

Florets for Chiplets: Data Flow-aware High-Performance and Energy-efficient
Network-on-Interposer for CNN Inference Tasks

Harsh Sharma*
Washington State University, Pullman, WA, USA, harsh.sharma@wsu.edu

Lukas Pfromm

University of Wisconsin Madison, Madison, WI, USA, lukaspfromm@gmail.com

Rasit Onur Topaloglu
Topallabs, Poughkeepsie, NY, USA, rasit@topallabs.com

Janardhan Rao Doppa

Washington State University, Pullman, WA, USA, doppa@wsu.edu

Umit Y. Ogras
University of Wisconsin Madison, Madison, WI, USA, uogras@wisc.edu

Ananth Kalyanraman
Washington State University, Pullman, WA, USA, ananth@wsu.edu

Partha Pratim Pande
Washington State University, Pullman, WA, USA, pande@wsu.edu

 Recent advances in 2.5D chiplet platforms provide a new avenue for compact scale-out implementations of emerging compute- and
data-intensive applications including machine learning. Network-on-Interposer (NoI) enables integration of multiple chiplets on a 2.5D
system. While these manycore platforms can deliver high computational throughput and energy efficiency by running multiple specialized
tasks concurrently, conventional NoI architectures have a limited computational throughput due to their inherent multi-hop topologies. In
this paper, we propose Floret, a novel NoI architecture based on space-filling curves (SFCs). The Floret architecture leverages suitable

* This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2023. This work was supported, in part by the US National Science Foundation (NSF) under grants CNS-1955353 and
Semiconductor Research Corporation under task ID 3012.001 and task ID 3014.001.
Authors’ addresses: Harsh Sharma, harsh.sharma@wsu.edu, Washington State University, School of Electrical Engineering and Computer Science, Pullman,
WA, 99163, USA; Lukas Pfromm, lukaspfromm@gmail.com, University of Wisconsin-Madison, Department of Electrical and Computer Engineering,
Madison, WI, 53706, USA; Rasit Onur Topaloglu, rasit@topallabs.com, Topallabs, Poughkeepsie, NY, USA; Janardhan Rao Doppa, doppa@wsu.edu,
Washington State University, School of Electrical Engineering and Computer Science, Pullman, WA, 99163, USA; Umit Y. Ogras, uogras@wisc.edu,
University of Wisconsin-Madison, Department of Electrical and Computer Engineering, Madison, WI, 53706, USA; Ananth Kalyanraman, ananth@wsu.edu,
Washington State University, School of Electrical Engineering and Computer Science, Pullman, WA, 99163, USA; Partha Pratim Pande, pande@wsu.edu,
Washington State University, School of Electrical Engineering and Computer Science, Pullman, WA, 99163, USA.

2

task mapping, exploits the data flow pattern, and optimizes the inter-chiplet data exchange to extract high performance for multiple types
of convolutional neural network (CNN) inference tasks running concurrently. We demonstrate that the Floret architecture reduces the
latency and energy up to 58% and 64%, respectively, compared to state-of-the-art NoI architectures while executing datacenter-scale
workloads involving multiple CNN tasks simultaneously. Floret achieves high performance and significant energy savings with much
lower fabrication cost by exploiting the data-flow awareness of the CNN inference tasks.

CCS CONCEPTS • 2.5D • Space-filling curve • Processing-in-memory • network-of-interposers • convolutional neural
networks • chiplet-based architecture

ACM Reference Format:
First Author’s Name, Initials, and Last Name, Second Author’s Name, Initials, and Last Name, and Third Author’s Name, Initials, and
Last Name. 2018. The Title of the Paper: ACM Conference Proceedings Manuscript Submission Template: This is the subtitle of the
paper, this document both explains and embodies the submission format for authors using Word. In Woodstock ’18: ACM Symposium
on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY. ACM, New York, NY, USA, 10 pages. NOTE: This block will be
automatically generated when manuscripts are processed after acceptance.

1 INTRODUCTION

Chiplet-based architectures that integrate multiple small dies on an interposer are drawing the attention of leading
silicon manufacturers due to their higher energy efficiency and lower fabrication cost [1]. Chiplet-based systems (also
known as 2.5D systems) connect multiple small dies (chiplets) through a network-on-interposer (NoI). Designing chiplet-
based systems targeted for machine learning (ML) workloads is a relatively unexplored and promising direction since ML
is becoming ubiquitous in many real-world applications.
ITRS 2.0 and IRDS roadmaps highlight the unprecedented need for memory and processing over the next decade [2]

[3] [4]. This need dictates the design of large-scale chips with high memory and compute capability, offering a high degree
of parallelism. Such large-scale chips include multiple processing cores, scaling from a few tens to even hundreds. This
large-scale integration significantly increases the area of monolithic chips [2]. One of the major challenges in the silicon
industry is the exploding fabrication cost as the monolithic chips approach the reticle limit. The chiplet-based design
concept offers a promising solution for reducing the manufacturing cost of large monolithic chips [1].
Recent works have proposed several NoI architectures for efficient communication between multiple chiplets on a 2.5D

system [5] [6] [7] [8]. Existing NoI architectures assume a single and typically fixed application workload executed one at
a time, so that the NoI can be optimized for a specific application class mapped onto the chiplet-based system. Offline
application-specific NoI optimization is challenging in some real-world settings for two main reasons. First, multiple
application workloads with varying inputs may need to be executed simultaneously in a real-world scenario (e.g.,
inferencing for different images using the same deep model). Second, various types of workloads may appear at any given
time (e.g., inferencing tasks with different deep models). Specifically, the mapping of the neural layers onto the chiplets
needs special attention for multiple concurrent convolutional neural network (CNN) based inference tasks. Since each
neural layer of a CNN typically sends data to the subsequent layer (i.e., the data flow graph is mostly linear), consecutive
neural layers need to be mapped to neighboring chiplets to reduce latency. Existing NoI architectures are primarily based
on standard multi-hop regular topologies such as mesh, torus, etc. These NoI architectures do not guarantee contiguously
placed chiplets to map successive neural layers. Hence, we aim to design an NoI architecture where the chiplets are
connected in a contiguous path (through NoI) so that the communicating neural layers are highly probable to run on
neighboring chiplets without introducing a significant volume of long-range and multi-hop data exchange. Multiple CNN

3

inference workloads (e.g., object detection, scene understanding in self-driving cars, augmented/virtual reality) frequently
appear on the cloud infrastructure where multiple users schedule requests concurrently [9] [10]. Below, we describe
occurrences of multiple CNNs in server-scale applications, encompassing various real-world scenarios:

• Real-time video analytics: Real-time video analytics is a challenging task that requires high performance and
low latency. Multiple CNNs can be used to improve the performance and accuracy of real-time video analytics.
For example, one CNN can be used to detect objects in a video stream, while another CNN can be used to classify
those objects. This can be used for applications such as security surveillance, autonomous driving, and video
content analysis [53].

• Cloud computing: Cloud computing is used to process large amount of data, which is generally expensive.
Multiple CNNs can be used to improve the performance and cost-effectiveness of cloud computing. For example,
multiple CNNs can be used to process different parts of a large dataset in parallel to create ensemble models.
This can help to reduce the time to process the dataset, and it can also help to reduce the cost of cloud computing.
Moreover, ensembles of multiple CNNs are effectively utilized in Facebook servers to provide image tagging,
feed suggestions among other applications [55].

• Edge computing: Multiple CNNs can be used to process data locally at the edge. This can help to improve
performance and reduce latency and can protect sensitive data. Specifically, this will improve performance and
reduce latency for applications that require real-time processing of data as in the case of augmented/virtual reality
(AR/VR) applications [54].

