Maximizing Key Distribution Capability:
An Application in Quantum Cryptography

Tu N. Nguyen*, Dung H. P. Nguyen, Manh V. Nguyen*, Thinh V. Le*, Bing-Hong Liuf, and Thang N. Dinh?
*Department of Computer Science, Kennesaw State University, Marietta, GA 30060, USA.

TDepartment of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
IDepartment of Computer Science, Virginia Commonwealth University, VA 23284 USA.

Abstract—Quantum key distribution (QKD) integrated
wavelength-division multiplexing (WDM) offers an information-
theoretically secure solution to the key exchange problem. In
this paper, we investigate the joint problem of how to efficiently
schedule QKD to provision sufficient secret keys over WDM
networks. Specifically, we propose and formulate the problem of
maximizing key distribution capability (MKDC) by employing a
mixed integer linear programming (MILP) model for the first
time. We then suggest two near-optimal algorithms adopted to
address larger-scale problems in polynomial time. One employs
the linear programming relaxation technique combined with a
rounding algorithm (LPR-RA) and the other is inspired by the
fact that the application with a higher risk of disruption is
prioritized to recharge secret keys, dubbed progressive serving
algorithm (PSA). Simulation results show that both the LPR-
RA and PSA can approach the best feasible solution or the
upper-bound of the problem. In addition, by means of using
NetSquid, an open simulator for quantum networks, we conduct
experiments to get insight into the BB84, a protocol applied
popularly in QKD networks nowadays.

Index Terms—quantum key distribution (QKD), security ap-
plications, secret keys, key rate, consumption rate.

I. INTRODUCTION

Quantum cryptography. The occurrence of quantum key
distribution (QKD) [1]-[4] offers a promising technology for
the distribution of information-theoretically secure keys. The
difference distinguishing this technique from the traditional
method is that the QKD employs the underlying principles of
quantum mechanics, such as the quantum no-cloning theorem,
instead of the computational complexity [5], [6]. For a simple
QKD network involving two QKD nodes that seek to exchange
secret keys, the process begins with connecting these nodes
together over a dedicated quantum channel. This quantum
channel is the lifeline of secure communication, ensuring that
the transmission of quantum states remains isolated from po-
tential eavesdroppers. They employee the conventional point-
to-point QKD protocols, such as BB84 [7], COW [&], and
GGO2 [9], to securely share keys. One of the major operations
of the above protocols is to transmit photons, fragile signals,
across the quantum channel. Hence, one intends to use the
low-noise dedicated fiber as the quantum channel to protect
such signals from the interference of classical signals.

We thank the anonymous reviewers for their suggestions and feedback. This
research was in part supported by US NSF under Grants: AMPS-2229073,
AMPS-2229075, and CNS-2103405. Corresponding author: Tu N. Nguyen.
The source code is released at: https://github.com/NextCNS/MaxMinProb.

QKD over wavelength-division multiplexing (WDM).
Nevertheless, the dedicated fiber is costly, and deploying new
networks for QKD only is expensive, complicated, and time-
consuming; therefore, the deployment of new QKD networks
is not feasible in practice. One potential approach is to take ad-
vantage of traditional networks to deploy QKD networks. The
foundation of this approach is the wavelength-division multi-
plexing (WDM) technique [10], [11]. Accordingly, leveraging
the capability of conveying multiple types of photons with
various frequencies of optical fibers, the quantum and classical
signals will be transmitted on the same optical fiber but use
different wavelengths. Some studies [12], [13] have proposed
techniques to separate quantum signals from classical signals
and diminish the interference induced by the classical signals,
which shows the feasibility of the approach. Eventually, this
method is applied to deploy many QKD networks in reality,
such as Madrid and Cambridge QKD networks [14], [15].

Fiber-based QKD networks and current challenges.
Nonetheless, due to diverse applications running on optical
fibers of traditional networks, the shortage of wavelength
resources becomes one of the challenges that need to be
bridged. Because a quantum channel cannot be shared with
other data channels, we need to assign separate wavelengths to
quantum channels [16]. However, we cannot allocate too many
wavelengths to act as quantum channels of the QKD network.
Doing so will diminish the performance of other applications
stably running on the traditional network due to the reduction
of the wavelengths used for data transmission [17]. Therefore,
a limited number of wavelengths is assigned to form quantum
channels of the QKD network, and the most important is how
to utilize these links efficiently.

Motivation. Given limited wavelength resources in exist-
ing WDM networks — investigating the problem of how to
efficiently schedule QKD to provision sufficient secret keys
over WDM-based QKD networks — is equally imperative.
Moreover, because end-to-end key distribution is essential for
the quantum internet, a routing strategy plays an important
role in enhancing the key distribution capability in quantum
networks. Previous studies have considered the above issues in
different contexts of the entanglement routing, however, none
of these considers the nexus between the key generation and
consumption. In the following, we review the state-of-the-art
literature of QKD and associated routing algorithms.

https://github.com/NextCNS/MaxMinProb

o The most popular routing technique applied for QKD net-
works in practice is the Open Shortest Path First (OSPF)
[18], [19], in which the Dijkstra-based algorithms are ap-
plied to find paths used for distributing secret keys. How-
ever, the network resources are not efficiently allocated for
for QKD, particularly when either the number of requests
for recharging keys or the network scale increases.

o To enhance the capability of the key distribution, some
studies focus on improving the routing techniques, such as
multiple paths [20] and random paths [21], [22]. However,
none of these can maximize the key distribution capability.

o The authors in [23], [24] aim to maximize the key generation
rate and minimize the consumed resources. Nevertheless,
these studies do not take the key consumption of applica-
tions into account while the nexus between key generation
and consumption is critical.

Our contribution. This work contributes to the develop-
ment of QKD networks, specifically enhancing the key distri-
bution capability by elaborating a novel routing perspective of
the key distribution problem. We summarize key innovation
and contribution of this work as follows:

o We first put forth a new architecture of QKD-over-WDM
networks, in which quantum key pools (QKPs) are partic-
ularly designed to provision sufficient secret keys to the
network applications.

o We deeply investigate the problem of maximizing key dis-
tribution capability (MKDC) through efficiently scheduling
QKD over WDM networks.

e The MKDC problem is formulated with a mixed integer
linear programming (MILP) model that can yield an optimal
solution. In addition, two near-optimal algorithms, including
the linear programming relaxation and rounding algorithm
(LPR-RA) and progressive serving algorithm (PSA), are
proposed to address the MKDC with larger instances.

o The proposed architecture and model are realized via Net-
Squid [25], a quantum network simulator, to validate the fea-
sibility of QKD networks over the WDM. Furthermore, we
conduct extensive simulations to evaluate the performance
and efficacy of the proposed algorithms.

Organization. The rest of the paper is organized as follows.
Section II presents the preliminaries to the research problem.
The system model and research problem will be discussed
in Section III. The proposed algorithms will be described in
Section IV. Section V presents the implementation of the
proposed architecture and model on NetSquid, a quantum
network simulator, and discusses the results obtained from
the realization. Section VI demonstrates simulation results.
Finally, we conclude the paper with remarks in Section VII.

