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Abstract—Quantum annealing (QA) is a promising optimiza-
tion technique used to find global optimal solution of a combina-
torial optimization problem by leveraging quantum fluctuations.
In QA, the problem being solved is mapped onto the quantum
processing unit (QPU) composed of qubits through a procedure
called minor-embedding. The qubits are connected by a network
of couplers, which determine the strength of the interactions
between the qubits. The strength of the couplers that connect
qubits within a chain is often referred to as the chain strength.
The appropriate balance of chain strength is equally imperative
in enabling the qubits to interact with one another in a way
that is strong enough to obtain the optimal solution, but not
excessively strong so as not to bias the original problem terms. To
this end, we address the problem of identifying the optimal chain
strength through the utilization of Path Integral Monte Carlo
(PIMC) quantum simulation algorithm. The results indicate
that our judicious choice of chain strength parameter facilitates
enhancements in quantum annealer performance and solution
quality, thereby paving the way for QA to compete with, or
potentially outperform, classical optimization algorithms.

Index Terms—Quantum annealing, chain strength, quantum
simulation.

I. INTRODUCTION

Quantum annealing (QA). Quantum mechanics is a branch

of physics that characterizes the behavior of particles (e.g

electron, photon, etc.). This field has paved the way for numer-

ous cutting-edges quantum computing techniques, including

cryptography [1], logistics optimisation [2], and more. In the

world of quantum physics, a core principle is that systems

tends to find minimum energy states. Quantum annealing is

a potent optimization method that utilizes quantum physics,

specifically the adiabatic theorem [3], to search for low-energy

states of a combinatorial problem, thereby determining the

global optimal or sub-optimal solutions. QA encompasses

a wide range of real-world applications, especially solving

optimization problems in healthcare [4], financing [5], drug

discovery [6] and others. There are many enterprises that

provide quantum annealing services, among which D-Wave

standing out as a prominent company. Their most recent

annealer generation contains over 5000 qubits [7], with an
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Fig. 1: A logical representation of an Ising Hamiltonian

with three variables (left) is mapped onto D-Wave 2000Q-

6 Chimera topology (right). A chain of qubits is connected by

grey dash line. Solid blue lines represent original couplings.

emphasis on the development of next-generation quantum pro-

cessing units (QPU) with over 7000 qubits. As the companies

continue to advance their technology, the potential for QA to

revolutionize optimization grows, which bringing us closer to

the quantum era.

Minor embedding. In order to use quantum annealer, the

combinatorial objective function has to be formulated to the

form of binary quadratic model (BQM) [8]. Problems in

this class include quadratic unconstrained binary optimization

(QUBO) and Ising model. These binary models can be repre-

sented by graphs (refered to as logical graph) and this graphic

representation can be mapped onto physical QPU topology

(i.e physical graph). The process of mapping logical graph

onto physical graph of QPU is called minor-embedding, which

is a critical step in solving optimization problems with QA

and being a NP-hard problem itself [9]. Nodes in the logical

graph represent variables (also known as logical qubits) with

their linear coefficients are mapped to physical qubits and

their external magnetic field. Meanwhile, edges that represent

quadratic coefficients in BQM are mapped to couplers that

connect corresponding physical qubits. Fig. 1(left) illustrates

a logical graph of 3 logical variables and its mapping on D-

Wave 2000Q Chimera topology [10] in Fig. 1(right). In Fig.

1(left), one of logical qubit is represented by 2 physical qubits

in the QPU topology in Fig. 1(right). Since qubits within a

chain represent a logical qubit, they are expected to be in the

same state after annealing process. If the qubits that represent

the same logical qubit do not have the identical state after

annealing, the chain is classified as broken.
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Chain strength. The QPU is composed of qubits-basic units of

quantum information. The qubits are connected by a network

of couplers, which determine strength of the interactions

between the qubits. The strength of the couplers within a chain

of qubits is often referred to as the chain strength. The chain

strength plays an important role in quantum annealing because

it determines the correlation between the qubits in the chain.

Why balancing chain strength. Determining the optimal

chain strength with polynomial-time algorithms remains an

open question in the literature with the following obstacles:

• Weak chain strength. If the chain strength is too weak,

the qubits will not be able to interact strongly enough to

find the optimal solution [11]. In particular, a weak chain

strength will cause the chains to “break” (i.e qubits within

chain are not in the same state) after annealing.

• Excessively strong chain strength. On the other hand,

if the chain strength is too strong, the qubits within a

chain are overly coupled, making negatively impact on the

performance of the annealer such as slow annealing times

and poor solution quality [11].

As illustrated in Fig. 1 (right), a pair of qubits within the

chain have different states, which implies that chain strength

is inadequate. In either case, we lost the opportunity to study

the original problem and obtain the optimal solutions. Choi

[12] and Fang et.al [13] put forth heuristic methodologies

for determining ferromagnetic coupling within an individual

chain. However, a more systematic approach is necessitated.

To this end, we address the problem of identifying the optimal

chain strength through the utilization of Path Integral Monte

Carlo (PIMC) quantum simulation algorithm. We summarize

key innovations and contributions of this work as follows:

• We deeply investigate the minor embedding process that

encodes the chain strength and associated constraints within

a chain of physical qubits. We also consider to address

the challenge of the small number of qubits and sparse

connectivity in near-term QPU.

