
A Concurrent Relaxed Queue for Unordered
Parallel Accesses on GPUs

Mengshen Zhao
Computer and Information Science

University of Mississippi
University, USA

mzhao@go.olemiss.edu

David Troendle
Computer and Information Science

University of Mississippi
University, USA

david@cs.olemiss.edu

Byunghyun Jang
Computer and Information Science

University of Mississippi
University, USA

bjang@cs.olemiss.edu

Abstract—We propose a relaxed concurrent queue for Graphic

Processing Units (GPUs) which supports groups of unordered

enqueue and/or dequeue operations. When the group size is one,

it becomes a conventional strict First-In-First-Out (FIFO) queue.

We call these groups Parallel Operations Groups (POGs) and

leverage a persistent thread model to support the processing of

an arbitrary number of POGs. To minimize thread contention

and synchronization overhead, queue operations in each POG are

processed as a group then committed to the queue in a single up-

date process. The experiment compares our proposed queue with

a non-blocking concurrent queue (baseline) on synthetic inputs

that simulate the diverse configurations of POGs present in real-

world applications. The experiments show that our relaxed queue

achieves a significant speed up over the baseline when processing

a large number of POGs while retaining good scalability.

Index Terms—Concurrent Queue, Relaxed FIFO Semantics,

GPU, Parallel Operations Group, Data Structure

I. INTRODUCTION

In multithreaded shared memory systems, threads synchro-
nize and communicate with one another through data struc-
tures in shared memory. Concurrent data structures play a
crucial role in achieving good performance on such systems.
Queues are one of the most important data structures and
are pervasively used across many domains. A number of
concurrent queue design techniques have been proposed on
modern multicore CPUs [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], but most of them are not directly applicable to GPUs
where threads are scheduled and executed by hardware in
a Single Instruction Multiple Threads (SIMT) fashion. This
gives rise to increased demand for high performance and
scalable queue implementation on GPUs.

In this paper, we propose a concurrent queue for GPUs
with relaxed semantics. This relaxed queue supports group of
unordered parallel accesses while keeping the FIFO property
among groups. We call these groups Parallel Operations
Groups (POGs), and find them used in some parallel applica-
tions. For example, Breadth-First-Search (BFS) uses a queue
to schedule nodes to search level by level in a FIFO fashion
where the processing order of nodes at the same level does not

matter1. The relaxed property of our queue can handle such
cases efficiently by allowing unordered parallel enqueues and
dequeues of nodes at the same level while maintaining BFS
semantics. We also propose several optimization techniques
utilizing the unordered property of POGs to further improve
the throughput of the queue. These optimizations aim at
reducing thread contention and synchronization overhead. Our
experimental results show that our proposed optimizations
improve the scalability of the queue when compared to the
baseline where the processing time of arbitrary POG sizes are
almost identical. Our proposed queue is implemented using
persistent threads to minimize the kernel launch overhead
while maximizing the utilization of GPU hardware resources.
The contributions of this paper can be summarized as follows.

• We introduce the concept of POGs which is frequently
found in parallel computing.

• We present a scalable concurrent queue with relaxed
semantics that is specifically designed for highly parallel
processing applications on GPUs.

• We propose a set of optimizations that leverage the
combination of the relaxed semantics of the queue and
the unordered property of POGs.

II. RELATED WORK

A. Concurrent Queue on CPUs

Michael and Scott [2] presented a non-blocking concurrent
queue algorithm (MS-Queue) where the ABA problem is
handled by double-word Compare-And-Swap (CAS) combin-
ing the address of the new node and its version number.
They also proposed two lock-based algorithms on systems
that do not provide CAS. Both designs adapt the dummy
node [1] thus eliminate the deadlock caused by the head and
tail accessing each other. However, like many other queue
implementations, the MS-queues do not scale well with a
large number of concurrent threads due to its single head

1Note that each POG can be regarded as a concurrent pool. Thus, our
relaxed semantic queue can be regarded as a FIFO of pools with domain
specific optimizations.

and tail design. Repeatedly failing retries of CAS cause high
contention on shared object that greatly increase the memory
traffic, congesting the memory bandwidth.