II. PRELIMINARIES: QKD OVER WDM

Point-to-point QKD: QKD promises to offer security in
communication using the laws of quantum mechanics. The
protocol broadly employed in current QKD networks is BB84
[1]. This protocol is implemented to share secret keys between

k® ~ gkl®k/2(:a§kl Dk ®k Ok =k
-t ~ -=mT TS ~ - T~ ~
o000 ¢
____________ ok N hek N

quantum channel == == = BB84 protocol =+« + *p»> classical channel

Fig. 1. An illustration of the key relay process with two intermediate nodes.

two nodes directly connected over a quantum channel, say
Alice and Bob. Alice will randomly send Bob a bunch of
photons with different polarization. Bob also randomly uses
disparate bases to measure the photons to detect the polariza-
tion of the photons. They then exchange information over the
classical channel to verify which bases are correctly used by
Bob. Eventually, Alice agrees with Bob on the sequence of
bits based on the verification result.

Software-defined networking (SDN): SDN [26], [27] is
a novel technology in which the control and data planes are
separated. This characteristic allows to integrate new services
and upgrade existing services rapidly. Moreover, this network
architecture enables centralized management over a controller;
hence, it also provides many chances for optimization in
order to improve network performance. With such advantages,
the SDN architecture is proposed to be the control layer
of the current QKD networks. Accordingly, a controller is
responsible for collecting requests for generating keys and
allocating resources to satisfy the requests based on the global
network information it is holding.

Key relay process: The point-to-point protocol presented
above is applied to generate keys between two connected
nodes by a quantum channel (also called adjacent nodes).
For two remote nodes, we have to employ a so-called key
relay process to share keys based on keys generated between
adjacent nodes [28], [29]. Fig. 1 illustrates an example of this
process in which nodes A and B need to share secret keys
over intermediate nodes C and D. In the first step (1)), keys
will be generated between two adjacent nodes using the point-
to-point protocol, that is, k; between A and C, k5 between C
and D, and k3 between D and B. In the second step (@), C
sends the XOR result between kq and ko (k1 @ ko) to D. After
receiving k1 @ ks from C, D will recover key k1 by performing
the XOR operation between the received result and ko (@),
that is, k1 @ k2 @ k2 = k1. Node D and B then repeated steps
(@ and 3 in turn (steps (4) and (5)), that is, D sends k; @ k3
to B, and B performs ki & k3 ® k3 to recover ki, which is also
the secret key that A wants to share with B. We summarize
the critical characteristics of the key relay process as follows.

1) The relay paths connecting two nodes need to be prede-
termined. We can employ one or more paths to distribute
one key depending on the requirement of the security
level of the system [20].

2) As presented above, the secret key will be relayed at
intermediate nodes. Therefore, if an eavesdropper can
control only one intermediate node, the secret key will
be revealed. To guarantee security, we suppose that all
nodes are trusted once using the key relay process.

3) Because the key generation rates on different quantum
channels are disparate depending on the length of quan-
tum channels, we need to equip nodes with key storage to
store generated keys in order to ensure that faster channels
are not limited by slower channels.

Quantum key pool: There are two factors associated with
the availability of security-hungry applications that we need
to consider in QKD networks, which are key generation rate
and consumption rate. The generation rate is required to
be faster than the consumption rate to guarantee that there
are always sufficient secret keys for the operation of the
applications; otherwise, the applications will be interrupted.
Unfortunately, coupled with the fact that generating keys is
considerably affected by many different physical conditions,
such as fiber loss and noise, the key generation rate is very low
compared with the consumption rate. To bridge this challenge,
one implements key stores (KSs) to store secret keys in
advance [30]. Each QKD node possesses a corresponding
key store. Nevertheless, one node is able to share keys with
multiple nodes, it is difficult to synchronously manage keys for
applications between two nodes; hence, another server, called
quantum key pool (QKP), is realized to manage keys in the key
stores of two nodes. In other words, there is a corresponding
QKP implemented for each pair of nodes. A QKP monitors
the remaining number of secret keys in the corresponding key
stores and sends the SDN controller the request for recharging
keys if necessary.

Key Distribution Capability: In this paper, we consider
the key distribution capability of the QKD network in the
relationship between the consumption rate and the remaining
number of keys in key stores. We suppose that the consumption
rate is kept constant within a specific interval; hence the
remaining keys are sufficient to maintain the operation of
applications within several time units. Specifically, if the
remaining number of keys in servers is x (keys) and the
consumption rate is p (keys/time slot), the application can keep
running within % time slots. The key distribution capability is
to leverage the available resources to deliver as many keys
as possible and maximize the minimum number of remaining
time slots of requests after recharging keys.

III. SYSTEM MODEL AND RESEARCH PROBLEM
A. OQKD-Over-WDM Network Architecture

QKD over WDM. In this study, we consider the model
of Key as a Service (KaaS) [31], in which secret keys are
delivered over a QKD network deployed over the wavelength-
division multiplexing (WDM) network infrastructure as illus-
trated in Fig. 2. This network is expressed by G = (N, L),
where N and L are the sets of QKD nodes and QKD links,
respectively. The BB84 protocol is employed for generating
secret keys between two adjacent nodes, and two remote nodes
share secret keys by the key relay process. Therefore, in
addition to equipping components used for the BB84 protocol,
each QKD node possesses a limited key storage employed to
store its shared secret keys. The capacity of the key storage

Application layer
OKP, ¢7 pp v
Node C
T @ ode NodeD
A s

appllcatlon
Node A N S ’
‘ln

’%QKI%D

Control layer

Node B
,Ei Controller
\ \\\
QKPAC /QIG’AB D %
L $ @ ﬁ

_ QKD layer
KS % Node C
/
A= =k,
Node A < /Node o
K SB ! ~g# Node B

Fig. 2. An illustration of the system model.

of node n € N is expressed over its ¢ property, namely n.c.
Because the wavelength is a limited resource of optical fibers
used for many applications, each QKD link possesses a limited
number of wavelengths, called quantum channels, employed
for transmitting photons according to the BB84 protocol. The
number of quantum channels per QKD link (u,v) € £, which
connects QKD nodes u and v, is expressed by its ¢ property,
namely (u,v).c. In addition, because both the transmitting
duration between two nodes and the survival capability of
a photon are different depending on many factors, such as
the fiber length and the photon loss along a fiber, quantum
channels on different QKD links own disparate key generation
rates (or key rates for short) measured by kbps. Moreover,
we suppose that quantum channels on the same QKD link
have the same key rate, also called the key rate of the QKD
link. This is reasonable because such quantum channels have
the same physical conditions. Moreover, we also suppose that
secret keys used for security applications between two nodes in
the network have the same length (measured by the number of
bits). Thereby, the key rate of a QKD link can be expressed
by the number of keys that can be generated per time slot.
The key rate of QKD link (u,v) can be indicated over the k
property of link (u,v), namely (u,v).k.