• We then put forth the first-of-its-kind and comprehensive

model for the benchmarking of chain strength in quantum

annealing by employing the Sherrington-Kirkpatrick (SK)

Ising model, alternatively known as a fully-connected Ising

model, derived from an arbitrary Ising Hamiltonian logical

graph without loss of generality and PIMC.

• Given the chain strength formulated in the prior steps, we

advocate for a novel genetic-based algorithm to obtain the

optimal chain strength in a pre-defined interval.

• Furthermore, this work also encompasses practical evalua-

tions based on existing real-world D-Wave quantum com-

puters [14] that allows a close-to-metal benchmarking of the

chain strength in quantum annealing. The experimental re-

sults reveal that the chain strength obtained by the proposed

algorithm performs better than the values determined by the

existing algorithms in terms of both total post processing

time and ground state probability.

Organization. In the rest of paper, we introduce prelimi-

naries in §II. The formal definition of minor-embedding and

alignment constraint is outlined in §III. §IV introduces the

SK graph construction and PIMC quantum simulation, which

lay a foundation for the GAC algorithm. Following that, we

present the experiments results and analysis in §V. Lastly, §VI

summarizes our contributions and discusses future works.

II. PRELIMINARIES

In this section, we first present the Ising Hamiltonian and

QUBO model, which encode combinatorial problems. We

then discuss the QA and minor-embedding process, which are

utilized to search for global minimum energy states of the

Ising Hamiltonian.

A. Ising Hamiltonian and QUBO

The Ising model is originally proposed as the theoretical

description of ferromagnetism, a physical phenomenon that

has been mimicked to solve many optimization problems. The

model describes the specific kind of magnetism that where

materials, such as lodestone or iron, are able to inherently exert

without the support of any electrical charge. This physical

phenomenon is explained by the atomic spins take place

within the material, where each constituent atom acts as

an elementary electromagnet, when their associated moments

aligned, a macroscopic magnetic field arises from the material.

The Ising model binds the spin state of each individual atoms

of the ferromagnetic object to the its total energy. In the

following, we briefly describe the Ising model and its relevance

to the aforementioned optimization scheme.

Consider a physical system of n atoms, the spin si of an

atom i falls into one of two states: either spin up (↑) or

spin down (↓), which are represented by either +1 or −1,

respectively. The total energy of the system is modeled by the

following Hamiltonian function:

H(s) =
n
∑

i=1

hisi +
n
∑

i=1

n
∑

j=i+1

Jijsisj (1)

where hi models the magnetic field strength of atom i, and

Jij models the exchange energy between i and j. Via the

principle of minimum energy, which states: objects tends to

arrange itself in order to seek the lowest energy state, a new

scheme of optimization emerges. That is, by replicating an

instance of ferromagnetism such that h and J are controllable,

the solution to an optimization problem can be derived via

the settled lowest energy state of the system. The process of

conversion is as follows. First, the variables are mapped to

the spin state {+1,−1} of the Ising Hamiltonian. Second, the

coefficients, which expresses the correlation between variables

and the objective, are mapped to h and J . Finally, the objective

function is mapped to the total energy of system, and the

optimized solution by sampling the settled spin state.

While Ising is a quadratic model that can be used to directly

convert a problem into the physical configuration, the variable

setting {+1,−1} is not a natural formulation in for many of

the computer science optimization problems. Instead, a much
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more preferable and equivalent model is QUBO, which is

written as follows:

f(x) =
∑

i

Qi,ixi +
∑

i,j

Qi,jxixj (2)

where the variables xi, xj ∈ {0, 1} are binary, with Qi,i as

the linear coefficient and Qi,j as the quadratic coefficient

in relationship to the variables. The process of embedding a

QUBO model onto the physical system is straight forward by

converting it into the Ising model simply with si = 2xi − 1.

The simple reformulation techniques offered by QUBO

makes it embraceable by a large variety of combinatorial

problems such as the traveling salesman problem and its

variants [15], portfolio optimization, integer factoring, protein

folding, etc. Classically, simulated annealing is used to repli-

cate the ferromagnetic phenomenon. However, thanks to recent

advancement in the field of quantum computing, specifically

to the technology of quantum annealing, the scheme of opti-

mization via Ising model has become even more popular. In

the next section we discuss the quantum annealer and its key

specification with regards to optimization.

B. Quantum Annealing

Quantum annealing has been made prominent by D-Wave,

who is the first company to introduce the first commercial

quantum annealer on the market. The ferromagnetic phe-

nomenon is mimicked by the D-Wave annealer. Each ele-

mentary magnet is made up of a superconducting loop whose

circulating current provide the encoding of information. Such

components are dubbed qubits, since they also exerts quantum

property. Each qubits can be initialized as a superposition

of both spin up (↑) and spin down (↓) states, it can also

be collapsed into one of two classical state, yielding the

arrangement of spin states that matches the overall system

energy that complies with the Ising equation.

