
Distance Profiles of Optimal RNA Foldings
?

J. Liu1, I. Duan1, S. Santichaivekin1, and R. Libeskind-Hadas2

1 Harvey Mudd College, Claremont CA 91711, USA
2 Claremont McKenna College, Claremont, CA 91711, USA

Abstract. Predicting the secondary structure of RNA is an important problem in molecular
biology, providing insights into the function of non-coding RNAs and with broad applications
in understanding disease, the development of new drugs, among others. Combinatorial algo-
rithms for predicting RNA foldings can generate an exponentially large number of equally
optimal foldings with respect to a given optimization criterion, making it di�cult to determine
how well any single folding represents the entire space. We provide e�cient new algorithms
for providing insights into this large space of optimal RNA foldings and a research software
tool, toRNAdo, that implements these algorithms.

Keywords: RNA folding · Nussinov Algorithm · Zuker Algorithm

1 Introduction

The secondary structure of RNA plays an important role in gene regulation and expression. For this
reason, the problem of predicting RNA secondary structure, also called a folding of the RNA, has
received considerable attention over more than four decades. Among the best-known algorithms for
predicting RNA foldings are those due to Nussinov [10] and Zuker [15].

The Nussinov Algorithm finds a folding of the RNA sequence that maximizes the number of
paired complementary bases (A-U, G-C, and, optionally, the weaker G-U “wobble” pairs) with
no pseudoknots. A pseudoknot is a pair of “crossing” matched pairs; that is, matched pairs with
indices (i, j) and (k, `) where i < k < j < `. The Zuker Algorithm finds a folding that minimizes
the free energy of the folding, again assuming no pseudoknots. While the structure of the Zuker
and Nussinov dynamic programs are similar, the standard Nussinov Algorithm has time complexity
O(n3) (which can be improved to O(n3/ log n) [13]), while the Zuker Algorithm’s more complex
computation of free energies associated with di↵erent loop structures results in time complexity
O(n4).

The restriction that foldings do not contain pseudoknots is required for the optimal substructure
property exploited by the Nussinov and Zuker dynamic programs. In fact, finding minimum energy
foldings with pseudoknots permitted is known to be computationally intractable (NP-complete) [7].
While comparatively rare [1], pseudoknots can arise and some e↵orts have been made to consider
them, including complicated and slow combinatorial algorithms as well as machine learning ap-
proaches that have their own limitations [12]. As a result, the Zuker Algorithm remains a standard
and has been implemented in a number of the most widely-used software tools for RNA folding [6,
8, 16].

However, in general, the number of equally optimal foldings (e.g., maximum number of matched
base pairs in Nussinov’s formulation or minimum free energy in Zuker’s formulation) grows expo-
nentially with the length of the RNA sequence. For example, Kiirala et. al performed experiments
on 23S rRNA sequences with 117 sequences of average length 2726 and found that, on average, the
number of Nussinov-optimal solutions was approximately 6⇥ 10130 [5].

An important and well-recognized challenge, therefore, is understanding the potentially large and
diverse space of possible optimal foldings induced by a given optimization criterion. One approach
is based on sampling a relatively small subset of optimal foldings and seeking to cluster them with

? This work was funded by the U.S. National Science Foundation under Grant Number IIS-1419739. The
authors also thank Harvey Mudd College for use of lab resources where this work was conducted.



2 J. Liu , I. Duan , S. Santichaivekin, and R. Libeskind-Hadas

respect to a given distance metric [2, 9]. The medoids of those clusters can then be selected as good
representatives of the space of optimal foldings [3]. An alternative approach to understanding the
space of optimal foldings seeks to identify all of the base pair matches that are common to all
foldings in a given set; for the sets of optimal foldings found by dynamic programming algorithms
such as the Nussinov and Zuker algorithms, this can be done in polynomial-time [5].

Another approach for understanding the space of optimal foldings is based on computing statis-
tics on the space with respect to a given distance metric. For example, the diameter of the space
(the maximum distance between two foldings in the space) and the distribution of pairwise dis-
tances between all pairs of foldings are both potentially informative statistics and have been used
successfully for other problems with large solution spaces [4, 11].

In many studies, a single optimal folding, R, is selected and it is therefore desirable to indicate the
extent to which all other optimal foldings di↵er from R. A relatively simple measure is the maximum
distance between R and any other optimal folding with respect to a given distance metric. A more
general and informative statistic is the distribution of the distances between all optimal foldings
and R. In this paper we show that both of these statistics can be computed exactly (i.e., without
using sampling methods) in polynomial time for a family of distance metrics, in spite of the fact
that the space of optimal foldings is, in general, exponentially large. In particular, we show how
this can be done for both the maximum base pairing (Nussinov Algorithm) and the minimum free
energy (Zuker Algorithm) objectives. Specifically, the contributions of this paper are:

1. An e�cient exact algorithm for finding the maximum distance from a given optimal folding to
all optimal foldings found by the Nussinov and Zuker Algorithms with respect to the well-known
symmetric di↵erence distance metric;

2. A generalization of this algorithm for computing the distribution of distances from a given
optimal folding to all optimal foldings; and

3. A freely available software tool, toRNAdo , that implements these algorithms and demonstrates
the e�cacy of our approach. (https://github.com/iisaduan/toRNAdo)

2 Background

This section provides background required for the next section where our new algorithms are pre-
sented. Since there are a number of variations in the formulations of the Nussinov and Zuker Algo-
rithms, and our new distance algorithms are formulation-dependent, we describe those algorithms
here.