Key store (KS). Security applications need secret keys
for their operation. The lack of secret keys will disrupt the
applications. Nevertheless, coupled with the fact that the key
generation rate is substantially lower than the data rate of
applications, secret keys will be generated and stored in key
stores (KSs) in advance to guarantee the continuity of the
applications. For each QKD node, there is a corresponding
KS used to store the produced keys. For each pair of nodes
in the network, there is a corresponding quantum key pool
(QKP), which manages secret keys in the KSs employed
for security applications running between the two nodes.
Eventually, because a QKP manages secret keys, it can know
exactly the number of available keys remaining in the KSs and
evaluate the current key consumption rate.

Controller. The network controller manages all the com-
ponents of the network, including QKD nodes and QKPs.
The controller is responsible for allocating network resources
for generating secret keys using the BB84 protocol. As soon
as the number of secret keys in KSs diminishes due to the
consumption of security applications, QKPs will send requests
for recharging secret keys to the controller. We also assume
that the controller only receives the requests synchronously
according to the time slot, that is, the controller will collect
the requests at the beginning of a time slot, and then it will
assign network resources to serve the requests.

The set of requests collected by the controller in a time slot
is described by R = {R1, Ra, ..., Ri}. A request, in addition
to an index to determine the QKP, includes the residual number
of secret keys in the KSs and the current key consumption
rate of applications. Thereby, request R; can be described
by R; = (s;,d;, ki, pi), where s; and d; are the two nodes
that demand to distribute secret keys, called the source and
destination of R; without loss of generality; «; and p; are
the residual number of keys in the KSs and the consumption
rate of applications running between s; and d;, respectively. A
key is distributed over one dedicated path connecting source-
destination [20]. Based on the information from the requests,
the controller can estimate how long security applications
between two nodes can continue, counted as the number of
time slots, with the number of residual keys in the KSs.

B. Research Problem

The number of secret keys remaining in KSs is apparently
crucial to sustaining the operation of applications. Neverthe-
less, it is challenging to fully recharge keys for all requests
due to the limitation of network resources. In this paper,
we investigate the problem of maximizing key distribution
capability (MKDC). Specifically, we aim to recharge secret
keys such that maximizing the minimum number of time slots
that applications can keep their availability. We formally state
the research problem as follows.

INSTANCE: Given a QKD network described by G =
(N, L) and a set of requests for recharging secret keys for
KSs denoted by R = {R1, Ra, ..., Ri}. Each QKD node in
N owns limited key storage. Each link in £ possesses a limited
key rate, counted as the number of keys that can be generated
over the link by the BB84 protocol per time slot, and a specific
number of quantum channels. The format of request R; is
R; = (s;,d;, ki, pi), where s;,d; € N are the two nodes that
need to be distributed keys, x; is the number of residual keys
in the corresponding KSs, and p; is the consumption rate of
applications running between the two QKD nodes.

TASK: Maximize the number of keys distributed over the
network and the minimum number of time slots that KSs can
supply secret keys to applications running on the network with
the current consumption rate after recharging keys.

Motivating example: Consider an example with the QKD
network shown in Fig. 3(a). For this example, we suppose
that the number of memory units in each node is unlimited,

and there is only one quantum channel on each link. The
number located next to each link indicates the key rate of the
corresponding QKD link. There are four requests for recharg-
ing keys, described by R; = (4,C,1,1), Ry = (C,E, 1,1),
and R3 = (B, D, 1,1). In the first solution presented in Fig.
3(b), requests Ry, Ro, and R3 are recharged 7, 5, and 1 keys,
respectively, over paths (A, B,C), (C,D, E), and (B, D, E).
The total number of distributed keys is 13. Nevertheless, the
application running between nodes B and B is at high risk
of being interrupted because after recharging, the remaining
keys are only enough to run within two time slots. A better
solution is presented in Fig. 3(c). For this solution, request
R3 is recharged 3 keys, in which 1 key is recharged over path
(B,D, E) and 2 keys are recharged over path (B,C, D, E).
With the residual resources, requests R; and R, are recharged
5 and 3 keys, respectively. Though the total number of
distributed keys is decreased compared with the first solution,
the threat of application interruption is greatly reduced. After
recharging, the applications with the highest risk of disruption
can keep running within four time slots.

IV. ALGORITHMS

In this section, we recast the MKDC problem with a mixed
integer linear programming (MILP) model. The detail of the
process is described in Section IV-A. Though we can use a
standard LP solver to address the program, it takes a long
solving time for larger instances. Therefore, we then propose
two near-optimal algorithms to solve the MKDC. One employs
the linear programming relaxation technique, called linear
programming relaxation and rounding algorithm (LPR-RA),
and the other is a greedy-based algorithm considering the
resource utilization of requests, called progressive serving
algorithm (PSA). The LPR-RA and PSA are presented in
Section IV-B and Section I'V-C, respectively.

A. Mixed Integer Linear Programming (MILP)

The first step for distributing secret keys between two nodes
in the network is to determine paths connecting the two nodes.
Keys will then be generated between two adjacent nodes along
the path, and finally, the secret keys will be distributed by the
key relay process. In this paper, we consider a key that can
be delivered between the source and the destination as a flow
over the path. The flow from the source to the destination of
request R; passing through directed link (u,v) is denoted by
ffum. Moreover, the total flow of request R; is described by
f%, which is also the total number of keys distributed between
s; and d;. The problem is formulated as follows.

Maximize 8 x pu+ (1—f3) x Z fi (1)
R;,ER
subject to:

Z f(isi,'u) - Z f(iy7si> = fl \V/Rz eER (2)

veN veN

Fig. 3.

Zfz%v) B Zf(iv,u> =0 VR, eR

veN veN (3)
andVu € N — {s;,d;}

> Sl D Fowy < (w0)ex (wo)k V() e L

R,€R R;€ER
“4)
Z Fluwy + Z flowy Suc YueN (5)
R;eR R;eR
Ih s VR eR (©)
i
fgum)’f(imu)’fiGZ’fZ:um)’f(imu}afiaMZO %

V(u,v) € L,VR, € R

The research problem is a joint optimization problem;
hence, the objective function involves two goals normalized
by 8 (0 < 8 < 1). With a larger /3, the minimum number of
remaining time slots (u) is optimized with a higher priority.
Constraint (2) indicates the total flow and also the total key
that can be distributed between the source and the destination
of a request. Constraint (3) shows the conservation of flows
passing through an intermediate node, that is, the total inflow
at a node equals to the total outflow. Inequality (4) is the
constraint on the capacity of a link, that is, the total number
of keys that can be generated on a link within a time slot
must not exceed the link capacity. Constraint (5) implies that
the key memory employed for the key relay process at a node
must not surpass the node storage. In constraint (6), u is the
minimum number of time slots that a KS can provide secret
keys to maintain the availability of security applications with
the current consumption rate. Eventually, the number of keys
generated over a link must be a positive integer, while x can be
a positive real number. By means of solving the above program
using a standard solver, we can obtain the optimal solution
to the problem with the expectation that both the minimum
number of remaining time slots and the total key that can
be distributed over the network achieve the maximum. Nev-
ertheless, the running time will grow exponentially when the
scale of the problem is increased. Therefore, we next propose
two algorithms for addressing the problem in polynomial time.
The first one is implemented on top of the linear programming
relaxation (LPR), and the other is a greedy-based algorithm
in which the request with the minimum number of remaining
time slots will be served first.