D-Wave’s annealing. To briefly describe the mechanism of

D-Wave’s quantum computer, let us assume an annealer of n
qubits, the Hamiltonian of the system is represented as

H(t) = A(t)

(

∑

i

σi
x

)

+B(t)

(

∑

i<j

Ji,jσ
i
zσ

j
z +

∑

i

hiσ
i
z

)

(3)

where σi
{x,z} denotes the Pauli matrices that operate on qubit i.

The external magnetic field hi is applied to qubit i to influence

its probability of settling at certain classical state, the strength

of this force is called a bias. Additionally, the exchange energy

Ji,j between the qubits is also controllable with quantum

entanglement, and such operation is executed via a device

called coupler. The annealing process starts out from the initial

Hamiltonian at t = 0 where A(t = 0) ≫ B(t = 0) and all

qubits are in the superposition state. Via the slow physical

evolution process, at t = 1, we reach the lowest-energy state

where A(t = 1) ≪ B(t = 1) and each qubit ends up at a

classical state that potentially encodes the optimal solution to

the combinatorial problem.

Quantum Boltzmann distribution. By controlling the en-

ergy landscape of the qubits, the annealing process slowly

evolves the system through different ground states of the

optimization problem. However, the high quality results can

only be retrieve the sample distribution are close to the

quantum Boltzmann distribution, put forth by the work of

Aming et.al [16], which models the probabilities of the system

ending up in certain qubits arrangement based on energy of

the state and the temperature of the system. For a system of

n qubits, we have 2n states space. The probability that the

system is in a state with a spin configuration si is described

by Boltzmann distribution:

P (s) =
e−βH(si)

Z
(4)

where β = 1/kBT is the inverse temperature and the partition

function

Z =
2n
∑

i=1

e−βH(si) (5)

Before performing annealing for Hamiltonian H(s), one have

to perform minor-embedding H(s) onto physical graph, which

is introduced in the following section.

C. Minor-embedding of Ising Hamiltonian

Fig. 2: Solving Ising Hamiltonian in quantum annealer.

The workflow presented in Fig. 2 dictates how to solve

an Ising Hamiltonian within a QA system. As previously

discussed, an Ising model can be depicted using a logical

graph. This logical graph is subsequently embedded onto

the physical graph. Let us denote the logical graph as H
and hardware graph is G. After identifying subgraph H ′ on

G that represents graph H , in the parameter setting step,

the original linear and quadratic terms of H is assigned to

H ′. Due to the specific architecture connectivity constraints,

minor-embedding algorithms may not be able to find one-

to-one mapping from logical graph to physical graph. Thus,

it is imperative to employ chains of physical qubits that

represent logical qubits to ensure that the interactions between

logical variables are preserved. The magnitude connecting the

qubits within a chain is referred to as the chain strength or

ferromagnetic coupling, denoted by Jf . The challenge lies in
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identifying an optimal value of Jf that is strong enough to

avoid biasing the original problem interaction, yet not too

weak to render the qubits in chains insufficiently coupled.

In the following section, we present the formal definition of

minor-embedding that encodes the chain strength constraint,

which establishes the foundation for our proposed approach in

addressing this novel question.

III. MINOR-EMBEDDING FORMULATION

In this section, we take a step towards addressing the novel

challenge of finding optimal chain strength, as mentioned

in II-C. In particular, we provide a formal definition of

minor-embedding and introduce a constraint that favors chain

alignment after an annealing process. This formulation lays a

solid foundation for our approach in the subsequent section

IV of this paper.

The quantum annealer is highly susceptible to temperature

fluctuations [17], [18], which limits the programmable range

of the external magnetic field hi and coupling coefficients

Jij . As reported in [19], the effective range of the external

magnetic field hi is [−2, 2], while the range for the coupling

strength Jij is [−1, 1]. If an Ising Hamiltonian contains values

outside of these ranges, the terms in the Ising Hamiltonian

must be scaled using a scale factor ε to satisfy ε|hi| ≤ 2 and

ε|Jij | ≤ 1. The chain strength, denoted as Jf , acting as a

ferromagnetic coupling (J < 0) that promotes chain-aligned

states, is also scaled alongside the Ising Hamiltonian terms. If

the chain strength is excessively large compared to the Ising

terms, after scaling, it will cause the Ising terms to shrink

near to zero (ε|Jij | ≈ 0). Conversely, if the chain strength is

too small, the ferromagnetic couplings between qubits within

a chain will shrink near to zero (Jf ≈ 0). In either case, this

increases the Ising Hamiltonian’s susceptibility to flux qubit

noise and analog errors in the quantum annealer. As a result,

a moderate chain strength is generally preferred to ensure

that the ground state is chain-aligned. Fig. 3 demonstrates

that an optimal chain strength can enhance the probability of

achieving the ground state in QA.

