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Abstract

In low resource settings, data augmentation
strategies are commonly leveraged to improve
performance. Numerous approaches have at-
tempted document-level augmentation (e.g.,
text classification), but few studies have ex-
plored token-level augmentation. Performed
naively, data augmentation can produce seman-
tically incongruent and ungrammatical exam-
ples. In this work, we compare simple masked
language model replacement and an augmenta-
tion method using constituency tree mutations
to improve the performance of named entity
recognition in low-resource settings with the
aim of preserving linguistic cohesion of the
augmented sentences.

1 Introduction

Deep neural networks have proven effective for a
wide variety of tasks in natural language process-
ing; however, these networks often require large
annotated datasets before they begin to outperform
simpler models. Such data is not always avail-
able or sufficiently diverse, and its collection and
annotation can be an expensive and slow process.
The trend of fine-tuning large-scale language mod-
els originally trained using self-supervision has
helped to alleviate the need for large annotated
datasets, but this approach relies on the dataset for
fine-tuning being diverse enough to train a model
that generalizes well. Careful data augmentation
can help to improve dataset diversity and ultimately
the model’s generalizability.

Data augmentation, a technique to generate data
given training set characteristics, continues to play
a critical role in low-resource settings; however,
the majority of work on data augmentation focuses
on improving document-level tasks such as text
classification. Far less attention has been paid to
token-level tasks (Feng et al., 2021).

Prevailing approaches to sequence tagging tasks
such as named entity recognition (NER) require

token-level ground truth. Naive replacement-based
methods for augmentation may introduce noise in
the form of sentences that are ungrammatical, se-
mantically vacuous, or semantically incongruent.
Whether in the form of insertions, deletions, or
substitutions, care must be taken with token-level
augmentation to preserve linguistic cohesion.

There is evidence that large language models
may possess some syntactic knowledge (Hewitt
and Manning, 2019; Wei et al., 2021). Work by Bai
et al. (2021) suggests that incorporating syntactic
tasks into pre-training improves the performance
of large language models. Inspired by these find-
ings, we investigate how constituency trees might
be used to guide data augmentation. We use tree-
based transformations to mutate sentences while
minimizing undesired side effects of syntactic ma-
nipulation (i.e., preserving linguistic cohesion). Re-
lated work by Zhang et al. (2022) explores a similar
approach in different settings. They focus on the
effect of constituency based replacement in single
classification and pair sentence classification tasks,
while this work examines token-level classification.

We compare our syntax-driven method with no
augmentation (our baseline), augmented data gen-
erated through cloze-style (Taylor, 1953) masked
language modeling using a BERT-based classifier,
successful approaches introduced by Dai and Adel
(2021), and two of the top-performing augmenta-
tion strategies according to past work: synonym-
based replacement and mention-based replacement.
Following prior work, we We use the i2b2-2010
English language dataset (Uzuner et al., 2011) for
NER.

2 Related work

A variety of approaches have been explored for
document-level data augmentation. The usage of
backtranslation to generate augmented samples was
introduced by Kobayashi (2018). Wei and Zou
(2019) explored synonym replacement, random in-
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sertion, random swap, and random deletion for text
classification. Quteineh et al. (2020) introduced an
approach using monte carlo tree search (MCTS) to
guide generation of synthetic data.

Augmentation for token-level sequence tagging,
however, is understudied. Simple approaches for
token-level classification (e.g., synonym replace-
ment, mention replacement, shuffling, etc.) was
investigated by Devlin et al. (2019). They used a
sample of 50, 150, and 500 sentences to simulate
a low-resource setting. Token linearization (TL)
was introduced by Ding et al. (2020). The main
idea of TL is to incorporate NER tags inside the
training sentences themselves. Ding et al. (2020)
experimented with various sizes of training data
across six languages.

A Similar idea to that presented here has been
used in parallel research by Zhang et al. (2022).
Their approach, TreeMix, works similarly to our
approach in that it replaces a phrase with another
phrase from another another training instance by
swapping phrases with the same constituent labels.
Zhang et al. (2022) demonstrated that TreeMix out-
performs a method that selects a random span of
text as the replacement for a target phrase, sug-
gesting that syntactically=aware replacement can
improve data augmentation for at least some tasks.

3 Approach

3.1 Synonym Replacement (SR)

Dai and Adel (2021) experimented with replacing
randomly selected tokens from the training cor-
pus with a multiword synonyms originating from
WordNet (Miller, 1992). In this case, if the re-
placed token is the beginning of a mention (B-
ENTITY), then the first token of the synonym will
be tagged as B-ENTITY and the rest will be con-
sidered as I-ENTITY. In cases where the replaced
token is in the middle of a mention (I-ENTITY),
then all of the synonym’s tokens will be assigned
to I-ENTITY.