One way to reduce thread contention is elimination [10].
By pairing two operations with reversed effects, these two
operations can cancel each other’s effect without accessing
the data structure. The main challenge of implementing the
elimination on queue is the FIFO property of queue. The
elimination can be performed only when: 1) the queue is empty
and 2) an enqueue immediately followed by dequeue. Shavit
[10] proposed a technique to avoid such requirements by
introducing an elimination array. When concurrent enqueues
occur, they are viewed as one group. The enqueue operation
successfully acquired the queue adds its element to the queue.
Failed enqueue operations back off and put their elements
on the elimination array before retrying. When concurrent
dequeue operations begin, they are redirected to the array
and search for “ripe” elements. Elements belonging to the
same group are removed by dequeues prior to the one in the
queue. In such case, elements on the array can be eliminated
safely as if they were enqueued to the queue. According
to the experiments, the queue with elimination technique is
most efficient under high load since concurrent accesses to
the queue are significantly reduced.

The Basket Queue [6] proposed a new type of queue
that contains a list of ordered “baskets.” When a group of
enqueue operations executes, the thread successfully acquired
the global tail places itself into the queue. Instead of retrying,
the enqueue operations failed on the same CAS (issued at the
same time with the successful enqueue operation) insert their
nodes in front of the newly added node, forming a basket. The
dequeue operation can remove nodes in the same basket in any
order but it can only move to the next basket when the current
basket is empty. The basket design improves the bandwidth
since enqueues can be performed on multiple baskets concur-
rently. The major drawback is that the dequeue operations can
be blocked by a basket with in-progress enqueue operations.

Kirsch [8] proposed a non-atomic k-FIFO queue imple-
mentation with relaxed queue semantics. The implementation
contains k instances of regular FIFO queues and a scheduler
which distributes the queue operations among the k instances.
When a queue operation is ready to execute, the scheduler
selects one instance randomly and calls the operations on
the queue. Since the selection and queuing are performed
non-atomically, the queue can potentially perform at a better
performance and better scalability under high contention. The
trade-off is that the queue semantic is not strictly FIFO due to
the same reason. According to their test, the selection of k and
type of the scheduler determines how elements are distributed,
as well as the operations potentially be performed concurrently
and in parallel.

B. Concurrent Queues on GPUs
Zhang et al. [14] presented a concurrent queue design

that performs enqueues and dequeues on local shared data
before committing the result to global queue. Enqueue and

dequeue operations are mapped to each warp and copied to
local storage. The number of operations are computed in the
local storage and assigned with a unique id in each warp. A
proxy thread in the warp then competes for the global tail
and increments the value of tail by the number of enqueue
operations in winning warp. Then elements are copied from
local storage to global queue in one step using the unique ids
of each elements. The dequeue works in a similar fashion.
Although this is a simple optimization, it offers three design
techniques when implementing concurrent queue on GPUs:
1) use low-latency local storage when possible, 2) reduce the
number of operations performed by grouping the same type
of operations and performing updates in a batch 3) use a
proxy thread for a group of operations to reduce the overall
contention.

Scogland and Feng [9] and the Broker Queue [11] proposed
a similar queue implementation on GPU based on circular
array and ticketing. The blocking ticketing technique is imple-
mented with atomic Fetch-And-Add to avoid frequent retries
caused by Compare-And-Swap operations. This technique
assigns a unique id for each enqueue and dequeue operations.
The id serves as two purposes: 1) selecting the target local
in the global queue and 2) the id for the transaction. The
first paper implements both blocking (with FAA and FAS)
and non-blocking (CAS) ticketing. The experiment results
prove that blocking is more scalable when compared to non-
blocking under GPU’s massive threaded environment. The
second paper uses blocking ticketing along with work-stealing
to further improve the performance of the queue. Two major
merits of these papers are: 1) Strong progress conditions do
not guarantee the scalability/performance of Concurrent Data
Structures (CDS) on GPU. 2) When the concurrency is high,
blocking may perform better than non-blocking since the CAS
retries can cause high memory contention on shared object.

While existing GPU queues implement strict FIFO seman-
tics, we propose a flexible (supporting both relaxed and strict
FIFO) queue that is useful in a parallel execution environment
such as GPU. Being the first in our knowledge, our pro-
posed queue supports the concept of parallel operation groups
(POGs) where operations in each group are unordered. When
the POG size is one, it becomes a conventional FIFO queue.