Given the Ising model described by a graph H = (V,E) ,

where V = {v1, v2, · · · , vN} and E = {(vi, vj) : vi, vj ∈
V, vi ̸= vj , } stands for the vertex and edge set of H ,

respectively. Let denote G is the physical graph. The problem

of minor-embedding can be formally defined as:

Hemb(s) = −ε

[

∑

ci∈C

(

∑

m∈ci

ĥmsm +
∑

m,n∈ci

Jfsmsn

)

+

(

∑

i∈ci,j∈cj

Ĵi,jsisj

)]

(6)

subject to:

smsn = 1 for all sm, sn ∈ ci, ci ∈ C (7)

where discrete variable si ∈ {−1, 1}, C = {c1, c2, · · · , cn} is

a set of chains that represents logical qubits of H on graph

G. The rescaling term ε ensures all Hamiltonian terms fall

Fig. 3: Median probability of reaching to ground state with

different number of instances using D-Wave 2000Q quantum

annealer with annealing time = 1000µs.

within QPU programming ranges. Whereas ĥm and Ĵi,j are,

respectively, the external magnetic and coupling strength on

physical graph G. If a logical qubit si, which has the external

magnetic value hi, is represented by m number of physical

qubits q1, · · · , qm. The value hi can be shared across m
physical qubits i.e., hisi → (hi/m)(q1 + q2 + · · · + qm),
reducing hi by a factor of m. Similarly, coupling Ji,j can

also be shared. One important parameter in this Hamiltonian is

the coupling between qubits within a chain Jf (i.e. the chain

strength). In the following section, we provide the method

to benchmark chain strength Jf that favors chain-aligned

ground state in quantum annealing. In order to investigate

the behaviors of Hamiltonian described in Eq. 6 within a

QA system, one can employ techniques such as Simulated

Annealing (SA) [20], [21] and Markov Chain Monte Carlo

(MCMC) simulation methods [22], [23]. In next section of

this study, we utilize the PIMC - a MCMC based algorithm,

to develop a methodology for obtaining optimal value of Jf .

IV. MCMC BASED QUANTUM SIMULATION

In this section, we commence by outlining the construction

of the Sherrington-Kirkpatrick (SK) Ising model, alternatively

known as a fully-connected Ising model, derived from an

arbitrary Ising Hamiltonian logical graph without loss of

generality, as described in IV-A. Following this, in section

IV-B, we encode chain strength Jf into the ferromagnetic

Ising-like term of PIMC algorithm. We then develop a Genetic

Algorithm (GA)-based algorithm, named GAC, to assess chain

strength within an effective coupling range utilizing PIMC as

fitness function for a specific chain strength and return chain

strength that yields the best performance for the original Ising

Hamiltonian in section IV-C.

A. Sherrington-Kirkpatrick Ising Hamiltonian

In the SK model, each node interacts with every others as

illustrated in Fig. 4(a). Similar to the SK graph that is proposed

in our prior work [24], we construct an undirected weighted

SK graph denoted by GSK = (V,A) where the set of vertices
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Fig. 4: (Left) An example of N = 6 variables embedding on

a C2 subgraph of D-Wave 2000Q Chimera topology. Each

logical qubits is encoded using a chain of physical qubits

represented by different color (right).

V = {v1, v2, · · · , vn+1} in which nodes {v1, v2, · · · , vn}
correspond to logical variables s1, s2, · · · , sn in the Ising

Hamiltonian. The addition vertex vn+1 represents the exter-

nal fields hi of each logical variables si. The set of arcs

A = {(vi, vj) : vi, vj ∈ V, vi ̸= vj , } represents the interaction

between variables si and sj . A new coupling strength J ′
ij is

associated with arc (vi, vj) ∈ A where J ′
ij = Jij+Jji if si, sj

interact in the original Ising Hamiltonian. For non-interact

logical qubits, we add an edge with a very small weight

between them (e.g. J ′
ij = 10−8 ≈ 0), which will not affect

result of the simulated quantum annealing algorithms. Finally,

the arc (vi, vn+1) has the coupling J ′
i,n+1 = hi represents the

external field hi. We can define the SK Ising Hamiltonian as:

HSK(s) = −
∑

i,j∈GSK

J ′
i,jsi, sj (8)

The equivalence between finding the ground state of the

Ising Hamiltonian H(s) and the SK graph HSK(s) has been

rigorously established in our previous work [24]. Inherently,

due to its construction, the HSK(s) does not have external

fields. The Hamiltonican when minor-embed GSK onto the

physical topology G can be expressed as:

HSK
emb(s) = −ε

[(

∑

ci∈C

∑

m,n∈ci

Jfsmsn

)

+

(

∑

i∈ci,j∈cj

Ĵi,jsisj

)]

(9)

subject to:

smsn = 1 for all sm, sn ∈ ci, ci ∈ C (10)

where notations is similar to Eq. 6. By leveraging the La-

grangian penalty method [25], the constraint Eq. 10 can be

integrated into the Hamiltonian in Eq. 9 as a penalty term:

H̄SK
emb(s) = −ε

[(

∑

ci∈C

∑

m,n∈ci

Jf (
1

2
+ smsn)

)

+

(

∑

i∈ci,j∈cj

Ĵi,jsisj

)]

(11)

The first term of the Hamiltonian H̄SK
emb corresponds to the

ferromagnetic interaction among spins within the same chain,

which encourages the alignment of physical qubits in an

annealing process. The chain strength term Jf acts as a

scalar penalty applied to the Hamiltonian H̄SK
emb, penalizing

spin configurations with misaligned spins within a chain.