Throughout this paper, let S denote a given RNA string of length n, indexed from 1 to n. Let
S(i, j) denote the substring of S from indices i to j, inclusive. If j < i, we define S(i, j) to be the
empty string.

Let comp(i, j) be a Boolean-valued function that is True if the bases at indices i and j are com-
plementary and False otherwise. Note that A-U and G-C are always assumed to be complementary
and some formulations also allow G-U “wobble pairs” to be complementary.

A folding of string S(i, j) is a set of ordered pairs {(i1, j1), . . . , (im, jm)} such that i  ik < jk  j
for 1  k  m; each pair (ik, jk), called a matched pair, satisfies comp(ik, jk); and each index
appears in at most one matched pair. We restrict our attention to foldings with no pseudoknots,
that is, foldings where there exists no 1  k, `  m such that ik < i` < jk < j`. Also note that
when referring to an ordered pair of indices (i, j), we do not assume that they correspond to the
indices of a matched pair in the RNA string unless explicitly stated.

2.1 The Nussinov Algorithm

The Nussinov Algorithm [10] seeks to maximize the total number of matched base pairs in a folding.
LetN(i, j) denote the maximum number of matched base pairs in a folding of S(i, j) for 1  i, j  n.
We compute and store these values in a n ⇥ n dynamic programming table N. When j  i, no
matches are possible, so N(i, j) = 0. When j � i+ 1, we consider two cases: either i is unpaired in



Distances of RNA Foldings 3

an optimal folding of S(i, j), or i is paired with a complementary base at some index k, i < k  j.
Therefore,

N(i, j) = max

8
><

>:

N(i+ 1, j) i unpaired

max
i<kj,

comp(i,k)

1 +N(i+ 1, k � 1) +N(k + 1, j) i paired with k

Note that each entry in this recurrence relies on entries with a greater value of i. Thus, we compute
the entries in the dynamic programming table by decreasing values of i. We can reconstruct the
optimal solutions by recording the optimal choices at each step. Specifically, the traceback infor-
mation is stored in a table opt. Each entry opt(i, j) stores the set of all k such that i < k  j, and
the base at index i is paired with the base at index k in some Nussinov-optimal folding for S(i, j).
Additionally, if i is unmatched in some Nussinov-optimal solution for S(i, j), then i is included in
opt(i, j) as well. The asymptotic time complexity of this algorithm, including the construction of
the table opt, is O(n3), since there are O(n2) entries and computing each entry takes at most O(n)
steps.

2.2 The Zuker Algorithm

In contrast to the Nussinov Algorithm, which seeks to maximize the number of matched base pairs,
the Zuker Algorithm seeks to minimize the free energy of a folding. There are a number of di↵erent
formulations of the dynamic program for the Zuker Algorithm, all yielding the same set of optimal
solutions. In this section we describe an adaptation of the formulation from [14] with the additional
important property that when multiple cases are considered to compute the set of optimal foldings
for S(i, j), the sets of foldings for each of these cases are disjoint. This property is necessary when
we compute the distribution of distances from one optimal folding to the set of all optimal foldings,
in order to avoid overcounting solutions.

The Zuker Algorithm proceeds by identifying di↵erent types of RNA substructures, as each type
of substructure may make a di↵erent contribution to the free energy. These structures are called
hairpin loops, stacking loops, internal loops, and multiloops. Each of these loops, other than internal
loops, is represented by a matched pair of indices (i, j), i < j, where the loop begins and ends;
internal loops are parameterized by four indices (i, j, i0, j0), i < i0 < j0 < j, to indicate that the
loop has two ends, one at matched pair (i, j) and the other at matched pair (i0, j0). The details
of these loop topologies are not necessary for what follows, but the interested reader is referred to
[14] as well as the Supplement (shorturl.at/ELQX0) which explicates the relationship between the
original Zuker formulation and the equivalent one used here.

The energy functions of a hairpin loop (i, j), a stacking loop (i, j), and an internal loop (i, j, i0, j0)
are given and denoted by eH(i, j), eS(i, j), and eL(i, j, i0, j0), respectively [14]. Multiloops are
computed as a function of three given positive constants a, b, and c; the free energy computation
for multiloops is described below.

Now, we describe the formulation of the Zuker Algorithm. The equivalence of this formulation
and the standard formulation [14] is easily verified. We calculate four n ⇥ n tables: W, V, WM,
and WM2. Let W(i, j) denote the minimum energy of a folding of S(i, j). Note that the minimum
energy for a folding of the entire RNA string is given by W(1, n). Let V(i, j) denote the minimum
energy of a folding of S(i, j) such that (i, j) is a matched pair. The terms WM(i, j) and WM2(i, j)
are used to compute the minimum energy of foldings that are part of a multiloop.