Prior studies sought to improve cloud capacity, application scheduling, and resource utilization while executing ML
workloads concurrently on the cloud [11] [12]. In this work, our aim is to capture cloud-scale computing via chiplet-based
systems. We propose a novel NoI topology inspired by space-filling curves (SFCs) referred to as Floret. An example is
shown in Figure 1 The proposed solution enables incoming neural layers associated with CNN inference tasks to be mapped
onto contig uous chiplets to avoid long-range communication. Specifically, we leverage the space-filling property to
generate a path where a single curve, without any gaps, traverses the area of the interposer with no closed loops. We first

Fig. 1: Illustration of the SFC-based architecture called Floret for a 100-chiplet-based system with five SFCs on the interposer network.
The top-level network allows continuity among the multiple SFCs on the NoI.

4

divide the chiplet-based system into multiple SFCs. Each SFC stitches a set of chiplets along the 2D planar path, as
illustrated in Figure 1. Each SFC consists of a head and a tail connecting a group of chiplets in a contiguous path. We also
need to minimize the inter-SFC path length among the non-overlapping SFCs to reduce latency in long-range data
exchanges.
The advantages of the proposed mapping along the space-filling path of the NoI are two-fold. First, neural layers of any

CNN task get mapped to contiguous chiplets and executed in the order they appear until the system is fully utilized. Second,
the space-filling NoI architecture, which minimizes the inter-SFC data exchange, reduces the latency when we need to find
contiguous chiplet resources belonging to different SFCs. Instead of one monolithic SFC, we use multiple SFCs to
introduce inherent redundancy in the system, which is beneficial when executing multiple CNN inference tasks
concurrently; hence the name “Floret” – to imply a cluster of multiple connected SFC “petals”. Experimental evaluation
with multiple CNN inference tasks running concurrently for various system sizes demonstrates that SFC-enabled NoI
outperforms existing NoI architectures with significant energy savings.
Contributions: The key contribution of this paper is the algorithmic development to enable Floret NoI optimized for CNN
inference tasks and its comprehensive experimental evaluation. Our major contributions include:
1) We propose a novel NoI architecture called Floret with multiple non-overlapping SFCs specifically targeting

running multiple concurrent CNN inference tasks.
2) We propose a new type of SFC called the Floret curve that is targeted for chiplet-based systems, and using this

Floret curve we propose a novel NoI architecture along with a mapping algorithm to efficiently map successive neural
layers to contiguous chiplets for achieving high performance and energy efficiency.
3) Experimental results show that the Floret architecture can achieve up to 58% and 64% reduction in latency and

energy respectively compared to state-of-the-art counterparts.
The rest of the paper is organized as follows. Section II describes the relevant prior work on 2.5D systems and NoI

architectures. Section III presents the design and optimization principles for executing the CNN inference tasks on the
Floret architecture . Section IV presents the detailed experimental results and analysis. Finally, Section V concludes the
paper by highlighting the salient contributions and pointing to the future directions.

2 RELATED WORK

The manufacturing cost of monolithic chips is increasing rapidly with the growing die area requirements of emerging
applications. First, fewer large chips can be integrated for a given wafer size than many smaller ones, decreasing the area
utilization [2]. Second, when defective, a larger die wastes more silicon area than its relatively smaller counterparts. Most
chip vendors and foundries are moving towards non-monolithic alternatives such as 2.5D interposer-based systems to
partition the on-chip resources into smaller discrete cores called chiplets [1] [13] [14]. The emergence of 2.5D chiplet
platforms provides a new avenue for compact scale-out implementations of various deep learning (DL) applications.
Integrating multiple small chiplets on a large interposer enables not only significant cost reductions and higher
manufacturing yield compared to 2D ICs [1], but also better thermal efficiency than 3D ICs [13] and ease of heterogeneous
integration [2]. Designing both general-purpose and application-specific 2.5D-based systems have been explored so far.
The design and fabrication of interposers also add significant non-recurring engineering costs and development cycles
which might be prohibitive for application-specific designs having low volume. To address this challenge, a General
Interposer Architecture (GIA) is proposed, to amortize costs and accelerate integration flows of interposers across different
chiplet-based systems effectively [15].

5

The recently proposed SIAM framework enables fast design space exploration of 2.5D-based systems [6]. SIAM
employs ReRAM-based chiplets that can be used both as memory and to perform in-situ multiply-and-accumulate (MAC)
operations [6] [16]. Since DL workloads rely heavily on such MAC operations, ReRAM-based architectures are excellent
candidates for DL training and inferencing [17] [18] [19]. ReRAM-based heterogeneous architectures were proposed to
improve the accuracy of trained models while also addressing communication bottlenecks [20] [21]. Thus, ReRAM-based
2.5D architecture can outperform CPUs/GPUs for almost all types of DL workloads as they support near-data computation
[22]. Recent prior work has devised ReRAM-based DL accelerators that overcome the limited write endurance and high
write energy costs of ReRAMs [23] [24]. Yet, the evaluation framework proposed in SIAM assumes a mesh-based NoI,
which is not scalable for multiple concurrent CNN tasks and large system sizes. SIMBA introduces tiling optimizations on
fixed NoI topologies for executing DL model such as ResNet50 [7]. NN-Baton focuses on choosing a specific design
allocation across several benchmarks on a fixed topology [8]. However, NN-Baton does not consider the scale of the data
centers where the number of DL parameters reach order of billions. To this end, silicon-photonic interposers have been
proposed to improve the latency and bandwidth [25]. A reconfigurable Silicon-Photonic 2.5D NoI architecture is proposed
to dynamically deploy inter-chiplet photonic gateways to improve the overall network congestion. An application specific
architecture using photonics called BiGNoC is proposed, which highlights how network-on-chip can be designed for
manycore chiplet-based system to meet the unique communication requirements of big data analytics applications but at
the intra-chiplet level [26]. Moreover, the NoI paradigm becomes crucial due to the high communication demand arising
from integrating an increased number of chiplets on the same substrate [1] [6].
Space-filling curves (SFCs) represent a specialized class of algorithmic mapping techniques that are widely used to

generate locality-preserving data structures in numerous scientific applications that do spatial and range queries [27] [28]
[29]. More specifically, an SFC maps a multi-dimensional point cloud onto a single dimension; therefore, each SFC
represents a linear ordering of the input set of points. Numerous types of SFCs have been defined over the decades,
including simple schemes such as row/column major curves to more sophisticated curves such as the Hilbert curve [28],
Morton or Z-curve [30], or onion curve [31]. For a review of classical SFCs, please refer to [32] [33]. SFCs come with
various provable properties. One such property concerning locality is called clustering [34] [35], which is a measure of the
number of hops taken along the linear ordering of an SFC, to access neighboring data in the multi-dimensional point cloud.
Some curves, such as the Hilbert and Z-curves in particular, have demonstrated a better clustering property over others
both in theory and practice [32] [34] [36] [37]. SFCs have been predominantly used in databases and in parallel scientific
computing [37]; for exploring data layouts in memory for multi-core platforms [38]; and in bioinformatics for creating
locality-preserving layouts for DNA nanostructures [39], sequence alignment [40] and phylogenetic inference [41].
Despite their popularity in various engineering domains, SFCs have not yet been explored for designing NoI-based

manycore chiplet architectures or for accelerating machine learning workloads. Most previously proposed NoI
architectures are based on conventional multi-hop networks, like mesh and torus. Recently, the Kite family of NoI
topologies has been proposed for a 2.5D-based system considering synthetic traffic/workloads [5]. However, Kite is also
primarily based on a Torus architecture, and all such regular NoI architectures are not workload-aware. Emerging DL
applications use more than a billion parameters [6] [17]. We increasingly rely on large-scale manycore computing
platforms to execute these massive workloads. It has been shown that a significant portion (about 30-75%) of the overall
execution time of DL workloads arises from the communication among the processing elements, which is hidden by
overlapped computation [42]. This characteristic necessitate communication aware paradigms for designing such NoI
architectures for DL workloads. Recently, application-specific NoI design for 2.5D-based systems has been explored using
ML-based techniques [17]. However, this work is oblivious to the occurrence of real-world data-center scale ML

6

application workloads for executing concurrent CNN inference tasks with unseen neural networks. The goal of this paper
is to precisely fill this important gap in the existing state-of-the-art NoI architectures by proposing novel design principles
for chiplet-based systems, which are well-suited for executing multiple CNN inference tasks concurrently.