The second term represents the interaction between spins

in different chains. Altogether, Eq. 11 represents an uncon-

strained Hamiltonian that integrates both the alignment of

physical qubits inside a chain and the interaction between

separate chains according to the GSK graph. The optimization

objective is to identify a spin configuration that minimizes this

Hamiltonian, which is equivalent to discovering the ground

state of the initial problem.

In the D-Wave 2000Q-6 Chimera topology [26], each unit

cell consists of a Kt,t complete bipartite graph, with two sets

of t qubits (t = 4 in Chimera topology), known as ”shores”,

fully interconnected within the unit cell as illustrated in Fig.

4(b). To embed a GSK graph onto the Chimera topology, we

need a chain of ⌈N
t ⌉ + 1 physical qubits, where t represents

the shore size within each unit cell, and ⌈.⌉ denotes the

ceiling function. Fig 4(a) displays a fully connected K6 source

graph minor-embedded onto a C2 Chimera graph, where each

logical qubit is represented by a chain of logical qubits with

a corresponding color. For example, logical qubit 0 (green) is

represented by physical qubits {0, 4, 16} with the same color.

Converting a standard Ising Hamiltonian into the GSK form

offers the following advantages:

1) This conversion yields greater flexibility due to the fully

connected nature of the SK graph. As a result, it can

represent any Ising model, irrespective of the initial graph

structure.

2) By unifying diverse problem representations into a single

SK graph representation, we can effectively determine

the number of Trotter slices [27] required for PIMC and

reduce the complexity of PIMC algorithm by removing

the external field terms.

Given these advantages of SK model, in the subsequent sec-

tion, we employ PIMC with a modified ferromagnetic Ising-

like term to simulate H̄SK
emb. This approach will enable us to

understand how a quantum annealing system responds to a

particular chain strength.

B. Path Integral Monte Carlo

In the prior section, we construct GSK , which enables us

to determine the number of Trotter slices for PIMC discussed

in this section. Here, we reformulate the Hamiltonian 11 that

is introduced in IV-A to the form of PIMC objective function,
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which help us to propose an algorithm to assess chain strength

in section IV-C using classical computer.

PIMC, also known as Simulated Quantum Annealing

(SQA), is an classical Markov Chain Monte Carlo (MCMC)

based algorithm for sampling Boltzman state of a QA system

[27]. Consider a quantum Hamiltonian:

Ĥ = −
∑

i,j

Ji,jσ
z
i σ

z
j − Γ

∑

i

σx
i (12)

Here, σz
i , σ

x
i are Pauli matrices. The transverse field Γ controls

the transition between ↑ and ↓ of each spin. To find the

Boltzmann state of Ĥ , one has to evaluate canonical partition

function:

Zβ = tr(e−Ĥ/T ) (13)

Nonetheless, the task of evaluating the partition function

through exponentiation of e−Ĥ/T proves to be considerably

challenging. The main idea behind PIMC is the utilization

of path integral formulation, which was invented by Richard

Feynman [28], and the Trotter formula [29]–[31] to approxi-

mate canonical partition function Zβ . To approximate Zβ , R.

Martonak et.al [27] add an imaginary-time dimension and map

quantum Hamiltonian Ĥ to a (d+1) dimensional anisotropic

classical Ising system. The approximation of Zβ is

Zβ ≈
∑

s1

· · ·
∑

sP

e−Hpimc/PT (14)

where

Hpimc = −
P
∑

k=1

(

∑

i,j∈GSK

Ji,js
k
i s

k
j + J⊥

∑

i∈GSK

ski s
k+1
i

)

(15)

Binary variables ski takes value in {−1,+1}. Parameter P,

k are the number of Trotter slices and k = {1, 2, · · · , P}
being the index for extra imaginary-time dimension. Ji,j
is the original coupling strength in Eq. 9. The J⊥ term

can interpreted as ferromagnetic Ising-like coupling strength

between adjacent Trotter replicas of the same spin along time

imaginary-time dimension:

J⊥ = −PT

2
ln(tanh

Γ

PT
) (16)

A common method for performing this sampling process is

to use the Metropolis algorithm, which combines both local

and global moves. To be specific, for each local move, we

attempt to independently flip spins at all sites in all Trotter

slices. The probability of accepting new state after a local

move is specified by the Metropolis acceptance rule. After

the local moves, the global move is performed by flipping

simultaneously all the replicas of the same site in all Trotter

slices [21], [27]. Each complete updating all spins locally

and globally constitutes a sweep. PIMC and its Metropolis

implementations on classical computing systems allows the

acquisition of insights on QA quantum phenomena. These in-

sights may contribute to a deeper comprehension and analysis

of QA such as the evaluation of D-Wave machines quantum

annealer performance.

