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ABSTRACT

The phase field method provides a simple mass conserving
method for solving two-phase immiscible - incompressible
Navier-Stokes Equations. The relative ease in implementing
this method compared to other interface reconstruction
methods, coupled with its conservativeness and boundedness
makes it an attractive alternative. We implement the method in
a parallel structured multi-block generalized coordinate finite
volume solver using a collocated grid arrangement within the
framework of the fractional-step method. The discretization
uses a second-order central difference method for both the
Navier-Stokes and the phase field equations. A TVD-based
averaging technique is used for calculating density at cell faces
in the pressure correction step to handle high-density ratios. The
simulation framework is verified in standard test cases: Zalesak
Disk, a droplet in shear flow, Solitary Wave Runup, Rayleigh
Taylor Instability, and the Dam Break Problem. A second-order
rate of convergence and excellent phase volume conservation is
observed.

Keywords: Multiphase Flows, Diffused Interface Method,
Phase Field Method, Finite Volume Method, Computational
Fluid Dynamics

1. INTRODUCTION

The development of computational fluid dynamics tools for
multiphase flows has found many applications in recent times,
including, but not limited to large-scale flows such as wave-
energy harvesting [1-4], to flows at much smaller scales such
as droplet impact on surfaces [5-7].

While many methods exist, one-fluid methods such as the
Diffused Interface Method are considered in this paper. The
Diffused Interface Methods involve discretizing the domain
into two different phases using a phase variable ¢, which varies
smoothly but sharply over the interface. The material
properties, such as viscosity and density, are then interpolated
from the phase field. These methods are typically categorized
either as, Level Set Methods, or Phase Field Methods. While
the Level Set Method involves a re-initialization step [8—10]
which often results in a loss of accuracy, the Phase Field
Method does not need a re-initialization step; instead, the phase
convection and restoration are done at the same time. Typically,
either Cahn-Hillard [11] or Allen-Cahn [12] equations are used

to solve for the phase. However, both have their disadvantages.
The Cahn-Hillard equation, while being mass conserving,
involves solving for fourth-order terms, whereas the Allen-
Cahn equation, which only has second-order terms, is not mass
conserving in nature.

Chiu and Lin [13] formulated the conservative phase field
based on the conservative level set method [10] as follows:
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where D () /Dt, is the material derivative, € represents interface
width, and y, the reinitialization parameter is representative of
the strength of the right-hand-side of equation (1), responsible
for reinitializing and maintaining a hyperbolic tangent profile
for the interface:
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where 1 is the signed distance function varying which
represents distance normal to the interface such that Y (¢ =
0.5) = 0. While the knowledge of the hyperbolic tangent
profile is derived from the thermodynamics of the interface,
thermodynamics plays no further role in the mechanics of the
advection of the phase field [13,14]. The right-hand side, which
contains a diffusion and an anti-diffusion term, for the
hyperbolic tangent profile cancel each other out, ensuring that
the phase is convected only by the flow.

Material properties @ (such as density and viscosity) can be
derived from ¢ as

O(x,y,z,t) = 0yp(x,y,2,1t)
3)
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where 0, correspond to material properties for the phase given
by ¢ =1 and 6, correspond to material properties for the
phase given by ¢ = 0.

The conservative phase field method, which can be
considered to be the one-step version of the conservative level
set method of Olsson and Kreiss [10], requires no pseudo time
marching, has been shown to have excellent conservative [13]
and boundedness properties [14], is easy to implement and has
been shown to have lower computational costs than the,
otherwise more accurate Volume of Fluid Method (VOF) for
cases where the interface spans the entire domain [15].

However, it has been observed that the conservative phase
field method introduces artificial distortions in the interface
[16]. S. S. Jain [17] reformulated the anti-diffusion term in (1),



using the signed distance function to introduce the Accurate
Conservative Phase Field Method (ACPF):
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Since 1 varies linearly with the distance, as compared to the
phase which has a sharp variation across the interface it
becomes more convenient to calculate the normal vector field
in terms of the signed distance function:
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The signed distance function can be obtained analytically
from the phase:
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where o is a very small number (107> in this paper) introduced
to avoid 0 in the numerator, ¢ = max((a, ¢),1-— a), to limit
the phase value within bounds. Further, the expression inside
the bracket is constrained between a and 1/a to avoid the
calculations getting out of bounds.