3 DESIGN AND OPTIMIZATION OF THE SFC-ENABLED NETWORK-ON-INTERPOSER

This section presents the overview and design methodology of the Floret architecture. We start by presenting the salient
features of the chiplet configuration considered here. We then describe the key principle to design the overall Floret
architecture using multiple space-filling curves. It should be noted that the proposed methodology is generic, and it can be
used to design other large-scale 2.5D chiplet systems. This work focuses on the NoI level optimization aspects without
modifying the design of individual chiplets.

3.1 ReRAM-based 2.5D chiplet architecture

Processing-in-memory (PIM) is a promising technique to accelerate deep learning (DL) workloads [19]. PIM-enabled
architectures improve energy efficiency by reducing communication between computing cores and the main memory [43].
Crossbar arrays (CBAs) are the most popular representation for PIM. They are highly efficient for matrix-vector
multiplication (MVM), which forms the core of many DL and scientific computing algorithms. Prior work has investigated
binary CBAs based on various memory technologies, including phase change memory (PCM), Resistive Random Access
Memory (ReRAM), Spin-Transfer Torque Magnetic RAM (STT-MRAM), and Ferroelectric Field-Effect Transistor
Memory (FeFETs), and has experimentally demonstrated their functionality at various scales [44] [45] [46]. In this work,
we employ ReRAM-based chiplets as the enabling technology to accelerate CNN inference tasks, noting that the proposed
architecture and associated design optimization methodologies are also applicable to other CBA-based PIM chiplets. The
chiplets are connected through NoI routers and links, which enable high-bandwidth communication. Each chiplet is
composed of 16 tiles and peripheral circuits such as accumulator, buffer, activation units (ReLU in our work), and pooling
unit. Within each chiplet, a mesh-based network-on-chip (NoC) connects the tiles, where each tile comprises multiple
processing elements (PEs) that consists of 128x128 ReRAM crossbar arrays. It should be noted that within chiplets the
number of tiles is limited (e.g., 16 tiles in the Floret architecture). Hence, a simple mesh-based NoC is sufficient as there
is no scope for any significant multi-hop or long-range data exchange. In other words, the intra-chiplet latency and energy
costs are negligible compared to inter-chiplet data exchange costs. Therefore, we focus on optimizing the NoC/NoI
interconnectivity at the entire system level. Note that the Floret architecture is independent of the NoC architecture used
within a chiplet, and so our proposed design methodology is generic enough to work with any interconnect used within
chiplets.
The target chiplet architecture has 40 PEs inside each tile, connected through an H-Tree-based point-to-point network.

In our approach, we assume that all CNN weights are transferred to the ReRAM chiplets from the DRAM before
performing CNN inference, which is consistent with previous investigations [18] [23] [47]. Following prior work, we also
assume that the global buffer is available for processing weights due to storing activations from the previous layer for a
residual addition operation that is prevalent in dense (DenseNet) and residual (ResNet) class of neural networks [6]. The
number of PEs necessary to map a neural layer is dependent on several factors, including kernel size, number of input and
output features, and bit precision. These factors determine the number of tiles required for each neural layer, as well as the
total number of chiplets needed to map the whole neural network. It is possible to fit multiple layers on a single chiplet or
a single layer to spread across multiple chiplets. In a server-scale scenario, the number of CNN parameters can reach
billions, leading to heavily utilized chiplets.

7

3.2 Space-filling curve enabled NoI architecture
The problem: Given the need to execute various deep learning tasks simultaneously [14] [42], modern-day servers and

high-end processors need to be designed to target a workload consisting of a mixture of tasks. We consider CNNs with
different neural layer architectures – including linear (e.g., VGG), residual (e.g., ResNet), and dense (e.g., DenseNet)
connections – for performing inference tasks while designing a chiplet-based system. However, mapping different CNNs
dynamically to a chiplet-based system is challenging. The common property of CNN inference tasks is that activations
flow from the ith layer to the (i+1)th layer. Hence, there is a need to maintain contiguity on the physical NoI layer, to the
extent possible, between any two consecutive neural layers to reduce communication overhead. Since existing NoI
architectures are primarily based on standard multi-hop regular topologies such as a mesh or a torus, it may not always be
possible to find contiguously placed chiplets available to map successive neural layers. If two consecutive layers of a CNN
are mapped far apart, it will lead to long-range multi-hop communication through the NoI. This, in turn, will degrade the
performance and energy efficiency of the NoI. Hence, our objective is to design an efficient NoI architecture which is
capable of co-locating adjacent neural layers.
In theory, this design problem can be viewed as one of embedding a linear ordering (i.e., an SFC) of chiplets over the

given topology. However, there may be multiple CNN tasks that need to be dynamically mapped to the system, and each
such task may consist of different numbers of neural layers. Furthermore, the number of chiplets needed to execute each
layer may also vary. Therefore, the problem becomes one of generating multiple SFCs, each with its own sequence of
chiplets to map to the neural layers of any of the tasks. Moreover, as the different CNN tasks complete, the chiplets used
for that task need to be reassigned to newer tasks. If a consecutive sequence of chiplets is not sufficient to accommodate
all the layers of a CNN task, the spill over layers will need to utilize chiplets in other parts of the NoI (i.e., from other
SFCs) so as to ensure successful completion. Therefore, the placement of the SFCs and the resulting hop separation
between them become important measures to reducing CNN task execution times. Taken together, these factors – i.e., the
need to accommodate multiple SFCs, the dynamic nature of mapping those SFCs to multiple CNN tasks, and the need to
potentially hop from one SFC to another (for the same task) – all make this a challenging problem, one where classical
SFC designs may not apply.
Approach: In this work, we present a custom-designed SFC called the Floret curve that is equipped to address all the

aforementioned challenges. In particular, our approach connects the chiplets (in the order the neural layers are mapped)
along the contiguous path formed by the Floret architecture in a two-dimensional (2D) space, as illustrated in Figure 1.
The intuition behind the Floret architecture is to subdivide a multi-dimensional space into smaller contiguous segments (or
individual SFCs), and then to stitch those pieces together; hence the term “Floret” as the resulting topology can be viewed
as a cluster of individual SFCs (or petals). The resulting curve is a continuous, non-intersecting (planar) path that covers
all the chiplets in the system – hence the term "space-filling".
Definition of a Floret curve: More formally, let 𝐶 denote the set of n chiplets distributed across a given 2D grid

coordinate system. The chiplets are numbered arbitrarily from [0, 𝑛 − 1]. For example, the chiplets in Figure 1 are
numbered in row major fashion along the grid. Given n and a constant 𝜆, a Floret curve (denoted by Π) is a collection of
𝜆 individual SFCs {Π!, Π", …Π#$"}. Let 𝜓 = ⌈!

"
⌉. Then, each of the 𝜆 SFCs represents a sequence of 𝜓 chiplets that are

contiguously placed along the grid. In other words, each SFC covers a distinct subset of size 𝜓 chiplets such that no two
SFCs intersect. Each SFC (Π%) has a dedicated head (ℎ&) and a corresponding tail (𝑡&) on the other end, connecting 𝜓 − 2
chiplets in between. As an example, Figure 1 shows a Floret curve with five SFCs. One can view this Floret curve also as
a hierarchical design with two levels, where the top level corresponds to the 𝜆 head-tail pairs and the next level consists of
all the individual SFCs.