A motivating example: a) The original QKD network, b) the first solution, and c) a better solution.

B. Linear Programming Relaxation and Rounding Algorithm

In the following, we describe the key steps of the Linear
Programming Relaxation and Rounding Algorithm (LPR-RA).

+ Relaxing the mixed integer linear programming. We
first relax the mixed integer linear program by replacing
constraint (7) with constraint (8). Accordingly, the original
MILP is transformed into a linear program (LP), which can
be addressed within polynomial time. Though the solutions
obtained from the linear program are infeasible, they supply
a helpful reference to be able to achieve a good feasible
solution. In this paper, we propose rounding a fractional
solution down to an integer to make it feasible in terms
of the integrality of the flow variables; hence we call this
method the linear programming relaxation and rounding
algorithm (LPR-RA). However, how to round and choose
integer solutions to guarantee the constraints of the problem?
Algorithm 1 describes this technique in more detail.

Fluwys Floys F'sn =0 V(u,0) € L, VR, € R (8)

o Solving the linear program and infeasible links. The
major procedures of the algorithm are solving the relaxed
program and rounding the solutions. These procedures are
repeated continuously until the result can not be improved.
Accordingly, we first solve the LP derived from relaxing
the MILP (Line 4). Because the solutions obtained from
the LP still satisfy the constraints of a flow network, there
are fractional flows from the sources to the corresponding
destinations of the requests after solving the LP. We then
consider the flows whose values are greater than or equal
to 1 for each request because rounding down a less than
1 value returns 0, which inherently is not meaningful. It is
worth noting that after this step, the remaining links form
a flow network derived from the source and terminated at
the destination, where all flows are greater than or equal to
1. Because there may be multiple flows traversing a link
and almost flows are fractional, we cannot know the total
flow passing the network. Therefore, we separate the flows
by determining all possible paths connecting the source
and the destination. The flow passing through each path is
determined by rounding down the minimum flow traversing
the links along the path to the nearest integer.

o Determining feasible paths and corresponding flows.
After ascertaining a path, the flows crossing over the links
along the path will be updated by reducing by the path
flow (Lines 8-12). The total flow is finally aggregated

Algorithm 1: Linear programming relaxation and
rounding algorithm (LPR-RA)

Input: QKD network G = (N, £), set of requests
R ={R1, Rz, ..., Rx}
Output: The maximum of the minimum number of
remaining time slots
1 p=min{k;/p;|R; € R};
2 total_keys = 0;
3 while True do
4 Solve the LP constructed based on the current
status of the network and requests, say the
solutions are fzu,v)
5 foreach R; € R do

6 fi=0;

7 Remove links with flows fzu vy < 1 from the
solution of R;;

8 while there exists a path P; connecting s; to d;
do

9 temp = mzn{fgu ol (u,v) € Pi};

10 foreach (u,v) € P; do

11 f<u 0y = f<) — |temp];

12 Remove (u,v) if f7, , < 1;

13 B fi = f' + [temp];

14 = Ii, + f ;

15 ,uz = 0 oy

16 | total keys = total_keys + f*;

17 min_p = min{u;|R; € R};
18 if min_p > p then
19 L L= Min_{i;

20 if 1 and total_keys can not be improved then

21 L break;
22 Update the capacity of links and nodes;
23 Update the number of remaining keys of requests;

24 return p and total_keys

from the flows determined above (Line 13). Afterward, the
remaining time slots of the current request (u;) will be
identified according to the total flow, the current number
of the remaining keys, and the consumption rate (Line 15).
The total key distributed over the network is also updated
based on the total flow of the current request (Line 16).
If the minimum number of remaining time slots and the
total distributed key, which is determined after considering
all the requests, can be improved compared to the previous
ones, we will update the capacity of links and nodes, and
the number of remaining keys of the requests (Lines 22-23)
and repeat the above steps. Otherwise, we terminate the loop
and take the current number of remaining time slots and the
current total distributed key (total_keys) as the final results.

Algorithm 2: progressive serving Algorithm (PSA)

Input: QKD network G = (N, £), set of requests
R ={R1, Rz, ..., Ry}
Output: The maximum of the minimum number of
remaining time slots
1 flag = False;
2 total_keys = 0;
3 R« 0
4 while [R| >0 do
5 min_p = min{k;/p;|R; € R};
6 | P+ 0
7 Determine the set of requests with the min_u
remaining time slots, say R,,;
8 foreach R, € R,, do

9 if the residual resources of the network cannot
serve R; then

10 R+ R\R;;

11 R +— R UR;;

12 continue;

13 P; + shortest_path(R;);

14 if P =0 or |P;| <|P| then

15 L P+ P

16 Update total_keys if necessary;

17 Update the node and link resources along path P;

18 Update the number of remaining keys for the

| corresponding request with path P;
19 1= min{k;/p;|R; € R'};
20 return p and total_keys

C. Progressive Serving Algorithm (PSA)

In the following, we put forth an efficient heuristic algorithm
inspired by the fact that the request with the minimum number
of remaining time slots needs to be satisfied first in order
to achieve the objective of the problem. The detail of the
algorithm is described in Algorithm 2.

In Algorithm 2, we first determine set (R,,) of requests
with the same number of remaining time slots (i.e., the ratio
k;i/p; for request R; € R). We next consider whether we
can serve each request in R,, with the available resources
of the network. A request is served if we can discover a
path connecting its source and destination on which there are
enough available resources. A node is available when it owns
at least two available memory units if it is an intermediate
node and one memory unit if it is a source or a destination.
Similarly, a link is available if it possesses at least one
available quantum channel. We then select the first request
with the shortest path connecting its source and destination
as the request that needs to be served. The rationale behind
this step is derived from the fact that serving a request with
the shortest path will consume the least network resources,
hence increasing the chance to serve other requests. The total
distributed keys will then be updated by increasing 1 unit.

await_timer
¥ rx_input /] await_port_input H rx_input
create_qubi P Classical channel
:_qubits tx_ouput \‘ I/ %
generation Select/
loss T discard qubit

qubit Ty message measure
reject qubit
X
!tx_ouput Q channel (FibreLossModel) await_port_input |->| rx_input

Fig. 4. NetSquid implementation.

Moreover, the resources of nodes and links along the selected
path will then be updated; that is, the total capacity of each
link will be decreased by 1, and the number of available
memory units will be reduced by 2 for the intermediate nodes
and decreased by 1 for the source and destination nodes. If
a request cannot be served with the residual resources of
the network, it will be moved from the original set (R) to
the final set (R') containing requests that cannot be served
anymore. The algorithm will iterate until the residual resources
are insufficient to serve any requests.