The Accurate Conservative Phase Field Method has been
shown to be more accurate than the Conservative Phase Field
method and demonstrates better boundedness and reduced
truncation error for the calculation of the curvature [17].

2. METHODOLOGY

2.1 Accurate Phase Field Method

The Accurate Conservative Phase Field Method is solved in
a collocated grid framework using the second-order Adams-
Bashforth algorithm for time marching. The domain is first
initialized using ones and zeros for the phase and then the phase
field method solver is run to initialize the diffused phase field.
The diffusion and convection terms are treated in a finite
volume framework where, while the diffusion term is treated
using the second-order central difference method, numerous
schemes are available in the house code GenIDLEST for the
treatment of the convection term, including second-order
central difference, QUICK scheme, and TVD flux limiters. The
anti-diffusion term is treated using the second-order central
difference method in a finite difference framework and the re-
initialization parameter (y) is updated every timestep as y =
Y Umax [13-15,17], with a minimum value established as y =
0.1y *u,¢s, where y” is a constant factor (typically chosen to be
1.0), Uy is the maximum velocity in the field, and u,.f is the
reference velocity.

While a boundedness criterion has been well established by
Mirjalili et. al. [14], as a contingency, the phase is bounded by
the limits [a, 1] to avoid any unforeseen division by zero errors,
and the following treatment is provided to ensure phase volume
conservation:

1. Calculate ¢; = ¢p(1 — ¢) for each node.

2. Calculate Phase Volume:

V() = L Pd0 %

Where 2 is the volume of the domain, and phase volume
difference:
AV() =V(E=0)-V() (8)

3. Apply the correction:
f_() ¢dd‘(2

This can be considered to be a first-order operation in moving
the interface uniformly throughout the domain by a distance dL
in the normal direction to incur a AV change in phase volume.

2.2 Conservation of Mass and Momentum
The dynamics of two-phase incompressible immiscible
flows are determined by the incompressible Navier-Stokes
Equations:
V-u=0 (10)
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where p is pressure, u is the velocity, g is the acceleration due
to gravity, and density (p) & dynamic viscosity (@) are
approximated using equation (3). Capillary forces have been
neglected in this paper.

These simulations are performed using the in-house FVM
CFD code Generalized Incompressible Direct and Large Eddy
Simulation of Turbulence (GenIDLEST) [18] using the
fractional step method. A collocated grid framework is adopted
where phase, the signed distance function, velocity, pressure,
density, and viscosity are stored at cell centers and a fully
explicit second-order Adams-Bashforth algorithm is adopted
for time marching. At each time step, the following steps are
performed:

1. Predict a velocity field u* using the momentum

equation and interpolate to cell faces to calculate cell
face fluxes ¢ using the available pressure field, p,.

2. Solve for the phase using the following steps:

a. Calculate the signed distance function ¥ and the

term S = i(l — tanh? (2%)) 7 at cell centres.

Calculate the divergence of S to obtain the source
term.

b. Use cell face velocity fluxes to calculate the
convection term and use second-order central
difference to obtain the diffusion term.

c. Find the new phase values by using the 2" order
Adams-Bashforth Method. Adjust the phase
between the limits [a, 1] and apply the correction
for phase volume conservation. Update density
and viscosity.

3. Use u” interpolate to cell faces to calculate cell face
fluxes c *.

4. Using predicted cell face flux values ¢ *, calculate
pressure correction with the variable coefficient
Poisson equation using a preconditioned BICG-STAB
solver:

v- (% V(p’At)) =V-c (12)

5. Update the pressure as p = p, + p’,where p, is the
pressure at the previous timestep. Use the pressure
correction to update the velocity, u, field, and the cell
face velocity fluxes, c.



