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   Recent advances in 2.5D chiplet platforms provide a new avenue for compact scale-out implementations of emerging compute- and 
data-intensive applications including machine learning. Network-on-Interposer (NoI) enables integration of multiple chiplets on a 2.5D 
system. While these manycore platforms can deliver high computational throughput and energy efficiency by running multiple specialized 
tasks concurrently, conventional NoI architectures have a limited computational throughput due to their inherent multi-hop topologies. In 
this paper, we propose Floret, a novel NoI architecture based on space-filling curves (SFCs). The Floret architecture leverages suitable 
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task mapping, exploits the data flow pattern, and optimizes the inter-chiplet data exchange to extract high performance for multiple types 
of convolutional neural network (CNN) inference tasks running concurrently. We demonstrate that the Floret architecture reduces the 
latency and energy up to 58% and 64%, respectively, compared to state-of-the-art NoI architectures while executing datacenter-scale 
workloads involving multiple CNN tasks simultaneously. Floret achieves high performance and significant energy savings with much 
lower fabrication cost by exploiting the data-flow awareness of the CNN inference tasks.  

CCS CONCEPTS • 2.5D • Space-filling curve • Processing-in-memory • network-of-interposers • convolutional neural 
networks • chiplet-based architecture 
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1 INTRODUCTION 

Chiplet-based architectures that integrate multiple small dies on an interposer are drawing the attention of leading 
silicon manufacturers due to their higher energy efficiency and lower fabrication cost [1]. Chiplet-based systems (also 
known as 2.5D systems) connect multiple small dies (chiplets) through a network-on-interposer (NoI). Designing chiplet-
based systems targeted for machine learning (ML) workloads is a relatively unexplored and promising direction since ML 
is becoming ubiquitous in many real-world applications. 
ITRS 2.0 and IRDS roadmaps highlight the unprecedented need for memory and processing over the next decade [2] 

[3] [4]. This need dictates the design of large-scale chips with high memory and compute capability, offering a high degree 
of parallelism. Such large-scale chips include multiple processing cores, scaling from a few tens to even hundreds. This 
large-scale integration significantly increases the area of monolithic chips [2]. One of the major challenges in the silicon 
industry is the exploding fabrication cost as the monolithic chips approach the reticle limit. The chiplet-based design 
concept offers a promising solution for reducing the manufacturing cost of large monolithic chips [1].  
Recent works have proposed several NoI architectures for efficient communication between multiple chiplets on a 2.5D 

system [5] [6] [7] [8]. Existing NoI architectures assume a single and typically fixed application workload executed one at 
a time, so that the NoI can be optimized for a specific application class mapped onto the chiplet-based system. Offline 
application-specific NoI optimization is challenging in some real-world settings for two main reasons. First, multiple 
application workloads with varying inputs may need to be executed simultaneously in a real-world scenario (e.g., 
inferencing for different images using the same deep model). Second, various types of workloads may appear at any given 
time (e.g., inferencing tasks with different deep models). Specifically, the mapping of the neural layers onto the chiplets 
needs special attention for multiple concurrent convolutional neural network (CNN) based inference tasks. Since each 
neural layer of a CNN typically sends data to the subsequent layer (i.e., the data flow graph is mostly linear), consecutive 
neural layers need to be mapped to neighboring chiplets to reduce latency. Existing NoI architectures are primarily based 
on standard multi-hop regular topologies such as mesh, torus, etc. These NoI architectures do not guarantee contiguously 
placed chiplets to map successive neural layers. Hence, we aim to design an NoI architecture where the chiplets are 
connected in a contiguous path (through NoI) so that the communicating neural layers are highly probable to run on 
neighboring chiplets without introducing a significant volume of long-range and multi-hop data exchange. Multiple CNN 
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inference workloads (e.g., object detection, scene understanding in self-driving cars, augmented/virtual reality) frequently 
appear on the cloud infrastructure where multiple users schedule requests concurrently [9] [10]. Below, we describe 
occurrences of multiple CNNs in server-scale applications, encompassing various real-world scenarios: 

• Real-time video analytics: Real-time video analytics is a challenging task that requires high performance and 
low latency. Multiple CNNs can be used to improve the performance and accuracy of real-time video analytics. 
For example, one CNN can be used to detect objects in a video stream, while another CNN can be used to classify 
those objects. This can be used for applications such as security surveillance, autonomous driving, and video 
content analysis [53]. 

• Cloud computing: Cloud computing is used to process large amount of data, which is generally expensive. 
Multiple CNNs can be used to improve the performance and cost-effectiveness of cloud computing. For example, 
multiple CNNs can be used to process different parts of a large dataset in parallel to create ensemble models. 
This can help to reduce the time to process the dataset, and it can also help to reduce the cost of cloud computing. 
Moreover, ensembles of multiple CNNs are effectively utilized in Facebook servers to provide image tagging, 
feed suggestions among other applications [55].  

• Edge computing: Multiple CNNs can be used to process data locally at the edge. This can help to improve 
performance and reduce latency and can protect sensitive data. Specifically, this will improve performance and 
reduce latency for applications that require real-time processing of data as in the case of augmented/virtual reality 
(AR/VR) applications [54]. 

Prior studies sought to improve cloud capacity, application scheduling, and resource utilization while executing ML 
workloads concurrently on the cloud [11] [12]. In this work, our aim is to capture cloud-scale computing via chiplet-based 
systems. We propose a novel NoI topology inspired by space-filling curves (SFCs) referred to as Floret. An example is 
shown in Figure 1 The proposed solution enables incoming neural layers associated with CNN inference tasks to be mapped 
onto contig uous chiplets to avoid long-range communication. Specifically, we leverage the space-filling property to 
generate a path where a single curve, without any gaps, traverses the area of the interposer with no closed loops. We first 

Fig. 1: Illustration of the SFC-based architecture called Floret for a 100-chiplet-based system with five SFCs on the interposer network. 
The top-level network allows continuity among the multiple SFCs on the NoI.  
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divide the chiplet-based system into multiple SFCs. Each SFC stitches a set of chiplets along the 2D planar path, as 
illustrated in Figure 1. Each SFC consists of a head and a tail connecting a group of chiplets in a contiguous path. We also 
need to minimize the inter-SFC path length among the non-overlapping SFCs to reduce latency in long-range data 
exchanges.  
The advantages of the proposed mapping along the space-filling path of the NoI are two-fold. First, neural layers of any 

