
Maximizing Key Distribution Capability:

An Application in Quantum Cryptography

Tu N. Nguyen∗, Dung H. P. Nguyen†, Manh V. Nguyen∗, Thinh V. Le∗, Bing-Hong Liu†, and Thang N. Dinh‡

∗Department of Computer Science, Kennesaw State University, Marietta, GA 30060, USA.
†Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.

‡Department of Computer Science, Virginia Commonwealth University, VA 23284 USA.

Abstract—Quantum key distribution (QKD) integrated
wavelength-division multiplexing (WDM) offers an information-
theoretically secure solution to the key exchange problem. In
this paper, we investigate the joint problem of how to efficiently
schedule QKD to provision sufficient secret keys over WDM
networks. Specifically, we propose and formulate the problem of
maximizing key distribution capability (MKDC) by employing a
mixed integer linear programming (MILP) model for the first
time. We then suggest two near-optimal algorithms adopted to
address larger-scale problems in polynomial time. One employs
the linear programming relaxation technique combined with a
rounding algorithm (LPR-RA) and the other is inspired by the
fact that the application with a higher risk of disruption is
prioritized to recharge secret keys, dubbed progressive serving
algorithm (PSA). Simulation results show that both the LPR-
RA and PSA can approach the best feasible solution or the
upper-bound of the problem. In addition, by means of using
NetSquid, an open simulator for quantum networks, we conduct
experiments to get insight into the BB84, a protocol applied
popularly in QKD networks nowadays.

Index Terms—quantum key distribution (QKD), security ap-
plications, secret keys, key rate, consumption rate.

I. INTRODUCTION

Quantum cryptography. The occurrence of quantum key

distribution (QKD) [1]–[4] offers a promising technology for

the distribution of information-theoretically secure keys. The

difference distinguishing this technique from the traditional

method is that the QKD employs the underlying principles of

quantum mechanics, such as the quantum no-cloning theorem,

instead of the computational complexity [5], [6]. For a simple

QKD network involving two QKD nodes that seek to exchange

secret keys, the process begins with connecting these nodes

together over a dedicated quantum channel. This quantum

channel is the lifeline of secure communication, ensuring that

the transmission of quantum states remains isolated from po-

tential eavesdroppers. They employee the conventional point-

to-point QKD protocols, such as BB84 [7], COW [8], and

GG02 [9], to securely share keys. One of the major operations

of the above protocols is to transmit photons, fragile signals,

across the quantum channel. Hence, one intends to use the

low-noise dedicated fiber as the quantum channel to protect

such signals from the interference of classical signals.

We thank the anonymous reviewers for their suggestions and feedback. This
research was in part supported by US NSF under Grants: AMPS-2229073,
AMPS-2229075, and CNS-2103405. Corresponding author: Tu N. Nguyen.
The source code is released at: https://github.com/NextCNS/MaxMinProb.

QKD over wavelength-division multiplexing (WDM).

Nevertheless, the dedicated fiber is costly, and deploying new

networks for QKD only is expensive, complicated, and time-

consuming; therefore, the deployment of new QKD networks

is not feasible in practice. One potential approach is to take ad-

vantage of traditional networks to deploy QKD networks. The

foundation of this approach is the wavelength-division multi-

plexing (WDM) technique [10], [11]. Accordingly, leveraging

the capability of conveying multiple types of photons with

various frequencies of optical fibers, the quantum and classical

signals will be transmitted on the same optical fiber but use

different wavelengths. Some studies [12], [13] have proposed

techniques to separate quantum signals from classical signals

and diminish the interference induced by the classical signals,

which shows the feasibility of the approach. Eventually, this

method is applied to deploy many QKD networks in reality,

such as Madrid and Cambridge QKD networks [14], [15].

Fiber-based QKD networks and current challenges.

Nonetheless, due to diverse applications running on optical

fibers of traditional networks, the shortage of wavelength

resources becomes one of the challenges that need to be

bridged. Because a quantum channel cannot be shared with

other data channels, we need to assign separate wavelengths to

quantum channels [16]. However, we cannot allocate too many

wavelengths to act as quantum channels of the QKD network.

Doing so will diminish the performance of other applications

stably running on the traditional network due to the reduction

of the wavelengths used for data transmission [17]. Therefore,

a limited number of wavelengths is assigned to form quantum

channels of the QKD network, and the most important is how

to utilize these links efficiently.

Motivation. Given limited wavelength resources in exist-

ing WDM networks – investigating the problem of how to

efficiently schedule QKD to provision sufficient secret keys

over WDM-based QKD networks – is equally imperative.

Moreover, because end-to-end key distribution is essential for

the quantum internet, a routing strategy plays an important

role in enhancing the key distribution capability in quantum

networks. Previous studies have considered the above issues in

different contexts of the entanglement routing, however, none

of these considers the nexus between the key generation and

consumption. In the following, we review the state-of-the-art

literature of QKD and associated routing algorithms.

1

https://github.com/NextCNS/MaxMinProb

• The most popular routing technique applied for QKD net-

works in practice is the Open Shortest Path First (OSPF)

[18], [19], in which the Dijkstra-based algorithms are ap-

plied to find paths used for distributing secret keys. How-

ever, the network resources are not efficiently allocated for

for QKD, particularly when either the number of requests

for recharging keys or the network scale increases.

• To enhance the capability of the key distribution, some

studies focus on improving the routing techniques, such as

multiple paths [20] and random paths [21], [22]. However,

none of these can maximize the key distribution capability.

• The authors in [23], [24] aim to maximize the key generation

rate and minimize the consumed resources. Nevertheless,

these studies do not take the key consumption of applica-

tions into account while the nexus between key generation

and consumption is critical.

Our contribution. This work contributes to the develop-

ment of QKD networks, specifically enhancing the key distri-

bution capability by elaborating a novel routing perspective of

the key distribution problem. We summarize key innovation

and contribution of this work as follows:

• We first put forth a new architecture of QKD-over-WDM

networks, in which quantum key pools (QKPs) are partic-

ularly designed to provision sufficient secret keys to the

network applications.

• We deeply investigate the problem of maximizing key dis-

tribution capability (MKDC) through efficiently scheduling

QKD over WDM networks.

• The MKDC problem is formulated with a mixed integer

linear programming (MILP) model that can yield an optimal

solution. In addition, two near-optimal algorithms, including

the linear programming relaxation and rounding algorithm

(LPR-RA) and progressive serving algorithm (PSA), are

proposed to address the MKDC with larger instances.

• The proposed architecture and model are realized via Net-

Squid [25], a quantum network simulator, to validate the fea-

sibility of QKD networks over the WDM. Furthermore, we

conduct extensive simulations to evaluate the performance

and efficacy of the proposed algorithms.

Organization. The rest of the paper is organized as follows.

Section II presents the preliminaries to the research problem.

The system model and research problem will be discussed

in Section III. The proposed algorithms will be described in

Section IV. Section V presents the implementation of the

proposed architecture and model on NetSquid, a quantum

network simulator, and discusses the results obtained from

the realization. Section VI demonstrates simulation results.

Finally, we conclude the paper with remarks in Section VII.