3. VALIDATION AND VERIFICATION

Five generic test cases were considered for numerical
verification of the phase field method:

a. Droplet in Shear flow

b. Zalesak Disk

c. Rayleigh Taylor Instability

d. Solitary Wave

e. Dam Break Problem
The first two are the standard test cases for evaluating advection
schemes [19] whereas the latter involves solving the full
Navier-Stokes coupled with the Phase Field Method.

3.1 Droplet in Shear Flow

In this standard test case introduced by Rider and Kothey
[20], a droplet of radius 0.15 is introduced at the position
(0.50,0.75) in the domain of [0,1] x [0,1] with a prescribed
velocity field given by the following stream function:
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where T = 4.

The droplet is allowed to deform as much as possible and at
t = T /2, the velocity field is reversed, and the circular droplet
is restored. The initial and final shapes are compared to
calculate the shape error as:

Shape Error = %; j|¢r=0(i,)) — pe=r (i, D|AxDy  (14)

Five simulations for grid sizes 32 X 32, 64 X 64, 128 x
128, 256 x 256, and 512 X 512 were performed with the
parameters €=10Ax, y=1.0upy,, using both the
Conservative Phase Field (CPF) and Accurate Conservative
Phase Field Method (ACPF). The shape errors were compared
with the results of S. S. Jain [17] and a near second-order rate
of convergence, comparable to previous studies (Figure 1) is
observed. It is also observed that the Accurate Phase Field
Method is more accurate than the Conservative Phase Field
Method (Table 1). The final shapes were also visually
compared for different grid sizes (Figure 2) to the exact
solution and convergence is observed for higher resolutions.

Table 1: Shape Error comparison for Droplet in Shear
Flow test case between Conservative Phase Field (CPF)
and Accurate Conservative Phase Field (ACPF) methods

Grid Size At Shape Error
CPF ACPF
32 x32 2.00e-3 5.23E-02 5.43E-02
64 X 64 1.00e-3 1.63E-02 1.40E-02
128 x 128 | 5.00e-4 3.74E-03 3.57E-03
256 X 256 | 2.50e-4 1.11E-03 8.66E-04
512 x 512 | 1.25¢-4 4.37E-04 2.88E-04

3.2 Zalesak Disk
In this standard test case introduced by Zalesak [21], a
circular disk of radius 15 with a notch of width 5 and height 25
is introduced at the position (50,75)in the domain of
[0,100] x [0,100] with a prescribed rigid body velocity field:
50—y x —50

==Y - 15
T3 TR (1)

We set € = 0.7 Ax, y = 2.5 Uy,q,- The problem is non-
dimensionalized with l..; = 100.0 and u,.; = 1.0. This test

case is used to test the ability to preserve sharp corners; the
slotted disk should be convected as it is by the flow field
undergoing minimal possible deformations [19]. The initial and
final shapes at T = 0 and T = 628 are compared in Figure 3
for grid sizes 128x128, 256x256 and 512x512, with At =
0.064 Ax and it is observed that higher resolutions are able to
preserve the sharp corners better.
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Figure 1: Shape Errors for Droplet in Shear Flow test
case
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Figure 2: Phase Field Contour line for ¢ = 0.5 for the
Droplet in Shear Flow test case

3.3 Rayleigh Taylor Instability

The first dynamic test case considered is the evolution of
Rayleigh Taylor instability for low Atwood numbers. Such
instability occurs due to the action of gravitational forces when
a heavier fluid sits on top of a lighter fluid.

The domain [0, D] X [—2D, 2D] is filled with two fluids in
equal volumes of density ratio prescribed by Atwood number
At = (p1 — po)/(p1 + po) = 0.5, and equal viscosity. For the
phase, weuse, y* = 1.0 and € = 2.0Ax. The interface is located
at y(x) = 0.1D cos(2mx /D). The reference velocity is U,.p =
\/g_D and time is non-dimensionalized using tyer = D/Uyef.
The Reynolds number is Re = pyuyfD /1 = 3000, the Froude
Number is F7 = Uy.q¢/ \/g_D = 1 and surface tension forces are
neglected. No-slip boundary conditions are used on the top and
bottom walls and periodic boundary conditions are used on the
left and right sides of the domain.