We first compute V(i, j). A positive integer m is used to specify the minimum size of a permitted
loop. In the base case where j � i < m or comp(i, j) is False, we have V(i, j) = 1 because no
solution that matches the bases at indices i and j can exist. Otherwise, we take the minimum over
the following four cases, corresponding to the four possible types of loops closed by (i, j) in an



4 J. Liu , I. Duan , S. Santichaivekin, and R. Libeskind-Hadas

optimal folding:

V(i, j) = min

8
>>>>>><

>>>>>>:

eH(i, j) Hairpin loop (i, j)

eS(i, j) +V(i+ 1, j � 1) Stacking loop (i, j)

min
i<i0<j0<j

(i0,j0) 6=(i+1,j�1)

eL(i, j, i0, j0) +V(i0, j0) Internal loop (i, j, i0, j0)

a+WM2(i+ 1, j � 1) Multiloop

Next, we compute W(i, j). When j  i, the optimal folding of S(i, j) contains no matched base
pairs, so W(i, j) = 0. Otherwise, we consider the two cases, where i either is unpaired, or paired
with k for some i < k  j. Thus,

W(i, j) = min

8
<

:
W(i+ 1, j) i is unpaired

min
i<kj

V(i, k) +W(k + 1, j) i is paired with k

Next, we compute the minimum free energies due to multiloops. For j  i, we set WM(i, j) =
WM2(i, j) = 1 since no loop can exist on a substring of length 1 or 0. Otherwise,

WM(i, j) = min

8
>><

>>:

WM(i+ 1, j) + c i is unpaired

min
i<kj

V(i, k) + b+ c(j � k) i is paired with k, no pairings in S(k + 1, j)

min
i<kj

V(i, k) +WM(k + 1, j) + b i is paired with k, more pairings in S(k + 1, j)

WM2(i, j) = min

8
<

:
WM2(i+ 1, j) + c i is unpaired

min
i<k<j

V(i, k) +WM(k + 1, j) + b i is paired with k

As in the Nussinov Algorithm, it is easy to record all optimal choices at each step so that we can
reconstruct all the energy-minimizing solutions. We store this traceback information in a 4⇥ n⇥ n
table opt, where each entry opt(T, i, j) records the set of optimal choices for the entry T(i, j)
where T 2 {W,V,WM, and WM2}; each optimal choice is a list of recursive calls in the form of
(T0, i0, j0). For example, suppose when computing the entry WM2(i, j), we find that there are three
optimal choices (all yielding the same minimum value for that entry), which are: (1) not pairing i,
(2) pairing i with k1, and (3) pairing i with k2. Then, for this example,

opt(WM2, i, j) =
n
{(WM2, i+ 1, j)},

{(V, i, k1), (WM, k1 + 1, j)},

{(V, i, k2), (WM, k2 + 1, j)}
o
.

An optimal folding for WM2(i, j) can then be obtained by choosing any one of those three choices
and continuing the traceback process from those choices. The resulting optimal folding is the set of
matched pairs (k, `) that appear in each tuple (V, k, `) encountered in this traceback, since V(k, `)
is invoked i↵ k is matched to `.

As noted earlier and easily verified, this formulation has the property that each optimal choice
(i.e. a list of recursive calls) recorded in opt(T, i, j) corresponds to a disjoint set of optimal solutions
for T(i, j).

The asymptotic time complexity of the Zuker Algorithm, including the construction of the
traceback table opt, is O(n4), since there are O(n2) entries to fill and computing each entry takes
at most O(n2) time. The most costly computation occurs in computing the internal loop case for
V (i, j), which takes O(n2), while computing all the other entries takes O(n) time.3

3 A common heuristic bounds the interior loop size, which reduces the running time to O(n3).



Distances of RNA Foldings 5

2.3 Definitions and Notation

Recall that we use S to denote a given RNA string of length n indexed from 1 to n and S(i, j)
denotes the substring of S from indices i to j, inclusive. We use R to denote a given optimal
folding (Nussinov- or Zuker-optimal). Let R(i, j) denote the set of matched bases (i0, j0) in R where
i  i0 < j0  j.

For simplicity of exposition, we consider one distance metric on foldings, the symmetric di↵erence
distance, also known as the BP distance [2]: Given two foldings R1 and R2, the distance between
the two foldings is equal to the number of matched pairs in R1 that are not found in R2 plus the
number of matched pairs in R2 that are not found in R1. Henceforth, “distance” refers to this
distance metric. We revisit distance metrics in Section 6.