CNN task get mapped to contiguous chiplets and executed in the order they appear until the system is fully utilized. Second, 
the space-filling NoI architecture, which minimizes the inter-SFC data exchange, reduces the latency when we need to find 
contiguous chiplet resources belonging to different SFCs. Instead of one monolithic SFC, we use multiple SFCs to 
introduce inherent redundancy in the system, which is beneficial when executing multiple CNN inference tasks 
concurrently; hence the name “Floret” – to imply a cluster of multiple connected SFC “petals”. Experimental evaluation 
with multiple CNN inference tasks running concurrently for various system sizes demonstrates that SFC-enabled NoI 
outperforms existing NoI architectures with significant energy savings.  
Contributions: The key contribution of this paper is the algorithmic development to enable Floret NoI optimized for CNN 
inference tasks and its comprehensive experimental evaluation. Our major contributions include: 
1) We propose a novel NoI architecture called Floret with multiple non-overlapping SFCs specifically targeting 

running multiple concurrent CNN inference tasks.  
2) We propose a new type of SFC called the Floret curve that is targeted for chiplet-based systems, and using this 

Floret curve we propose a novel NoI architecture along with a mapping algorithm to efficiently map successive neural 
layers to contiguous chiplets for achieving high performance and energy efficiency. 
3) Experimental results show that the Floret architecture can achieve up to 58% and 64% reduction in latency and 

energy respectively compared to state-of-the-art counterparts. 
The rest of the paper is organized as follows. Section II describes the relevant prior work on 2.5D systems and NoI 

architectures. Section III presents the design and optimization principles for executing the CNN inference tasks on the 
Floret architecture . Section IV presents the detailed experimental results and analysis. Finally, Section V concludes the 
paper by highlighting the salient contributions and pointing to the future directions. 

2 RELATED WORK 

The manufacturing cost of monolithic chips is increasing rapidly with the growing die area requirements of emerging 
applications. First, fewer large chips can be integrated for a given wafer size than many smaller ones, decreasing the area 
utilization [2]. Second, when defective, a larger die wastes more silicon area than its relatively smaller counterparts. Most 
chip vendors and foundries are moving towards non-monolithic alternatives such as 2.5D interposer-based systems to 
partition the on-chip resources into smaller discrete cores called chiplets [1] [13] [14]. The emergence of 2.5D chiplet 
platforms provides a new avenue for compact scale-out implementations of various deep learning (DL) applications. 
Integrating multiple small chiplets on a large interposer enables not only significant cost reductions and higher 
manufacturing yield compared to 2D ICs [1], but also better thermal efficiency than 3D ICs [13] and ease of heterogeneous 
integration [2]. Designing both general-purpose and application-specific 2.5D-based systems have been explored so far. 
The design and fabrication of interposers also add significant non-recurring engineering costs and development cycles 
which might be prohibitive for application-specific designs having low volume. To address this challenge, a General 
Interposer Architecture (GIA) is proposed, to amortize costs and accelerate integration flows of interposers across different 
chiplet-based systems effectively [15]. 
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The recently proposed SIAM framework enables fast design space exploration of 2.5D-based systems [6]. SIAM 
employs ReRAM-based chiplets that can be used both as memory and to perform in-situ multiply-and-accumulate (MAC) 
operations [6] [16]. Since DL workloads rely heavily on such MAC operations, ReRAM-based architectures are excellent 
candidates for DL training and inferencing [17] [18] [19]. ReRAM-based heterogeneous architectures were proposed to 
improve the accuracy of trained models while also addressing communication bottlenecks [20] [21]. Thus, ReRAM-based 
2.5D architecture can outperform CPUs/GPUs for almost all types of DL workloads as they support near-data computation 
[22]. Recent prior work has devised ReRAM-based DL accelerators that overcome the limited write endurance and high 
write energy costs of ReRAMs [23] [24]. Yet, the evaluation framework proposed in SIAM assumes a mesh-based NoI, 
which is not scalable for multiple concurrent CNN tasks and large system sizes. SIMBA introduces tiling optimizations on 
fixed NoI topologies for executing DL model such as ResNet50 [7]. NN-Baton focuses on choosing a specific design 
allocation across several benchmarks on a fixed topology [8]. However, NN-Baton does not consider the scale of the data 
centers where the number of DL parameters reach order of billions. To this end, silicon-photonic interposers have been 
proposed to improve the latency and bandwidth [25]. A reconfigurable Silicon-Photonic 2.5D NoI architecture is proposed 
to dynamically deploy inter-chiplet photonic gateways to improve the overall network congestion. An application specific 
architecture using photonics called BiGNoC is proposed, which highlights how network-on-chip can be designed for 
manycore chiplet-based system to meet the unique communication requirements of big data analytics applications but at 
the intra-chiplet level [26]. Moreover, the NoI paradigm becomes crucial due to the high communication demand arising 
from integrating an increased number of chiplets on the same substrate [1] [6].  
Space-filling curves (SFCs) represent a specialized class of algorithmic mapping techniques that are widely used to 

generate locality-preserving data structures in numerous scientific applications that do spatial and range queries [27] [28] 
[29]. More specifically, an SFC maps a multi-dimensional point cloud onto a single dimension; therefore, each SFC 
represents a linear ordering of the input set of points. Numerous types of SFCs have been defined over the decades, 
including simple schemes such as row/column major curves to more sophisticated curves such as the Hilbert curve [28], 
Morton or Z-curve [30], or onion curve [31]. For a review of classical SFCs, please refer to [32] [33]. SFCs come with 
various provable properties. One such property concerning locality is called clustering [34] [35], which is a measure of the 
number of hops taken along the linear ordering of an SFC, to access neighboring data in the multi-dimensional point cloud.  
Some curves, such as the Hilbert and Z-curves in particular, have demonstrated a better clustering property over others 
both in theory and practice [32] [34] [36] [37]. SFCs have been predominantly used in databases and in parallel scientific 
computing [37]; for exploring data layouts in memory for multi-core platforms [38]; and in bioinformatics for creating 
locality-preserving layouts for DNA nanostructures [39], sequence alignment [40] and phylogenetic inference [41].  
Despite their popularity in various engineering domains, SFCs have not yet been explored for designing NoI-based 