3.2 Mention Replacement (MR)

Dai and Adel (2021) described mention replace-
ment as using a Bernoulli distribution to decide
whether each mention should be replaced. If yes,
then another mention which has the same entity
type as the target mention from the original train-
ing set is selected to replace the target mention.
For instance, if the mention "myelopathy / B-
PROBLEM is selected for replacement, then we

can select one of {"C5-6", "COPD", ...} which all
have the same entity type (PROBLEM).

3.3 Language Model (LM)

We experimented with token replacement using a
masked language model. We restrict the system
to replace only non-mention tokens (tokens with
category O). This is because if we replace tokens
with a named entity, we cannot guarantee that the
output from the masked language model will have
the same category, such that if we replace a token
categorized as B-TEST, we could not guarantee
that the masked language model will replace it with
a similar token to those in B-TEST category.

We randomly select, without replacement, n to-
kens as candidates to be replaced. The selected to-
kens are masked from the original sentence. Next,
we the language model generates replacements for
the masked tokens. We may repeat this token gener-
ation up to k times to generate different augmented
sentences. We use Allen AI’s SciBERT model from
the Hugging Face model repository.

3.4 Constituency Replacement (CR)

As a preprocessing step, we perform constituency
parsing over all of the training data using
Stanza (Qi et al., 2020). Given an XP non-terminal,
we select p non-terminals as candidates for replace-
ment. For each non-terminal, we find other non-
terminals with the same category from the training
data, to replace the candidate. Assuming that we
chose VP as the non-terminal taget node for re-
placement, the algorithm will choose another VP
from the set of parsed sentences in the training
corpus and mutate the whole subtree (VP root and
the nodes below it). We can repeat this process to
generate k augmented sentences. Additionally, we
target nodes that have NER mentions as one of its
children.

4 Experiments and Results

4.1 Dataset

We used the i2b2-2010 dataset (Uzuner et al.,
2011), an English language NER dataset. Simi-
lar to Dai and Adel (2021) we use 3 different sizes
of dataset to simulate low-resource settings. We
select the first 50, 150, and 500 sentences from
training set and denote them as S, M, L. We used
the default train-test split and limit the augmenta-
tions to training set.
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4.2 Model

Following Dai and Adel (2021), we model NER
task as sequence-labeling. We used same compo-
nents for modeling: a neural encoder and a condi-
tional random field layer. For our neural encoder,
We used SciBERT. This model has been proven to
work effectively with scientific and medical data,
like i2b2-2010.

4.3 Experiments

Each experiment was repeated with 5 different ran-
dom seeds to calculate standard deviation.

For our SR and MR approaches, our hyperpa-
rameters are the replace ratio (0.3) and the number
of generated samples (1).

LM and CR hyperparameters are similar. Both
will have the number of generated samples and
number of replaced tokens (only for LM) or non-
terminals (only for ST). In this work, we limit CR
replacements to non-terminals (phrases) in the fol-
lowing set: {NP, VP, ADJP, ADVP, PP}. We leave
out FRAG (fragment) because it has too low of a
non-terminal count.

One question to be explored is whether more
augmented data can result in continued gains in
model performance. To answer this, we experi-
mented with {5, 10, 20} generated samples. For
each number of generated samples, we also set the
number of replaced tokens for the LM and the num-
ber of replaced non-terminals for CR to be {1, 3,
5}. We have described the distribution of non ter-
minals in Table 1. All of these settings were tested
against the 27,625 sentences from our validation
set.

Phrase S M L

NP 332 637 2562
VP 93 189 881
PP 54 130 690
ADJP 31 42 189
ADVP 16 27 126
FRAG 2 2 4

Table 1: Distribution of the number of phrases in the
training data.

4.4 Results

Table 2 described the highest F1 scores for each
augmentation strategy. The best F1 scores were
taken for each strategy, across multiple hyperpa-
rameters. We found that synonym replacement still

outperforms other augmentation strategies in small
and medium dataset sizes.

Experiment S M L

NoA 46.3± 0.5 61.4± 0.1 70.7± 0.1
SR 53.0± 0.2 65.7± 0.1 71.0± 0.0
MR 51.9± 0.2 61.7± 0.1 70.2± 0.0
LM 52.9± 0.1 63.3± 0.1 73.3± 0.2
CR-ADJP 47.8± 0.2 61.0± 0.1 71.2± 0.1
CR-ADVP 50.5± 0.3 61.9± 0.1 71.3± 0.1
CR-NP 52.1± 0.3 60.6± 0.1 70.2± 0.1
CR-PP 52.1± 0.1 62.4± 0.1 71.9± 0.1
CR-VP 52.9± 0.2 62.8± 0.1 72.8± 0.1

Table 2: Results for data augmentation experiments
across different data set sizes. Top results for each data
partition are marked in bold.

All augmentation methods tested seem to im-
prove performance in terms of F1 for the small
training set ( 50 sentences). When we look at the
medium dataset, however, some methods such as
CR-ADJP or CR-NP, start to have a negative impact
compared to no augmentation settings. Even more
augmentation strategies begin to show diminishing
or negative effects on performance for the larger
dataset (e.g., MR and CR-NP). This suggests that
some of the augmented data might be detrimental
for the model fine-tuning process.

