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INTRODUCTION
Obtaining clean, high resolution velocity measurements of blood flow

inside small arteries such as cerebral vasculature is challenging, as the ex-
isting experimental techniques have several limitations. Time-resolved
three-dimensional phase contrast magnetic resonance imaging (4D flow
MRI) is a popular approach in research settings, however it is constrained
by low spatio-temporal resolution, noise, and other artifacts [1]. Particle
image velocimetry (PIV) often considered the gold-standard in experimen-
tal fluid dynamics also suffers from some limitations. Therefore, handling
corrupt blood flow data is key challenge towards developing more accu-
rate and robust cardiovascular flow models. There are well developed al-
gorithms in the machine learning community that can tackle similar issues,
such as data imputation, denoising or outlier detection. Existing methods
have been less frequently used and leveraged for complex real-world fluid
flow problems [2], such as cardiovascular flows [3]. Specifically, we do
not understand which one of these approaches commonly used in the ma-
chine learning community perform better for hemodynamics data. This
study investigates and compares several techniques for filling in missing
values and denoising unsteady blood flow data in an image-based 3D in-
tracranial aneurysm model.

METHODS
Voxel-based data mimicking some of 4D flow MRI data features was

created from computational fluid dynamics (CFD) simulation results. Pul-
satile blood flow inside an internal carotid artery (ICA) aneurysm was sim-
ulated using SimVascular, a finite element numerical solver. The Reynolds
number was 555, based on the maximum systolic inlet velocity and inlet
diameter. A population averaged inlet waveform was used, 1000 snapshots
were saved through one cardiac cycle. The unstructured mesh consisted of
6.6M elements, which was resampled to a voxelized grid with a uniform
spatial resolution of 0.5 mm, resulting in 27000 voxels. Two types of data
corruption were investigated here, missing data and Gaussian noise. These
were artificially added to the voxelized data. Voxels were randomly re-
moved in space and time for the missing data case and Gaussian noise was
added for the noisy case. The process of creating corrupt synthetic voxel-

based data is illustrated in Figure 1. For the missing data case, the fraction
of missing data was varied between 10% and 90%. For the denoising case,
the fraction of noisy data was varied between 10% and 70%. The standard
deviation of the added noise was 10% of the maximum velocity value.
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Figure 1: Process of creating corrupt voxel-based data from CFD re-
sults.

Imputation is the process of filling in missing data based on some statis-
SB³C2023-026



tics of the observable dataset. Four methods were used for data imputa-
tion: probabilistic principal component analysis (PPCA), iterative singular
value decomposition (itSVD), softImpute, and an autoencoder. PPCA is
a probabilistic version of PCA using the expectation-maximization (EM)
algorithm. itSVD and softImpute are two techniques based on iterative
low-rank SVD decompositions and soft-thresholding. The autoencoder ap-
proach is a fully-connected deep neural network that has a bottle-neck layer
in the middle, whose dimensionality is much smaller than the input and
output, therefore the network learns a low-dimensional embedding of the
data.

Three algorithms were used for denoising: robust principal component
analysis (RPCA), Noise2Noise autoencoder (N2N), and a conventional de-
noising autoencoder (DAE). RPCA tries to separate the data into a low-rank
matrix containing the noise-free data and a sparse noise matrix. N2N is a
neural network based denoising algorithm that does not require clean train-
ing data. That is, the input and the target data are both noisy data represent-
ing two samples from the same noise distribution. The DAE approach does
denoising in a supervised fashion. It was trained with 7 simulations with
different mean inlet velocities (Reynolds number ranging between 380 and
650, based on the systolic maximum inlet velocity) on the same geometry,
then tested on unseen velocity data (Remax = 555). The noise and missing
data characteristics (fraction of data missing or noisy and noise standard de-
viation) were the same during training and testing. It is important to note
that the matrix completion (itSVD, softImpute) and PCA-based methods
(PPCA, RPCA) do not require training data.

RESULTS

a)

b)

Figure 2: a) Imputation relative reconstruction error with different
percentage of data missing. b) Denoising relative reconstruction error
with different percentage of data being noisy.

Imputation and denoising results are shown in Figure 2, top and bottom
panel, respectively. The relative reconstruction error ε is defined as

ϵ =
∥X − Xrec∥

∥X∥
, (1)

where X is the clean ground-truth data, Xrec is the filled in or denoised data,
and the Frobenius norm is used. In case of imputation, the two matrix com-
pletion methods (itSVD and softImpute) have similar results. PPCA has the
lowest error in almost all cases. As the percentage of missing data grows
the error increases, and a sharp rise can be seen at 90% missing data for
these three methods. The autoencoder is much less sensitive to the amount
of data missing, probably due to the nature of supervised learning, and its
error is only slightly increasing as the fraction of missing data increases.
Overall, all methods perform well and can fill in the missing entries in the
aneurysm velocity data, as the relative reconstruction error is below 10%
for most cases, and even for the highest missing fraction of 0.9 the error is
less than 15% for all four techniques. This suggests that blood flow inside
an aneurysm can be described well by an intrinsic low-dimensional model
that can be inferred from a few data points.

For denoising, N2N has clearly inferior performance to the other meth-
ods. RPCA achieves good performance in the low-noise setting, while the
DAE outperforms RPCA in the high-noise scenario. Again, the autoen-
coder errors does not seem to be depending too much on the fraction of
noisy data. RPCA and DAE achieve an error smaller than 10% for all
noise fractions, while for N2N the error exceeds 20% at 70% of noisy data.

DISCUSSION
We investigated several machine learning algorithms for handling cor-

rupt blood flow data inside an ICA aneurysm. Matrix completion, PCA-
based, and neural network-based techniques proved to be able to enhance
blood flow data corrupted with randomly missing voxel entries and added
Gaussian noise. Matrix factorization methods seem to be more useful in the
low-corruption case, while for highly corrupted datasets neural networks
perform better. Overall, these machine learning algorithms have the po-
tential to significantly improve hemodynamic data quality and enable the
creation of robust cardiovascular models.

Our findings suggest that neural networks are more valuable when deal-
ing with highly corrupted datasets with available data for training. On the
other hand, matrix completion and PCA-based methods can achieve excel-
lent results with mildly corrupted data, without the need for clean training
data. However, there is a serious limitation to the matrix completion and
PCA methods. These methods assume that the missing data is random in
space and time, and the noise is Gaussian noise. Without these assump-
tions, these methods could fail. On the other hand, if there is enough train-
ing data available, the autoencoder based methods can achieve good re-
sults, no matter the pattern of missing data or the characteristic of the noise.
Obviously it is desired that the training and testing data have the same type
of corruption. Creating models that can handle multiple noise or missing
data characteristics is a future challenge that needs to be investigated.

Our future work includes extending this setup to real experimental data.
Additionally, we are working on other types of data corruptions such as
aliasing in 4D flow MRI, which could be treated using outlier detection
algorithms.
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