manycore chiplet architectures or for accelerating machine learning workloads. Most previously proposed NoI 
architectures are based on conventional multi-hop networks, like mesh and torus. Recently, the Kite family of NoI 
topologies has been proposed for a 2.5D-based system considering synthetic traffic/workloads [5]. However, Kite is also 
primarily based on a Torus architecture, and all such regular NoI architectures are not workload-aware. Emerging DL 
applications use more than a billion parameters [6] [17]. We increasingly rely on large-scale manycore computing 
platforms to execute these massive workloads. It has been shown that a significant portion (about 30-75%) of the overall 
execution time of DL workloads arises from the communication among the processing elements, which is hidden by 
overlapped computation [42]. This characteristic necessitate communication aware paradigms for designing such NoI 
architectures for DL workloads. Recently, application-specific NoI design for 2.5D-based systems has been explored using 
ML-based techniques [17]. However, this work is oblivious to the occurrence of real-world data-center scale ML 
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application workloads for executing concurrent CNN inference tasks with unseen neural networks. The goal of this paper 
is to precisely fill this important gap in the existing state-of-the-art NoI architectures by proposing novel design principles 
for chiplet-based systems, which are well-suited for executing multiple CNN inference tasks concurrently.  

3 DESIGN AND OPTIMIZATION OF THE SFC-ENABLED NETWORK-ON-INTERPOSER   

This section presents the overview and design methodology of the Floret architecture. We start by presenting the salient 
features of the chiplet configuration considered here. We then describe the key principle to design the overall Floret 
architecture using multiple space-filling curves. It should be noted that the proposed methodology is generic, and it can be 
used to design other large-scale 2.5D chiplet systems. This work focuses on the NoI level optimization aspects without 
modifying the design of individual chiplets.  

3.1 ReRAM-based 2.5D chiplet architecture 

Processing-in-memory (PIM) is a promising technique to accelerate deep learning (DL) workloads [19]. PIM-enabled 
architectures improve energy efficiency by reducing communication between computing cores and the main memory [43]. 
Crossbar arrays (CBAs) are the most popular representation for PIM. They are highly efficient for matrix-vector 
multiplication (MVM), which forms the core of many DL and scientific computing algorithms. Prior work has investigated 
binary CBAs based on various memory technologies, including phase change memory (PCM), Resistive Random Access 
Memory (ReRAM), Spin-Transfer Torque Magnetic RAM (STT-MRAM), and Ferroelectric Field-Effect Transistor 
Memory (FeFETs), and has experimentally demonstrated their functionality at various scales [44] [45] [46]. In this work, 
we employ ReRAM-based chiplets as the enabling technology to accelerate CNN inference tasks, noting that the proposed 
architecture and associated design optimization methodologies are also applicable to other CBA-based PIM chiplets. The 
chiplets are connected through NoI routers and links, which enable high-bandwidth communication. Each chiplet is 
composed of 16 tiles and peripheral circuits such as accumulator, buffer, activation units (ReLU in our work), and pooling 
unit. Within each chiplet, a mesh-based network-on-chip (NoC) connects the tiles, where each tile comprises multiple 
processing elements (PEs) that consists of 128x128 ReRAM crossbar arrays. It should be noted that within chiplets the 
number of tiles is limited (e.g., 16 tiles in the Floret architecture). Hence, a simple mesh-based NoC is sufficient as there 
is no scope for any significant multi-hop or long-range data exchange. In other words, the intra-chiplet latency and energy 
costs are negligible compared to inter-chiplet data exchange costs. Therefore, we focus on optimizing the NoC/NoI 
interconnectivity at the entire system level. Note that the Floret architecture is independent of the NoC architecture used 
within a chiplet, and so our proposed design methodology is generic enough to work with any interconnect used within 
chiplets.  
The target chiplet architecture has 40 PEs inside each tile, connected through an H-Tree-based point-to-point network. 

In our approach, we assume that all CNN weights are transferred to the ReRAM chiplets from the DRAM before 
performing CNN inference, which is consistent with previous investigations [18] [23] [47]. Following prior work, we also 
assume that the global buffer is available for processing weights due to storing activations from the previous layer for a 
residual addition operation that is prevalent in dense (DenseNet) and residual (ResNet) class of neural networks [6]. The 
number of PEs necessary to map a neural layer is dependent on several factors, including kernel size, number of input and 
output features, and bit precision. These factors determine the number of tiles required for each neural layer, as well as the 
total number of chiplets needed to map the whole neural network. It is possible to fit multiple layers on a single chiplet or 
a single layer to spread across multiple chiplets. In a server-scale scenario, the number of CNN parameters can reach 
billions, leading to heavily utilized chiplets. 
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3.2 Space-filling curve enabled NoI architecture 
The problem: Given the need to execute various deep learning tasks simultaneously [14] [42], modern-day servers and 

high-end processors need to be designed to target a workload consisting of a mixture of tasks. We consider CNNs with 
different neural layer architectures – including linear (e.g., VGG), residual (e.g., ResNet), and dense (e.g., DenseNet) 
connections – for performing inference tasks while designing a chiplet-based system. However, mapping different CNNs 
dynamically to a chiplet-based system is challenging. The common property of CNN inference tasks is that activations 
flow from the ith layer to the (i+1)th layer. Hence, there is a need to maintain contiguity on the physical NoI layer, to the 
extent possible, between any two consecutive neural layers to reduce communication overhead. Since existing NoI 
architectures are primarily based on standard multi-hop regular topologies such as a mesh or a torus, it may not always be 
possible to find contiguously placed chiplets available to map successive neural layers. If two consecutive layers of a CNN 
are mapped far apart, it will lead to long-range multi-hop communication through the NoI. This, in turn, will degrade the 
performance and energy efficiency of the NoI. Hence, our objective is to design an efficient NoI architecture which is 
capable of co-locating adjacent neural layers.  
In theory, this design problem can be viewed as one of embedding a linear ordering (i.e., an SFC) of chiplets over the 