The distribution of distances from a given optimal folding, R, to the set of all optimal foldings
will be represented by a vector, where the ith element of the vector indicates the number of optimal
foldings at distance exactly i from the folding R under consideration. Throughout this work, vectors
are understood to be over the non-negative integers. For a vector v, let v[i] denote the element at
index i. Given two vectors u and v, the sum of u and v, denoted u + v is defined by (u + v)[i] =
u[i] + v[i]. The convolution of u and v, denoted u ⇤ v is defined by:

(u ⇤ v)[i] =
iX

j=0

u[j]v[i� j]

The convolution of a sequence of vectors V = (v1, . . . , vn) is denoted ⇤v2V v. (Note that this
extension is well-defined since convolution is associative.) Given a vector v, �j , the j-place shift of
v is defined by:

�j(v)[i] =

⇢
v[i� j] : i � j
0 : i < j

Finally, we use the notation �(X) to indicate the function that evaluates to 0 if the Boolean X
is False and 1 otherwise.

3 Nussinov-Optimal Foldings

3.1 Nussinov Maximum Distance

We now describe a dynamic programming algorithm that, given an RNA sequence S and a Nussinov-
optimal folding R of that sequence, calculates the maximum distance between R and all Nussinov-
optimal foldings for S. A most distant Nussinov-optimal folding with respect to R can then be
reconstructed through traceback.

The maximum distance algorithm begins by running the Nussinov Algorithm, which returns a
traceback table opt. Recall from Section 2.1 that opt(i, j) stores the set of k, i < k  j, such that
the base at index i is paired with the base at index k in some optimal folding for the substring
S(i, j) and, if i is unmatched in some Nussinov-optimal solution for that substring, i is also included
in this set. Additionally, given the Nussinov-optimal folding R, we can e�ciently construct a table
numpairs, where numpairs(i, j) is the number of matched pairs in R(i, j) for 1  i, j  n. In
other words, numpairs(i, j) is the number of pairs (i0, j0) 2 R such that i  i0 < j0  j. We
construct numpairs, as follows.

For the base cases, when j  i, numpairs(i, j) = 0 because any RNA substring of R of length
1 or less contains no matches. When j � i+ 1, we compute the entries in increasing lengths of the
substring, that is, by increasing the value of j � i. These entries are computed as follows:

numpairs(i, j) = numpairs(i+ 1, j) +

(
1 if (i, k) 2 R for some i < k  j

0 otherwise



6 J. Liu , I. Duan , S. Santichaivekin, and R. Libeskind-Hadas

The numpairs table allows us to e�ciently compute the number of matches (i0, j0) in R(i, j)
that either use or “cross” an index k, meaning that i  i0  k and k  j0  j. Specifically, the
number of such crossings, denoted by numcrossings(i, j, k), can be calculated as:

numcrossings(i, j, k) = numpairs(i, j)� numpairs(i, k � 1)� numpairs(k + 1, j)

Now, we can calculate the maximum distance between R and all Nussinov-optimal foldings of S
by computing a n⇥n table maxdistance. Each entry maxdistance(i, j) represents the maximum
distance between R(i, j), the set of matched bases (i0, j0) in R where i  i0 < j0  j, and any
Nussinov-optimal folding of S(i, j), for all 1  i, j  n.

Base case: When j  i, the substring S(i, j) has length 1 or 0, so both R(i, j) and any Nussinov-
optimal solution for S(i, j) contain no matched bases. Therefore, for all j  i:

maxdistance(i, j) = 0

Recursive Case: When j � i+1, we compute the entries maxdistance(i, j) in increasing values of
j � i. For each entry, we consider two cases: (1) there exists k0 such that (i, k0) 2 R(i, j), that is, i
is matched to k0 in R for some i < k0  j, (2) there doesn’t exist such k0, which means i is either
unmatched in R or matched with some ` where ` < i or ` > j.

Case 1: i is matched to k0 in R(i, j) for some i < k0  j.

In this case, we must consider all the ways that i is matched or unmatched in the set of Nussinov-
optimal solutions for S(i, j). Recall that opt(i, j) stores the set of indices k, i < k  j, such that
(i, k) is matched in some optimal solution for S(i, j). Additionally, i 2 opt(i, j) if i is unmatched
in some optimal solution for S(i, j). We partition the set of optimal solutions for S(i, j) into two
parts, depending on whether i is matched in the solution or not. We consider each part separately
and then we calculate maxdistance(i, j) by taking the maximum of the two parts.

In part1, we compute the maximum distance between R(i, j) and all Nussinov-optimal solutions
for S(i, j) where i is matched to some k, i < k  j:

part1 = max
k2opt(i,j)

k 6=i

{ maxdistance(i+ 1, k � 1) +maxdistance(k + 1, j)

+numcrossings(i+ 1, j, k) + 2�(k 6= k0)}

Note that for each k under consideration, the maximum distance for the substring S(i, j) consists
of the maximum distance for the substrings S(i+ 1, k � 1) and S(k + 1, j) (first line), the number
of matched pairs in R(i + 1, j) that cross index k since these matched pairs are found in R(i, j)
but not in any optimal folding for S(i, j) that matches i and k (second line), and the distances
contributed by the matched pairs (i, k0) and (i, k) (second line). If k 6= k0, then (i, k0) and (i, k) are
two di↵erent matched pairs and contribute 2 to the distance. If k = k0, then (i, k0) and (i, k) are
the same matched pair and make no contribution to the distance.