8

3.2.1 Algorithm for designing Floret curves

Next, we describe our algorithm to design a Floret curve, given 𝐶, the set of n chiplets on a 2D grid1, and 𝜆, the number
of different SFCs. At a high level, the algorithm has two major steps. First, a subset of 𝜆 chiplet pairs of the form ⟨head
ℎ&,tail 𝑡&⟩ are selected, one pair for each SFC Π&. Next, using the head and the tail chiplet pairs as end points of a Π&, we
fill the remaining 𝜆 − 2 chiplet locations for Π&. Algorithm 1 shows the pseudocode for our design approach. In what
follows, we provide details for each step.
For the first step of choosing 𝜆 head-tail chiplet pairs, note that the search space is 4 𝑛2𝜆5 in theory. However, during

mapping phase, since the same CNN task may possibly use chiplets from two or more SFCs, it is important to reduce the
average number of hops separating the tail of an SFC to a head of another SFC. Therefore our search objective becomes
one of minimizing this average path length 𝑑	between the tail of one SFC to the heads of the other non-overlapping SFCs:

																																																				𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:		𝑑 = 		
1
𝑝	 @ A𝑡& − ℎ'A()*+*	&≠',			./01#02&,'∈[!,5$"]

																																																														(1)

Here the distance between any tail-to-head pair is calculated as the Manhattan distance over the 2D grid. Minimizing
this average distance measure d is imperative as communication delays between tail of one SFC and the head of the next
SFC can have a significant impact on the overall system performance. We follow an iterative approach to identify 𝜆	head-
tail pairs. Intuitively, concentrating all the 𝜆	head-tail pairs at the center of the NoI architecture is expected to reduce the
number of hop counts between an arbitrary tail and an arbitrary head. Alternatively, if one were to spread out the head-tail
pairs across the NoI, inter-SFC hop count can only increase. Using this simple yet key insight, our algorithm selects head-
tail pairs from the center of the NoI. In particular, we identify a subset of 2𝜆 chiplets along a pair of central columns (as
shown in Figure 1. If the length of a column is not adequate to accommodate all the 𝜆 chiplet pairs, then we iteratively
identify further evenly spaced pairs of columns from either side of the center until all pairs are identified. This algorithm
effectively performs a block decomposition of the columns starting from the center and radiating outwards.
Once the head-tail pairs are selected, the next step is to fill (or complete) each of the 𝜆 SFCs from their respective heads

to their tails (as shown in Algorithm 1: lines 2 through 7). The goal is to create each of the 𝜆	SFCs, Π& with head ℎ& and
tail 𝑡&, of length 𝜓. The important design consideration is to maintain contiguity for the chiplets assigned to the same SFC.
This problem can be effectively solved as an instance of the Euclidean traveling salesman problem (TSP) problem [48].

1 Even though the algorithm presented is for a 2D grid system of chiplets, we argue later on how the algorithmic methodology is
generic enough to be extended to other symmetric topologies [5].

hghghg

9

More specifically, let 𝐺(𝑉, 𝐸) denote the initial (planar) graph corresponding to the 2D grid system – i.e., V corresponds
to the set of all n chiplets, and E consists all the 1-hop neighboring chiplet pairs on the grid. Our algorithm iteratively
enumerates one SFC at a time (for loop in line 2 of Algorithm 1), such that during the 𝑖7) iteration we enumerate SFC Π%.
Since an SFC is a linear ordering of 𝜓 chiplets contiguously located along the grid, the problem of finding an SFC can be
reduced to one of finding the Hamiltonian subpath of length 𝜓 on the planar G. Furthermore, to facilitate tail to head inter-
SFC transfers during mapping, we treat it as a planar Hamiltonian cycle problem. Since the cost is dictated by the number
of hops (along the grid), the goal becomes one of computing a minimum cost planar Hamiltonian cycle, which is an instance
of the Euclidean TSP problem [49]. Therefore, as shown in lines 3-5 of Algorithm 1, we call a TSP solver on G to obtain
each SFC. It should be noted that the graph G needs to be updated after the enumeration of each SFC. Specifically, at the
end of every step i, after we generate Π&, we remove all edges in E that are incident on the vertices selected as part of Π&.
This step ensures none of the chiplets from previous SFCs are eligible for inclusion in any of the subsequent SFCs – thereby
ensuring that all SFCs are mutually disjoint in their chiplet space.
For the TSP computation step in line 5 of Algorithm 1, we implemented a recursive backtracking-based TSP solver that

works on the tour length 𝜓. This implementation explores all possible tours through a recursive search process.
Backtracking is a powerful technique for solving the Euclidean TSP (over planar graph 𝐺), which can be computationally
expensive for large problem instances [49]. However, this is a preprocessing step (and is hence a one-time cost) and the
sizes of G(V,E) in practice is expected to be small for the target platforms. For instance, computing all the SFCs for a
system with n=36 and 𝜆 = 6	SFCs, took only 10 milliseconds.
Additional remarks:
a) The TSP formulation makes our algorithmic approach more generic to be extended to design Floret curves for

additional topologies and not just for the 2D grid (which we selected for ease of exposition). In particular, any NoI
topology can be represented in the form of a graph, and our TSP solver implementation does not make any
assumptions on planarity of the graph. However, as the planarity assumption is removed, then the degree
distribution of the vertices in the graph can no longer be bounded to a constant. This could lead to increased
execution times for the TSP solver.

b) Even though the proposed algorithm for Floret curve design was presented for a 2D grid system of chiplets, the
design methodology is generic enough to be extended in principle to other symmetric topologies – e.g., Kite, Butter
Donut, Double Butterfly [5]. This is because our algorithm to assign the head-tail pairs simply relies on starting at
the center of the NoI and radiating outwards iteratively. However, given that CNNs primarily rely on
communicating between neighboring layers, a simple 2D grid topology is sufficient to serve as the breadboard for
generating our Floret curve architecture.

c) A key parameter to the Floret architecture design is the number of SFCs (𝜆). Intuitively, having too many
SFCs	unnecessarily increases the top-level network size. On the other hand, too few SFCs will reduce the number
of router ports, which could degrade redundancy across SFCs and could hamper the overall achievable
performance. Minimizing the average hop count between tails and heads of non-overlapping SFCs provides us
with the optimum number of SFCs and the router port configurations for each system size. Section 4.2 evaluates
this tradeoff in selecting an optimum number of SFCs.

3.2.2 Algorithm for mapping CNN workloads to the Floret architecture

We describe the algorithm to dynamically map a workload of CNN tasks to the Floret architecture (as designed in Section
3.2.1). The input is a workload consisting of a set of CNN tasks (𝑊 = {𝑤&}), each consisting of multiple neural layers. The

10

output is a mapping Φ:𝑊 → 28 , which maps each 𝑤& to a subset of 𝑐& chiplets along the Floret curve; here, 𝑐& denotes the
number of chiplets required to execute all the neural layers of 𝑤&. The value of 𝑐& can be precomputed by adding the number
of chiplets required for computing each layer of a CNN tasks. Note that multiple layers of an individual CNN can fit within
a single chiplet (i.e., 𝑐& ≤ 1), or alternatively, a single layer could require multiple chiplets (i.e., 𝑐& > 1). However, with
CNN inference tasks, communication typically occurs between two consecutive layers. For this reason, the Floret
architecture is well positioned to keep the communicating pairs of chiplets near to one another.
 Algorithm 2 details the major steps of the mapping procedure to map 𝑊 to the Floret architecture. We start by
considering the workload 𝑊 as a queue of multiple CNN tasks. For each 𝑤 ∈ 𝑊,			we first compute the number of chiplets
(c) required. Initially, all chipets across all 𝜆 SFCs of Π are considered available. We track a next pointer to point to the
next chiplet along Π that is due for assignment. Initially, next is initialized as the head chiplet of the first SFC (Π!).
 The major function that computes Φ(𝑤) for any given task w is 𝐵𝑙𝑜𝑐𝑘𝐴𝑠𝑠𝑖𝑔𝑛(w,Π, 𝑛𝑒𝑥𝑡, 𝑐, 𝑛′), shown in line 5 of
Algorithm 2. This function maps the task 𝑤 to a sequence of 𝑐 chiplets, starting from the 𝑛𝑒𝑥𝑡 position along Π. Note that
the actual chiplet coordinates for this next position is given by Π$"(𝑛𝑒𝑥𝑡). The 𝐵𝑙𝑜𝑐𝑘𝐴𝑠𝑠𝑖𝑔𝑛	function returns when all
the c chiplets were successfully assigned in the mapping process. During the course of mapping, there are two subcases to
consider. (a) When all the chiplets along the current SFC have been assigned, we move on to another SFC. This SFC is
chosen based on the proximity of its head to the tail of the current SFC. Subsequently, the assignment of the remaining
layers resumes on the next SFC. This process is iterated until all layers are successfully assigned. (b) Note that it is possible
that along the assignment process, the next chiplet to be assigned is occupied with another task. In this case, the procedure
waits until it becomes available. Once all the chiplets in the system are utilized, then we will have to wait till a set of
contiguous chiplets required for the incoming neural layer becomes free. This would happen when a prior loaded CNN
finishes execution on the Floret, which would in turn release a contiguous region for the new CNN. Once contiguous
chiplets become available, then the inter-chiplet data flow still follows the one-hop path.
The above mapping approach has multiple advantages:
• First, chiplet resources become available for new layer allocation in the order they were mapped. The activations