given topology. However, there may be multiple CNN tasks that need to be dynamically mapped to the system, and each 
such task may consist of different numbers of neural layers. Furthermore, the number of chiplets needed to execute each 
layer may also vary. Therefore, the problem becomes one of generating multiple SFCs, each with its own sequence of 
chiplets to map to the neural layers of any of the tasks. Moreover, as the different CNN tasks complete, the chiplets used 
for that task need to be reassigned to newer tasks. If a consecutive sequence of chiplets is not sufficient to accommodate 
all the layers of a CNN task, the spill over layers will need to utilize chiplets in other parts of the NoI (i.e., from other 
SFCs) so as to ensure successful completion. Therefore, the placement of the SFCs and the resulting hop separation 
between them become important measures to reducing CNN task execution times. Taken together, these factors – i.e., the 
need to accommodate multiple SFCs, the dynamic nature of mapping those SFCs to multiple CNN tasks, and the need to 
potentially hop from one SFC to another (for the same task) – all make this a challenging problem, one where classical 
SFC designs may not apply.  
Approach: In this work, we present a custom-designed SFC called the Floret curve that is equipped to address all the 

aforementioned challenges. In particular, our approach connects the chiplets (in the order the neural layers are mapped) 
along the contiguous path formed by the Floret architecture in a two-dimensional (2D) space, as illustrated in  Figure 1. 
The intuition behind the Floret architecture is to subdivide a multi-dimensional space into smaller contiguous segments (or 
individual SFCs), and then to stitch those pieces together; hence the term “Floret” as the resulting topology can be viewed 
as a cluster of individual SFCs (or petals). The resulting curve is a continuous, non-intersecting (planar) path that covers 
all the chiplets in the system – hence the term "space-filling".  
Definition of a Floret curve: More formally, let 𝐶 denote the set of n chiplets distributed across a given 2D grid 

coordinate system. The chiplets are numbered arbitrarily from [0, 𝑛 − 1]. For example, the chiplets in Figure 1 are 
numbered in row major fashion along the grid. Given n and a constant 𝜆, a Floret curve (denoted by Π) is a collection of 
𝜆 individual SFCs {Π!, Π", …Π#$"}. Let 𝜓 = ⌈!

"
⌉. Then, each of the 𝜆 SFCs represents a sequence of  𝜓 chiplets that are 

contiguously placed along the grid. In other words, each SFC covers a distinct subset of size 𝜓 chiplets such that no two 
SFCs intersect. Each SFC (Π%) has a dedicated head (ℎ&) and a corresponding tail  (𝑡&) on the other end, connecting 𝜓 − 2 
chiplets in between. As an example, Figure 1 shows a Floret curve with five SFCs. One can view this Floret curve also as 
a hierarchical design with two levels, where the top level corresponds to the 𝜆 head-tail pairs and the next level consists of 
all the individual SFCs. 
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3.2.1 Algorithm for designing Floret curves  

Next, we describe our algorithm to design a Floret curve, given 𝐶, the set of n chiplets on a 2D grid1, and 𝜆, the number 
of different SFCs. At a high level, the algorithm has two major steps. First, a subset of 𝜆 chiplet pairs of the form ⟨head 
ℎ&,tail 𝑡&⟩ are selected, one pair for each SFC Π&. Next, using the head and the tail chiplet pairs as end points of a Π&, we 
fill the remaining 𝜆 − 2 chiplet locations for Π&. Algorithm 1 shows the pseudocode for our design approach. In what 
follows, we provide details for each step.  
For the first step of choosing 𝜆 head-tail chiplet pairs, note that the search space is 4 𝑛2𝜆5 in theory. However, during 

mapping phase, since the same CNN task may possibly use chiplets from two or more SFCs, it is important to reduce the 
average number of hops separating the tail of an SFC to a head of another SFC. Therefore our search objective becomes 
one of minimizing this average path length 𝑑	between the tail of one SFC to the heads of the other non-overlapping SFCs:  

																																																				𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:		𝑑 = 		
1
𝑝	 @ A𝑡& − ℎ'A()*+*	&≠',			./01#02&,'∈[!,5$"]

																																																														(1) 

Here the distance between any tail-to-head pair is calculated as the Manhattan distance over the 2D grid. Minimizing 
this average distance measure d is imperative as communication delays between tail of one SFC and the head of the next 
SFC can have a significant impact on the overall system performance. We follow an iterative approach to identify 𝜆	head-
tail pairs.  Intuitively, concentrating all the 𝜆	head-tail pairs at the center of the NoI architecture is expected to reduce the 
number of hop counts between an arbitrary tail and an arbitrary head. Alternatively, if one were to spread out the head-tail 
pairs across the NoI, inter-SFC hop count can only increase. Using this simple yet key insight, our algorithm selects head-
tail pairs from the center of the NoI. In particular, we identify a subset of 2𝜆 chiplets along a pair of central columns (as 
shown in Figure 1. If the length of a column is not adequate to accommodate all the 𝜆 chiplet pairs, then we iteratively 
identify further evenly spaced pairs of columns from either side of the center until all pairs are identified. This algorithm 
effectively performs a block decomposition of the columns starting from the center and radiating outwards.  
Once the head-tail pairs are selected, the next step is to fill (or complete) each of the 𝜆 SFCs from their respective heads 

to their tails (as shown in Algorithm 1: lines 2 through 7). The goal is to create each of the 𝜆	SFCs, Π& with head ℎ& and 
tail 𝑡&, of length 𝜓. The important design consideration is to maintain contiguity for the chiplets assigned to the same SFC. 
This problem can be effectively solved as an instance of the Euclidean traveling salesman problem (TSP) problem [48]. 

 
1 Even though the algorithm presented is for a 2D grid system of chiplets, we argue later on how the algorithmic methodology is 
generic enough to be extended to other symmetric topologies [5]. 

 
 
 
 
 
 
 
 
 
hghghg 
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More specifically, let 𝐺(𝑉, 𝐸) denote the initial (planar) graph corresponding to the 2D grid system – i.e., V corresponds 
to the set of all n chiplets, and E consists all the 1-hop neighboring chiplet pairs on the grid. Our algorithm iteratively 
enumerates one SFC at a time (for loop in line 2 of Algorithm 1), such that during the 𝑖7) iteration we enumerate SFC Π%. 
Since an SFC is a linear ordering of 𝜓 chiplets contiguously located along the grid, the problem of finding an SFC can be 
reduced to one of finding the Hamiltonian subpath of length 𝜓 on the planar G. Furthermore, to facilitate tail to head inter-
SFC transfers during mapping, we treat it as a planar Hamiltonian cycle problem. Since the cost is dictated by the number 
of hops (along the grid), the goal becomes one of computing a minimum cost planar Hamiltonian cycle, which is an instance 
of the Euclidean TSP problem [49]. Therefore, as shown in lines 3-5 of Algorithm 1, we call a TSP solver on G to obtain 
each SFC. It should be noted that the graph G needs to be updated after the enumeration of each SFC. Specifically, at the 
end of every step i, after we generate Π&, we remove all edges in E that are incident on the vertices selected as part of Π&. 
This step ensures none of the chiplets from previous SFCs are eligible for inclusion in any of the subsequent SFCs – thereby 
ensuring that all SFCs are mutually disjoint in their chiplet space. 
For the TSP computation step in line 5 of Algorithm 1, we implemented a recursive backtracking-based TSP solver that 