In part2, we compute the maximum distance between R(i, j) and all Nussinov-optimal solutions
for S(i, j) where i is unmatched. If i /2 opt(i, j), such optimal solutions do not exist, so we set
part2 = �1. If i 2 opt(i, j), then part2 = maxdistance(i + 1, j) + 1. Here, the matched pair
(i, k0) 2 R(i, j) contributes 1 to the distance because R(i, j) matches i with k0, where i < k0  j,
but the Nussinov-optimal solutions under consideration do not match i. Thus,

part2 =

(
maxdistance(i+ 1, j) + 1 if unmatched i is in opt(i, j)

�1 otherwise.



Distances of RNA Foldings 7

Case 2: i is unmatched in R(i, j).
Similar to the previous case, we partition the set of Nussinov-optimal solutions into two parts.

In part1, we compute the maximum distance between R(i, j) and the set of Nussinov-optimal
solutions for S(i, j) where i is matched to some k, i < k  j:

part1 = max
k2opt(i,j)

k 6=i

{ maxdistance(i+ 1, k � 1) +maxdistance(k + 1, j)

+numcrossings(i+ 1, j, k) + 1}

The calculation is similar to the calculation for part1 in Case 1 except for the last term: since i
is unmatched in R(i, j), any matching involving i in a Nussinov-optimal solution will contribute
1 to the distance. In part2, we again compute the maximum distance between R(i, j) and all
Nussinov-optimal solutions for S(i, j) where i is unmatched:

part2 =

(
maxdistance(i+ 1, j) if unmatched i is in opt(i, j)

�1 otherwise.

This calculation di↵ers from part2 in Case 1 because neither R(i, j) nor the Nussinov-optimal
foldings under consideration match i.

Finally, in both Case 1 and Case 2, we find the maximum distance from all optimal solutions by

maxdistance(i, j) = max{part1,part2}

The asymptotic time complexity for the maximum distance algorithm is O(n3). The precom-
putation of opt takes time O(n3) and numpairs takes time O(n2). Filling the maxdistance DP
table takes O(n3) as there are O(n2) cells to fill, and filling each cell takes O(n) steps since we need
to iterate through O(n) possible values in opt(i, j).

3.2 Nussinov Distance Vector

The maximum distance algorithm can be extended to compute the distance vector x = (x0, x1, . . . , xn)
where xi denotes the number of Nussinov-optimal foldings whose distance from R is exactly i. Note
that x[0] = 1 since R is the only Nussinov-optimal folding with distance 0 from R, and that the
maximum distance between any two Nussinov-optimal foldings is upper-bounded by n since a fold-
ing of string S of length n can have at most bn/2c matched pairs and thus two such foldings can
di↵er in at most 2⇥bn/2c  n matched pairs. Henceforth, we assume that all distance vectors have
length n+ 1, with indices 0 through n, by appending zeros to the end if necessary. Recall that the
notation ⇤ denotes the convolution operator and + denotes vector addition when its arguments are
vectors.

We now describe the dynamic programming algorithm for computing distanceVector(i, j), the
distance vector between R(i, j) and the set of all Nussinov-optimal foldings for S(i, j).

Base case: When j  i, the substring S(i, j) has length 1 or 0, so there is only one Nussinov-optimal
solution for S(i, j), which is the trivial solution. This trivial solution is distance 0 from R(i, j) since
R(i, j) also contains no matched bases. Therefore, for all 1  i  n, j  i:

distanceVector(i, j) = (1, 0, 0, . . . , 0)

Recursive case: When j � i + 1, we compute the entries of distanceVector in increasing values
of j � i, as we did for maxdistance. As before, we calculate the entries distanceVector(i, j) by
cases.



8 J. Liu , I. Duan , S. Santichaivekin, and R. Libeskind-Hadas

Case 1: i is matched to k0 in R(i, j) for some i < k0  j.
In this case, distanceVector(i, j) is calculated by considering two parts in the partition of the

set of Nussinov-optimal solutions. In part1, we consider the distribution of distances formed by
R(i, j) and the set of Nussinov-optimal solutions for S(i, j) where i is matched to some i < k  j:

part1 =
X

k2opt(i,j)
k 6=i

�ci+1,j,k+2�(k 6=k0)(distanceVector(i+ 1, k � 1) ⇤ distanceVector(k + 1, j))

where ci+1,j,k = numcrossings(i+1, j, k). Here, each term in the sum corresponds to the distance
vector between R(i, j) and the set of Nussinov-optimal solutions for S(i, j) that contain the match
(i, k). Consider a Nussinov-optimal solution for S(i, j), denoted Q(i, j), that contains the match
(i, k) and has a distance of exactly d from R(i, j). That distance, d, is made up of the distance
between Q(i + 1, k � 1) and R(i + 1, k � 1), the distance between Q(k + 1, j) and R(k + 1, j),
plus the distance contributed by matches in Q(i, j) and R(i, j) not contained in either substrings
S(i+ 1, k� 1) and S(k+ 1, j). To calculate how many Nussinov-optimal solutions are of this type,
we take the convolution of the distanceVector(i + 1, k � 1) and distanceVector(k + 1, j) and
shift the result by the number of matches in R(i+ 1, j) that cross k and any distance contributed
by the matches (i, k) and (i, k0).