would be transferred sequentially among contiguously placed chiplets as the computation moves from the first layer
to the output layer of the CNN.

• Second, we utilize all the available chiplets as per the computational requirements of the neural layers.
• Third, the mapping algorithm is deadlock-free, because the mapping process treats the list of tasks (𝑊) as a queue,

assigning one CNN task at a time. Deadlocks could happen only if either there is a cyclic dependency between two
tasks (which is not possible here as CNN tasks are mutually independent), or if there are two concurrent mapping
threads that are stuck and waiting for one another to release their resources (also not possible here due to the sequential
queue-based mapping of the workloads).

ghhdbfhjb

11

• Finally, our mapping approach exploits the inherent redundancy built in the NoI architecture via multiple available
SFCs. In particular, if during the course of assignment, we reach the tail of one SFC, we have more than one option
for selecting the next SFC. For instance, in the Floret architecture shown in Figure 1, tail 𝑇"is connected to two heads
(𝐻", 𝐻0) within just 1-hop distance. In fact, this connectivity can further be increased to include 𝐻9 as well if we
decide to retain the original 2D grid level links in the top-level network. This implies that if an assignment reaches 𝑇"
and if there are more chiplets needed to complete that inference task, then there are between 2 to 3 options for
switching to another SFC, all at a 1-hop distance. Our mapping algorithm can select the next SFC in a reconfigurable
manner. This property is also vital to extend our architecture in the future toward providing fault-tolerant executions.
A formal analysis of these properties of the Floret architecture could provide further insights; however, it is out of
scope for this paper. Instead, we focus on the key ideas, concepts, and a thorough experimental evaluation.

4 EXPERIMENTAL RESULTS

In this section, we present a detailed performance analysis and experimental evaluation of the proposed NoI architecture
for various CNN inferencing tasks. We also present a detailed comparative performance evaluation with respect to existing
state-of-the-art NoI designs for chiplet-based platforms.

4.1 Experimental Setup

4.1.1 System specification and evaluation setup:

 To demonstrate the scalability of the Floret architecture, we consider four different system sizes (n) with 36, 64, 81, and
100 chiplets. We use a modified NeuroSim to partition and map CNN tasks onto a 2.5D-based system [50]. The inter-
chiplet traffic is generated by the activations between the neural layers. Each chiplet in our design has 64KB of buffer
space to compute the activations associated with the skip connections, which flow through the same NoI links. This buffer
size was sufficient for computing residual activations, [7][14]. When there are non-contiguous neural layers, the inter-
chiplet data exchange involves multi-hop paths. Each chiplet covers about 2.64𝑚𝑚0 area, including the peripherals. All
the NoI topologies are simulated using the BookSim simulator [51]. The inputs to the BookSim simulator are the
connectivity between NoI routers and the inter-chiplet traffic for the concurrent CNN inference tasks. It outputs the area,
latency, and energy consu mption of the NoI. We use the Nvidia ground-referenced signaling (GRS) parameters for
chiplets on a 32nm technology to evaluate the NoI area and power consumption [7]. Table 1 shows the other system-level

Table 1: NoI hardware parameters considered for evaluation

NoI Hardware Parameters Value
NoI frequency 1.15 GHz
NoI bus width 32
One-hop NoI link length 1.449 mm
Quantization bit 8
Technology
Link Frequency

32nm
0.6 ns/mm

fhjb

12

parameters considered in the performance evaluation [52] [16]. We note that the experimental analysis and performance
evaluation considered in this paper is valid for other technology parameters.

4.1.2 Datasets and DL workloads

 We evaluate the Floret architecture on multiple CNN inferencing tasks running concurrently. Table 2 shows different
neural networks executed on the corresponding datasets, and their number of parameters. As the system size increases, we
use ImageNet-based CNNs with more parameters to illustrate the merits of the proposed architecture. Table 3 shows the
naming convention of the CNN tasks in each workload along with their total number of parameters with (a) CIFAR-100
and (b) ImageNet datasets. Tables 3(a) & (b) show the CNNs executed simultaneously on the 2.5D system. Various
combinations of the neural networks in Table 2 are executed concurrently to capture the workloads (WL) considered in the
experimental setup. We evaluate 36 chiplet system using workloads running for CIFAR-100 dataset. For scalability, we
evaluate 64, 81 and 100 chiplet system on ImageNet based workloads as the number of parameters approach in the order
of billions. As an example, WL1 consists of sixteen instances of 𝑁𝑁0 (ResNet34), along with one instance of 𝑁𝑁:
(VGG19), and so on. We cover the whole spectrum by randomly choosing each of the CNNs such that at least 90% of the
2.5D system is always utilized. Note that the general concept behind our NoI design is applicable to any type of CNN
inference tasks.

Table 2: List of neural networks for inferencing along with their corresponding number of CNN parameters with (a) CIFAR-100, (b)
ImageNet Dataset

Table 3: List of CNN tasks in a workload for inferencing along with their total number of parameters with (a) CIFAR-100, (b) ImageNet
based dataset

13

4.1.3 Baseline NoI design

We compare the performance of Floret against three baselines: Kite, SIAM, and a recently proposed application-specific
NoI architecture SWAP [5] [6] [17]. Kite is primarily a Torus-based NoI, and SIAM is essentially a 2-D mesh NoI. The
application-specific SWAP NoI is an irregular architecture where the chiplets and the associated links are placed as per
specific design time considerations for a given set of CNN applications. We set the same system parameters and evaluate
over the same CNN workloads for all four architectures (Kite, SIAM, SWAP, and Floret) for a fair comparison.

4.2 Optimum number of SFCs

In this sub-section, we evaluate the optimum number of SFCs which would occur on the interposer network considering
the average hop count (𝐻;<=) bet ween an y two communicating pair of chiplets for a CNN task. Figure 2 shows the
optimum number of SFCs with varying system size. Here, we consider iso-chiplet area configuration, i.e., each individual
chiplet is of the same size irrespective of the system size. As the number of chiplets, n, increases from 36 to 64 to 100, the
interposer area also increases while the size of each of the individual chiplet remains the same. We observe that the
optimum number of SFCs lie between four to six as the number of chiplets vary. Due to the iso-chiplet but increasing
interposer area assumption the number of SFCs remains within a limited range for varying system size. These SFC

Fig. 2: Illustration of the optimal number of SFC for (a) 36 chiplets, (b)64 chiplets, (c)81 chiplets, and (d) 100 chiplet system

14

configurations minim ize the averag e hop count of the top level network (6, 4, 5, 5 SFCs in case of 36-,64-,81- and 100-
chiplets respectively). Ultimately, the minimization of 𝐻;<= leads to higher performance benefits of Floret over its
counterparts.