works on the tour length 𝜓. This implementation explores all possible tours through a recursive search process. 
Backtracking is a powerful technique for solving the Euclidean TSP (over planar graph 𝐺), which can be computationally 
expensive for large problem instances [49]. However, this is a preprocessing step (and is hence a one-time cost) and the 
sizes of G(V,E) in practice is expected to be small for the target platforms. For instance, computing all the SFCs for a 
system with n=36 and 𝜆 = 6	SFCs, took only 10 milliseconds.  
Additional remarks:  
a) The TSP formulation makes our algorithmic approach more generic to be extended to design Floret curves for 

additional topologies and not just for the 2D grid (which we selected for ease of exposition). In particular, any NoI 
topology can be represented in the form of a graph, and our TSP solver implementation does not make any 
assumptions on planarity of the graph. However, as the planarity assumption is removed, then the degree 
distribution of the vertices in the graph can no longer be bounded to a constant. This could lead to increased 
execution times for the TSP solver.  

b) Even though the proposed algorithm for Floret curve design was presented for a 2D grid system of chiplets, the 
design methodology is generic enough to be extended in principle to other symmetric topologies – e.g., Kite, Butter 
Donut, Double Butterfly [5]. This is because our algorithm to assign the head-tail pairs simply relies on starting at 
the center of the NoI and radiating outwards iteratively. However, given that CNNs primarily rely on 
communicating between neighboring layers, a simple 2D grid topology is sufficient to serve as the breadboard for 
generating our Floret curve architecture.  

c) A key parameter to the Floret architecture design is the number of SFCs (𝜆). Intuitively, having too many 
SFCs	unnecessarily increases the top-level network size.  On the other hand, too few SFCs will reduce the number 
of router ports, which could degrade redundancy across SFCs and could hamper the overall achievable 
performance. Minimizing the average hop count between tails and heads of non-overlapping SFCs provides us 
with the optimum number of SFCs and the router port configurations for each system size. Section 4.2 evaluates 
this tradeoff in selecting an optimum number of SFCs. 

3.2.2 Algorithm for mapping CNN workloads to the Floret architecture 

We describe the algorithm to dynamically map a workload of CNN tasks to the Floret architecture (as designed in Section 
3.2.1). The input is a workload consisting of a set of CNN tasks (𝑊 = {𝑤&}), each consisting of multiple neural layers. The 
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output is a mapping Φ:𝑊 → 28 , which maps each 𝑤& to a subset of 𝑐& chiplets along the Floret curve; here, 𝑐& denotes the 
number of chiplets required to execute all the neural layers of 𝑤&. The value of 𝑐& can be precomputed by adding the number 
of chiplets required for computing each layer of a CNN tasks. Note that multiple layers of an individual CNN can fit within 
a single chiplet (i.e., 𝑐& ≤ 1), or alternatively, a single layer could require multiple chiplets (i.e., 𝑐& > 1). However, with 
CNN inference tasks, communication typically occurs between two consecutive layers. For this reason, the Floret 
architecture is well positioned to keep the communicating pairs of chiplets near to one another.  
    Algorithm 2 details the major steps of the mapping procedure to map 𝑊 to the Floret architecture. We start by 
considering the workload 𝑊 as a queue of multiple CNN tasks. For each 𝑤 ∈ 𝑊,			we first compute the number of chiplets 
(c) required. Initially, all chipets across all 𝜆 SFCs of Π are considered available. We track a next pointer to point to the 
next chiplet along Π that is due for assignment. Initially, next is initialized as the head chiplet of the first SFC (Π!).  
    The major function that computes Φ(𝑤) for any given task w is 𝐵𝑙𝑜𝑐𝑘𝐴𝑠𝑠𝑖𝑔𝑛(w,Π, 𝑛𝑒𝑥𝑡, 𝑐, 𝑛′), shown in line 5 of 
Algorithm 2. This function maps the task 𝑤 to a sequence of 𝑐 chiplets, starting from the 𝑛𝑒𝑥𝑡 position along Π. Note that 
the actual chiplet coordinates for this next position is given by Π$"(𝑛𝑒𝑥𝑡). The 𝐵𝑙𝑜𝑐𝑘𝐴𝑠𝑠𝑖𝑔𝑛	function returns when all 
the c chiplets were successfully assigned in the mapping process. During the course of mapping, there are two subcases to 
consider. (a) When all the chiplets along the current SFC have been assigned, we move on to another SFC. This SFC is 
chosen based on the proximity of its head to the tail of the current SFC. Subsequently, the assignment of the remaining 
layers resumes on the next SFC. This process is iterated until all layers are successfully assigned. (b) Note that it is possible 
that along the assignment process, the next chiplet to be assigned is occupied with another task. In this case, the procedure 
waits until it becomes available. Once all the chiplets in the system are utilized, then we will have to wait till a set of 
contiguous chiplets required for the incoming neural layer becomes free. This would happen when a prior loaded CNN 
finishes execution on the Floret, which would in turn release a contiguous region for the new CNN. Once contiguous 
chiplets become available, then the inter-chiplet data flow still follows the one-hop path. 
The above mapping approach has multiple advantages:  
• First, chiplet resources become available for new layer allocation in the order they were mapped. The activations 

would be transferred sequentially among contiguously placed chiplets as the computation moves from the first layer 
to the output layer of the CNN.  