In part2, we compute the distribution of distances between R(i, j) and all Nussinov-optimal
solutions for S(i, j) where i is unmatched. If i /2 opt(i, j), such optimal solutions do not exist, so
we set part2 = 0, the zero vector. Therefore, we have:

part2 =

(
�1(distanceVector(i� 1, j)) if unmatched i is in opt(i, j)

0 otherwise.

The shift on distanceVector(i� 1, j) accounts for the loss of the pairing (i, k0) 2 R(i, j).

Case 2: i is unmatched in R(i, j).
For the optimal solutions where i is matched to some k, we have:

part1 =
X

k2opt(i,j)
k 6=i

�ci+1,j,k+1(distanceVector(i+ 1, k � 1) ⇤ distanceVector(k + 1, j))

where ci+1,j,k is defined as in Case 1 above. This calculation is identical to the one in Case 1 except
that we shift by 1 to account for the fact that i is unmatched in R(i, j) but matched in the optimal
solutions for S(i, j) under consideration.

For the optimal solutions where i is unmatched, we have:

part2 =

(
distanceVector(i+ 1, j) if unmatched i is in opt(i, j)

0 otherwise.

Finally, in both Case 1 and Case 2, we sum together part1 and part2 to account for all optimal
solutions for S(i, j):

distanceVector(i, j) = part1+ part2

The asymptotic time complexity of the distance vector algorithm is O(n4 log n), since there are
O(n2) cells to fill, filling each cell requires up to O(n) convolutions, and each convolution takes
O(n log n) time using Fast Fourier Transforms (FFTs).4

4 Our implementation of the convolution operator in the accompanying toRNAdo software tool is not
optimized and uses the naive O(n2) algorithm.



Distances of RNA Foldings 9

4 Zuker-Optimal Foldings

4.1 Zuker Maximum Distance

In this section, we describe a dynamic programming algorithm that computes the maximum distance
from a given Zuker-optimal folding R to all other Zuker-optimal foldings for the given string S.

The distance algorithm begins by running the Zuker Algorithm which gives us the traceback
table opt, where each entry opt(T, i, j) records the set of optimal choices for obtaining the value
at T(i, j), T 2 {W,V,WM, and WM2}. Recall that each optimal choice is a list of recursive
calls in the form of (T0, i0, j0) and the optimal choices in opt(T, i, j) form a partition of the set of
optimal solutions for T(i, j). We also precompute the table numpairs for R, defined and calculated
in Section 3.1.

Now we can compute the maximum distance between R and all Zuker-optimal foldings of S
by computing a 4 ⇥ n ⇥ n table maxdistance. Each entry maxdistance(T, i, j) computes the
maximum distance between R(i, j) and any folding that can be constructed through a traceback
of the table entry T(i, j), i.e. any optimal solution for T(i, j). The final answer, the maximum
distance between R, and all Zuker-optimal solutions is found in maxdistance(W, 1, n) since the
set of solutions constructed by tracing back the entry W(1, n) is the set of all Zuker-optimal
solutions.

Base Case: When j  i, the substring S(i, j) has length 1 or 0. A traceback of the entry T(i, j)
will yield the trivial solution for T = W, and no solution for T = V,WM,WM2. Thus,

maxdistance(T, i, j) =

(
0 if T = W

�1 otherwise

Recursive cases: We calculate the remaining entries of maxdistance in increasing order of j � i.
For each (i, j) we calculate the cells in the order T = V,W,WM,WM2. We compute the entry
maxdistance(T, i, j) by considering the maximum distances between R(i, j) and the di↵erent parts
of the set of optimal solutions for T(i, j), partitioned by which optimal choice they correspond to
in opt(T, i, j). The maximum distance between R(i, j) and the set of optimal solutions that make
the choice e is given by:

choice(e) =
X

(T0,i0,j0)2e

maxdistance(T0, i0, j0)

+ numpairs(i, j)�
X

(T0,i0,j0)2e

numpairs(i0, j0)

+ �(T, i, j)

where

�(T, i, j) =

8
><

>:

0 if T 6= V

�1 if T = V and (i, j) 2 R(i, j)

1 if T = V and (i, j) /2 R(i, j)

Consider a choice e that contains a set of recursive calls, each of the form (T0, i0, j0). The optimal
solutions for T(i, j) that use this choice e comprise optimal solutions for each of these entries
T0(i0, j0). The first line sums up the maximum distances between R(i0, j0) and optimal solutions for
T0(i0, j0) for each recursive call (T0, i0, j0) 2 e. The second line accounts for the matched pairs that
are in R(i, j) but not in the optimal solutions under consideration, analogous to the numcrossings
term in the Nussinov distance algorithm. Finally, the term �(T, i, j) adjusts the distance depending
on whether the set of optimal solutions under consideration matches (i, j), which happens when
T = V. If T = V and (i, j) is also in R(i, j), then we have overcounted the distance by 1 when we
count (i, j) as a di↵erence in the second line, so in this case �(e) = �1. If T = V but (i, j) is not



10 J. Liu , I. Duan , S. Santichaivekin, and R. Libeskind-Hadas

in R(i, j), then (i, j) is in all the optimal solutions under consideration but not in R(i, j), and this
di↵erence has not been previously accounted for, so �(e) = 1.