III. CONCURRENT RELAXED FIFO QUEUE

We propose a GPU-friendly relaxed concurrent queue that
supports First-In First-Out (FIFO) operations on POGs. The
POG is defined as a set of unordered operations that access
the queue structure simultaneously. The POG operations can
be reordered arbitrarily without affecting correctness. This
relaxation allows sets of unordered enqueues and dequeues
to modify the dedicated sections of the queue. Each section
is characterized by the queue size (QSize), number of en-
queues (Enqs), and number of dequeues (Deqs) at run time.
Depending on the queue size, there are five cases.

1) When Qsize > 0,
a) Deqs Qsize

b) Qsize < Deqs < Qsize+ Enqs

c) Deqs >= Qsize+ Enqs

2) When Qsize = 0,
a) Deqs Enqs

b) Deqs > Enqs

Figure 2a visualizes case 1a. When dequeues and en-
queues are regrouped, they are safe to execute in parallel.
Since enqueues and dequeues do not overlap, the costly
atomicCAS() in each section can be replaced by simple
load/write operations, assuming that each operation is mapped
to a unique queue node. The thread mapping is shown in
Figure 1. The mapping is determined at run time with low
cost atomicAdd(). The execution order of warps does not
matter as long as all operations in each section are executed.
The HEAD and TAIL indices are simply incremented the
number of dequeues and the number of enqueues at the end
of the process by a proxy thread.

Fig. 1: Thread mapping on GPU.

(a) Case 1a. (b) Case 1b.

Fig. 2: Example cases of relaxed FIFO queue with POGs.

Case 1b is more involved. As shown in Figure 2b, part
of dequeues and enqueues are safe to execute in parallel
on their assigned sections. The overlapped section in the
middle indicates how many enqueues and dequeues operations
perform an enq � deq pair eliminations in parallel on their
dedicated node. This process can be simplified by allowing
dequeue operations to return items directly from the enqueues.
The HEAD and TAIL are incremented with actual number
of dequeues and enqueues by subtracting the operations in the
overlapped section.

The case 1c works similarly to case 1a except the extra
dequeues return ; symbols when all items in the queue
are removed and all enqueues are consumed in the direct
return process. When the queue is empty, cases 2a and 2b
follow the pairing process. Dequeues simply return items from
the enqueues directly. The details of queue operations are
explained in section III-B.

Our approach offers two optimization opportunities. First,
the queue semantics within each POG is relaxed with un-
ordered bulk operations. Additionally, these operations sig-
nificantly reduce the synchronization overhead within POGs
by replacing the costly atomicCAS() operations with simple
read/write operations. Secondly, pairing process in the elimina-
tions can be performed without accessing the queue structure,
which alleviates the contention on the queue.

A. Operations Supported

The symbols used in this section are described below:
Q: The Queue
N : Count of successful request(s)
I: Items of the queue
R: Count of removed request(s)
;: Empty symbol
{}: A collection of objects
| |: Size of objects
 : Object(s) returned from function
oldX: Old status of the queue
HEAD: The head pointer
TAIL: The tail pointer

Our proposed queue supports following operations:

• Q ENQ(oldQ, TAIL, {I}): ENQ function adds a set
of new items ({I}) to the old queue at position TAIL, the
function returns a new queue containing the newly added
items. Notice that the position of the items is added as
a bulk without any internal order. The position of each
item is determined at run-time.

• Q, {;} DEQ(oldQ,HEAD,R), if |Q| = ;,
Q, {I} DEQ(oldQ,HEAD,R), if |Q| � R,
Q, {I, ;} DEQ(oldQ,HEAD,R), if |Q| < R: The
dequeue (DEQ) function has three different behaviors
depending on the size of the queue (|Q|) and the number
of requests (R). If the queue is empty (|Q| = ;),
removing items from the queue returns a set of ;s and
an empty queue. If the size of the queue is greater than
or equal to the number of requests (|Q| � R), the DEQ
functions remove R items in bulks from the queue. The
items are returned as a set with R items {I}. When the size
of the queue is less than the number of remove requests
(|Q| < R), all items are removed from the queue. Then
the |Q| � R requests are returned as empty symbols.
Similar to the ENQ function, items are removed from
the queue as a bulk. Thus, the returned items do not have
an order.

• TAIL TAIL ICN(oldTAIL,N) and
HEAD HEAD ICN(oldHEAD,N): TAIL ICN
and HEAD ICN functions simply add an integer value N
to the TAIL or HEAD pointer atomically, indicating the
changes of TAIL and HEAD. The value of N is equal to
the size of {I} in ENQ and DEQ functions, excluding
the ;s.