II. PRELIMINARIES: QKD OVER WDM

Point-to-point QKD: QKD promises to offer security in

communication using the laws of quantum mechanics. The

protocol broadly employed in current QKD networks is BB84

[1]. This protocol is implemented to share secret keys between

A C D B

1 2 2 1
k k k k  =

1 3
k k

1
k

2
k

3
k

1 2
k k

1 3 3 1
k k k k  =

quantum channel BB84 protocol classical channel

� � �

�

�

�

�

Fig. 1. An illustration of the key relay process with two intermediate nodes.

two nodes directly connected over a quantum channel, say

Alice and Bob. Alice will randomly send Bob a bunch of

photons with different polarization. Bob also randomly uses

disparate bases to measure the photons to detect the polariza-

tion of the photons. They then exchange information over the

classical channel to verify which bases are correctly used by

Bob. Eventually, Alice agrees with Bob on the sequence of

bits based on the verification result.

Software-defined networking (SDN): SDN [26], [27] is

a novel technology in which the control and data planes are

separated. This characteristic allows to integrate new services

and upgrade existing services rapidly. Moreover, this network

architecture enables centralized management over a controller;

hence, it also provides many chances for optimization in

order to improve network performance. With such advantages,

the SDN architecture is proposed to be the control layer

of the current QKD networks. Accordingly, a controller is

responsible for collecting requests for generating keys and

allocating resources to satisfy the requests based on the global

network information it is holding.

Key relay process: The point-to-point protocol presented

above is applied to generate keys between two connected

nodes by a quantum channel (also called adjacent nodes).

For two remote nodes, we have to employ a so-called key

relay process to share keys based on keys generated between

adjacent nodes [28], [29]. Fig. 1 illustrates an example of this

process in which nodes A and B need to share secret keys

over intermediate nodes C and D. In the first step (1), keys

will be generated between two adjacent nodes using the point-

to-point protocol, that is, k1 between A and C, k2 between C

and D, and k3 between D and B. In the second step (2), C

sends the XOR result between k1 and k2 (k1⊕k2) to D. After

receiving k1⊕k2 from C, D will recover key k1 by performing

the XOR operation between the received result and k2 (3),

that is, k1 ⊕ k2 ⊕ k2 = k1. Node D and B then repeated steps

2 and 3 in turn (steps 4 and 5), that is, D sends k1 ⊕ k3
to B, and B performs k1⊕k3⊕k3 to recover k1, which is also

the secret key that A wants to share with B. We summarize

the critical characteristics of the key relay process as follows.

1) The relay paths connecting two nodes need to be prede-

termined. We can employ one or more paths to distribute

one key depending on the requirement of the security

level of the system [20].

2) As presented above, the secret key will be relayed at

intermediate nodes. Therefore, if an eavesdropper can

control only one intermediate node, the secret key will

be revealed. To guarantee security, we suppose that all

nodes are trusted once using the key relay process.

2

3) Because the key generation rates on different quantum

channels are disparate depending on the length of quan-

tum channels, we need to equip nodes with key storage to

store generated keys in order to ensure that faster channels

are not limited by slower channels.

Quantum key pool: There are two factors associated with

the availability of security-hungry applications that we need

to consider in QKD networks, which are key generation rate

and consumption rate. The generation rate is required to

be faster than the consumption rate to guarantee that there

are always sufficient secret keys for the operation of the

applications; otherwise, the applications will be interrupted.

Unfortunately, coupled with the fact that generating keys is

considerably affected by many different physical conditions,

such as fiber loss and noise, the key generation rate is very low

compared with the consumption rate. To bridge this challenge,

one implements key stores (KSs) to store secret keys in

advance [30]. Each QKD node possesses a corresponding

key store. Nevertheless, one node is able to share keys with

multiple nodes, it is difficult to synchronously manage keys for

applications between two nodes; hence, another server, called

quantum key pool (QKP), is realized to manage keys in the key

stores of two nodes. In other words, there is a corresponding

QKP implemented for each pair of nodes. A QKP monitors

the remaining number of secret keys in the corresponding key

stores and sends the SDN controller the request for recharging

keys if necessary.

Key Distribution Capability: In this paper, we consider

the key distribution capability of the QKD network in the

relationship between the consumption rate and the remaining

number of keys in key stores. We suppose that the consumption

rate is kept constant within a specific interval; hence the

remaining keys are sufficient to maintain the operation of

applications within several time units. Specifically, if the

remaining number of keys in servers is κ (keys) and the

consumption rate is ρ (keys/time slot), the application can keep

running within κ
ρ time slots. The key distribution capability is

to leverage the available resources to deliver as many keys

as possible and maximize the minimum number of remaining

time slots of requests after recharging keys.

III. SYSTEM MODEL AND RESEARCH PROBLEM

A. QKD-Over-WDM Network Architecture

QKD over WDM. In this study, we consider the model

of Key as a Service (KaaS) [31], in which secret keys are

delivered over a QKD network deployed over the wavelength-

division multiplexing (WDM) network infrastructure as illus-

trated in Fig. 2. This network is expressed by G = (N ,L),
where N and L are the sets of QKD nodes and QKD links,

respectively. The BB84 protocol is employed for generating

secret keys between two adjacent nodes, and two remote nodes

share secret keys by the key relay process. Therefore, in

addition to equipping components used for the BB84 protocol,

each QKD node possesses a limited key storage employed to

store its shared secret keys. The capacity of the key storage

ABQKPACQKP
ADQKP

BCQKP BDQKP
CDQKP

Controller

application

ACQKP

application

BDQKP

Application layer

Control layer

QKD layer

Node A
Node B

Node C

Node D

Node A

Node C

Node B

Node D

AKS

BKS

CKS

DKS

Fig. 2. An illustration of the system model.

of node n ∈ N is expressed over its c property, namely n.c.
Because the wavelength is a limited resource of optical fibers

used for many applications, each QKD link possesses a limited

number of wavelengths, called quantum channels, employed

for transmitting photons according to the BB84 protocol. The

number of quantum channels per QKD link (u, v) ∈ L, which

connects QKD nodes u and v, is expressed by its c property,

namely (u, v).c. In addition, because both the transmitting

duration between two nodes and the survival capability of

a photon are different depending on many factors, such as

the fiber length and the photon loss along a fiber, quantum

channels on different QKD links own disparate key generation

rates (or key rates for short) measured by kbps. Moreover,

we suppose that quantum channels on the same QKD link

have the same key rate, also called the key rate of the QKD

link. This is reasonable because such quantum channels have

the same physical conditions. Moreover, we also suppose that

secret keys used for security applications between two nodes in

the network have the same length (measured by the number of

bits). Thereby, the key rate of a QKD link can be expressed

by the number of keys that can be generated per time slot.

The key rate of QKD link (u, v) can be indicated over the k
property of link (u, v), namely (u, v).k.

Key store (KS). Security applications need secret keys

for their operation. The lack of secret keys will disrupt the

applications. Nevertheless, coupled with the fact that the key

generation rate is substantially lower than the data rate of

applications, secret keys will be generated and stored in key

stores (KSs) in advance to guarantee the continuity of the

applications. For each QKD node, there is a corresponding

KS used to store the produced keys. For each pair of nodes

in the network, there is a corresponding quantum key pool

(QKP), which manages secret keys in the KSs employed

for security applications running between the two nodes.

Eventually, because a QKP manages secret keys, it can know

exactly the number of available keys remaining in the KSs and

evaluate the current key consumption rate.