V. KEY RATE BENCHMARK ON NETSQUID

In this section, we conduct experiments on the BB84
protocol using NetSquid [25], an open simulator for quantum
networks. We realize the protocol by the model illustrated
in Fig. 4. In the model, Alice and Bob are two adjacent
QKD nodes that need to share secret keys. These nodes are
connected directly over two separate channels with the same
length, classical and quantum. Qubits, expressed by photons,
will propagate from Alice to Bob over the quantum channel
while the information is exchanged over the classical channel.
In addition, qubits conveyed over the quantum channel must
suffer a loss with probability p;,ss determined as follows [32].

Ploss = 1-—- (1 _pgen) X 10_52/10 (9)

where pgc, is the probability that the photons are lost im-
mediately after generation because the apparatus used in
experiments in reality is not ideal, 6 (dB/km) is the attenuation
parameter of the optical fiber employed as the quantum
channel, and / is the fiber length. Both the channels introduce
a propagation delay determined as A = é, where c; is the
speed of light in the fiber, which is set to 2 x 10° (km/s)
in the experiments. Moreover, we also suppose that there is
no error on the classical channel. In all the experiments, we
evaluate the key generation rate, counted as kbps, according
to the fiber length, which is varied from 20 to 70 (km). The
experiment results are shown in Fig. 5, in which data employed
to draw curves (bold color) is the average of 100 trials. The
band covering a curve reflects the variation in the results of
the corresponding case.

In the first experiment, we alter py., between the values
in set {0.1,0.2,0.3,0.4} and fix § at 0.1. In the second
experiment, the fiber attenuation (J) is changed from 0.1 to
0.4 while the initial probability (pge,,) is kept constant at 0.1.
The results of these experiments are displayed in Fig. 5(a)
and Fig. 5(b), respectively. It is worth noticing that the red

1000
— 6=0.1

6=02
— 6=0.3
— 6=04

800

600

400

Key rate (kbps)
Key rate (kbps)

200

N

020 30 40 50 60 70 020 30 40 50 60 70
Fiber length (km) Fiber length (km)

(a) (b)

Fig. 5. Dependence of the key generation rate on the fiber length (a) the
probability that the photons are lost immediately after generation (b) fiber
attenuation.

curves in both figures are nearly analogous with the other
because the parameters used for these cases are the same,
that is, pgen, = 0.1 and § = 0.1. The main observation from
the figures is that the key rate is quite low and substantially
decreases according to the fiber length, particularly in the
second experiment. In addition, the larger the initial probability
or the fiber attenuation, the lower the key rate. There are
three significant reasons engendering this result. The first
reason is associated with the delay of photons and exchanged
information between Alice and Bob once propagating over
the classical and quantum channels. The longer the distance,
the longer the latency, which decreases the number of bits
generated within a time unit. Secondly, some photons will
be lost during generation and transmission over the fiber. In
particular, the loss will be more serious with the larger values
of Pgen, 0, and £ according to (9). For instance, with the case
that pgen, = 0.1, § = 0.4, and £ = 50 in the second experiment,
the probability of photon loss once traversing over the quantum
channel is pj,ss = 0.991, which means all the generated
photons is nearly lost during transmission. This induces the
green curve in Fig. 5(b) to approach 0 when the fiber length
exceeds 50 (km). Moreover, also according to (9), § and /¢
offer more influence on pjoss than pgen, which causes the
key rate to reduce strongly once increasing § and ¢. This is
the reason why each curve in Fig. 5(b) is separated from the
others, different from Fig. 5(a), where all the curves approach
closely. Eventually, because Bob randomly employs one out of
two bases (i.e., rectilinear and diagonal) to measure photons,
half of the photons that can reach Bob will be ignored due to
the mismatch between the bases used by Alice and Bob.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations in order
to evaluate the performance of the proposed algorithms, i.e.,
LPR-RA and PSA, as well as factors that affect the objective
of the problem.

A. Simulation Setting

In this subsection, we present the default values of param-
eters employed in simulations; that is, if these parameters are
not set in simulation scenari os, they will get the corresponding
default values. Firstly, the networks used in the simulations are
randomly generated employing the Erdos-Renyi model [33],

TABLE I
SUMMARY OF PARAMETERS IN THE SIMULATION

Parameter Description
Network Erdos-Renyi model
Number of nodes 100

0.05

[1,10) (channels/link)
[1,5) (keys/time slot)
[10, 60) (units)

20

Probability for link creation («)

The number of quantum channels on links
The key rate of quantum channels

The number of memory units of nodes
The number of requests

B 0.99

in which the number of nodes and the probability for link
creation (o) are set to 100 and 0.05, respectively. The number
of quantum channels on network links is distributed between
the values in the half-open interval [1, 10). The key generation
rate of quantum channels on the same link, counted as the
number of keys that can be generated per time slot, is identical
and distributed between the values in the half-open interval
[1,5). Each node hosts a specific number of memory units
for key storage, distributed between the values in the half-
open interval [10,60). The number of quantum channels, the
key rate of quantum channels, and the number of memory
units are all randomly set according to the discrete uniform
distribution. Secondly, the set of requests includes 20 elements
by default and is also randomly generated. In addition, we
intend to optimize p with a higher priority; thus, we set 5 to
0.99. To mitigate errors engendered by randomly generating
parameters, each point employed to draw the curves in figures
is the average of 100 trials'. We summarize the parameters
used in the simulation in Table I.

Because the problem in the paper is first proposed, we
employ two baselines for performance evaluation. The baseline
used for the small-scale problem is the solution obtained from
solving the mixed integer linear programming (MILP) model
directly. Because the MKDC is a joint optimization problem
involving two objectives, this baseline may not be the optimal
solution, but it is a good feasible solution for comparison.
Particularly, in the case of assessing the application sustaining
capacity, it provides the best solution amongst the proposed
methods. For the large-scale problem and other scenarios, we
use the solution obtained by solving the relaxed version of the
MILP model (LPR) as the baseline. Although this approach
cannot yield a feasible solution due to the violation of the
integrality constraint, it can be used as an upper-bound to
evaluate the performance of the LPR-RA and PSA.

The performance metric used to evaluate the proposed
algorithms in simulation scenarios is the minimum number
of time slots that security applications running on the network
can be maintained. An application is maintained if the number
of secret keys in the corresponding KSs is enough to keep
operating within a specific number of time slots with the cur-
rent consumption rate. We call the maximum of the minimum
number of time slots that an application can be maintained the

'The source code is released at: https:/github.com/NextCNS/MaxMinProb.

z - - MILP = -H-LPR
ERY 3 -A-LPRRA ([5 TN -A- LPR-RA | |
§ -©O- PSA & N -©O- PSA
@ @ &
£ £ | Beeeg. |
2 2 !
z z
L2 L .
K E
29 = 1
2. [=3
2 =)
= <

8 10 . . . 7 3

3 1 5 6 7 3 20 22 24 26 28 30

Number of requests Number of requests
(a) (b)

Fig. 6. Dependence of the application sustaining capacity on the number of
requests (a) small-scale problem and (b) large-scale problem.

application sustaining capacity of the network. In addition,
we employ the Jain index [34] to evaluate the fairness in
terms the number of remaining time slots that applications
can keep running in. Finally, we also assess the performance
of the proposed algorithm over the total secret keys that can
be distributed over the network.