B. Implementation

The queue structure is implemented with a bounded 1-D
array that is pre-allocated on GPU’s global memory. The TAIL
and HEAD are atomic pointers that point to the TAIL and
HEAD of the queue. Elements are enqueued to the TAIL and
dequeued from the other end. The queue returns EMPTY and
FULL status by verifying the size of queue.

The FIFO ordering of POGs is achieved by creating a
synchronization point after each POG is processed. Our im-
plementation takes advantage of the grid synchronization ca-
pability provided by CUDA Cooperative-Groups (CGs). This
built-in function provides an efficient and safe synchronization
method to the entire thread grid when needed.

To process the entire workload without relaunching the
kernel, our kernel adapts the persistent thread execution model.
As shown in Algorithm 1, the main body of our kernel is
enclosed by a while loop. The loop repeats until the value of
the pid (POG index) reaches the value totalPid (total number
of POGs). In this setup, the coexisting POGs in each iteration
are filtered and processed by matching their pog idx and the
global pid.

Algorithm 1 POG kernel
1: while pid < totalP id do

2: pos = g rank + offset

3: if (pogIdx[pos] == pid) then

4: enqId atomicAdd(&numEnq, 1)
5: else

6: deqId atomicAdd(&numDeq, 1)
7: end if

8: sync(grid)
9: if (pogIdx[pos] == pid) then

10: if deqId > 0 then

11: bulk deque()
12: end if

13: if enqId > 0 then

14: elimination()
15: bulk enque()
16: end if

17: end if

18: sync(grid)
19: if gRank == 0 then

20: if all POG in current grid is processed then

21: offset offset+ grid size

22: end if

23: increment pid()
24: reset vars()
25: update queue()
26: end if

27: sync(grid)
28: end while

The kernel (code executes on GPUs) is divided into three
major steps. The first step is data pre-processing that simply
counts the total number of enqueues and dequeues in the

current POG. Each operation is assigned with a category-
specific unique id using an atomic counter. The order of
acquiring the unique ids does not preserve the order of
operations in the input. Due to the warp scheduling mechanism
of GPUs, the threads of a large POG which spans multiple
thread blocks can be scheduled in any order. Therefore, a
global synchronization is required to ensure all threads in
the POG reach the same stage before proceeding. Without
the synchronization, threads acquired the atomic operations
could execute next block of code while other threads are still
waiting at the atomic operation, which results in incorrect
branch selection and results.

Algorithm 2 bulk enque

1: enqPos atomicAdd(realEnq, 1);
2: if QSIZE 6= 0 then

3: minV al min((numDeq �QSIZE), numEnq)
4: if enqId > minV al then

5: queue[TAIL+ enqPos] ops[pos]
6: end if

7: else

8: if enqId > numDeq then

9: queue[TAIL+ enqPos] ops[pos]
10: end if

11: end if

Algorithm 3 bulk deque
1: if QSIZE 6= 0 then

2: minV al min(QSIZE, numDeq)
3: if deqId minV al then

4: deqPos atomicAdd(realDeq, 1);
5: retV al[pos] queue[HEAD + deqPos]
6: queue[HEAD + deqPos] 0
7: end if

8: if deqId > (numEnq +QSIZE) then

9: retV al[pos] �99
10: end if

11: else

12: if deqId > numEnq then

13: retV al[pos] �99
14: end if

15: end if

The second step contains three major operations:
bulk enque(), bulk deque() and elimination(). The bulk
update operations do not access the queue structure.
This includes dequeuing items directly from the enqueue
operations, and returning ; symbols by comparing values of
certain variables without actually dequeuing items until the
queue is empty. The details of these optimizations are given in
the following subsections. Thread divergences [15] can occur
with multiple control-flow paths (enqueues and dequeues
are mapped to the same warp) but it can be minimized by
regrouping the operations based on their types (Figure 1).

The last step is simply resetting/updating the variables for
the next execution cycle of a new POG (line 20⇠26). This
also handles the scenarios where a POG spans multiple thread
blocks. If the last operations of current thread block has the
same POG index as the first operations in the next thread
block, these two operations belong to the same POG. As a
result, the pid does not increase until the POG processing is
complete.