3

Controller. The network controller manages all the com-

ponents of the network, including QKD nodes and QKPs.

The controller is responsible for allocating network resources

for generating secret keys using the BB84 protocol. As soon

as the number of secret keys in KSs diminishes due to the

consumption of security applications, QKPs will send requests

for recharging secret keys to the controller. We also assume

that the controller only receives the requests synchronously

according to the time slot, that is, the controller will collect

the requests at the beginning of a time slot, and then it will

assign network resources to serve the requests.

The set of requests collected by the controller in a time slot

is described by R = {R1, R2, ..., Rk}. A request, in addition

to an index to determine the QKP, includes the residual number

of secret keys in the KSs and the current key consumption

rate of applications. Thereby, request Ri can be described

by Ri = (si, di, κi, ρi), where si and di are the two nodes

that demand to distribute secret keys, called the source and

destination of Ri without loss of generality; κi and ρi are

the residual number of keys in the KSs and the consumption

rate of applications running between si and di, respectively. A

key is distributed over one dedicated path connecting source-

destination [20]. Based on the information from the requests,

the controller can estimate how long security applications

between two nodes can continue, counted as the number of

time slots, with the number of residual keys in the KSs.

B. Research Problem

The number of secret keys remaining in KSs is apparently

crucial to sustaining the operation of applications. Neverthe-

less, it is challenging to fully recharge keys for all requests

due to the limitation of network resources. In this paper,

we investigate the problem of maximizing key distribution

capability (MKDC). Specifically, we aim to recharge secret

keys such that maximizing the minimum number of time slots

that applications can keep their availability. We formally state

the research problem as follows.

INSTANCE: Given a QKD network described by G =
(N ,L) and a set of requests for recharging secret keys for

KSs denoted by R = {R1, R2, ..., Rk}. Each QKD node in

N owns limited key storage. Each link in L possesses a limited

key rate, counted as the number of keys that can be generated

over the link by the BB84 protocol per time slot, and a specific

number of quantum channels. The format of request Ri is

Ri = (si, di, κi, ρi), where si, di ∈ N are the two nodes that

need to be distributed keys, κi is the number of residual keys

in the corresponding KSs, and ρi is the consumption rate of

applications running between the two QKD nodes.

TASK: Maximize the number of keys distributed over the

network and the minimum number of time slots that KSs can

supply secret keys to applications running on the network with

the current consumption rate after recharging keys.

Motivating example: Consider an example with the QKD

network shown in Fig. 3(a). For this example, we suppose

that the number of memory units in each node is unlimited,

and there is only one quantum channel on each link. The

number located next to each link indicates the key rate of the

corresponding QKD link. There are four requests for recharg-

ing keys, described by R1 = (A,C, 1, 1), R2 = (C,E, 1, 1),
and R3 = (B,D, 1, 1). In the first solution presented in Fig.

3(b), requests R1, R2, and R3 are recharged 7, 5, and 1 keys,

respectively, over paths (A,B,C), (C,D,E), and (B,D,E).
The total number of distributed keys is 13. Nevertheless, the

application running between nodes B and B is at high risk

of being interrupted because after recharging, the remaining

keys are only enough to run within two time slots. A better

solution is presented in Fig. 3(c). For this solution, request

R3 is recharged 3 keys, in which 1 key is recharged over path

(B,D,E) and 2 keys are recharged over path (B,C,D,E).
With the residual resources, requests R1 and R2 are recharged

5 and 3 keys, respectively. Though the total number of

distributed keys is decreased compared with the first solution,

the threat of application interruption is greatly reduced. After

recharging, the applications with the highest risk of disruption

can keep running within four time slots.

IV. ALGORITHMS

In this section, we recast the MKDC problem with a mixed

integer linear programming (MILP) model. The detail of the

process is described in Section IV-A. Though we can use a

standard LP solver to address the program, it takes a long

solving time for larger instances. Therefore, we then propose

two near-optimal algorithms to solve the MKDC. One employs

the linear programming relaxation technique, called linear

programming relaxation and rounding algorithm (LPR-RA),

and the other is a greedy-based algorithm considering the

resource utilization of requests, called progressive serving

algorithm (PSA). The LPR-RA and PSA are presented in

Section IV-B and Section IV-C, respectively.

A. Mixed Integer Linear Programming (MILP)

The first step for distributing secret keys between two nodes

in the network is to determine paths connecting the two nodes.

Keys will then be generated between two adjacent nodes along

the path, and finally, the secret keys will be distributed by the

key relay process. In this paper, we consider a key that can

be delivered between the source and the destination as a flow

over the path. The flow from the source to the destination of

request Ri passing through directed link ⟨u, v⟩ is denoted by

f i
⟨u,v⟩. Moreover, the total flow of request Ri is described by

f i, which is also the total number of keys distributed between

si and di. The problem is formulated as follows.

Maximize β × µ+ (1− β)×
∑

Ri∈R

f i (1)

subject to:

∑

v∈N

f i
⟨si,v⟩

−
∑

v∈N

f i
⟨v,si⟩

= f i ∀Ri ∈ R (2)

4

C

BA D E
1

5

6

7

9

(a)

C

BA D E

7 5

1

(b)

C

BA D E

5 3

1

2

(c)

Fig. 3. A motivating example: a) The original QKD network, b) the first solution, and c) a better solution.

∑

v∈N

f i
⟨u,v⟩ −

∑

v∈N

f i
⟨v,u⟩ = 0 ∀Ri ∈ R

and ∀u ∈ N − {si, di}

(3)

∑

Ri∈R

f i
⟨u,v⟩ +

∑

Ri∈R

f i
⟨v,u⟩ ≤ (u, v).c× (u, v).k ∀(u, v) ∈ L

(4)

∑

Ri∈R

f i
⟨u,v⟩ +

∑

Ri∈R

f i
⟨v,u⟩ ≤ u.c ∀u ∈ N (5)

f i + κi

ρi
≥ µ ∀Ri ∈ R (6)

f i
⟨u,v⟩, f

i
⟨v,u⟩, f

i ∈ Z, f i
⟨u,v⟩, f

i
⟨v,u⟩, f

i, µ ≥ 0

∀(u, v) ∈ L, ∀Ri ∈ R
(7)

The research problem is a joint optimization problem;

hence, the objective function involves two goals normalized

by β (0 ≤ β ≤ 1). With a larger β, the minimum number of

remaining time slots (µ) is optimized with a higher priority.

Constraint (2) indicates the total flow and also the total key

that can be distributed between the source and the destination

of a request. Constraint (3) shows the conservation of flows

passing through an intermediate node, that is, the total inflow

at a node equals to the total outflow. Inequality (4) is the

constraint on the capacity of a link, that is, the total number

of keys that can be generated on a link within a time slot

must not exceed the link capacity. Constraint (5) implies that

the key memory employed for the key relay process at a node

must not surpass the node storage. In constraint (6), µ is the

minimum number of time slots that a KS can provide secret

keys to maintain the availability of security applications with

the current consumption rate. Eventually, the number of keys

generated over a link must be a positive integer, while µ can be

a positive real number. By means of solving the above program

using a standard solver, we can obtain the optimal solution

to the problem with the expectation that both the minimum

number of remaining time slots and the total key that can

be distributed over the network achieve the maximum. Nev-

ertheless, the running time will grow exponentially when the

scale of the problem is increased. Therefore, we next propose

two algorithms for addressing the problem in polynomial time.