4.3 Effect of SFC Lengths

In this sub-section, we evaluate the effect of keeping SFCs of equal length (as is part of our default design) versus
allowing them to vary in their lengths on the interposer network. SFCs with varying lengths could lead to traffic imbalance
and thereby, latency degradation for the system; whereas an even length reduces such imbalances and could deliver better
performance. To test this hypothesis, we experimented with different (unequal) lengths for the SFCs of the Floret
architecture, and compared them with the performance derived from the equal length setting. We consider the Floret
architecture with 36 chiplets as an example here. For the equal-length SFC configuration, each SFC consist of 6 chiplets.
However, for the unequal-length configuration the SFCs contain 8, 7, 7, 5, 4, 5	 chiplets respectively. Figure 3 shows the
comparison between the latency obtained under these two settings, for a 36-chiplet system. It is clear that the Floret with
unequal-length SFC degrades performance compared to the equal-length SFC configuration, corroborating our hypothesis.
This happens since when SFCs are of different lengths then the distance between head-tail pairs in the top-level network
increases. This results in latency degradation. It should be noted that there are other configurations possible for the unequal-
length scenario. In each case, we expect to see similar trends. For brevity, we show the result for only one configuration.

4.4 Variation of number of router ports

Each NoI architecture consists of inter-chiplet routers and links. Since each architecture has different connectivity, this
section compares the distribution of the number of router ports in the Floret architecture against the other state-of-the-art
counterparts. We also compare the number of links involved in each architecture. Figures 4 (a)-(d) show the router-port

Fig. 3 Normalized NoI latency for the 36-chiplet Floret architecture with equal and unequal SFC lengths. This shows that having unequal
SFC lengths is not advantageous compared to having equal length of SFCs.

15

configurations for all four s ystem sizes considered in this work. We observe that four-port routers are the most frequent
ones with Kite. SIAM with mesh NoI mostly consists of routers with three and four ports. In contrast, SWAP primarily
uses two- and three-port routers, where the links are on average longer due to the small-world network approach [17].
However, all the routers in Floret except the heads and tails have only two ports. The peak moves towards the left,
demonstrating that the frequency of routers with fewer ports is increasing in the case of Floret, with the mean router port
frequency being between two and three. Similarly, as the system scales to higher number of chiplets, both Kite and SIAM
have an average port count of around four, as shown in Figure 4(b), (c), & (d). In case of SWAP, the mean router port
frequency lies between two and three with some four port router for larger-system size. Reducing the number of router
ports also decreases the total number of links. Figure 5 compares the number of links in each of the considered architecture
for all four system sizes. From Figure 4 and Figure 5, it is evident that Floret has smaller routers and fewer associated links
compared to all the other architectures. As a result, the total NoI area of Floret is significantly smaller than the other
architectures. It should be noted that only reducing the number of links and router port size on their own does not
necessarily lead to performance and energy efficiency. To achieve these benefits, it is crucial to consider the length of the
links between routers because the communication delay depends on the link lengths. Therefore, the communication delay
should be considered while evaluating the NoI architecture. Kite, for example, has mostly two hop links and the routers
are inherently bigger. SIAM, being principally a 2D Mesh, has single hop link connections to its neighboring chiplets.

Fig. 4: Variation of router-port configuration for Kite, SIAM, SWAP and SFC for a 2.5D system with (a)36 chiplets, (b)64 chiplets, (c)81
chiplets and (d)100 chiplets. Peak of the plot is observed to be moving towards the case of Floret which is based on SFC.

16

However, SIAM ha s bigger routers with higher number of router-ports. SWAP has reduced number of links and smaller
router ports, but not all links are necessarily single hop. SWAP also has some longer links like four or five hops. Floret
mainly consists of routers with fewer ports and most links being one-hop connections. In the top-level network, we allow
the tail of one SFC to communicate with the heads of other SFCs separated by at most three hops. Within each SFC, all
the intra-SFC connections are single hops with small router ports. All these factors together improve NoI performance and
energy efficiency. In the case of skip connections (such as those found in ResNet or DenseNet), we may have to
communicate among non-contiguous chiplets. However, that will still be consecutive single hop paths. Moreover, smaller
routers, fewer links, and smaller link lengths reduce the NoI area and hence the fabrication cost, as highlighted in the
following subsections.

4.5 NoI fabrication cost

One of the main advantages of 2.5D systems over monolithic architectures for large-scale designs is the fabrication cost
as the system requirement scales. Therefore, it is crucial to consider the fabrication cost of 2.5D systems along with
performance and energy benefits in such a datacenter-scale application. The NoI is the biggest contributor to the overall
2.5-D system area [1]. Hence, reducing the NoI area is important as the computational requirements are expected to grow

Fig. 5: Variation of number of links for Kite, SIAM, SWAP and Floret for a 2.5D system with (a)36 chiplets, (b)64 chiplets, (c)81 chiplets
and (d)100 chiplets. As the system size increases, the number of links is consistently lower in case of SFC.

17

at scale [1] [2]. This section discusses the relative fabrication cost improvement by Floret with respect to previously
proposed architectures. It has been already shown in existing literature that the total NoI area (𝐴>?@) is proportional to the
sum of the area of the NoI routers and the links [6]:

																																																																								𝐴>?@ ∝ c@𝐴+?A7*+!

B

&/"

+	@𝐴C&BDE"

F

'/"

	e																																																																							(2)

where 𝐴+?A7*+! is the area of the 𝑖
7) router and 𝐴C&BD" is the area of the 𝑗

7) link, n and q are the number of NoI routers and

links respectively. Each chiplet is connected to an associated NoI router. So, n denotes the total number of chiplets in the
system, too. Therefore, increasing the number of router ports (both input and output) as well as NoI links increase the total
NoI area. In case of the SFC-based architecture, the number of routers and the corresponding links vary based on the
number of SFC l. As the chiplets in the top-level network have higher connectivity, the router sizes are bigger and hence
the NoI area 𝐴GH8 is defined as:

																																																																			AIJK =		c@A%LMNO$IJK

0l

&/"

+	 @ 𝐴&B7+;$GH8

B$0l

'/"

	e																																																											(3)		

where 𝐴&B7*+$GH8 is the area of the top-level network and 𝐴&B7+;$GH8 is the area of the chiplets within each SFC.
Considering total number of chiplets as 𝑛 and l	SFCs on the interposer, the total number of chiplets in top-level network
is 2l	 and the sum of all chiplets within SFCs is 𝑛 − 2l	.	The number of links and the router sizes will vary if a particular
chiplet exists in the top-level network or not which was discussed in Section 4.3 above. Furthermore, the relative fabrication
cost of two NoIs is expressed as [6] [17]:

																																																																																							
𝐶>?@#
𝐶>?@$

= 𝑒$P%(R&'($$R&'(#)																																																																												(4)

where ATUV" and ATUV0 are the NoI area under consideration. Equation (4) assumes that both the system have same number
of chiplets, with parameter 𝐷!	representing the wafer defect density. We consider a 2.5D system designed by AMD with
864	𝑚𝑚0 interposer area and 64 chiplets as the reference in this work [1]. It is evident from that the relative fabrication
cost of Floret with respect to any other architectures, like Kite, principally boils down to the difference between the two
NoI areas. Since the NoI area increases with increasing number of router ports and NoI links, the corresponding fabrication
cost also increases. Considering the router-port configuration and number of links as shown in Figure 4 and Figure 5, Floret
reduces fabrication cost by about 80%, 61%, and 49% with respect to Kite, SIAM, and SWAP for a 36-chiplet system. The
relative fabrication cost for bigger system sizes reduces more for Floret as the reduction in the number of links is more
with the increase in system size (Figure 5). In contrast, the average number of router ports for Floret remains almost
unchanged. Moreover, Floret always has more shorter link s than any other architectures considered here.