C. Enqueue, Dequeue, and Elimination Operations

The bulk enque() function takes an arbitrary number of
enqueue operations and commits them to the queue in a single
step. As shown in the Algorithm 2, the enqueue has two paths
depending on the queue size. The atomic function at line 1
indicates that the enqueue operation does not preserve the
order in the ops array. The order of acquiring the enqPos
determines the position to the queue in a bulk.

When the queue is non-empty (line 2 ⇠ 5), the enqueue
operations are compared to the min value of (numDeq-QSIZE)
and numEnq to determine how many enqueue requests are
actually need to be executed. The rest of the enqueue requests
are being used in other functions. When the queue is empty
(line 8 ⇠ 9), only the operations with the enqId that is greater
than the numDeq require to execute the enqueue operations.

The bulk deque() function has similar code path as the
bulk enque() function. The pseudo code is listed in Algo-
rithm 3. When the queue is not empty, it first determines
the min value between the queue size and numDeq (line
2). The operations whose deqId is less or equal to the min
value performs bulk deque() and store the returned values
in the retV al array (line 4 ⇠5). Used slots in the queue are
marked with zero values. The code block in line 8 ⇠ line 9
performs the dequeues by comparing the value of deqId and
the summation of numEnqs and QSZIE. The operations
that meet the condition on line 8 simply return the empty
symbol (�99) since the number of dequeues is greater than
the number of enqueues plus items already in the queue. We
simply return empty symbols if the deqId is greater than the
number of enqueues (line 12 ⇠ 13).

To improve performance, we perform eliminations when
possible. The elimination allows dequeue operations to return
items directly from the enqueue operations without accessing
the main queue structure. It also takes two paths depending on
the size of queue. The complicated path occurs when the size
of queue is not empty. By comparing the difference between
(numDeq � QSIZE) with numEnq, the threads whose
enqId are greater than the min value perform eliminations.
The return values are stored in the corresponding slots in the
retV al (line 4) by referencing the value of pos (the index of
enqueue operations in the ops array) since the dequeues obtain
data directly from the enqueue operations. Line 3 and 4 are
executed only when the number of dequeues is greater than
the queue size, which avoids invalid eliminations. Selecting
threads to perform elimination is simple when the queue is
already empty. The enque operations with enqId less than or

Algorithm 4 Elimination
1: if QSIZE 6= 0 then

2: minV al min((numDeq �QSIZE), numEnq)
3: if enqId minV al then

4: retV al[pos] ops[pos]
5: end if

6: else

7: if enqId numDeq then

8: retV al[pos] ops[pos]
9: end if

10: end if

quals to the number of dequeues return their items directly as
the result of the eliminations (line 7 ⇠ 8).

IV. EXPERIMENT AND ANALYSIS

We evaluate our proposed queue under various configura-
tions to simulate the real world use scenarios. All experiments
are conducted on Nvidia RTX 3090 GPU with CUDA tool-
kit 11.4 under Ubuntu 20.04. The total number of persistent
threads launched is set to 51,200 because it is the balance
point of hardware utilization, contention, and the cost of
synchronization when using CG. All tests are conducted with
pre-generated synthetic input using both baseline and proposed
queues. The baseline queue is a simple GPU port of a non-
blocking array-based queue that supports basic enqueue and
dequeue operations.

Experiments are categorized into two depending on the
types of POGs - uniform and random. The uniform test case
uses POGs of all the same size while the random test case
contains POGs of different sizes which randomly vary between
the lower and upper bounds.

First, we evaluate the performance across different thread
block sizes (TBS) changing from 64 to 1024 when the POGs
are uniform in their sizes (Figure 3). The number of active
threads in each iteration is determined by the actual size of
POGs during execution. The number of enqueue operations is
set to 70% in order to avoid empty queue error when dequeue
is performed. This enqueue-dequeue ratio ensures that most
dequeue operations take full path instead of simple return.
When the size of POG is small (e.g., 4), both the baseline
and our proposed queue suffer from hardware under-utilization
(Figure 3a). As the size of POG grows, both versions start
to benefit from the increased concurrency with more active
threads. The baseline version reaches the peak performance
when the size of POG is 1024 then degrades. The increased
number of threads compete for the same memory access,
extending the waiting time of failed CAS operations before
retrying. In contrast, the proposed queue achieves an almost
linear speed up continuously as the size of POG grows. The
bulk update and elimination minimize the thread contention on
shared data by reducing the amount of concurrent accesses to
the structure and the number of atomic operations required by
each POG. Our queue implementation, however, introduces
slightly more control flow in comparison to the baseline

(a) Uniform POGs (b) Random POGs

Fig. 3: Performance across different Thread Block Sizes (TBS).