The first one is implemented on top of the linear programming

relaxation (LPR), and the other is a greedy-based algorithm

in which the request with the minimum number of remaining

time slots will be served first.

B. Linear Programming Relaxation and Rounding Algorithm

In the following, we describe the key steps of the Linear

Programming Relaxation and Rounding Algorithm (LPR-RA).

• Relaxing the mixed integer linear programming. We

first relax the mixed integer linear program by replacing

constraint (7) with constraint (8). Accordingly, the original

MILP is transformed into a linear program (LP), which can

be addressed within polynomial time. Though the solutions

obtained from the linear program are infeasible, they supply

a helpful reference to be able to achieve a good feasible

solution. In this paper, we propose rounding a fractional

solution down to an integer to make it feasible in terms

of the integrality of the flow variables; hence we call this

method the linear programming relaxation and rounding

algorithm (LPR-RA). However, how to round and choose

integer solutions to guarantee the constraints of the problem?

Algorithm 1 describes this technique in more detail.

f i
⟨u,v⟩, f

i
⟨v,u⟩, f

i, µ ≥ 0 ∀(u, v) ∈ L, ∀Ri ∈ R (8)

• Solving the linear program and infeasible links. The

major procedures of the algorithm are solving the relaxed

program and rounding the solutions. These procedures are

repeated continuously until the result can not be improved.

Accordingly, we first solve the LP derived from relaxing

the MILP (Line 4). Because the solutions obtained from

the LP still satisfy the constraints of a flow network, there

are fractional flows from the sources to the corresponding

destinations of the requests after solving the LP. We then

consider the flows whose values are greater than or equal

to 1 for each request because rounding down a less than

1 value returns 0, which inherently is not meaningful. It is

worth noting that after this step, the remaining links form

a flow network derived from the source and terminated at

the destination, where all flows are greater than or equal to

1. Because there may be multiple flows traversing a link

and almost flows are fractional, we cannot know the total

flow passing the network. Therefore, we separate the flows

by determining all possible paths connecting the source

and the destination. The flow passing through each path is

determined by rounding down the minimum flow traversing

the links along the path to the nearest integer.

• Determining feasible paths and corresponding flows.

After ascertaining a path, the flows crossing over the links

along the path will be updated by reducing by the path

flow (Lines 8-12). The total flow is finally aggregated

5

Algorithm 1: Linear programming relaxation and

rounding algorithm (LPR-RA)

Input: QKD network G = (N ,L), set of requests

R = {R1, R2, ..., Rk}
Output: The maximum of the minimum number of

remaining time slots

1 µ = min{κi/ρi|Ri ∈ R};
2 total keys = 0;

3 while True do

4 Solve the LP constructed based on the current

status of the network and requests, say the

solutions are f i
⟨u,v⟩;

5 foreach Ri ∈ R do

6 f i = 0;

7 Remove links with flows f i
⟨u,v⟩ < 1 from the

solution of Ri;

8 while there exists a path Pi connecting si to di
do

9 temp = min{f i
⟨u,v⟩| ⟨u, v⟩ ∈ Pi};

10 foreach ⟨u, v⟩ ∈ Pi do

11 f i
⟨u,v⟩ = f i

⟨u,v⟩ − ⌊temp⌋;

12 Remove ⟨u, v⟩ if f i
⟨u,v⟩ < 1;

13 f i = f i + ⌊temp⌋;

14 κi = κi + f i;

15 µi =
κi

ρi
;

16 total keys = total keys+ f i;

17 min µ = min{µi|Ri ∈ R};

18 if min µ > µ then

19 µ = min µ;

20 if µ and total keys can not be improved then

21 break;

22 Update the capacity of links and nodes;

23 Update the number of remaining keys of requests;

24 return µ and total keys

from the flows determined above (Line 13). Afterward, the

remaining time slots of the current request (µi) will be

identified according to the total flow, the current number

of the remaining keys, and the consumption rate (Line 15).

The total key distributed over the network is also updated

based on the total flow of the current request (Line 16).

If the minimum number of remaining time slots and the

total distributed key, which is determined after considering

all the requests, can be improved compared to the previous

ones, we will update the capacity of links and nodes, and

the number of remaining keys of the requests (Lines 22-23)

and repeat the above steps. Otherwise, we terminate the loop

and take the current number of remaining time slots and the

current total distributed key (total keys) as the final results.

Algorithm 2: progressive serving Algorithm (PSA)

Input: QKD network G = (N ,L), set of requests

R = {R1, R2, ..., Rk}
Output: The maximum of the minimum number of

remaining time slots

1 flag = False;

2 total keys = 0;

3 R′ ← ∅;

4 while |R| > 0 do

5 min µ = min{κi/ρi|Ri ∈ R};

6 P ← ∅;

7 Determine the set of requests with the min µ
remaining time slots, say Rm;

8 foreach Ri ∈ Rm do

9 if the residual resources of the network cannot

serve Ri then

10 R ← R\Ri;

11 R′ ← R′ ∪Ri;

12 continue;

13 Pi ← shortest path(Ri);
14 if P = ∅ or |Pi| < |P| then

15 P ← Pi;

16 Update total keys if necessary;

17 Update the node and link resources along path P;

18 Update the number of remaining keys for the

corresponding request with path P;

19 µ = min{κi/ρi|Ri ∈ R′};

20 return µ and total keys

C. Progressive Serving Algorithm (PSA)

In the following, we put forth an efficient heuristic algorithm

inspired by the fact that the request with the minimum number

of remaining time slots needs to be satisfied first in order

to achieve the objective of the problem. The detail of the

algorithm is described in Algorithm 2.

In Algorithm 2, we first determine set (Rm) of requests

with the same number of remaining time slots (i.e., the ratio

κi/ρi for request Ri ∈ R). We next consider whether we

can serve each request in Rm with the available resources

of the network. A request is served if we can discover a

path connecting its source and destination on which there are

enough available resources. A node is available when it owns

at least two available memory units if it is an intermediate

node and one memory unit if it is a source or a destination.

Similarly, a link is available if it possesses at least one

available quantum channel. We then select the first request

with the shortest path connecting its source and destination

as the request that needs to be served. The rationale behind

this step is derived from the fact that serving a request with

the shortest path will consume the least network resources,

hence increasing the chance to serve other requests. The total

distributed keys will then be updated by increasing 1 unit.

6

generation

loss

tx_ouput

await_timer

await_port_input

create_qubits

measure

await_port_inputrx_input

tx_ouput tx_ouput

rx_input

message
Confirm/

reject qubit
qubit

Quantum channel (FibreLossModel)

Classical channel

Alice Bob

rx_input

Select/

discard qubit

Fig. 4. NetSquid implementation.

Moreover, the resources of nodes and links along the selected

path will then be updated; that is, the total capacity of each

link will be decreased by 1, and the number of available

memory units will be reduced by 2 for the intermediate nodes

and decreased by 1 for the source and destination nodes. If

a request cannot be served with the residual resources of

the network, it will be moved from the original set (R) to

the final set (R′) containing requests that cannot be served

anymore. The algorithm will iterate until the residual resources

are insufficient to serve any requests.

