yy gives the sevenfold cover of Yy, which is exactly P%, . . Ten
sections of O(2K) are constructed from this description and the em-
bedding in PY is finally given by 84 cubic equations in the 10 variables
P, ..., Py

A perennial question is how to simplify the equations of a fake pro-
jective plane, which can have polynomials with coefficients hundreds
to thousands of decimal digits long. In this paper, we give a simplified
version of the equations of Keum’s fake projective plane in [1]. We use
the equations to find an embedding of P%,, = as a degree 25 surface
in P°. The embedding is given by sections of O(5H), where H is a
divisor such that 3H is linearly equivalent to K. Finally, we exhibit

the surface as a system of 56 sextics in P5 with coefficients in the field

QV=T).

The paper is organized as follows. In Section 2 we outline the steps
to simplify the 84 cubics defining P2 in PY. We follow the strategy

Keum
described in [1] by explicitly calculating the nonreduced linear cuts on

P2 corresponding to 2-torsion in the Picard group. Using these

equations, in Section 3 we describe the steps to embed P%,, in P°.

Specifically, we compute global sections of O(5H) as global sections of
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the divisor 18 H — 9H — 4H and explain the key idea that allowed us
to find H® (P}, O(4H)). Section 4 concludes with future directions.

Remark 1.1. A defining feature of recent constructions of fake projec-
tive planes is their heavy use of computer algebra software. To that
end, this project depended heavily on the use of the Mathematica soft-
ware system [10] and the computer algebra systems Magma [11] and
Macaulay?2 [4].

Remark 1.2. The 84 cubics in P? and the 56 sextics in P° are still too
large to be included in the printed paper.

2. SIMPLIFICATION OF KEUM’S FAKE PROJECTIVE PLANE

We will begin by simplifying the explicit equations of Keum’s fake
projective plane P2 found in [1]. This is done by looking for nonre-

Keum
duced cuves on P2 which correspond to 2-torsion in the Picard

Keum
group. We proceed by making a coordinate change that makes the

curve nicer in our new basis.

Step 1: Finite Field Search for Nonreduced Curves. By the
Cartwright-Steger classification, the torsion in the Picard group of
P2, . is C3. In addition, the automorphism group is C; x Cs, the
semidirect product of C7 and Cj.

We claim that 2-torsion classes give nonreduced curves in [2K].
Let L be a 2-torsion class in the Picard group. By [5], we have
hO (P2 K + L) = 1. Hence, up to scaling, there is a unique sec-

Keum>

tion s, € HO(P? K + L). The square of sy, is in H°(P? 2K)

Keum> Keum>
and gives rise to a nonreduced curve.

We will further assume that the nonreduced curve is ('3 invariant.
This reduces the search to nonreduced curves of the form

CL0P0+CL1(P1—|—P2—|—P3)+CL2(P4+P5+P6)+CL3(P7—|—P8—|—P9)

up to scaling (so we subsequently set ag = 1). To look for such curves
we look at a finite field reduction of P%.,,. over F, for suitable p.
More precisely, such suitable p contains a square root of —7 and has
the same Hilbert polynomial for P%,_ = modulo p. We picked p =
43 with /=7 = 6 mod 43 which was an arbitrary small prime with
the aforementioned conditions. Using Magma, we ran an exhaustive
search for all aq, as, as in Fy3 and checked if the corresponding curve is

nonreduced. We obtained the curve
Py+24(Py+ P+ P3) + 0(Py + Ps + Ps) + 28(Pr + Ps + Py).
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Step 2: Lift to Characteristic 0. We lift this curve to Q(v/—7) as
follows. Using Magma, we calculate some points in Fy3 lying on P%_
and the nonreduced curve. We then apply a variant of Hensel lifting to
lift the curve to Z/43*Z for higher k at each step, obtaining a p-adic

approximation.

The lifting process was done by finding, at each point, two linearly-
independent tangent vectors in P?(IF,3) that are orthogonal to all poly-
nomials defining P%, ~ and the linear cut. We modified the points,
tangent vectors, and the linear cut at each stage to lift them to higher
powers of 43 such that the orthogonality conditions held; this reduced
to solving a system of linear equations modulo 43. After a sufficiently
high power of 43 we identify the corresponding algebraic numbers by

applying a lattice reduction algorithm. We obtain the curve

(=1 +/=7) (272 — 848+/=7)

Po+f(P1+P2+P3)+ - (Py+ Ps + Fs)
832 — 192/ =7
+( 7 >(P7+P8+P9)

which we verify is nonreduced numerically.

Thus we have found one nontrivial Cs-invariant torsion line bundle.
It is not Cr-invariant because the corresponding nonreduced linear cut
is not C'; invariant. Its orbit therefore has 7 elements, which combined
with knowledge of the torsion of the Picard group as C3 shows that
the action of the automorphism group on the torsion in Picard group
is transitive.