(a) Uniform POGs (b) Random POGs

Fig. 4: Performance across different operations ratios. The enqdeq suffix indicates that all threads in the POG execute an
enq-deq pair.

version, whose performance impact becomes noticeable when
dealing with small POGs. This explains the performance gap
observed at POG size 4 where the baseline version outper-
forms. This gap quickly decreases after the size 32 where
the performance gain of higher concurrency outweighs the
overhead of thread divergence. The proposed queue achieves
up to 1811.34x speedup over the baseline version on the
largest POG tested. This result demonstrates that our queue
scales well with respect to POG size. We also notice that the
overall optimal block sizes of the baseline version and our
implementation are both 512.

Next, we evaluate random POG sizes under the identical
configuration as previous experiment. The x-axis of Figure 3b
indicates the lower and upper bounds of POG size. With a
higher bound of 8192, for example, the size of POGs can
be any arbitrary number between 4 and 8192. This random
case contains more small POGs compared to the uniform

case. Performance degradation is observed in both baseline
and proposed versions with random POGs. This is because
processing small POGs causes hardware underutilization and
increases the global synchronization frequency in persistent
thread model. The overall optimal block size of the baseline
version and our implementation are both 512.

Our second experiment simulates more realistic scenarios by
changing the configuration of POGs and the queue operation
types (i.e., ratio of enqueues and dequeues). The thread block
size (TBS) is set to 512 for optimal performance. Interestingly,
we observe a similar performance trend as in the previous
experiment. The baseline version, however, is sensitive to the
ratio of enqueue and dequeue operations in both uniform and
random POGs settings. We observed a big performance gap
between UB-70% and UB-50% even though the total number
of operations (one million) in both cases are the same. In UB-
70%, the execution time is contributed by the waiting time

of failed enqueue operations on the contended tail and data
writing time. The UB-50% case performs fewer enqueues,
thus the tail contention is alleviated. Although more frequent
dequeue operations can exacerbate the head contention, it also
increases the chances of dequeuing from an empty queue,
which simply returns an empty symbol without any mem-
ory operations. The UB-30% performs even more dequeue
operations compared to other cases thus the performance is
further improved for the same reason. Our queue eliminates
the performance gap with the proposed bulk update operations
and eliminations. First, the bulk enqueue and dequeue combine
the same type of updates in a single step. The contention on
both ends of the queue are the same regardless of the number
of enqueues and dequeues. Second, the elimination cancels out
a significant number of paired operations without accessing
the queue. It further reduces the memory traffic by allowing
dequeue operations return values directly from paired enqueue
operations. The performance difference becomes noticeable
in the random POG test due to the synchronization of small
POGs.

With the same distribution ratio of operations, the gap
between UB-50% and UB-enqdeq is caused by the execution
pattern of operations on GPUs. The queue operations are
distributed randomly in UB-50% where a thread block may
contain a series of the same type of operations. When executed
on GPU, thread divergence occur less in such thread block.
On the contrary, the enqueue and dequeue pairs in the UB-
enqdeq case are forced to execute both cases due to the lock-
step execution model. Depends on the size of the POGs, such
execution pattern can lead to a severe performance degradation
due to the thread divergence on GPUs.

In contrast, our proposed queue achieves a stable processing
time in all cases regardless of the operations distribution ratio
in the POG. The processing speed only slightly increases at
the largest POGs where contention start to take effect. The
test result shows that our queue scales well and is insensitive
to the effect of ratio/distribution of operations even when the
concurrency is high.

V. CONCLUSION

In this paper, we proposed a relaxed concurrent queue that
efficiently processes unordered parallel operation groups in a
FIFO fashion on GPUs. Our experiments demonstrate that our
proposed queue outperforms the baseline version and shows a
good scalability under high concurrency environment thanks
to the persistent thread model and proposed optimizations.
However, the queue suffers from hardware underutilization
when processing small POGs. Processing multiple POGs in
a persistent thread cycle would resolve this issues, which
remains as a future work.

ACKNOWLEDGMENT

This research was supported by the NSF CCF 1907838.