V. KEY RATE BENCHMARK ON NETSQUID

In this section, we conduct experiments on the BB84

protocol using NetSquid [25], an open simulator for quantum

networks. We realize the protocol by the model illustrated

in Fig. 4. In the model, Alice and Bob are two adjacent

QKD nodes that need to share secret keys. These nodes are

connected directly over two separate channels with the same

length, classical and quantum. Qubits, expressed by photons,

will propagate from Alice to Bob over the quantum channel

while the information is exchanged over the classical channel.

In addition, qubits conveyed over the quantum channel must

suffer a loss with probability ploss determined as follows [32].

ploss = 1− (1− pgen)× 10−δℓ/10 (9)

where pgen is the probability that the photons are lost im-

mediately after generation because the apparatus used in

experiments in reality is not ideal, δ (dB/km) is the attenuation

parameter of the optical fiber employed as the quantum

channel, and ℓ is the fiber length. Both the channels introduce

a propagation delay determined as ∆ = ℓ
cf

, where cf is the

speed of light in the fiber, which is set to 2 × 105 (km/s)

in the experiments. Moreover, we also suppose that there is

no error on the classical channel. In all the experiments, we

evaluate the key generation rate, counted as kbps, according

to the fiber length, which is varied from 20 to 70 (km). The

experiment results are shown in Fig. 5, in which data employed

to draw curves (bold color) is the average of 100 trials. The

band covering a curve reflects the variation in the results of

the corresponding case.

In the first experiment, we alter pgen between the values

in set {0.1, 0.2, 0.3, 0.4} and fix δ at 0.1. In the second

experiment, the fiber attenuation (δ) is changed from 0.1 to

0.4 while the initial probability (pgen) is kept constant at 0.1.

The results of these experiments are displayed in Fig. 5(a)

and Fig. 5(b), respectively. It is worth noticing that the red

20 30 40 50 60 70
Fiber length (km)

0

200

400

600

800

1000

Ke
y

ra
te

 (k
bp

s)

pgen=0.1
pgen=0.2
pgen=0.3
pgen=0.4

(a)

20 30 40 50 60 70
Fiber length (km)

0

200

400

600

800

1000

Ke
y

ra
te

 (k
bp

s)

=0.1
=0.2
=0.3
=0.4

(b)

Fig. 5. Dependence of the key generation rate on the fiber length (a) the
probability that the photons are lost immediately after generation (b) fiber
attenuation.

curves in both figures are nearly analogous with the other

because the parameters used for these cases are the same,

that is, pgen = 0.1 and δ = 0.1. The main observation from

the figures is that the key rate is quite low and substantially

decreases according to the fiber length, particularly in the

second experiment. In addition, the larger the initial probability

or the fiber attenuation, the lower the key rate. There are

three significant reasons engendering this result. The first

reason is associated with the delay of photons and exchanged

information between Alice and Bob once propagating over

the classical and quantum channels. The longer the distance,

the longer the latency, which decreases the number of bits

generated within a time unit. Secondly, some photons will

be lost during generation and transmission over the fiber. In

particular, the loss will be more serious with the larger values

of pgen, δ, and ℓ according to (9). For instance, with the case

that pgen = 0.1, δ = 0.4, and ℓ = 50 in the second experiment,

the probability of photon loss once traversing over the quantum

channel is ploss = 0.991, which means all the generated

photons is nearly lost during transmission. This induces the

green curve in Fig. 5(b) to approach 0 when the fiber length

exceeds 50 (km). Moreover, also according to (9), δ and ℓ
offer more influence on ploss than pgen, which causes the

key rate to reduce strongly once increasing δ and ℓ. This is

the reason why each curve in Fig. 5(b) is separated from the

others, different from Fig. 5(a), where all the curves approach

closely. Eventually, because Bob randomly employs one out of

two bases (i.e., rectilinear and diagonal) to measure photons,

half of the photons that can reach Bob will be ignored due to

the mismatch between the bases used by Alice and Bob.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations in order

to evaluate the performance of the proposed algorithms, i.e.,

LPR-RA and PSA, as well as factors that affect the objective

of the problem.

A. Simulation Setting

In this subsection, we present the default values of param-

eters employed in simulations; that is, if these parameters are

not set in simulation scenari os, they will get the corresponding

default values. Firstly, the networks used in the simulations are

randomly generated employing the Erdos-Renyi model [33],

7

TABLE I
SUMMARY OF PARAMETERS IN THE SIMULATION

Parameter Description

Network Erdos-Renyi model
Number of nodes 100
Probability for link creation (α) 0.05
The number of quantum channels on links [1, 10) (channels/link)
The key rate of quantum channels [1, 5) (keys/time slot)
The number of memory units of nodes [10, 60) (units)
The number of requests 20
β 0.99

in which the number of nodes and the probability for link

creation (α) are set to 100 and 0.05, respectively. The number

of quantum channels on network links is distributed between

the values in the half-open interval [1, 10). The key generation

rate of quantum channels on the same link, counted as the

number of keys that can be generated per time slot, is identical

and distributed between the values in the half-open interval

[1, 5). Each node hosts a specific number of memory units

for key storage, distributed between the values in the half-

open interval [10, 60). The number of quantum channels, the

key rate of quantum channels, and the number of memory

units are all randomly set according to the discrete uniform

distribution. Secondly, the set of requests includes 20 elements

by default and is also randomly generated. In addition, we

intend to optimize µ with a higher priority; thus, we set β to

0.99. To mitigate errors engendered by randomly generating

parameters, each point employed to draw the curves in figures

is the average of 100 trials1. We summarize the parameters

used in the simulation in Table I.

Because the problem in the paper is first proposed, we

employ two baselines for performance evaluation. The baseline

used for the small-scale problem is the solution obtained from

solving the mixed integer linear programming (MILP) model

directly. Because the MKDC is a joint optimization problem

involving two objectives, this baseline may not be the optimal

solution, but it is a good feasible solution for comparison.

Particularly, in the case of assessing the application sustaining

capacity, it provides the best solution amongst the proposed

methods. For the large-scale problem and other scenarios, we

use the solution obtained by solving the relaxed version of the

MILP model (LPR) as the baseline. Although this approach

cannot yield a feasible solution due to the violation of the

integrality constraint, it can be used as an upper-bound to

evaluate the performance of the LPR-RA and PSA.

The performance metric used to evaluate the proposed

algorithms in simulation scenarios is the minimum number

of time slots that security applications running on the network

can be maintained. An application is maintained if the number

of secret keys in the corresponding KSs is enough to keep

operating within a specific number of time slots with the cur-

rent consumption rate. We call the maximum of the minimum

number of time slots that an application can be maintained the

1The source code is released at: https://github.com/NextCNS/MaxMinProb.

3 4 5 6 7 8
8

9

10

11

12

13

Number of requests

A
p
p
li
ca
ti
o
n
S
u
st
a
in
in
g
C
a
p
a
ci
ty MILP

LPR-RA

PSA

(a)

20 22 24 26 28 30
10

11

12

13

14

15

Number of requests

A
p
p
li
ca
ti
o
n
S
u
st
a
in
in
g
C
a
p
a
ci
ty LPR

LPR-RA

PSA

(b)

Fig. 6. Dependence of the application sustaining capacity on the number of
requests (a) small-scale problem and (b) large-scale problem.

application sustaining capacity of the network. In addition,

we employ the Jain index [34] to evaluate the fairness in

terms the number of remaining time slots that applications

can keep running in. Finally, we also assess the performance

of the proposed algorithm over the total secret keys that can

be distributed over the network.