Fig. 5: A demonstration of 3 Trotter slice, same spins in all

trotter slices are connect via a J⊥ ferromagnetic Ising-like

represent a chain of physical qubits as in Fig. 4(b)

Utilizing PIMC, we formulate Hamiltonian H̄SK
emb to the

form of Hpimc to benchmark a given chain strength as follows:

H̄pimc = −
P
∑

k=1

(

∑

i,j∈GSK

Ĵi,jsisj + J⊥
∑

i∈GSK

(
1

2
+ ski s

k+1
i )

)

(17)

where notation is the same with Eq. 15 and

J⊥ = −PT

2
ln(tanh

Γ

JfPT
) (18)

Fig. 5 depicts a classical anisotropic Ising system with 3
Trotter slices. In this system, replicas of a spin in all Trotter

slices form a “chain”, which corresponds to chains of physical

qubits in Fig. 4(b). These replicas are coupled together using

ferromagnetic Ising-like J⊥. By transforming original Ising

Hamiltonian to SK Ising model, we can determine the number

of Trotter slices, which is equal to the number of physical

qubits that needed to map a vertex in GSK , (i.e P = ⌈N
t ⌉+1).

The second term in H̄pimc imposes a penalty on misalignment

within chain along the imaginary-time dimension. Further-

more, we also incorporate chain strength parameter Jf into

the J⊥ term, with Jf being proportional to J⊥.

The PIMC algorithm starts with random initialization in all

Trotter slices and independent among slices to obtain an initial

spin configuration s0. As mentioned, we need to update spins

locally and globally. For a local update of each spin, we then

derive the energy different for flipping this spin (ski = −ski )

as follow:

∆localE = 2
∑

i,j∈GSK

Ĵijs
k
i s

k
j +2J⊥(sk−1ski + ski s

k+1
i ) (19)

The local move accept new state with the probability

min(1, e−∆localE/PT ) and the energy different of global move

can be calculated as:

∆globalE = 2
P
∑

k=1

∑

i,j∈GSK

Ĵijs
k
i s

k
j (20)
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with the new state acceptance ratio is min(1, e−∆globalE/PT ).
If Jf is too small, the Trotter slices become practically

decoupled (i.e. independent of each other). Even if they are

initialized with the same configuration, they will eventually

become uncorrelated after evolution in the decoupled regime

for too long. On the other hand, an excessively large Jf
value can also be detrimental as it prevents proper correlations

the slices between slices. Therefore, in the next section, we

propose a GA algorithm to benchmark chain strengths within

programmable range of QPU leveraging PIMC algorithm with

modification that is proposed in this section.

C. Benchmarking Chain Strength Algorithm

In this section, we describe the adoption of Genetic Algo-

rithm (GA) to find an “optimal” chain strength, named GAC.

In our proposed GAC algorithm, the population is updated

based on fitness score. There are three main stages in GAC

algorithm: 1) Population initialization 2) Fitness calculation

and 3) Population update. The pseudocode of our proposed

GA algorithm in outlined in algorithm 1.

Algorithm 1 GAC Algorithm

Input: an interval [0, α], step γ, number of populations D
Output: Chain strength Jf

1: Initialize population P uniformly in range [0, α], step γ.

2: Let C ← ∅ be the set of chain strength candidates

3: Initial pa = 0, pb = α
4: while generation ≤ D or pb − pa > γ do

5: Let F be a set of fitness score for generation P
6: Let Fmin be the lowest fitness score in F
7: Update pa, pb be the first chain strength and the last

chain strength in P that has Fa, Fb = Fmin

8: Append pb to C
9: Update chain strengths in next population P in range

[pa,pb] with step γ.

10: end while

11: Jf = max(C)

12: return Jf

Initialization (Lines 1-3, Alg. 1): Initializing chain strength

is an important step in our proposed algorithm. There are

several strategies to initial population, but we can categorize

them as: random initialization and heuristic initialization. In

spire by [32], we initial chain strength population in the range

[0, α] where:

α =
√
δ2 (21)

with δ2 = 1
(N−1)

∑

i<j J
2
i,j . The step between chain strength

in each population is:

γ =

√

∑

i<j J
2
i,j

N
(22)

The population initialization step serves as the foundation

for subsequent iterative improvement. We can calculate pop-

ulation size denoted as V = α/γ. Following this, we initiate

the set of chain strength candidates, denoted as C, which is

employed to retain the best chain strength observed after each

generation.

Lemma 1. The value of γ is always smaller than α with

N > 1

Proof. Square both α and γ:

α2 =
1

N − 1

∑

i<j

J2
i,j

γ2 =
1

N2

∑

i<j

J2
i,j

Showing that γ < α is equivalent to γ2 < α2. We have:

α2

γ2
=

N2

N − 1
> 1 (∀N > 1)

Thus, α > γ, which complete the proof.

Iterative fitness score calculation (Line 5, Alg. 1): In section

IV-B, we propose a PIMC formulation which integrate chain

strength into ferromagnetic Ising-like J⊥ term. The fitness

function takes chain strength Jf as the input and produces

the suitability of Jf as output. For each chain strength in

population P , the fitness score is defined as:

min
k

(

∑

i,j GSK

Ji,jsisj + J⊥
∑

i∈GSK

(
1

2
+ ski s

k+1
i )

)

(23)

where k = {1, 2, · · · , P}. Put simply, the fitness score of a

chain strength Jf is equal to minimum energy of Trotter slices

obtained after performing PIMC simulation with that Jf .