Step 3: Setting Up the Coordinate Change. Finally we set up
the coordinate change to find a nicer basis for H°(P%.,,,,, 2K) in order
to simplify the equations defining the fake projective plane. We use a
coordinate change from P; to (); that respects the automorphisms on

the surface such that the the nonreduced cut becomes

Qo+ Q1+ Q2 + Q3 + Q7 + Qs + Q.

These conditions leave one free parameter in the coordinate change.
We fix the free parameter by choosing it in such a way to set the
"simplest” coefficient in the equations to 1. This allows us to find a
version of the 84 equations with significantly smaller coefficients.

We simplify the equations further by reducing the number of mono-
mials in the equations. We take random linear combinations of the
seven equations in each C7 weight and select those that span the space
and have the fewest monomials.
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3. EMBEDDING OF A FAKE PROJECTIVE PLANE INTO P°

In this section, we will describe the process that led us to find the
equations of an embedding of P%,_ ~ in P°. Let H be a divisor such

that 3H = K, where K = Kpz is the canonical divisor of P2 -
Calculations of h°(P%,,,,.,nH) show that |5H| has the expected dimen-
sion such that the corresponding map to projective space is P°. Thus
we aim to construct |5H| explicitly, which will give the desired map
P2 .. — PS5

Keum

n 314156789 ]10]|11]12
nH) | 0[3|6]10[15]21|28|36|45]|55
nH) for different

ho (P%GUJ?’TU

TABLE 1. Dimensions of H°(P%, . .
values of n, where 3H = K

Recall that Y denotes the quotient P%.,  /C7 of Keum’s fake pro-
jective plane by its C'; automorphism subgroup. It has residual auto-
morphism group C3 and has a double fiber F' = 3Ky

We will construct |5H| as the space |18 H —9H —4H|. We first find
|9H| = |18 H — 9H| by expressing 112 cubic equations in the @); (which
lie in 18H = 6K) that vanish on 9H. Crucial to this construction is
the preimage of the double fiber I’ of Y which we use to find points on
9H. We then compute |4H|. This required the use of several important
ideas which are detailed in Step 2 below. Finally, after constructing
4H we may find 5H as linear combinations of the equations of 9H
vanishing on 4H. We conclude by using the explicit equations in P° to

reconstruct the Cs action on P%_, . in its embedding into 5.

Step 1: Constructing |[9H|. The preimage of the double fiber on Y
has divisor class 3K = 9H [1]. Hence to construct |9H| we are led
to find polynomials on Y vanishing on the double fiber. Recall that
[1] constructs the surface Y as a system of quadrics in the variables
Ug, Uy, W1, - . ., Wg With the double fiber given by {u; = 0}. We com-
pute a number of random points on the double fiber of Y and use the
equations to construct points on P%_  lying on the preimage of the
double fiber. We then look for polynomials vanishing on these points
to compute H(P% 9H). The search for cubic polynomials gave 112

Keum>

cubics with 16 in each C'; weight.

Step 2: Constructing |[4H|. We may attempt to construct [4H| as
follows. The action of the C; automorphism subgroup on H° (PP 4H)

Keum>
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gives a Cy-representation which splits H°(P%,,, ~4H) into three one-
dimensional C-eigenspaces. The Holomorphic Lefschetz Fixed-Point
formula shows that the eigenvalues are &3, €%, €%, where ¢ is a seventh
root of unity. Thus H°(P%,_, ,4H) = Crs @& Crs & Crg where 73,75, 76
are sections of 4H with C-weights 3, 5, and 6 respectively. In addition,
the Cs-action on the surface implies r5 = o(r3),rs = 02(r3) for o an
order 3 automorphism on P2 The product d = r3rsrg is therefore

Keum-
a Cs-invariant section with Cr-weight 0 in H°(IP? 12H) (it is then

Keum>
invariant under the whole automorphism group).

Set s; = r3 € HO(P? 12H) for i € {3,5,6}. The equation

Keum>
538586 — d3
in HY(P% ..., 36 H) allows us to narrow down parameters in the search
for r3,75,76. Since s3, s, 8¢, and d lie in H°(P%,,, ,12H), they are

quadratic in the variables (), ..., Qg for the fake projective plane. It
is sufficient to construct ss since s; and sg may be constructed from
sz with the C3 action. Additionally, since s3 has C7 weight 3 x 3 = 2
mod 7, we narrow the search down to C7-weight 2 quadratics.

We may further reduce the number of parameters with additional
data. The curve {r; = 0} passes through the two C7 fixed points

p1=(0:0:0:0:0:0:0:1:0:0),
pe=1(0:0:0:0:0:0:0:0:1:0).

It follows that at these points the curve {s; = 0} vanishes with multi-
plicity 3, which place additional conditions on the coefficients of s3.

Now we begin describing the details of the calculation. We first
calculate the order 3 neighborhoods of the points p; and ps. This was
done by computing the tangent space and solving for the conditions
of the neighborhoods vanishing on the FPP. We began by solving for
the order 2 neighborhood and then for the third order. To speed up
calculations, it was sufficient to take some equations for P%_  locally
cutting out the point. After computing these neighborhoods, we posit
the general form for s3 as weight 2 quadratics in the variables and then
solve for the conditions of being identically 0 at the higher order neigh-
borhoods. We are able to solve for two of these variables, narrowing
down the general form for s3 to 6 variables.