B. Simulation Results

The main observation form the results: the performance of

the LPR-RA and PSA nearly approaches to the other in Fig.

6. Both algorithms show good performance in the small-scale

scenario when their solutions are close to the best solution

obtained by directly solving the MILP. In Fig. 7 and Fig.

8, the LPR-RA shows a better performance once increasing

the network scale (i.e., the number of QKD nodes, links, the

number of channels per QKD link, and the channel capacity).

1) Impact of the scale of the problem: For this set of

simulations, we assess the impact of the number of requests

in set R on the application sustaining capacity. We divide the

simulation into two scenarios, equivalent to the small-scale

and large-scale of the problem. In the small-scale problem, the

number of requests varies from 3 to 8, and the number of QKD

nodes is fixed to 30. In the large-scale problem, we evaluate the

application sustaining capacity when the number of requests

alters between the values in set {20, 22, 24, 26, 28, 30}, and

the number of QKD nodes is set to 100. As we observe in

Fig. 6, when the number of requests increases, the primary

trend is steadily down, but the drop pace is lower in the large-

scale problem. This is because the network resources, i.e.,

quantum channels and key memories, are consumed more to

be able to increase the minimum number of remaining time

slots for more requests. This reduces the chance of improving

the number of remaining time slots of other requests due to

the limitation of the network resources, causing a decrease in

the application sustaining capacity.

2) Impact of the network: In the second simulation, we

evaluate the dependence of the application sustaining capacity

on the network components, that is, nodes and links. In the

first scenario, we vary the number of QKD nodes from 50
to 300 while keeping the values of other parameters at the

default. The result of the simulation is recorded and presented

in Fig. 7(a). In the figure, we can observe that when the

8

https://github.com/NextCNS/MaxMinProb

50 100 150 200 250 300
7

9

11

13

15

17

18

Number of nodes

A
p
p
li
ca
ti
o
n
S
u
st
a
in
in
g
C
a
p
a
ci
ty

LPR

LPR-RA

PSA

(a)

3 4 5 6 7 8 9 10
8

9

10

12

14

16

α(×10−2)

A
p
p
li
ca
ti
o
n
S
u
st
a
in
in
g
C
a
p
a
ci
ty

LPR
LPR-RA
PSA

(b)

Fig. 7. Dependence of the application sustaining capacity on the network
components (a) network nodes (b) network links.

number of nodes is increased from 50 to 150, the application

sustaining capacity is also improved significantly. However,

when the number of nodes exceeds 150, the curves tend to

remain unchanged or decrease slightly. This is because there

are many ways to establish paths connecting the sources and

destinations of the same request used for the QKD relay when

increasing the number of nodes. This leads to an increase in

the possibility of serving requests. Nevertheless, one of the

factors confining the capacity of the network is the density of

links (specified by α), which is kept constant in this scenario.

It is worth noticing that as long as we cannot determine a

path to satisfy one request among the requests that need to

be served, i.e., the requests with the same minimum number

of remaining time slots, the application sustaining capacity

cannot be improved. That is the reason the result cannot be

enhanced though the number of nodes is increased.

In the second scenario, we alter the network scale by

changing the probability of generating links (α) from 0.03 to

0.1 while keeping the number of nodes. As shown in Fig. 7(b),

though the curves fluctuate unpredictably, the major trend for

all algorithms is upward. Similarly to the above scenario, the

increase in the number of links will render increasing in the

potential for satisfying requests. Nonetheless, the bottleneck

confining the application sustaining capacity in this scenario is

the number of memory units hosted by network nodes. When

the number of memory units is not enough, we also cannot

establish paths for the key relay process though there are still

many redundant links.

3) Impact of quantum channels: In order to evaluate the

impact of quantum channels, we conduct simulations in two

scenarios. In the first scenario, the number of quantum chan-

nels on all links is identical and changes from 1 to 8. The

simulation result is illustrated in Fig. 8(a). All algorithms yield

the same results in terms of the tendency of the curves. Gener-

ally, the application sustaining capacity increases continuously

according to the number of quantum channels. Nevertheless,

the growth pace gradually decreases when increasing the

number of channels. This is because the increase in the number

of quantum channels will lead to an increase in the possibility

of key generation on each link, but the key storage of nodes

is the bottleneck in this scenario that limits the number of

generated keys on links. Therefore, it is hard to improve

1 2 3 4 5 6 7 8
6

8

10

12

14

15

Number of channels

A
p
p
li
ca
ti
o
n
S
u
st
a
in
in
g
C
a
p
a
ci
ty

LPR

LPR-RA

PSA

(a)

1 2 3 4 5 6
10

11

12

13

14

15

16

17

18

Key generation rate

A
p
p
li
ca
ti
o
n
S
u
st
a
in
in
g
C
a
p
a
ci
ty

LPR

LPR-RA

PSA

(b)

Fig. 8. Dependence of the application sustaining capacity on quantum
channels (a) the number of quantum channels on each link (b) the key
generation of quantum channels.

3 4 5 6 7 8
0.86

0.88

0.9

0.92

0.95

Number of requests

J
a
in

in
d
ex

MILP

LPR-RA

PSA

(a)

3 4 5 6 7 8
17
18

20

22

24

26

28

30

32

Number of requests

T
o
ta
l
d
is
tr
ib
u
te
d
k
ey

MILP

LPR-RA

PSA

(b)

Fig. 9. Dependence of the a) fairness index and b) total distributed key on
the number of requests.

the application sustaining capacity even when the number of

quantum channels is set to a relatively large value.

In the second scenario, we explore the influence of quantum

channels on the application sustaining capacity by changing

the channel capacity, counted as the number of keys a channel

can generate per time slot, from 1 to 6. The result is shown

in Fig. 8(b). Similarly to the above scenario, the increase in

channel capacity will result in an increase in link capacity,

but due to the limitation of key storage of nodes, we cannot

improve the application sustaining capacity anymore when the

channel capacity gains a threshold. As observed from Fig.

8(b), the thresholds are 3 and 2 for the LPR-RA and PSA,

respectively.

4) The fairness and total distributed key: We employ the

same configuration as the small-scale scenario for this set

of simulations. From the results shown in Fig. 9, we can

observe that there is a trade-off between fairness and the total

key that can be distributed over the network. Specifically, the

PSA provides the best fairness but distributes the fewest keys.

This correctly reflects the essence of the algorithms, that is,

the PSA, by means of using the progressive technique for

all requests, always attempts to maintain the best fairness,

while the MILP and LPR-RA, after maximizing the minimum

number of remaining time slots among the requests, tend

to optimize the total number of distributed keys. From Fig.

9(a), the fairness index tends to decrease once increasing

the number of requests due to two reasons. The first one

is the limitation of the network resources. The second is

9

that resource contention increases with the increase in the

number of requests. In addition, from Fig. 9(b), the total

key distributed over the network increases according to the

number of requests. Nevertheless, if there are more chances

to improve the minimum number of remaining time slots, the

total distributed key tends to decrease. This is clearly shown in

Fig. 6(a) and Fig. 9 when the number of requests varies from 7
to 8. While the total distributed key decreases, the application

sustaining capacity and the Jain index increase.