B. Simulation Results

The main observation form the results: the performance of
the LPR-RA and PSA nearly approaches to the other in Fig.
6. Both algorithms show good performance in the small-scale
scenario when their solutions are close to the best solution
obtained by directly solving the MILP. In Fig. 7 and Fig.
8, the LPR-RA shows a better performance once increasing
the network scale (i.e., the number of QKD nodes, links, the
number of channels per QKD link, and the channel capacity).

1) Impact of the scale of the problem: For this set of
simulations, we assess the impact of the number of requests
in set R on the application sustaining capacity. We divide the
simulation into two scenarios, equivalent to the small-scale
and large-scale of the problem. In the small-scale problem, the
number of requests varies from 3 to 8, and the number of QKD
nodes is fixed to 30. In the large-scale problem, we evaluate the
application sustaining capacity when the number of requests
alters between the values in set {20, 22,24, 26,28,30}, and
the number of QKD nodes is set to 100. As we observe in
Fig. 6, when the number of requests increases, the primary
trend is steadily down, but the drop pace is lower in the large-
scale problem. This is because the network resources, i.e.,
quantum channels and key memories, are consumed more to
be able to increase the minimum number of remaining time
slots for more requests. This reduces the chance of improving
the number of remaining time slots of other requests due to
the limitation of the network resources, causing a decrease in
the application sustaining capacity.

2) Impact of the network: In the second simulation, we
evaluate the dependence of the application sustaining capacity
on the network components, that is, nodes and links. In the
first scenario, we vary the number of QKD nodes from 50
to 300 while keeping the values of other parameters at the
default. The result of the simulation is recorded and presented
in Fig. 7(a). In the figure, we can observe that when the

https://github.com/NextCNS/MaxMinProb

16

ining Capacity

-B-LPR
A LPR-RA |
-©-PSA

Application Sustaining Capacity

. . .
50 100 150 200 250 300

Number of nodes

(@) (b)

a(x102)

Fig. 7. Dependence of the application sustaining capacity on the network
components (a) network nodes (b) network links.

number of nodes is increased from 50 to 150, the application
sustaining capacity is also improved significantly. However,
when the number of nodes exceeds 150, the curves tend to
remain unchanged or decrease slightly. This is because there
are many ways to establish paths connecting the sources and
destinations of the same request used for the QKD relay when
increasing the number of nodes. This leads to an increase in
the possibility of serving requests. Nevertheless, one of the
factors confining the capacity of the network is the density of
links (specified by «), which is kept constant in this scenario.
It is worth noticing that as long as we cannot determine a
path to satisfy one request among the requests that need to
be served, i.e., the requests with the same minimum number
of remaining time slots, the application sustaining capacity
cannot be improved. That is the reason the result cannot be
enhanced though the number of nodes is increased.

In the second scenario, we alter the network scale by
changing the probability of generating links («) from 0.03 to
0.1 while keeping the number of nodes. As shown in Fig. 7(b),
though the curves fluctuate unpredictably, the major trend for
all algorithms is upward. Similarly to the above scenario, the
increase in the number of links will render increasing in the
potential for satisfying requests. Nonetheless, the bottleneck
confining the application sustaining capacity in this scenario is
the number of memory units hosted by network nodes. When
the number of memory units is not enough, we also cannot
establish paths for the key relay process though there are still
many redundant links.

3) Impact of quantum channels: In order to evaluate the
impact of quantum channels, we conduct simulations in two
scenarios. In the first scenario, the number of quantum chan-
nels on all links is identical and changes from 1 to 8. The
simulation result is illustrated in Fig. 8(a). All algorithms yield
the same results in terms of the tendency of the curves. Gener-
ally, the application sustaining capacity increases continuously
according to the number of quantum channels. Nevertheless,
the growth pace gradually decreases when increasing the
number of channels. This is because the increase in the number
of quantum channels will lead to an increase in the possibility
of key generation on each link, but the key storage of nodes
is the bottleneck in this scenario that limits the number of
generated keys on links. Therefore, it is hard to improve

Application Sustaining Capacity

&
E
ki -H-LPR |
E A~ LPR-RA
< - PSA
3 4 5 6 7 8
Number of channels Key generation rate
(@ (b)

Fig. 8. Dependence of the application sustaining capacity on quantum
channels (a) the number of quantum channels on each link (b) the key
generation of quantum channels.

0.95 32

X-. ¥
0.92 | =
] 2
£ 2
g 09 z
E
0.88 | [-%- MILP =] -%e-MILP ||
-A- LPR-RA -A- LPR-RA
-©- PSA -©- PSA
0.86 : ‘ ‘ ‘
3 1 5 6 7 8

Number of requests Number of requests

(@ (b)

Fig. 9. Dependence of the a) fairness index and b) total distributed key on
the number of requests.

the application sustaining capacity even when the number of
quantum channels is set to a relatively large value.

In the second scenario, we explore the influence of quantum
channels on the application sustaining capacity by changing
the channel capacity, counted as the number of keys a channel
can generate per time slot, from 1 to 6. The result is shown
in Fig. 8(b). Similarly to the above scenario, the increase in
channel capacity will result in an increase in link capacity,
but due to the limitation of key storage of nodes, we cannot
improve the application sustaining capacity anymore when the
channel capacity gains a threshold. As observed from Fig.
8(b), the thresholds are 3 and 2 for the LPR-RA and PSA,
respectively.

4) The fairness and total distributed key: We employ the
same configuration as the small-scale scenario for this set
of simulations. From the results shown in Fig. 9, we can
observe that there is a trade-off between fairness and the total
key that can be distributed over the network. Specifically, the
PSA provides the best fairness but distributes the fewest keys.
This correctly reflects the essence of the algorithms, that is,
the PSA, by means of using the progressive technique for
all requests, always attempts to maintain the best fairness,
while the MILP and LPR-RA, after maximizing the minimum
number of remaining time slots among the requests, tend
to optimize the total number of distributed keys. From Fig.
9(a), the fairness index tends to decrease once increasing
the number of requests due to two reasons. The first one
is the limitation of the network resources. The second is

that resource contention increases with the increase in the
number of requests. In addition, from Fig. 9(b), the total
key distributed over the network increases according to the
number of requests. Nevertheless, if there are more chances
to improve the minimum number of remaining time slots, the
total distributed key tends to decrease. This is clearly shown in
Fig. 6(a) and Fig. 9 when the number of requests varies from 7
to 8. While the total distributed key decreases, the application
sustaining capacity and the Jain index increase.