Population update (Lines 6-9, Alg. 1): In order to prevent

getting stuck at local minimum, after each generation, we

refine the search space interval after each generation by

utilizing the smallest and largest elements in P , denoted as

pa and pb respectively, which has the lowest fitness scores.

The offspring in the next generation are updated based on the

new interval and step γ. The algorithm stops once it reach the

maximum of generations or pb−pa < γ. Lastly, the proposed

chain strength is determined by the largest element within the

candidate set C.

D. Complexity Analysis

The overall complexity of GAC will depend on the number

of generations D, the complexity of the fitness function, and

convergence of pa, pb. The time complexity of initializing the

chain strength population is O(V), where V represents the

number of chain strengths in each generation. The time com-

plexity of evaluating the fitness of each chain strength depends

on the complexity of the fitness function (i.e PIMC algorithm).

Assuming the fitness function has a time complexity of O(F),
the complexity of this step is O(V ∗F). Assuming the fitness

function has a time complexity of O(F), the complexity of

this step is O(V ∗ F). The actual number of iterations will

depend on the input parameters and the problem itself. To

keep the analysis simple, let us assume the primary loop has

an average number of iterations, denoted as Navg . The overall

time complexity of GAC can be writen as O(Navg ∗ V ∗ F).
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V. EXPERIMENT

In the prior section, we present the application of PIMC

simulation to assess the effectiveness of a chain strength in

a QA system and GAC algorithm, a GA-based algorithm,

to find for optimal chain strength, as defined in IV-C. In

this section, we perform experiments to evaluate the chain

strengths recommended by our algorithm and ones suggested

by the D-Wave chain strength calculation default function,

uniform torque compensation [33]. Subsequently, we analyze

the improvement in performance of quantum annealer using

the chain strength recommended by our proposed algorithms.

Problem scales. We evaluate our proposed method using vary-

ing number of instances N = {5, 10, 15, · · · , 40, 45}. With

the number of instances determined, we can easily calculate

several other parameters, such as the number of Trotter slices

P , which define the size of lattice along the imaginary-time

dimension, and the temperature T . As previously mentioned,

the number of Trotter slices P is given by ⌈N/t⌉ + 1. It

is important to note that in the PIMC original work [27],

the authors recommend to keep the product PT = 1. As a

result, we can compute the temperature T as 1/P . By varying

the value of N , we are able to naturally update the value

of P and T accordingly. The coupling strength Jij between

instances in the original Ising Hamiltonian is randomly choose

from the interval [−1, 1]. Next, we uniformly generate chain

strengths within the range, and steps specified in the previous

section IV-C. As for the PIMC algorithm implementation, we

adapt the open-source PIMC 1 as required. Table. I summaries

parameters that we use in GAC and PIMC implementation.

Parameter Description Value

N Number of instances {5, 10 · · · , 45}
P Number of Trotter slices ⌈N/t⌉+ 1

Γ0 Initial value of the transverse field 0.1
ΓT Final value of the transverse field 10−8

T Temperature 1/P
D Number of generation in GAC 10

mcsteps Number of sweeps 5

TABLE I: GAC and PIMC parameters summary

Algorithm. We compare the effectiveness of our chain

strength to the chain strengths derived from the default func-

tion uniform torque compensation (UTC) of D-Wave, which

employs the root mean square to calculate chain strength as:

Jf = ρ

√

∑

i,j J
2
ij

n
(24)

Here, ρ is a prefactor for scaling with a default value of 1.414,

Jij is the coupling strength and n is the number of interactions

in the Ising model.

Environment. In this study, we employ D-Wave 2000Q-6

quantum annealer, which features more than 2000 physical

qubits. To minor-embed Ising Hamiltonian onto physical topol-

ogy, we make use of minor-miner 2 function provided by

1https://github.com/therooler/piqmc
2https://docs.ocean.dwavesys.com/projects/minorminer/en/latest/

Fig. 6: A genuine minor-embedding of an Ising Hamiltonian

onto D-Wave 2000Q-6 quantum annealer. The dashed gray

lines represent physical qubits connected to form a chain,

while the solid red lines indicate broken chains.

D-Wave to embed our problem of interest. Fig. 6 illustrates

an Ising problem is minor-embeded onto D-Wave 2000Q-

6 Chimera topology. After annealing process, the D-Wave

sampler can highlight chains that is break.

Evaluation Metrics. In our study, we analyze the effectiveness

of the chain strength by:

• Chain break fraction: This crucial performance indicator

represents the ratio of the number of broken chains to the

total number of chains.

• Ground state probability: This metric quantifies the number

of ground state samples found in the sample set (i.e how

frequently ground state is sampled).

• Total post processing time: QPU handles samples in batches.

Each batch is processed and sent through the post-processing

solver. The goal of post-processing is to get a set of

samples that align with a target Boltzmann distribution. The

cumulative time spend on post-processing samples is called

total post processing time.

A. Chain strength and ground state probability

Fig. 7 presents a comparison of chain strengths derived

from our proposed algorithm, GAC, and UTC. Upon our

experiments, it is evident that GAC chain strengths are

marginally smaller than those computed by UTC with both

values exhibiting an increase as the number of instances grows.