To understand how the augmented data may start
to hurt the original model’s performance, we con-
sider one original sentence processed using CR-
NP strategy. For example, “Dr. Foutchner will
arrange for an outpatient Holter monitor”. In the
case of the CR strategy, the augmentation algo-
rithm draws an NP from another training sentence,
resulting in “Dr. Foutchner will arrange for a T2
signal change” or “Dr. Foutchner will arrange for
10 beats”. These augmented sentences are gram-
matical, but they lack cohesion. This phenomenon
may impact the model negatively. Future work
should explore strategies to control for this drift.
For instance, by fine-tuning a large-scale language
model to perform masked language modeling on
sentences where a portion of tokens are provided
in terms of phrasal category (XP) or functional
category (part of speech tag), we might hybridize
syntax-driven transformations and instantiate syn-
tactic templates using large-scale language models.

We observed that among CR strategies, CR-NP
performance seems to be worse compared to CR-
VP or CR-PP, despite NP has the most occurrences
in the training data. We suspect that the effective-
ness of this strategy will heavily depend on the
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S M L

5 10 20 5 10 20 5 10 20

LM 50.6 51.5 50.6 61.2 60.8 61.0 71.1 70.8 70.6
CR-VP 50.5 52.0 52.3 61.9 62.3 62.5 71.9 72.3 72.3

Table 3: Comparison between CR-VP and LM aug-
mentation. CR-VP holds more consistent performance
across the number of generated sentences, while LM
performance drops when the number of generated sen-
tences is low.

scope of the constituency tag. NPs are usually lo-
cated low in the constituency tree, while VPs are
usually located toward the top.

The augmentation strategies explored in this
work can be further divided into two groups: strate-
gies that produce new vocabularies and strategies
that do not produce new vocabularies. SR and LM
methods fall into augmentation that produce new
vocabularies. SR uses the Penn Treebank (Mar-
cus et al., 1993) to generate synonyms of replaced
tokens. LM use its word embedding to guess the
masked target token and may generate new words
that do not exist in the training data. The other
strategies (MR and CR) rely solely on the current
training dataset. This phenomenon suggests aug-
mentation strategies that produce new vocabularies
seem to be more effective. This is plausible since
new words will make the fine-tuned model more
robust to unseen data. Although CR does not gen-
erate new words like the LM and SR methods, it
still performs competitively in comparison. The
delta between F1 scores produced by CR-VP and
LM with our best hyperparameters for all dataset
sizes are remarkably small at around 0 0.5 points.
The effect of simpler data augmentation strategies,
SR and MR, seems to be diminishing as the data
size increases; however, it is not the case with the
LM and CR-VP strategies. They seem to perform
well when more training data is available.

Looking at Table 3, the CR-VP augmenta-
tion strategy seems to show more consistent per-
formance growth compared to the LM strategy.
Whether it is 5, 10 or 20 sentences generated, CR-
VP consistently trends upward as the number of
augmented sentences increases (cf the instability
of the LM). The average performance of the CR
strategy shows an increased F1 as the number of
synthetic sentences grows. In contrast, the aver-
age performance of the LM strategy is inconsistent
and trending downward as the number of synthetic
sentences increases.

Lastly, the performance of the CR strategy will

also be affected by the performance of constituency
parser component itself. For one of our augmented
examples, the original sentence “She [VP had a
workup by her neurologist] and an MRI [VP call
with any fevers , chills , increasing weakness... ]”
was mutated into “She [VP had a workup by her
neurologist] and an MRI [VP flare]”. Here, the
word flare was falsely predicted as a verb and thus
erroneously predicted as a VP constituent, while
the word flare here should be a part of COPD flare
and classified as noun.

5 Conclusion and Future Work

In this work, we examined data augmentation
with a large-scale language model (LM) and con-
stituency tree mutation (ST). We compared these
augmentation methods with a baseline and previ-
ously proposed strategies for data augmentation:
synonym replacement (SR) and mention replace-
ment (MR). We found that SR performance is
still most effective, by a small margin, but the
performance degrades quickly as the data size in-
creased. We have also observed that both LM and
CR retained their performance throughout larger
dataset sizes. We also showed that CR performance
seems to be consistent in its improvement as the
augmented dataset size increases, while the LM
showed degrading performance with more aug-
mented data.

Future work should include improvements that
hybridize the syntactic transformations with a large-
scale language model. One possibility to increase
the performance of the baseline language model
is to train it to recognize phrase-level constituents
and functional categories to understand more about
constituency tags by first randomly swapping a few
tokens with part of speech tags. For example, the
original sentence is “I take my medicine.”, then
the pre-training sentence is “I VB my medicine.”
and "I take my NN.". We hypothesize that this pre-
training will improve the prediction performance
of the baseline language model that we used for CR
augmentation by attending to functional categories.
Another possibility is to assign different weights
to datapoints that inform the model how much to
"trust" augmented data compared to gold data. This
weight could be in the form of different learning
rate.
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