• Second, we utilize all the available chiplets as per the computational requirements of the neural layers.  
• Third, the mapping algorithm is deadlock-free, because the mapping process treats the list of tasks (𝑊) as a queue, 

assigning one CNN task at a time. Deadlocks could happen only if either there is a cyclic dependency between two 
tasks (which is not possible here as CNN tasks are mutually independent), or if there are two concurrent mapping 
threads that are stuck and waiting for one another to release their resources (also not possible here due to the sequential 
queue-based mapping of the workloads).  

 
ghhdbfhjb 
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• Finally, our mapping approach exploits the inherent redundancy built in the NoI architecture via multiple available 
SFCs. In particular, if during the course of assignment, we reach the tail of one SFC, we have more than one option 
for selecting the next SFC. For instance, in the Floret architecture shown in Figure 1, tail 𝑇"is connected to two heads 
(𝐻", 𝐻0) within just 1-hop distance. In fact, this connectivity can further be increased to include 𝐻9 as well if we 
decide to retain the original 2D grid level links in the top-level network. This implies that if an assignment reaches 𝑇" 
and if there are more chiplets needed to complete that inference task, then there are between 2 to 3 options for 
switching to another SFC, all at a 1-hop distance. Our mapping algorithm can select the next SFC in a reconfigurable 
manner. This property is also vital to extend our architecture in the future toward providing fault-tolerant executions. 
A formal analysis of these properties of the Floret architecture could provide further insights; however, it is out of 
scope for this paper. Instead, we focus on the key ideas, concepts, and a thorough experimental evaluation.  

4 EXPERIMENTAL RESULTS 

In this section, we present a detailed performance analysis and experimental evaluation of the proposed NoI architecture 
for various CNN inferencing tasks. We also present a detailed comparative performance evaluation with respect to existing 
state-of-the-art NoI designs for chiplet-based platforms.  

4.1 Experimental Setup 

4.1.1 System specification and evaluation setup:  

    To demonstrate the scalability of the Floret architecture, we consider four different system sizes (n) with 36, 64, 81, and 
100 chiplets. We use a modified NeuroSim to partition and map CNN tasks onto a 2.5D-based system [50]. The inter-
chiplet traffic is generated by the activations between the neural layers. Each chiplet in our design has 64KB of buffer 
space to compute the activations associated with the skip connections, which flow through the same NoI links. This buffer 
size was sufficient for computing residual activations, [7][14]. When there are non-contiguous neural layers, the inter-
chiplet data exchange involves multi-hop paths. Each chiplet covers about 2.64𝑚𝑚0 area, including the peripherals. All 
the NoI topologies are simulated using the BookSim simulator [51]. The inputs to the BookSim simulator are the 
connectivity between NoI routers and the inter-chiplet traffic for the concurrent CNN inference tasks. It outputs the area, 
latency, and energy consu  mption of the NoI. We use the Nvidia ground-referenced signaling (GRS) parameters for 
chiplets on a 32nm technology to evaluate the NoI area and power consumption [7]. Table 1 shows the other system-level 

Table 1: NoI hardware parameters considered for evaluation  

NoI Hardware Parameters Value 
NoI frequency 1.15 GHz 
NoI bus width 32 
One-hop NoI link length 1.449 mm 
Quantization bit 8 
Technology 
Link Frequency 

32nm 
0.6 ns/mm 

     
fhjb 
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parameters considered in the performance evaluation [52] [16]. We note that the experimental analysis and performance 
evaluation considered in this paper is valid for other technology parameters. 

4.1.2 Datasets and DL workloads 

    We evaluate the Floret architecture on multiple CNN inferencing tasks running concurrently. Table 2 shows different 
neural networks executed on the corresponding datasets, and their number of parameters. As the system size increases, we 
use ImageNet-based CNNs with more parameters to illustrate the merits of the proposed architecture. Table 3 shows the 
naming convention of the CNN tasks in each workload along with their total number of parameters with (a) CIFAR-100 
and (b) ImageNet datasets. Tables 3(a) & (b) show the CNNs executed simultaneously on the 2.5D system. Various 
combinations of the neural networks in Table 2 are executed concurrently to capture the workloads (WL) considered in the  
experimental setup. We evaluate 36 chiplet system using workloads running for CIFAR-100 dataset. For scalability, we 
evaluate 64, 81  and 100 chiplet system on ImageNet based workloads as the number of parameters approach in the order 
of billions. As an example, WL1 consists of sixteen instances of 𝑁𝑁0 (ResNet34), along with one instance of 𝑁𝑁: 
(VGG19), and so on. We cover the whole spectrum by randomly choosing each of the CNNs such that at least 90% of the 
2.5D system is always utilized. Note that the general concept behind our NoI design is applicable to any type of CNN 
inference tasks.  

Table 2: List of neural networks for inferencing along with their corresponding number of CNN parameters with (a) CIFAR-100, (b) 
ImageNet Dataset 

 

 

Table 3: List of CNN tasks in a workload for inferencing along with their total number of parameters with (a) CIFAR-100, (b) ImageNet 
based dataset 
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4.1.3 Baseline NoI design  

We compare the performance of Floret against three baselines: Kite, SIAM, and a recently proposed application-specific 
NoI architecture SWAP [5] [6] [17]. Kite is primarily a Torus-based NoI, and SIAM is essentially a 2-D mesh NoI. The 
application-specific SWAP NoI is an irregular architecture where the chiplets and the associated links are placed as per 
specific design time considerations for a given set of CNN applications. We set the same system parameters and evaluate 
over the same CNN workloads for all four architectures (Kite, SIAM, SWAP, and Floret) for a fair comparison.  

4.2 Optimum number of SFCs  

In this sub-section, we evaluate the optimum number of SFCs which would occur on the interposer network considering 
the average hop count (𝐻;<=) bet ween an  y two communicating pair of chiplets for a CNN task. Figure 2 shows the 
optimum number of SFCs with varying system size.  Here, we consider iso-chiplet area configuration, i.e., each individual 
chiplet is of the same size irrespective of the system size. As the number of chiplets, n, increases from 36 to 64 to 100, the 
interposer area also increases while the size of each of the individual chiplet remains the same. We observe that the 
optimum number of SFCs lie between four to six as the number of chiplets vary. Due to the iso-chiplet but increasing 
interposer area assumption the number of SFCs remains within a limited range for varying system size. These SFC 

 
 
Fig. 2: Illustration of the optimal number of SFC for (a) 36 chiplets, (b)64 chiplets, (c)81 chiplets, and (d) 100 chiplet system 
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configurations minim ize the averag e hop count of the top level network (6, 4, 5, 5 SFCs in case of 36-,64-,81- and 100-  
chiplets respectively). Ultimately, the minimization of 𝐻;<= leads to higher performance benefits of Floret over its 
counterparts.  