Notably, even though GAC chain strengths being somewhat

lower, their performance in term of ground state probability

is better to that of UTC. In particular, the disparity in ground

state probability between GAC and UTC is substantial with

N = {10, 15, 20}. However, as the number of instance

N increases, the discrepancy becomes less prominent. In

the following section, we will also explore varying D-Wave

quantum annealer parameter settings to assess the impact of

chain strength on QPU performance.
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Fig. 7: Comparison between chain strengths derived from

GAC and UTC. The ground state probability corresponds to

each algorithm are also reported with annealing time = 1000,

num reads = 100.

B. Benchmark on D-Wave quantum annealer performance

In order to study the performance of D-Wave quantum

annealer with different chain strengths, we measure the metrics

that is mentioned above: chain break fraction, total post

processing time, ground state probability in D-Wave Chimera

QPU’s topology. To gain the best insight of the quantum

annealer system, we vary the two important parameters: an-

nealing time and num reads.

• num reads: This parameter represents the number of states

(output solutions) to be retrieved from the solver. It must be

a positive integer within the range specified by the solver

property. Intuitively, increasing the number of reads may

yield better solutions.

• annealing time. In addition to chain strength and

num reads, the annealing time is another crucial parameter.

It determines the duration, in microseconds, of the quantum

annealing process for each read. The time resolution is

0.01µs for Advantage systems and 0.02µs for D-Wave

2000Q systems, as detailed in [34].

Increasing both annealing time and num reads may increase

the solution quality of a combinatorial problem. However, due

to a fixed time budget for problem submission to the QPU,

the optimal combination of annealing time and num reads to

achieve the best solution depends on the specific problem.

As it can be noticed from Fig. 8, in general, when we

increase annealing time by 500µs and num reads by 100,

the total post processing time corresponds to each number

of instances also increase. However, in majority of the cases,

our proposed chain strength exhibits a more efficient post-

processing time performance in comparison to the values

suggested by UTC with both settings. The performance gap

between GAC and UTC also becomes more significant as the

number of instances increases when we alter the parameter

settings from Fig. 8(a) to Fig. 8(b). Although our proposed

algorithm in IV-C recommends chain strength values slightly

smaller than those produce by UTC, we are able to achieve bet-
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Fig. 8: D-Wave 2000Q-6’s performance comparison between

GAC and UTC in terms of median total post processing

time with varying number of instance and solver parameters

(annealing time and num reads)
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Fig. 9: D-Wave 2000Q-6’s performance comparison between

GAC and UTC in terms of ground state probability and chain

break fraction with varying number of instance and solver

parameters (annealing time and num reads)

ter performance in terms of post-processing time compared to

UTC. In addition, the GAC algorithm’s improvement in post-

processing time performance can provide practical advantages

in real-world applications, such as reduced computational costs

and shorter solution times. Consequently, it may enables us to

tackle larger, further pushing the boundaries of QA.

Fig. 9(a) and Fig. 9(b) display the average chain break

fraction and ground state probability for both algorithms

under different parameter settings. As it can be seen that

for N < 25, the chain break fraction performance of GAC

and UTC in both settings remain 0. With higher number of

instances, chain breakage presents with both algorithm. chain

break fraction performance corresponds to GAC is marginally

higher compared to UTC. Despite the chain break fraction

performance of UTC is approximately 0 across parameter

settings. By setting the chain strength significantly larger

than the Ising Hamiltonian couplings, one can manipulate

this ratio to nearly 0. This strategy ensures the robustness

of the quantum computations by keeping the quantum chains

unbroken. Nevertheless, it may result in a trade-off between

the QPU performance and the ratio.
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Regarding ground state probability, similar to 7, it decrease

as we increase the number of instances. However, increasing

annealing time and num reads from Fig. 9(a) to Fig. 9(b)

setting results in smaller ground state probability for both GAC

and UTC. Nevertheless, in all settings, GAC’s chain show

that it can give better ground state probability performance

compared to its counterpart. In summary, although UTC per-

forms slightly better with chain break fraction in comparison

with our proposed chain strength, our proposed chain strength

improve the ground state probability and post-processing time.

VI. CONCLUSION AND FUTURE WORK

This work presents a systematic approach for determining

the optimal chain strength in quantum annealing. To achieve

this, we have introduced a formal formulation of minor-

embedding that encodes chain alignment constraints. In the

next step, we have constructed the SK model from the

original Ising Hamiltonian and investigated the behavior of

the formulated Ising Hamiltonian in the QA system using

the PIMC quantum simulation algorithm. We then evaluated

the performance of the D-Wave 2000Q annealer using our

proposed chain strengths. Experimental results demonstrate

that although our suggested chain strength is slightly lower

compared to the referenced chain strength, it successfully

improves the performance of the QPU.

This work not only contributes to addressing the open

question of determining the optimal chain strength in quan-

tum annealing, but also helps enhance the performance and

reliability of the quantum annealer solutions. In future, the

initial range and GAC algorithm can be further improved to

obtain better chain strength quality.
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