VII. CONCLUSION

This paper considers QKD deployed over the WDM net-

works. We have investigated the first-of-its-kind maximizing

key distribution capability (MKDC) problem considering the

nexus between key generation rate and consumption rate.

Specifically, our goal is to sustain the operation of the ap-

plications as long as possible by provisioning sufficient secret

keys and simultaneously maximize the number of keys that

can be distributed over the network within a time slot. We

have formulated the problem with a mixed integer linear

programming model. We then proposed two near-optimal

algorithms, including LPR-RA and PSA to address the MKDC

in polynomial time. To demonstrate the feasibility of the

proposed model and algorithms, we have realized the system

on a quantum network simulator i.e. NetSquid considering

different topologies and traffic matrices while testing the key

rate and how the quantum loss affects the key generation

rate, particularly the fiber loss. In addition, comprehensive

simulations have been conducted to validate the efficacy of

LPR-RA and PSA. The results indicate that both algorithms

can approach the best results in all the simulation scenarios.

APPENDIX

In this section, we show that the LPR-RA can satisfy all

the constraints of the MKDC problem. In addition, we also

analyze the time complexity of the algorithms. In the theorems

and proofs, |.| indicates the cardinality of the set, and lg

denotes the decimal logarithm of a number.

Theorem 1. Solutions obtained from the LPR-RA satisfy all

the constraints of the MKDC problem.

Proof: The constraints of the MKDC problem include

two groups. The first group is related to the flow network,

used to determine paths connecting two nodes that need to

share secret keys. The second group is used to restrict the

path in the limitation of the network resources (i.e., the key

storage of nodes and the quantum channels on links). The

solution obtained from the relaxed version of the mixed integer

linear programming model, though fractional, always forms a

flow network for each request. The LPR-RA determines the

shared key paths based on such networks; hence satisfy the

flow network constraints. For each path, the flow is determined

by rounding the minimum among flows on links along the path

down to the nearest integer. This guarantees that the resources

used for distributing keys along the paths do not exceed

the available resources, thus satisfying the second group of

constraints. This completes the proof.

Theorem 2. The LPR-RA can terminate in polynomial time.

Proof: The LPR-RA includes two portions, solving the

linear program and rounding the results. The first one can

be achieved in polynomial time [35]; therefore, it suffices

to show that the second part can run in polynomial time

and the while loop between Lines 3 and 23 in Algorithm 1

can terminate. After addressing the relaxed version of the

mixed integer linear programming model, we consider each

request in set R in turn; thus, the loop between Lines 5 and

16 iterates at most O(|R|) times. We next remove the links

whose flow is less than 1 (Line 7), which takes O(|L|) time.

The while loop between Lines 8 and 13 repeats at most O(θ)

times, where θ = max
{⌊

f i
⌋

|∀Ri ∈ R
}

, f i is a solution of

the linear program. In the LPR-RA, we employ the Dijkstra

algorithm to find paths distributing keys, which requires at

most O(|N |lg|N | + |L|) [35]. The for loop between Lines

10 and 12 used to determine the flow of a path takes at

most O(|L|) time. Hence, the for loop between Lines 5

and 16 takes O (|R| (|L|+ θ (|N | lg |N |+ |L|+ |L|))) =
O (|R| θ (|N | lg |N |+ |L|)) time. In addition, it takes

O(|R| lg |R|) time to determine the request with the minimum

number of remaining time slots (Line 17). Updating the

capacity of links and nodes (Line 22) needs O(|N |+|L|) time.

Updating the requests (Line 23) takes O(|R|) time. Therefore,

the total running of the rounding step of the LPR-RA is

O (|R| θ (|N | lg |N |+ |L|) + |R| lg |R|+ |L|+ |N |+ |R|) =
O (|R| (θ (|N | lg |N |+ |L|) + lg |R|)). This indicates that

the rounding stage can run in polynomial time. Moreover,

the network resources are gradually depleted after each loop,

which renders the flows in the linear program approach 0.

Finally, the outer while loop is terminated once the condition

in Line 20 is satisfied. This completes the proof.

Theorem 3. The time complexity of the PSA is bounded in

O(|R|2(lg |R|+ |N | lg |N |+ |L|)).

Proof: In Algorithm 2, the loop between Lines 4 and 18

iterates at most O(|R|) times. For determining the minimum

number of remaining time slots among the requests (Line

5), the time complexity requires O(|R| lg |R|). Moreover, it

takes O(|R|) time to determine the set of requests with the

minimum number of remaining time slots (Line 7). The for

loop between Lines 8 and 15 repeats at most O(|R|) times.

In addition, we employ the Dijkstra algorithm to determine

the shortest path; therefore, the time complexity of Line 13

is O(|N | lg |N | + |L|) [35]. Thus, the loop between Lines

8 and 15 takes O(|R|(|N | lg |N | + |L|)) time. The updat-

ing operation at Line 17 needs to consider all the nodes

and links in the worst case, hence taking O(|N | + |L|)
time. Eventually, the total running time of Algorithm 2 is

O(|R|(|R| lg |R|+ |R|+ |R|(|N | lg |N |+ |L|)+ |N |+ |L|)) =

O(|R|2(lg |R|+ |N | lg |N |+ |L|)). This completes the proof.

10

REFERENCES

[1] M. Mehic, M. Niemiec, S. Rass, J. Ma, M. Peev, A. Aguado, V. Martin,
S. Schauer, A. Poppe, C. Pacher, and M. Voznak, “Quantum key
distribution: A networking perspective,” ACM Comput. Surv., vol. 53,
no. 5, sep 2020.

[2] D. Nadlinger, P. Drmota, B. Nichol, G. Araneda, D. Main, R. Srinivas,
D. Lucas, C. Ballance, K. Ivanov, E.-Z. Tan et al., “Experimental
quantum key distribution certified by Bell’s theorem,” Nature, vol. 607,
no. 7920, pp. 682–686, 2022.

[3] M. Minder, M. Pittaluga, G. L. Roberts, M. Lucamarini, J. Dynes,
Z. Yuan, and A. J. Shields, “Experimental quantum key distribution
beyond the repeaterless secret key capacity,” Nature Photonics, vol. 13,
no. 5, pp. 334–338, 2019.

[4] E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in
quantum key distribution,” npj Quantum Information, vol. 2, no. 1, pp.
1–12, 2016.

[5] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek,
N. Lütkenhaus, and M. Peev, “The security of practical quantum key
distribution,” Rev. Mod. Phys., vol. 81, pp. 1301–1350, Sep 2009.
[Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.81.
1301

[6] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Secure quantum
key distribution with realistic devices,” Rev. Mod. Phys., vol. 92,
p. 025002, May 2020. [Online]. Available: https://link.aps.org/doi/10.
1103/RevModPhys.92.025002

[7] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” Theoretical Computer Science, vol. 560,
pp. 7–11, dec 2014.

[8] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden,
“Fast and simple one-way quantum key distribution,” Applied Physics

Letters, vol. 87, no. 19, 11 2005, 194108. [Online]. Available:
https://doi.org/10.1063/1.2126792

[9] F. Grosshans and P. Grangier, “Continuous variable quantum
cryptography using coherent states,” Phys. Rev. Lett., vol. 88, p.
057902, Jan 2002. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevLett.88.057902

[10] B. Qi, W. Zhu, L. Qian, and H.-K. Lo, “Feasibility of quantum key
distribution through a dense wavelength division multiplexing network,”
New Journal of Physics, vol. 12, no. 10, p. 103042, oct 2010. [Online].
Available: https://dx.doi.org/10.1088/1367-2630/12/10/103042

[11] K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L.
Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10
Gb/s dense wavelength division multiplexing networks,” Applied Physics

Letters, vol. 104, no. 5, 02 2014, 051123.