4.3 Effect of SFC Lengths 

In this sub-section, we evaluate the effect of keeping SFCs of equal length (as is part of our default design) versus 
allowing them to vary in their lengths on the interposer network. SFCs with varying lengths could lead to traffic imbalance 
and thereby, latency degradation for the system; whereas an even length reduces such imbalances and could deliver better 
performance. To test this hypothesis, we experimented with different (unequal) lengths for the SFCs of the Floret 
architecture, and compared them with the performance derived from the equal length setting.  We consider the Floret 
architecture with 36 chiplets as an example here. For the equal-length SFC configuration, each SFC consist of 6 chiplets. 
However, for the unequal-length configuration the SFCs contain  8, 7, 7, 5, 4, 5	 chiplets respectively. Figure 3 shows the 
comparison between the latency obtained under these two settings, for a 36-chiplet system. It is clear that the Floret with 
unequal-length SFC degrades performance compared to the equal-length SFC configuration, corroborating our hypothesis. 
This happens since when SFCs are of different lengths then the distance between head-tail pairs in the top-level network 
increases. This results in latency degradation. It should be noted that there are other configurations possible for the unequal-
length scenario. In each case, we expect to see similar trends. For brevity, we show the result for only one configuration.   

4.4 Variation of number of router ports  

Each NoI architecture consists of inter-chiplet routers and links. Since each architecture has different connectivity, this 
section compares the distribution of the number of router ports in the Floret architecture against the other state-of-the-art 
counterparts. We also compare the number of links involved in each architecture. Figures 4 (a)-(d) show the router-port 

 
Fig. 3 Normalized NoI latency for the 36-chiplet Floret architecture with equal and unequal SFC lengths. This shows that having unequal 
SFC lengths is not advantageous compared to having equal length of SFCs. 



15 

configurations for all four s ystem sizes considered in this work. We observe that four-port routers are the most frequent 
ones with Kite. SIAM with mesh NoI mostly consists of routers with three and four ports. In contrast, SWAP primarily 
uses two- and three-port routers, where the links are on average longer due to the small-world network approach [17]. 
However, all the routers in Floret except the heads and tails have only two ports. The peak moves towards the left, 
demonstrating that the frequency of routers with fewer ports is increasing in the case of Floret, with the mean router port 
frequency being between two and three. Similarly, as the system scales to higher number of chiplets, both Kite and SIAM 
have an average port count of around four, as shown in Figure 4(b), (c), & (d). In case of SWAP, the mean router port 
frequency lies between two and three with some four port router for larger-system size. Reducing the number of router 
ports also decreases the total number of links. Figure 5 compares the number of links in each of the considered architecture 
for all four system sizes. From Figure 4 and Figure 5, it is evident that Floret has smaller routers and fewer associated links 
compared to all the other architectures. As a result, the total NoI area of Floret is significantly smaller than the other 
architectures. It should be noted that only reducing the number of links and router port size on their own does not 
necessarily lead to performance and energy efficiency. To achieve these benefits, it is crucial to consider the length of the 
links between routers because the communication delay depends on the link lengths. Therefore, the communication delay 
should be considered while evaluating the NoI architecture. Kite, for example, has mostly two hop links and the routers 
are inherently bigger. SIAM, being principally a 2D Mesh, has single hop link connections to its neighboring chiplets. 

 
 

Fig. 4: Variation of router-port configuration for Kite, SIAM, SWAP and SFC for a 2.5D system with (a)36 chiplets, (b)64 chiplets, (c)81 
chiplets and (d)100 chiplets. Peak of the plot is observed to be moving towards the case of Floret which is based on SFC. 
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However, SIAM ha s bigger routers with higher number of router-ports. SWAP has reduced number of links and smaller 
router ports, but not all links are necessarily single hop. SWAP also has some longer links like four or five hops. Floret 
mainly consists of routers with fewer ports and most links being one-hop connections. In the top-level network, we allow 
the tail of one SFC to communicate with the heads of other SFCs separated by at most three hops.  Within each SFC, all 
the intra-SFC connections are single hops with small router ports. All these factors together improve NoI performance and 
energy efficiency. In the case of skip connections (such as those found in ResNet or DenseNet), we may have to 
communicate among non-contiguous chiplets. However, that will still be consecutive single hop paths. Moreover, smaller 
routers, fewer links, and smaller link lengths reduce the NoI area and hence the fabrication cost, as highlighted in the 
following subsections.  

4.5 NoI fabrication cost  

One of the main advantages of 2.5D systems over monolithic architectures for large-scale designs is the fabrication cost 
as the system requirement scales. Therefore, it is crucial to consider the fabrication cost of 2.5D systems along with 
performance and energy benefits in such a datacenter-scale application. The NoI is the biggest contributor to the overall 
2.5-D system area [1]. Hence, reducing the NoI area is important as the computational requirements are expected to grow 

 

Fig. 5: Variation of number of links for Kite, SIAM, SWAP and Floret for a 2.5D system with (a)36 chiplets, (b)64 chiplets, (c)81 chiplets 
and (d)100 chiplets. As the system size increases, the number of links is consistently lower in case of SFC.  
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at scale [1] [2]. This section discusses the relative fabrication cost improvement by Floret with respect to previously 
proposed architectures. It has been already shown in existing literature that the total NoI area (𝐴>?@) is proportional to the 
sum of the area of the NoI routers and the links [6]: 
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where 𝐴+?A7*+! is the area of the 𝑖
7) router and 𝐴C&BD" is the area of the 𝑗

7) link, n and q are the number of NoI routers and 

links respectively. Each chiplet is connected to an associated NoI router. So, n denotes the total number of chiplets in the 
system, too. Therefore, increasing the number of router ports (both input and output) as well as NoI links increase the total 
NoI area. In case of the SFC-based architecture, the number of routers and the corresponding links vary based on the 
number of SFC l. As the chiplets in the top-level network have higher connectivity, the router sizes are bigger and hence 
the NoI area 𝐴GH8 is defined as:  

																																																																			AIJK =		c@A%LMNO$IJK

0l

&/"