VII. CONCLUSION

This paper considers QKD deployed over the WDM net-
works. We have investigated the first-of-its-kind maximizing
key distribution capability (MKDC) problem considering the
nexus between key generation rate and consumption rate.
Specifically, our goal is to sustain the operation of the ap-
plications as long as possible by provisioning sufficient secret
keys and simultaneously maximize the number of keys that
can be distributed over the network within a time slot. We
have formulated the problem with a mixed integer linear
programming model. We then proposed two near-optimal
algorithms, including LPR-RA and PSA to address the MKDC
in polynomial time. To demonstrate the feasibility of the
proposed model and algorithms, we have realized the system
on a quantum network simulator i.e. NetSquid considering
different topologies and traffic matrices while testing the key
rate and how the quantum loss affects the key generation
rate, particularly the fiber loss. In addition, comprehensive
simulations have been conducted to validate the efficacy of
LPR-RA and PSA. The results indicate that both algorithms
can approach the best results in all the simulation scenarios.

APPENDIX

In this section, we show that the LPR-RA can satisfy all
the constraints of the MKDC problem. In addition, we also
analyze the time complexity of the algorithms. In the theorems
and proofs, |.| indicates the cardinality of the set, and lg
denotes the decimal logarithm of a number.

Theorem 1. Solutions obtained from the LPR-RA satisfy all
the constraints of the MKDC problem.

Proof: The constraints of the MKDC problem include
two groups. The first group is related to the flow network,
used to determine paths connecting two nodes that need to
share secret keys. The second group is used to restrict the
path in the limitation of the network resources (i.e., the key
storage of nodes and the quantum channels on links). The
solution obtained from the relaxed version of the mixed integer
linear programming model, though fractional, always forms a
flow network for each request. The LPR-RA determines the
shared key paths based on such networks; hence satisfy the
flow network constraints. For each path, the flow is determined
by rounding the minimum among flows on links along the path
down to the nearest integer. This guarantees that the resources
used for distributing keys along the paths do not exceed

10

the available resources, thus satisfying the second group of
constraints. This completes the proof. []

Theorem 2. The LPR-RA can terminate in polynomial time.

Proof: The LPR-RA includes two portions, solving the
linear program and rounding the results. The first one can
be achieved in polynomial time [35]; therefore, it suffices
to show that the second part can run in polynomial time
and the while loop between Lines 3 and 23 in Algorithm 1
can terminate. After addressing the relaxed version of the
mixed integer linear programming model, we consider each
request in set R in turn; thus, the loop between Lines 5 and
16 iterates at most O(|R|) times. We next remove the links
whose flow is less than 1 (Line 7), which takes O(|L£|) time.
The while loop between Lines 8 and 13 repeats at most O(6)
FJ IVR; € R}, f7 is a solution of
the linear program. In the LPR-RA, we employ the Dijkstra
algorithm to find paths distributing keys, which requires at
most O(|N|Ig|N| + |£|) [35]. The for loop between Lines
10 and 12 used to determine the flow of a path takes at
most O(|£]) time. Hence, the for loop between Lines 5
and 16 takes O (|R|(|£]+ 6 (IN]1g|N|+ L]+ |L])))
O (IR|0 (IN|1g|N|+|£])) time. In addition, it takes
O(|R]|1g|R|) time to determine the request with the minimum
number of remaining time slots (Line 17). Updating the
capacity of links and nodes (Line 22) needs O(JN|+]|L£|) time.
Updating the requests (Line 23) takes O(|R|) time. Therefore,
the total running of the rounding step of the LPR-RA is
O (IR[0 (IN1g IV + |£]) + [R[1g [R| + |£] + [N+ [R]) =
O (|R| (0 (IN]1g N+ |£]) +1g|R])). This indicates that
the rounding stage can run in polynomial time. Moreover,
the network resources are gradually depleted after each loop,
which renders the flows in the linear program approach 0.
Finally, the outer while loop is terminated once the condition
in Line 20 is satisfied. This completes the proof. []

times, where § = max

Theorem 3. The time complexity of the PSA is bounded in
O(IR[(Ig|R| + IN1g N+ [L]).

Proof: In Algorithm 2, the loop between Lines 4 and 18
iterates at most O(|R|) times. For determining the minimum
number of remaining time slots among the requests (Line
5), the time complexity requires O(|R|1lg|R]|). Moreover, it
takes O(|R|) time to determine the set of requests with the
minimum number of remaining time slots (Line 7). The for
loop between Lines 8 and 15 repeats at most O(|R]) times.
In addition, we employ the Dijkstra algorithm to determine
the shortest path; therefore, the time complexity of Line 13
is O(JN|1g|N| + |£]) [35]. Thus, the loop between Lines
8 and 15 takes O(|R|(|N|lg|N| + |£|)) time. The updat-
ing operation at Line 17 needs to consider all the nodes
and links in the worst case, hence taking O(JN]| + |£])
time. Eventually, the total running time of Algorithm 2 is
O(IRI(IR|1g IR +[R[+|RI(IN1g IN+|L]) +N]+|£])) =
O(IR|?(Ig |R| + |N|1g |N|+|L])). This completes the proof.

|

[1]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

M. Mehic, M. Niemiec, S. Rass, J. Ma, M. Peev, A. Aguado, V. Martin,
S. Schauer, A. Poppe, C. Pacher, and M. Voznak, “Quantum key
distribution: A networking perspective,” ACM Comput. Surv., vol. 53,
no. 5, sep 2020.

D. Nadlinger, P. Drmota, B. Nichol, G. Araneda, D. Main, R. Srinivas,
D. Lucas, C. Ballance, K. Ivanov, E.-Z. Tan et al., “Experimental
quantum key distribution certified by Bell’s theorem,” Nature, vol. 607,
no. 7920, pp. 682-686, 2022.

M. Minder, M. Pittaluga, G. L. Roberts, M. Lucamarini, J. Dynes,
Z. Yuan, and A. J. Shields, “Experimental quantum key distribution
beyond the repeaterless secret key capacity,” Nature Photonics, vol. 13,
no. 5, pp. 334-338, 2019.

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in
quantum key distribution,” npj Quantum Information, vol. 2, no. 1, pp.
1-12, 2016.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek,
N. Liitkenhaus, and M. Peev, “The security of practical quantum key
distribution,” Rev. Mod. Phys., vol. 81, pp. 1301-1350, Sep 2009.
[Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.81.
1301

F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Secure quantum
key distribution with realistic devices,” Rev. Mod. Phys., vol. 92,
p. 025002, May 2020. [Online]. Available: https://link.aps.org/doi/10.
1103/RevModPhys.92.025002

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” Theoretical Computer Science, vol. 560,
pp. 7-11, dec 2014.

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden,
“Fast and simple one-way quantum key distribution,” Applied Physics
Letters, vol. 87, no. 19, 11 2005, 194108. [Online]. Available:
https://doi.org/10.1063/1.2126792

F. Grosshans and P. Grangier, “Continuous variable quantum
cryptography using coherent states,” Phys. Rev. Lett., vol. 88, p.
057902, Jan 2002. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevLett.88.057902

B. Qi, W. Zhu, L. Qian, and H.-K. Lo, “Feasibility of quantum key
distribution through a dense wavelength division multiplexing network,”
New Journal of Physics, vol. 12, no. 10, p. 103042, oct 2010. [Online].
Available: https://dx.doi.org/10.1088/1367-2630/12/10/103042

K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L.
Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10
Gb/s dense wavelength division multiplexing networks,” Applied Physics
Letters, vol. 104, no. 5, 02 2014, 051123.