18

4.6 NoI Performance and Energy Analysis

This section presents the NoI performance and energy efficiency of Floret compared to the baseline designs (Kite,
SIAM, and SWAP). We benchmark the latency and energy consumption of the Floret architecture compared to Kite, SIAM,
and SWAP for five different CNN workloads (WL1-WL5 on CIFAR-100; WL6-WL10 on ImageNet) for each system
sizes. Each workload has an equivalent probabilistic occurrance of residual(ResNets), dense(DenseNet), and sequential
(VGG) CNNs occurring concurrently. This makes sure we cover the entire spectrum of the CNNs without inducing any
inherent bias in the experimental evaluation.
Figure 6(a) shows the latency of each NoI for the 36-chiplet system considering CNN workloads WL1 to WL5. Both

latency and energy are normalized with respect to the corresponding Floret configuration for all system sizes. We observe
that Floret architecture outperforms all the baselines for all the system sizes. As an example, Floret improves the latency
by ~27%, ~22%, and ~25% compared to Kite, SIAM, and SWAP architecture for WL1, respectively. On average, Floret
performs 23%, 18%, and 19% better than Kite, SIAM and SWAP for 36-chiplet system, respectively. The highest latency
improvement of 31% is achieved for WL4 in the 36-chiplet Floret with respect to Kite. For all other CNN workloads,
Floret consistently outperforms the existing NoI counterparts in performance. Figures 5(b)-(d) show the latency
improvements for Floret compared to the other architectures for 64-, 81- and 100-chiplet systems. The average latency
improvements for these system sizes for Floret are: 34%, 21%, and 24% with respect to Kite, SIAM and SWAP for the 64
chiplet system; 45%, 32%, and 38% with respect to Kite, SIAM and SWAP for the 81 chiplet system; 51%, 38%, and 45%
with respect to Kite, SIAM and SWAP for the 100 chiplet system.
Floret not only reduces the inference latency of DL workloads but also achieves significant energy consumption

savings. For example, Floret reduces the energy consumption by about 22%, 18%, and 20% compared to Kite, SIAM, and
SWAP, with a 36 chiplet system for workload WL2 (shown in Table 2(a)). On average, Floret reduces energy consumption

Fig. 6 Comparison of NoI latency for 2.5D system with a) 36 chiplets, b) 64 chiplets, c) 81 chiplets, and d) 100 chiplet system

19

by 47%, 20% and 34% for Kite, SIAM and SWAP on 36-chiplet system. Figures 7(b)-(d) show the reductions in energy
consumption improvements from Floret compared to the other architectures for 64-, 81-, and 100-chiplet systems. The
average energy reductions for these system sizes for Floret are: 51%, 23%, and 35% with respect to Kite, SIAM and SWAP
respectively for the 64 chiplet system; 54%, 25%, and 44% with respect to Kite, SIAM and SWAP respectively for the 81
chiplet system; 59%, 29%, and 52% with respect to Kite, SIAM and SWAP respectively for the 100 chiplet system. Both
the energy and latency improvements of Floret for biger system sizes demonstrate the scalability of the Floret architecture
for datacenter-scale DL application workloads.
We map each CNN layer in Kite, SIAM and SWAP following a greedy mapping algorithm that allocate each incoming

CNN layer to the next available chiplet. However, as these three architectures have multi-hop paths between chiplets, it is
not possible to get contiguous available chiplets as the number of CNNs increase. Hence, it becomes imperative to map
the consecutive neural layers to far-apart chiplets through multi-hop paths. Most importantly, for bigger system sizes the
multi-hop paths increase even more. On contrary, Floret always ensures communicating CNN layers get mapped to
contiguous chiplets. Hence, Floret achieves better performance with lower energy consumption compared to other state-
of-the-art NoI architectures.

5 CONCLUSION

 The emergence of 2.5D chiplet platforms provides a new avenue for compact scale-out implementations of emerging
compute- and data-intensive applications. Conventional NoI architectures have a limited computational throughput due to
the inherent multi-hop nature of the topology. We presented a novel space-filling curve-based NoI architecture, called

Fig. 7 Comparison of NoI energy for 2.5D system with a) 36 chiplets, b) 64 chiplets, c) 81 chiplets, and d) 100 chiplet system

20

Floret, which optimizes task mapping and inter-chiplet data exchange to extract high performance for concurrent CNN
inference tasks representing data-center scale scenarios. We demonstrated that the data-flow aware Floret architecture
outperforms the state-of-the-art 2.5D manycore architectures with significantly lower energy consumption and fabrication
cost. Floret reduces the latency and energy up to 58% and 64%, respectively, compared to state-of-the-art NoI architectures
while executing a diverse workload of CNN inference tasks. We also demonstrate that Floret reduces the fabrication costs
by up to 82% compared to existing NoI architectures. Optimized top-level network while complimenting the mapping
along the space-filling path is the key to Floret’s benefits over its counterparts.

REFERENCES

[1] A. Kannan, N. Jerger and G. Loh, "Enabling interposer-based disintegration of multi-core processors," In Proceedings of the

48th International Symposium on Microarchitecture (MICRO), 2015.

[2] D. Stow et al., Cost-Effective Design of Scalable High-Performance Systems Using Active and Passive Interposers, In Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2017.

[3] J. A. Cunningham et al., "The use and evaluation of yield models in integrated circuit manufacturing.," IEEE Transaction of
Semiconductor Manufacturing, 1990.

[4] International technology roadmap for semiconductors 2.0, 2015 edition, system integration. Report Ch 1, 2015., Semiconductor
Industry Association, 2015.

[5] S. Bharadwaj, J. Yin, B. Beckmann and T. Krishna, "Kite: A Family of Heterogeneous Interposer Topologies Enabled via Accurate
Interconnect Modeling," In Proceedings of 57th ACM/IEEE Design Automation Conference (DAC), 2020.

[6] G. Krishnan et al., "SIAM: Chiplet-based Scalable In-Memory Acceleration with Mesh for Deep Neural Networks," In ACM
Transaction of Embedded Computer Systems, vol. 20, no. 5, 2021.

[7] Y. Shao et al., "Simba: Scaling Deep-Learning Inference with Multi-Chip-Module-Based Architecture," In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2019.

[8] Z. Tan, H. Cai, R. Dong and K. Ma, "NN-Baton: DNN Workload Orchestration and Chiplet Granularity Exploration for Multichip
Accelerators," In Proceedings of the International Symposium on Computer Architecture (ISCA), 2021.

[9] S. Bergsma, T. Zeyl, A. Senderovich and J. Beck, "Generating Complex, Realistic Cloud Workloads using Recurrent Neural
Networks.," In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, pp. 376-391, 2021.

[10] https://www.cloudera.com/content/dam/www/marketing/resources/ebooks/how-to-take-ai-applications-from-concept-to-
reality-with-cml-on-aws.pdf.landing.html.

[11] A. Verma, M. Korupolu and J. Wilkes, "Evaluating job packing in warehouse-scale computing," In Proceedings of the
International Conference on Cluster Computing (CLUSTER), 2014.

[12] D. C. Juan, L. Li, H. K. Peng, D. Marculescu and C. Faloutsos, "Beyond Poisson: Modeling inter-arrival time of requests in a
datacenter.," In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2014.

21

[13] N. Jerger, A. Kannan, Z. Li and G. Loh., "NoC Architectures for Silicon Interposer Systems: Why Pay for more Wires when you
Can Get them (from your interposer) for Free?," In Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 458-470, 2014.

[14] B. Zimmer et al., "A 0.32–128 TOPS, Scalable Multi-Chip-Module-Based Deep Neural Network Inference Accelerator With
Ground-Referenced Signaling in 16 nm," IEEE Journal of Solid-State Circuits, vol. 55, no. 4, 2020.

[15] F. Li et al., "GIA: A Reusable General Interposer Architecture for Agile Chiplet Integration," In Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design, 2022.