Finally, we maximize over all optimal choices:

maxdistance(T, i, j) = max
e2opt(T,i,j)

choice(e)

The asymptotic time complexity of this algorithm is O(n4), as there are O(n2) cells to fill,
and each cell can take a maximum of O(n2) steps since there can be O(n2) optimal choices in
opt(T, i, j). (Recall that an interior loop (i, j, i0, j0) requires us to decide the optimal locations for
both i0 and j0. Therefore, there can be O(n2) optimal interior loops.)

4.2 Zuker Distance Vector

Finally, we extend the maximum distance algorithm for the Zuker Algorithm to compute the dis-
tance vector x where x[i] denotes the number of Zuker-optimal foldings whose distance from R is
exactly i. This extension is analogous to the one used to extend the Nussinov maximum distance
algorithm to the Nussinov distance vector algorithm. As before, the maximum distance between
any two Zuker-optimal foldings is n, the length of S, so we assume that all vectors have length
n + 1, with indices 0 through n. Let distanceVector(T, i, j) denote the distance vector between
R(i, j) and all optimal solutions for T(i, j).

Base case: When j  i, the substring S(i, j) has length 1 or 0, so there is only one folding for
S(i, j), the trivial folding. Thus we have one solution for W(i, j) at distance 0 from R(i, j) and no
solution for T(i, j) when T 6= W.

distanceVector(T, i, j) =

(
(1, 0, 0, . . . , 0) if T = W

(0, 0, 0, . . . , 0) otherwise.

Recursive cases: To calculate the remaining entries of distanceVector, we iterate through the
dynamic programming table by increasing order of j � i. For each (i, j) we calculate the cells in
the order T = V,W,WM,WM2. For each optimal choice e 2 opt(T, i, j), we find the distance
vector between R(i, j) and the set of optimal solutions that make the choice e, which is given by

choice(e) = �CT,i,j(e)+�(T,i,j)

 

⇤
(T0,i0,j0)2e

distanceVector(T0, i0, j0)

!

where

CT,i,j(e) =

0

@numpairs(i, j)�
X

(T0,i0,j0)2e

numpairs(i0, j0)

1

A

Finally, we add the vectors that result from di↵erent parts of the partition:

distanceVector(T, i, j) =
X

e2opt(T,i,j)

choice(e)

The asymptotic time complexity of this algorithm is O(n5 log n); since there are O(n2) cells to
fill, and filling each cell requires us to compute choice for each of the O(n2) optimal choices in
opt(T, i, j). Computing choice(e) takes only a constant number of convolutions because each e
in any optimal solution makes at most two recursive calls, meaning we take the convolution of at
most two terms. Therefore, the asymptotic time complexity of calculating choice(e) is limited by
the time to compute a convolution, O(n log n).



Distances of RNA Foldings 11

5 Algorithm Implementation

The algorithms described in the previous section have been implemented in a Python command line
software tool called toRNAdo (https://github.com/iisaduan/toRNAdo). The software was tested
for correctness by comparing results to those found by brute force for a large suite of small problem
instances. This tool allows the user to specify the choice of Nussinov’s or Zuker’s Algorithm, provide
an existing optimal folding or use a randomly selected optimal folding, among other command line
options. The tool provides verbose text output as well as a histogram representing the distance
vector.

As an example, we used this tool to fold a 517bp Arabidopsis thaliana (thale cress) partial 5S
ribosomal RNA sequence (Accession: AF198208.1:1..517:rRNA). Under the Nussinov Algorithm,
there were more than 1036 optimal foldings, and under the Zuker Algorithm, there were more than
1016 optimal foldings. Figure 1 shows the histograms representing the distance vectors for the two
algorithms relative to randomly selected optimal solutions. These runs took 417 sec (Nussinov) and
4056 sec (Zuker) on a 3.2 GHz Apple M1 processor with 16GB RAM. Note that for the Nussinov
Algorithm, the symmetric di↵erence distances are always even since every pair of optimal foldings
R1 and R2 has the same number of matched pairs and for any matched pair that is in R1 � R2

there must be a corresponding matched pair in R2�R1. For the Zuker Algorithm, which minimizes
free energy, two optimal solutions do not necessarily have the same number of matched pairs and
thus distances are not necessarily even.