L.-J. Wang, L.-K. Chen, L. Ju, M.-L. Xu, Y. Zhao, K. Chen, Z.-B. Chen,
T.-Y. Chen, and J.-W. Pan, “Experimental multiplexing of quantum
key distribution with classical optical communication,” Applied Physics
Letters, vol. 106, no. 8, 02 2015, 081108.

N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown,
C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe,
J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of
1550nm QKD with strong classical channels in reconfigurable network-
ing environments,” New Journal of Physics, vol. 11, no. 4, p. 045012,
apr 2009.

M. I. Garcia Cid, L. Ortiz Martin, and V. Martin Ayuso,
“Madrid quantum network: A first step to quantum internet,” in
Proceedings of the 16th International Conference on Availability,
Reliability and Security, ser. ARES 21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3465481.3470056

J. Dynes, A. Wonfor, W.-S. Tam, A. Sharpe, R. Takahashi, M. Luca-
marini, A. Plews, Z. Yuan, A. Dixon, J. Cho et al., “Cambridge quantum
network,” npj Quantum Information, vol. 5, no. 1, p. 101, 2019.

Y. Cao, Y. Zhao, Q. Wang, J. Zhang, S. X. Ng, and L. Hanzo, “The
evolution of quantum key distribution networks: On the road to the
qinternet,” IEEE Communications Surveys Tutorials, vol. 24, no. 2, pp.
839-894, 2022.

Y. Cao, Y. Zhao, Y. Wu, X. Yu, and J. Zhang, “Time-scheduled quantum
key distribution (QKD) over WDM networks,” Journal of Lightwave
Technology, vol. 36, no. 16, pp. 3382-3395, 2018.

11

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

M. Dianati, R. Alléaume, M. Gagnaire, and X. S. Shen, “Architecture
and protocols of the future european quantum key distribution network,”
Security and Communication Networks, vol. 1, no. 1, pp. 57-74, 2008.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.
13

M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner,
T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fos-
sier, M. Fiirst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe,
Y. Hasani, M. Hentschel, H. Hiibel, G. Humer, T. Léanger, M. Legré,
R. Lieger, J. Lodewyck, T. Loriinser, N. Liitkenhaus, A. Marhold,
T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe,
E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J.
Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew,
Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Wa-
lenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden,
and A. Zeilinger, “The SECOQC quantum key distribution network in
Vienna,” New Journal of Physics, vol. 11, no. 7, p. 075001, jul 2009.
H. Zhou, K. Lv, L. Huang, and X. Ma, “Quantum network: Security
assessment and key management,” IEEE/ACM Transactions on Network-
ing, vol. 30, no. 3, pp. 1328-1339, 2022.

Q.-C. Le, P. Bellot, and A. Demaille, “Towards the world-wide quantum
network,” in Information Security Practice and Experience, L. Chen,
Y. Mu, and W. Susilo, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 218-232.

C. le Quoc, P. Bellot, and A. Demaille, “Stochastic routing in large grid-
shaped quantum networks,” in 2007 IEEE International Conference on
Research, Innovation and Vision for the Future, 2007, pp. 166-174.

E. E. Moghaddam, H. Beyranvand, and J. A. Salehi, “Resource allo-
cation in space division multiplexed elastic optical networks secured
with quantum key distribution,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 9, pp. 2688-2700, 2021.

X. Yu, S. Li, Y. Zhao, Y. Cao, A. Nag, and J. Zhang, “Routing,
core and wavelength allocation in multi-core-fiber-based quantum-key-
distribution-enabled optical networks,” IEEE Access, vol. 9, pp. 99 842—
99 852, 2021.

T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten,
J. de Oliveira Filho, M. Papendrecht, J. Rabbie, F. Rozpedek,
M. Skrzypczyk et al., “Netsquid, a network simulator for quantum
information using discrete events,” Communications Physics, vol. 4,
no. 1, p. 164, 2021.

D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76,
2015.

A. Aguado, V. Lopez, D. Lopez, M. Peev, A. Poppe, A. Pastor,
J. Folgueira, and V. Martin, “The engineering of software-defined
quantum key distribution networks,” IEEE Communications Magazine,
vol. 57, no. 7, pp. 20-26, 2019.

L. Salvail, M. Peev, E. Diamanti, R. Alléaume, N. Liitkenhaus, and
T. Lénger, “Security of trusted repeater quantum key distribution net-
works,” Journal of Computer Security, vol. 18, no. 1, pp. 61-87, 2010.
C. Yang, H. Zhang, and J. Su, “The QKD network: model and routing
scheme,” Journal of Modern Optics, vol. 64, no. 21, pp. 2350-2362,
2017.

R. Alléaume, F. Roueff, E. Diamanti, and N. Liitkenhaus, “Topological
optimization of quantum key distribution networks,” New Journal of
Physics, vol. 11, no. 7, p. 075002, jul 2009. [Online]. Available:
https://dx.doi.org/10.1088/1367-2630/11/7/075002

Y. Cao, Y. Zhao, J. Wang, X. Yu, Z. Ma, and J. Zhang, “Kaas: Key
as a service over quantum key distribution integrated optical networks,”
IEEE Communications Magazine, vol. 57, no. 5, pp. 152-159, 2019.
C. Cicconetti, M. Conti, and A. Passarella, “Request scheduling in
quantum networks,” IEEE Transactions on Quantum Engineering, vol. 2,
pp- 2-17, 2021.

P. ErdSs, A. Rényi et al., “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17-60, 1960.

R. K. Jain, D.-M. W. Chiu, W. R. Hawe et al., “A quantitative measure
of fairness and discrimination,” Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, vol. 21, 1984.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

https://link.aps.org/doi/10.1103/RevModPhys.81.1301
https://link.aps.org/doi/10.1103/RevModPhys.81.1301
https://link.aps.org/doi/10.1103/RevModPhys.92.025002
https://link.aps.org/doi/10.1103/RevModPhys.92.025002
https://doi.org/10.1063/1.2126792
https://link.aps.org/doi/10.1103/PhysRevLett.88.057902
https://link.aps.org/doi/10.1103/PhysRevLett.88.057902
https://dx.doi.org/10.1088/1367-2630/12/10/103042
https://doi.org/10.1145/3465481.3470056
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.13
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.13
https://dx.doi.org/10.1088/1367-2630/11/7/075002

	Introduction
	Preliminaries: QKD over WDM
	System Model and Research Problem
	QKD-Over-WDM Network Architecture
	Research Problem

	Algorithms
	Mixed Integer Linear Programming (MILP)
	Linear Programming Relaxation and Rounding Algorithm
	Progressive Serving Algorithm (PSA)

	Key rate benchmark on NetSquid
	Performance Evaluation
	Simulation Setting
	Simulation Results
	Impact of the scale of the problem
	Impact of the network
	Impact of quantum channels
	The fairness and total distributed key

	Conclusion
	References