[16] P. Vivet et al., "IntAct: A 96-Core Processor With Six Chiplets 3D-Stacked on an Active Interposer With Distributed
Interconnects and Integrated Power Management," IEEE Journal of Solid-State Circuits, vol. 56, no. 1, 2021.

[17] H. Sharma et al., "SWAP: A Server-Scale Communication-Aware Chiplet-Based Manycore PIM Accelerator," IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 11, pp. 4145-4156, 2022.

[18] S. Mittal, "A survey of ReRAM-based architectures for processing-in-memory and neural networks.," Machine learning and
knowledge extraction, vol. 1, no. 1, 2019.

[19] A. Shafiee et al., "Crossbars., ISAAC: A Convolutional Neural Network Accelerator with in-situ Analog Arithmetic in," In
Proceedings of the International Symposium on Computer Architecture (ISCA), pp. 14-26, 2016.

[20] L. Song, X. Qian, H. Li and Y. Chen, "PipeLayer: A Pipelined ReRAM-Based Accelerator for Deep Learning," In Proceedings of the
International Symposium on High-Performance Computer Architecture (HPCA), 2017.

[21] M. Giordano et al., "CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge AI Accelerator with 2 MByte On-Chip Foundry Resistive RAM for
Efficient Training and Inference," In IEEE Symposium on VLSI Circuits, pp. 1-2, 2021.

[22] B. Li et al., "3D-ReG: A 3D ReRAM-based Heterogeneous Architecture for Training Deep Neural Networks," In the Journal of
Emerging Technology of Computer Systems, vol. 16, no. 20, 2020.

[23] P. Chi et al., "PRIME: A Novel Processing- in-Memory Architecture for Neural Network Computation in ReRAM-Based Main
Memory," In Proceedings of the International Symposium on Computer Architecture (ISCA), 2016.

[24] M. Imani, S. Gupta, Y. Kim and T. Rosing, "Floatpim: In-memory Acceleration of Deep Neural Network Training with High
Precision.," In Proceedings of the 46th International Symposium on Computer Architecture (ISCA), 2019.

[25] T. Ebadollah, S. Pasricha and M. Nikdast, "ReSiPI: A Reconfigurable Silicon-Photonic 2.5 D Chiplet Network with PCMs for
Energy-Efficient Interposer Communication," In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided
Design, 2022.

[26] S. V. R. Chittamuru et al., "BiGNoC: Accelerating big data computing with application-specific photonic network-on-chip
architectures," IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 11, pp. 2402-2415, 2018.

[27] H. Sagan, "Space-filling curves.," Springer Science & Business Media, 2012.

[28] D. Hilbert, "Uber die stegie Abbildung einer Linie auf Flachenstuck,," Mathematische Annalen, vol. 38 , pp. 459-460, 1891.

[29] G. Morton, "A computer oriented geodetic data base and a new technique in file sequencing," in IBM, Ottawa, Canada , 1966.

22

[30] P. Xu and S. Tirthapura, "A lower bound on proximity preservation by space filling curves.," In Proceedings of the 26th
International Parallel and Distributed Processing Symposium, pp. 1295-1305, 2012.

[31] P. Xu, N. Cuong and S. Tirthapura, ""Onion curve: A space filling curve with near-optimal clustering." In 2018)," In Proceedings
of the 34th International Conference on Data Engineering (ICDE), 2018.

[32] D. DeFord and A. Kalyanaraman, "Empirical analysis of space-filling curves for scientific computing applications.," In
Proceedings of the 42nd International Conference on Parallel Processing, 2013.

[33] M. Lindenbaum and C. Gotsman, "The metric properties of discrete space-filling curves," IEEE Transactions on Image
Processing, vol. 5, no. 5, pp. 794-797, 1996.

[34] B. Moon, H. Jagadish, C. Faloutsos and J. Saltz, "Analysis of the clustering properties of Hilbert spacefilling curve," IEEE
Transactions on Knowledge and Data Engineering, vol. 13, no. 1, 2001.

[35] S. Tirthapura, S. Seal and S. Aluru, "A formal analysis of space filling curves for parallel domain decomposition.," In Proceedings
of the International Conference on Parallel Processing (ICPP'06), 2006.

[36] H. Jagadish, "Linear clustering of objects with multiple attributes.," In Proceedings of the ACM SIGMOD international
conference on Management of data, 1990.

[37] S. Aluru and F. E. Sevilgen, "Parallel domain decomposition and load balancing using space-filling curves," In Proceedings of the
Fourth International conference on High-Performance Computing, 1997.

[38] E. W. Bethel, D. Camp, D. Donofrio and M. Howison, "Improving performance of structured-memory, data-intensive
applications on multi-core platforms via a space-filling curve memory layout.," In Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS) workshop, 2015.

[39] M. M. Haque, A. Kalyanaraman, A. Dhingra, N. Abu-Lail and K. Graybeal, "DNAjig: a new approach for building DNA
nanostructures.," In Proceedings of the International Conference on Bioinformatics and Biomedicine, 2009.

[40] S. Sarkar, G. R. Kulkarni, P. P. Pande and A. Kalyanaraman, "Network-on-chip hardware accelerators for biological sequence
alignment," IEEE Transactions on Computers, vol. 59, no. 1, pp. 29-41, 2009.

[41] T. Majumder, P. P. Pande and A. Kalyanaraman, "High-throughput, energy-efficient network-on-chip-based hardware
accelerators," In Proceedings of the Sustainable Computing: Informatics and Systems,, vol. 3, no. 1, pp. 36-46, 2013.

[42] S. Pati et al., "Computation vs. Communication Scaling for Future Transformers on Future Hardware," in arXiv:2302.02825,
2023.

[43] G. Karunaratne et al., "In-memory hyperdimensional computing," Nature Electron, vol. 3, pp. 327-337, 2020.

[44] W. Chen et al., "CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors," Nature Electron, vol.
2, pp. 420-428, 2019.

[45] X. Dong, C. Xu, Y. Xie and N. Jouppi, "NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile
Memory," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7, 2012.

[46] K. Roy, I. Chakraborty, M. Ali, A. Ankit and A. and Agrawal, "In-memory computing in emerging memory technologies for
machine learning: an overview," In Proceedings of the 57th ACM/EDAC/IEEE Design Automation Conference (DAC '20), 2020.

23

[47] Y. Kim, W. Yang and O. Mutlu, "RAMULATOR: A Fast and Extensible DRAM Simulator," IEEE Computer Architecture letters, vol.
15, no. 1, 2015.

[48] K. K. S. Murty, "Some NP-complete problems in quadratic and nonlinear programming.," Mathematical Programming, vol. 39,
pp. 117-129, 1987.

[49] T. K. Hazra and A. Hore, "A comparative study of Travelling Salesman Problem and solution using different algorithm design
techniques," in Proceedings of the 7th Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON), 2016.

[50] X. Peng et al., "DNN+NeuroSim: An End-to-End Benchmarking Framework for Compute-in-Memory Accelerators with Versatile
Device Technologies," In Proceedings of the International Electron Devices Meeting (IEDM), 2019.

[51] N. Jiang et al., "A Detailed and Flexible Cycle-Accurate Network-on-Chip Simulator," In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 86-96, 2013.

[52] Intel, "Intel Foveros Interconnect. [Online]," 2019.

[53] G. Gad et al., "Deep Learning-Based Context-Aware Video Content Analysis on IoT Devices," Electronics, vol. 11, no. 11, 2022.

[54]

S. Kumar, L. Bhagat and J. Jin, "Multi-neural network based tiled 360° video caching with Mobile Edge Computing," Journal of
Network and Computer Applications, 2022.

[55]

U. Gupta et al., "Chasing Carbon: The Elusive Environmental Footprint of Computing". In Proceedings of the International
Symposium on High Performance Computer Architecture (HPCA), pp. 854-867, 2021