We now want to solve for the sextic equation s3s55 — d> = 0. The
requirement that d be invariant under the full automorphism group
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forces it to be of the form

e1Qg + e2(Q1Qs + Q2Qua + Q3Q5) + e3(Q1Q9 + Q2Q7 + Q3Qs)

for undetermined coefficients ey, e, e3. We also obtain the general
forms for s5 and sg by applying the C'5 automorphism to s3. To solve
for the coefficients, we compute some points of P%_  with high accu-
racy and substitute them into sssssg — d® = 0 to obtain a system of 24
cubics in 6 variables. We solve this system of equations by applying
the trick of [2]. The Hilbert polynomial of the system of equations
modulo 37 with /=7 = 17 mod 37 is 3, which suggests that there are
3 solutions for this system. By applying successive linear conditions on
the system and checking the Hilbert polynomial at each step, we are
able to take linear cuts that drop the Hilbert polynomial eventually
to 1. At some point there are 3 different choices for the linear cuts
corresponding to our 3 solutions. We were able to lift these 3 solutions
modulo 37%°° and then use the lattice reduction algorithm to obtain the
corresponding solutions over Q(y/—7). The three solutions differed by
a cube root of unity. We selected the solution defined over the desired
field of definition to proceed.

The solution for these coefficients allow us to fully determine s3, s5, sg,
and d. The equations for s3 and d are given below, with s5 and sg found
by applying the C3 automorphism. Points on {rs = 0} may then be
calculated by solving for the simultaneous conditions {s; = 0,d = 0}.
These points were used later in the construction.

(—212275 + 26525i\/7) QoQs N (22575 + 51275iv/7) QoQs

S3 =

2470336 1235168
(139475 + 17575iv/7) Q1Q2 N (196875 — 91425iv/7) Q3Q4
9881344 2470336
N (—303625 — 270725iv/7) Q3Q~ N (139475 + 17575iV/7) QF
4940672 1235168
(795725 — 287175iv/T) Q6Qo N (=57575 — 549675iv/7) Q3
4940672 9881344
d= ﬁ (3407\/—_7% +17045Q2 — 2812v/—7Q1 Qs — 223160, Qg

+ 329V —=7Q1Q9 — 21987Q1Qg — 28127/ —T7Q2Q4 — 22316Q2Q4 + 329V —T7Q2Q
219870505 — 281270505 — 223160505 + 329v/—7Q3Qs — 21987Q3Q8>

Step 3: The map P? — P5. With the computations of 9H and

Keum
4H we may now find 5H. We look at suitable linear combinations of the
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112 polynomials vanishing on 18 H — 9H = 9H additionally vanishing
on 4H to obtain 18H —9H —4H = 5HH.

We first compute some random points on 4H by solving for {d =
0,s3 = 0} on the FPP. 5H is then found by looking for linear combi-
nations of the cubics defining 9H for each weight that vanish on these
points. To verify that they are in |5H| we also check that they do not
vanish on the whole fake projective plane.

The six resulting degree 3 polynomials give us the map P%,,,.. — P°.
We calculate points in the image of this map in P® and find 56 degree
6 polynomials in new variables Zi, ..., Zg that vanish at these points.
These give the desired embedding of the fake projective plane.

Remark 3.1. The C7-weights on the variables 7y, Z,, ..., Zgare 1,2, ..., 6.
There is no weight 0 variable. The construction required that we shift
the C'; weights by 3. This may be explained by viewing our construc-
tion of HO(PP2 5H) as given by an embedding

Keum>
5H) — H°(P? 18H)

HO (]P)%{eunw Keum>
with the map given by tensoring with s3 @ f for s3 € H(P%_,.  4H)
and f € H°(P%,,..,9H). While f has weight 0, s3 has weight 3 and
therefore shifts the weights of H°(P%.,,,.,, 5H) by 3.

We take care to reconstruct the automorphism group. While the C'-
action is preserved under our construction, the non-Cs-invariance of s
introduces a scaling factor in the C5 action. We fix the coefficients
of this scaling factor and recompute the equations with the scaling
to find a better basis for the action. As before, we take random linear
combinations of the equations that span the space and take the simplest

ones to further simplify the equations.

Finally, we use Magma to verify that the Hilbert polynomial is as
expected. The verification process for the FPP is carried out as in [1]
working modulo p = 1327 with /=7 = 103 mod 1327. Thus we have
constructed Keum'’s fake projective plane as a degree 25 surface in P°.

4. FUTURE DIRECTIONS

One hopes to find a coordinate change to additionally simplify the
56 equations in IP5.

A related construction of interest is that of Mumford’s original fake
projective plane [13]. This surface has not been explicitly constructed

yet. It lies in the same class as P%_ = and two other fake projective
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planes. We are currently attempting to find this surface by computing

a seven-to-one cover of P2, after which several cover relations may

yield the surface and the two fake projective planes in the same class.
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