(a) (b)

Fig. 1: Distance vector histograms for a 517bp Arabidopsis thaliana sequence relative to a randomly
selected optimal solution for (a) Nussinov Algorithm (maximum distance: 366) and (b) Zuker Al-
gorithm (maximum distance: 277).

6 Conclusion

In this paper we have shown that the maximum distance and, more generally, the distribution of
distances between a given optimal RNA folding and the set of all optimal RNA foldings can be found
in polynomial time, in spite of the fact that the number of optimal foldings can be exponentially
large in the length of the given RNA sequence. This provides new insights into the space of optimal
RNA foldings that can be particularly important when presenting and interpreting a folding for an
RNA sequence.

Our results generalize in a number of ways. First, the “base” folding R needs not be optimal;
our algorithms are able to find the maximum distance and the distance vector for non-optimal



12 J. Liu , I. Duan , S. Santichaivekin, and R. Libeskind-Hadas

foldings. Second, we can trace back the dynamic programming tables to find an actual folding
that is of maximum distance from R. (This feature is implemented in toRNAdo.) Third, in this
paper we used the symmetric di↵erence distance metric. The algorithmic results presented here are
generalizable to other distance metrics that assign a positive (but not necessarily unit) cost when
a matched pair occurs in one folding but not in another. However, there are many other possible
distance metrics on foldings [9] and determining which metrics can be used with our approach is a
direction for future research.

Finally, our work explores the distance from a given optimal folding to the set of all optimal
foldings. Another approach would be computing the diameter of the space of foldings (the maximum
distance between any two foldings) and, more generally, the distribution of distances between all
pairs of foldings. This approach has been used to gain insights into the solutions spaces of other
biological problems with exponentially large optimal solution spaces [4, 11]. It remains an open
problem whether diameters and the distribution of pairwise distances can be computed e�ciently
for optimal RNA foldings.

References

1. Daniel P. Aalberts and Nathan O. Hodas. Asymmetry in RNA pseudoknots: observation and theory.
Nucleic Acids Research, 33(7):2210–2214, 01 2005.

2. Phaedra Agius, Kristin P Bennett, and Michael Zuker. Comparing RNA secondary structures using a
relaxed base-pair score. RNA, 16(5):865–878, 2010.

3. Ye Ding, Chi Yu Chan, and Charles E Lawrence. Clustering of rna secondary structures with application
to messenger RNAs. Journal of molecular biology, 359(3):554–571, 2006.

4. Jordan Haack, Eli Zupke, Andrew Ramirez, Yi-Chieh Wu, and Ran Libeskind-Hadas. Computing the
diameter of the space of maximum parsimony reconciliations in the duplication-transfer-loss model.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(1):14–22, 2018.

5. Niko Kiirala, Leena Salmela, and Alexandru I Tomescu. Safe and complete algorithms for dynamic pro-
gramming problems, with an application to RNA folding. In 30th Annual Symposium on Combinatorial
Pattern Matching (CPM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

6. Ronny Lorenz, Stephan H Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph Flamm,
Peter F Stadler, and Ivo L Hofacker. Vienna RNA package 2.0. Algorithms for molecular biology,
6(1):1–14, 2011.

7. Rune B Lyngsø and Christian NS Pedersen. RNA pseudoknot prediction in energy-based models.
Journal of computational biology, 7(3-4):409–427, 2000.

8. Nicholas R Markham and Michael Zuker. Unafold. In Bioinformatics, pages 3–31. Springer, 2008.
9. Vincent Moulton, Michael Zuker, Michael Steel, Robin Pointon, and David Penny. Metrics on rna

secondary structures. Journal of Computational Biology, 7(1-2):277–292, 2000.
10. Ruth Nussinov, George Pieczenik, Jerrold R Griggs, and Daniel J Kleitman. Algorithms for loop

matchings. SIAM Journal on Applied mathematics, 35(1):68–82, 1978.
11. Santi Santichaivekin, Ross Mawhorter, and Ran Libeskind-Hadas. An e�cient exact algorithm for

computing all pairwise distances between reconciliations in the duplication-transfer-loss model. BMC
bioinformatics, 20(20):1–11, 2019.

12. Jaswinder Singh, Jack Hanson, Kuldip Paliwal, and Yaoqi Zhou. RNA secondary structure prediction
using an ensemble of two-dimensional deep neural networks and transfer learning. Nature communica-
tions, 10(1):1–13, 2019.

13. Balaji Venkatachalam, Dan Gusfield, and Yelena Frid. Faster algorithms for rna-folding using the
four-russians method. Algorithms for Molecular Biology, 9(1):1–12, 2014.

14. Sebastian Will. Lecture notes from course 18.417, computational biology, MIT, fall 2011. https:
//math.mit.edu/classes/18.417/Slides/rna-prediction-zuker.pdf. Accessed: 2022-07-23.

15. Michael Zuker. On finding all suboptimal foldings of an RNA molecule. Science, 244(4900):48–52, 1989.
16. Michael Zuker. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids

research, 31(13):3406–3415, 2003.