REFERENCES

[1] J. D. Valois, “Implementing Lock-Free Queues,” in In Proceedings
of the Seventh International Conference on Parallel and
Distributed Computing Systems, Las Vegas, NV, 1994, pp. 64–
69. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary
?doi=10.1.1.53.8674

[2] M. M. Michael and M. L. Scott,
“https://doi.org/10.1145/248052.248106Simple, Fast, and Practical
Non-Blocking and Blocking Concurrent Queue Algorithms,” in
Proceedings of the Fifteenth Annual ACM Symposium on Principles
of Distributed Computing, ser. PODC ’96. New York, NY, USA:
Association for Computing Machinery, 1996, p. 267–275. [Online].
Available: https://doi.org/10.1145/248052.248106

[3] P. Tsigas and Y. Zhang, “A simple, fast and scalable non-blocking
concurrent fifo queue for shared memory multiprocessor systems,” in
Proceedings of the Thirteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, ser. SPAA ’01. New York, NY, USA:
Association for Computing Machinery, 2001, p. 134–143. [Online].
Available: https://doi.org/10.1145/378580.378611

[4] E. Ladan-Mozes and N. Shavit, “An optimistic approach to lock-free
fifo queues,” in Distributed Computing, R. Guerraoui, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 117–131.

[5] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit,
“https://doi.org/10.1145/1073970.1074013Using Elimination to Im-
plement Scalable and Lock-Free FIFO Queues,” in Proceedings of the
Seventeenth Annual ACM Symposium on Parallelism in Algorithms
and Architectures, ser. SPAA ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 253–262. [Online]. Available:
https://doi.org/10.1145/1073970.1074013

[6] M. Hoffman, O. Shalev, and N. Shavit, “The baskets queue,” in Prin-
ciples of Distributed Systems, E. Tovar, P. Tsigas, and H. Fouchal, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 401–414.

[7] D. Orozco, E. Garcia, R. Khan, K. Livingston, and G. Gao, “High
throughput queue algorithms,” CAPSL Technical Memo, vol. 103, 2011.

[8] C. M. Kirsch, H. Payer, H. Röck, and A. Sokolova, “Performance,
scalability, and semantics of concurrent fifo queues,” in Algorithms
and Architectures for Parallel Processing, Y. Xiang, I. Stojmenovic,
B. O. Apduhan, G. Wang, K. Nakano, and A. Zomaya, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 273–287.

[9] T. R. Scogland and W.-c. Feng,
“https://doi.org/10.1145/2668930.2688048Design and Evaluation
of Scalable Concurrent Queues for Many-Core Architectures,” in
Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 63–74. [Online].
Available: https://doi.org/10.1145/2668930.2688048

[10] N. Shavit and D. Touitou, “Elimination trees and the construction
of pools and stacks: Preliminary version,” in Proceedings of
the Seventh Annual ACM Symposium on Parallel Algorithms and
Architectures, ser. SPAA ’95. New York, NY, USA: Association
for Computing Machinery, 1995, p. 54–63. [Online]. Available:
https://doi.org/10.1145/215399.215419

[11] B. Kerbl, M. Kenzel, J. H. Mueller, D. Schmalstieg, and M. Steinberger,
“https://doi.org/10.1145/3205289.3205291The Broker Queue: A Fast,
Linearizable FIFO Queue for Fine-Granular Work Distribution on
the GPU,” in Proceedings of the 2018 International Conference on
Supercomputing, ser. ICS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 76–85. [Online]. Available:
https://doi.org/10.1145/3205289.3205291

[12] J. Iacono, B. Karsin, and N. Sitchinava, “A parallel priority queue with
fast updates for GPU architectures,” CoRR, vol. abs/1908.09378, 2019.
[Online]. Available: http://arxiv.org/abs/1908.09378

[13] D. Troendle, T. Ta, and B. Jang, “A specialized concurrent queue
for scheduling irregular workloads on gpus,” in Proceedings of the
48th International Conference on Parallel Processing, ser. ICPP 2019.
New York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3337821.3337837

[14] X. Zhang, Y. Deng, and S. Mu, “Toward concurrent lock-free queues
on gpus,” IEICE Transactions on Information and Systems, vol. E97.D,
pp. 1901–1904, 07 2014.

[15] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,”
2020. [Online]. Available: https://developer.nvidia.com/cuda-toolkit