[12] L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen,
T.-Y. Chen, and J.-W. Pan, “Experimental multiplexing of quantum
key distribution with classical optical communication,” Applied Physics

Letters, vol. 106, no. 8, 02 2015, 081108.

[13] N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown,
C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe,
J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of
1550nm QKD with strong classical channels in reconfigurable network-
ing environments,” New Journal of Physics, vol. 11, no. 4, p. 045012,
apr 2009.

[14] M. I. Garcı́a Cid, L. Ortiz Martı́n, and V. Martı́n Ayuso,
“Madrid quantum network: A first step to quantum internet,” in
Proceedings of the 16th International Conference on Availability,

Reliability and Security, ser. ARES 21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3465481.3470056

[15] J. Dynes, A. Wonfor, W.-S. Tam, A. Sharpe, R. Takahashi, M. Luca-
marini, A. Plews, Z. Yuan, A. Dixon, J. Cho et al., “Cambridge quantum
network,” npj Quantum Information, vol. 5, no. 1, p. 101, 2019.

[16] Y. Cao, Y. Zhao, Q. Wang, J. Zhang, S. X. Ng, and L. Hanzo, “The
evolution of quantum key distribution networks: On the road to the
qinternet,” IEEE Communications Surveys Tutorials, vol. 24, no. 2, pp.
839–894, 2022.

[17] Y. Cao, Y. Zhao, Y. Wu, X. Yu, and J. Zhang, “Time-scheduled quantum
key distribution (QKD) over WDM networks,” Journal of Lightwave

Technology, vol. 36, no. 16, pp. 3382–3395, 2018.

[18] M. Dianati, R. Alléaume, M. Gagnaire, and X. S. Shen, “Architecture
and protocols of the future european quantum key distribution network,”
Security and Communication Networks, vol. 1, no. 1, pp. 57–74, 2008.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.
13

[19] M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner,
T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fos-
sier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe,
Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré,
R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold,
T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe,
E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J.
Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew,
Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Wa-
lenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden,
and A. Zeilinger, “The SECOQC quantum key distribution network in
Vienna,” New Journal of Physics, vol. 11, no. 7, p. 075001, jul 2009.

[20] H. Zhou, K. Lv, L. Huang, and X. Ma, “Quantum network: Security
assessment and key management,” IEEE/ACM Transactions on Network-

ing, vol. 30, no. 3, pp. 1328–1339, 2022.
[21] Q.-C. Le, P. Bellot, and A. Demaille, “Towards the world-wide quantum

network,” in Information Security Practice and Experience, L. Chen,
Y. Mu, and W. Susilo, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 218–232.

[22] C. le Quoc, P. Bellot, and A. Demaille, “Stochastic routing in large grid-
shaped quantum networks,” in 2007 IEEE International Conference on

Research, Innovation and Vision for the Future, 2007, pp. 166–174.
[23] E. E. Moghaddam, H. Beyranvand, and J. A. Salehi, “Resource allo-

cation in space division multiplexed elastic optical networks secured
with quantum key distribution,” IEEE Journal on Selected Areas in

Communications, vol. 39, no. 9, pp. 2688–2700, 2021.
[24] X. Yu, S. Li, Y. Zhao, Y. Cao, A. Nag, and J. Zhang, “Routing,

core and wavelength allocation in multi-core-fiber-based quantum-key-
distribution-enabled optical networks,” IEEE Access, vol. 9, pp. 99 842–
99 852, 2021.

[25] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten,
J. de Oliveira Filho, M. Papendrecht, J. Rabbie, F. Rozpedek,
M. Skrzypczyk et al., “Netsquid, a network simulator for quantum
information using discrete events,” Communications Physics, vol. 4,
no. 1, p. 164, 2021.

[26] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[27] A. Aguado, V. Lopez, D. Lopez, M. Peev, A. Poppe, A. Pastor,
J. Folgueira, and V. Martin, “The engineering of software-defined
quantum key distribution networks,” IEEE Communications Magazine,
vol. 57, no. 7, pp. 20–26, 2019.

[28] L. Salvail, M. Peev, E. Diamanti, R. Alléaume, N. Lütkenhaus, and
T. Länger, “Security of trusted repeater quantum key distribution net-
works,” Journal of Computer Security, vol. 18, no. 1, pp. 61–87, 2010.

[29] C. Yang, H. Zhang, and J. Su, “The QKD network: model and routing
scheme,” Journal of Modern Optics, vol. 64, no. 21, pp. 2350–2362,
2017.

[30] R. Alléaume, F. Roueff, E. Diamanti, and N. Lütkenhaus, “Topological
optimization of quantum key distribution networks,” New Journal of

Physics, vol. 11, no. 7, p. 075002, jul 2009. [Online]. Available:
https://dx.doi.org/10.1088/1367-2630/11/7/075002

[31] Y. Cao, Y. Zhao, J. Wang, X. Yu, Z. Ma, and J. Zhang, “Kaas: Key
as a service over quantum key distribution integrated optical networks,”
IEEE Communications Magazine, vol. 57, no. 5, pp. 152–159, 2019.

[32] C. Cicconetti, M. Conti, and A. Passarella, “Request scheduling in
quantum networks,” IEEE Transactions on Quantum Engineering, vol. 2,
pp. 2–17, 2021.

[33] P. Erdős, A. Rényi et al., “On the evolution of random graphs,” Publ.

Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.
[34] R. K. Jain, D.-M. W. Chiu, W. R. Hawe et al., “A quantitative measure

of fairness and discrimination,” Eastern Research Laboratory, Digital

Equipment Corporation, Hudson, MA, vol. 21, 1984.
[35] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms. MIT press, 2022.

11

https://link.aps.org/doi/10.1103/RevModPhys.81.1301
https://link.aps.org/doi/10.1103/RevModPhys.81.1301
https://link.aps.org/doi/10.1103/RevModPhys.92.025002
https://link.aps.org/doi/10.1103/RevModPhys.92.025002
https://doi.org/10.1063/1.2126792
https://link.aps.org/doi/10.1103/PhysRevLett.88.057902
https://link.aps.org/doi/10.1103/PhysRevLett.88.057902
https://dx.doi.org/10.1088/1367-2630/12/10/103042
https://doi.org/10.1145/3465481.3470056
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.13
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.13
https://dx.doi.org/10.1088/1367-2630/11/7/075002

	Introduction
	Preliminaries: QKD over WDM
	System Model and Research Problem
	QKD-Over-WDM Network Architecture
	Research Problem

	Algorithms
	Mixed Integer Linear Programming (MILP)
	Linear Programming Relaxation and Rounding Algorithm
	Progressive Serving Algorithm (PSA)

	Key rate benchmark on NetSquid
	Performance Evaluation
	Simulation Setting
	Simulation Results
	Impact of the scale of the problem
	Impact of the network
	Impact of quantum channels
	The fairness and total distributed key

	Conclusion
	References