+	 @ 𝐴&B7+;$GH8

B$0l

'/"

	e																																																											(3)		 

where 𝐴&B7*+$GH8 is the area of the top-level network and 𝐴&B7+;$GH8 is the area of the chiplets within each SFC. 
Considering total number of chiplets as 𝑛 and l	SFCs on the interposer, the total number of chiplets in top-level network 
is 2l	 and the sum of all chiplets within SFCs is 𝑛 − 2l	.	The number of links and the router sizes will vary if a particular 
chiplet exists in the top-level network or not which was discussed in Section 4.3 above. Furthermore, the relative fabrication 
cost of two NoIs is expressed as [6] [17]: 
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where ATUV" and ATUV0 are the NoI area under consideration. Equation (4) assumes that both the system have same number 
of chiplets, with parameter 𝐷!	representing the wafer defect density. We consider a 2.5D system designed by AMD with 
864	𝑚𝑚0 interposer area and 64 chiplets as the reference in this work [1]. It is evident from that the relative fabrication 
cost of Floret with respect to any other architectures, like Kite, principally boils down to the difference between the two 
NoI areas. Since the NoI area increases with increasing number of router ports and NoI links, the corresponding fabrication 
cost also increases. Considering the router-port configuration and number of links as shown in Figure 4 and Figure 5, Floret 
reduces fabrication cost by about 80%, 61%, and 49% with respect to Kite, SIAM, and SWAP for a 36-chiplet system. The 
relative fabrication cost for bigger system sizes reduces more for Floret as the reduction in the number of links is more 
with the increase in system size (Figure 5). In contrast, the average number of router ports for Floret remains almost 
unchanged. Moreover, Floret always has more shorter link s than any other architectures considered here. 
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4.6 NoI Performance and Energy Analysis  

This section presents the NoI performance and energy efficiency of Floret compared to the baseline designs (Kite, 
SIAM, and SWAP). We benchmark the latency and energy consumption of the Floret architecture compared to Kite, SIAM, 
and SWAP for five different CNN workloads (WL1-WL5 on CIFAR-100; WL6-WL10 on ImageNet) for each system 
sizes. Each workload has an equivalent probabilistic occurrance of residual(ResNets), dense(DenseNet), and sequential 
(VGG) CNNs occurring concurrently. This makes sure we cover the entire spectrum of the CNNs without inducing any 
inherent bias in the experimental evaluation.  
Figure 6(a) shows the latency of each NoI for the 36-chiplet system considering CNN workloads WL1 to WL5. Both 

latency and energy are normalized with respect to the corresponding Floret configuration for all system sizes. We observe 
that Floret architecture outperforms all the baselines for all the system sizes. As an example, Floret improves the latency 
by ~27%, ~22%, and ~25% compared to Kite, SIAM, and SWAP architecture for WL1, respectively. On average, Floret 
performs 23%, 18%, and 19% better than Kite, SIAM and SWAP for 36-chiplet system, respectively. The highest latency 
improvement of 31% is achieved for WL4 in the 36-chiplet Floret with respect to Kite. For all other CNN workloads, 
Floret consistently outperforms the existing NoI counterparts in performance. Figures 5(b)-(d) show the latency 
improvements for Floret compared to the other architectures for 64-, 81- and 100-chiplet systems. The average latency 
improvements for these system sizes for Floret are: 34%, 21%, and 24% with respect to Kite, SIAM and SWAP for the 64 
chiplet system; 45%, 32%, and 38% with respect to Kite, SIAM and SWAP for the 81 chiplet system; 51%, 38%, and 45% 
with respect to Kite, SIAM and SWAP for the 100 chiplet system.  
Floret not only reduces the inference latency of DL workloads but also achieves significant energy consumption 

savings. For example, Floret reduces the energy consumption by about 22%, 18%, and 20% compared to Kite, SIAM, and 
SWAP, with a 36 chiplet system for workload WL2 (shown in Table 2(a)). On average, Floret reduces energy consumption 

 
Fig. 6 Comparison of NoI latency for 2.5D system with a) 36 chiplets, b) 64 chiplets, c) 81 chiplets, and d) 100 chiplet system 



19 

by 47%, 20% and 34% for Kite, SIAM and SWAP on 36-chiplet system. Figures 7(b)-(d) show the reductions in energy 
consumption improvements from Floret compared to the other architectures for 64-, 81-, and 100-chiplet systems. The 
average energy reductions for these system sizes for Floret are: 51%, 23%, and 35% with respect to Kite, SIAM and SWAP 
respectively for the 64 chiplet system; 54%, 25%, and 44% with respect to Kite, SIAM and SWAP respectively for the 81 
chiplet system; 59%, 29%, and 52% with respect to Kite, SIAM and SWAP respectively for the 100 chiplet system. Both 
the energy and latency improvements of Floret for biger system sizes demonstrate the scalability of the Floret architecture 
for datacenter-scale DL application workloads. 
We map each CNN layer in Kite, SIAM and SWAP following a greedy mapping algorithm that allocate each incoming 

CNN layer to the next available chiplet. However, as these three architectures have multi-hop paths between chiplets, it is 
not possible to get contiguous available chiplets as the number of CNNs increase. Hence, it becomes imperative to map 
the consecutive neural layers to far-apart chiplets through multi-hop paths. Most importantly, for bigger system sizes the 
multi-hop paths increase even more. On contrary, Floret always ensures communicating CNN layers get mapped to 
contiguous chiplets. Hence, Floret achieves better performance with lower energy consumption compared to other state-
of-the-art NoI architectures.  

5 CONCLUSION  

    The emergence of 2.5D chiplet platforms provides a new avenue for compact scale-out implementations of emerging 
compute- and data-intensive applications. Conventional NoI architectures have a limited computational throughput due to 
the inherent multi-hop nature of the topology. We presented a novel space-filling curve-based NoI architecture, called 

 
Fig. 7 Comparison of NoI energy for 2.5D system with a) 36 chiplets, b) 64 chiplets, c) 81 chiplets, and d) 100 chiplet system 
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Floret, which optimizes task mapping and inter-chiplet data exchange to extract high performance for concurrent CNN 
inference tasks representing data-center scale scenarios. We demonstrated that the data-flow aware Floret architecture 
outperforms the state-of-the-art 2.5D manycore architectures with significantly lower energy consumption and fabrication 
cost. Floret reduces the latency and energy up to 58% and 64%, respectively, compared to state-of-the-art NoI architectures 
while executing a diverse workload of CNN inference tasks. We also demonstrate that Floret reduces the fabrication costs 
by up to 82% compared to existing NoI architectures. Optimized top-level network while complimenting the mapping 
along the space-filling path is the key to Floret’s benefits over its counterparts. 
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