We studied this case for two grid sizes 200 x 800 and
400 x 1600. These simulations were performed in a multi-



block framework, with 16 blocks stacked over each other in the
Y direction.
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Figure 3: Zalesak Disk: Final Shape for grid sizes 128x128,
256x256 and 512x512

The phase contour profile for the evolution of the instability
is given in Figure 5. We also compare the y-coordinates of the
top and bottom of the interface with previously performed
numerical simulations [13,22,23] and good agreement is
observed, as seen in Figure 4. Here, the time is non-
dimensionalized using Atwood Number, as t*= (t/

tref)\/ (At)'

3.4 Solitary Wave Run-up

This test case is used to quantify the effects of viscous
damping and study the interaction of the interface with solid
walls for high-density ratios. In a 2-dimensional domain
[—h, h] x [0,20h], the water free surface is prescribed using the
following elevation profile:

Ao
Abet=0) cosh?(x,/0.754,) (16)
We use h = 0.1 m, and the theoretical wave speed is C,, =
Jgh=1m/s. We use g=10m/s? for the sake of
convenience. The density and viscosity of water and air are
prescribed as p, = 1.2 kg/m3, u, = 1.8e — 05 Pa.s, p,, =
1000 kg/m3 and u,, = 1.0e — 03 Pa.s, the Reynolds number
is Re = p,,C,h/u,, = 1.0 X 10> and the Froude number is

Fr =1..e/y/gh = 1.
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Figure 4: The evolution of the y-coordinate of the top and

bottom of the interface with time for Rayleigh Taylor
Instability.

A grid of 400 x 200 is employed with a fixed time step size
At/trer = 1.0 X 10™*. These simulations were performed on
25 blocks in the X direction. For the phase, y* = 1.0 and € =
Acen 1s used. TVD flux limiters are used to calculate the
density cell face values for pressure correction. Figure 6
depicts the evolution of the solitary wave for Ay/h = 0.5. For
Ay/h = 0.5, a maximum phase volume change of |AV /V,| =
5.15 X 107° % is observed, and the wave speed is ~1.0625 m/
s, which is close to the theoretical wave speed.

We first study the wave run-up height (A;,5,,,) as a function
of the wave amplitude when the wave is at x = 10 (4.) in
Figure 7. The results compare favourably against both,
previously performed numerical simulations [24,25], and the
experiment by Chan and Street [26].

@ t/trer =0 (b)2.0 (c) 2.5 (d) 3.0 (e) 3.5
Figure 5: The evolution of the interface for Rayleigh

Taylor instability for grid sizes 400 x 1600 (black) and
200 x 800 (red)
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Figure 6: Evolution of solitary wave for Ay/h = 0.5

We also study the viscous damping effects, by comparing
the evolution of wave amplitude for Ay/h=
(0.1,0.3,0.5,0.7,0.9), starting from t/t..r =6 (when the
wave is free from the wall) to t/t,. = 14, with the analytical
solution predicted by Mei et al [27]:

*

Cut 1
-1/4 -1/4 w
Al = AT 4 0.08356 —— (W) (17)

where Agpmqy is the wave amplitude at t/t,.; =6, t* =t —
6tror and Ap,qy is the wave amplitude. The numerical solutions
show good agreement with the perturbation solutions for low



values of Agq, (Figure 8) while higher viscous damping is
observed for higher amplitudes; this is expected as the small
amplitude approximation is only valid for Ag;,q,/h < 0.1.
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Figure 7: Wave run-up versus wave amplitude when the
wave is at x/h = 10
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Figure 8: Evolution of wave amplitude versus time to

quantify viscous damping effects

3.5 Dam Break Problem

This free surface problem involves simulating the collapse
of the water column. A water column of height 2L and width L
is prescribed in the bottom left corner of the domain:
[0,4L] x [0,4L]. The same material properties as in the solitary
wave example are used, surface tension forces are neglected
and acceleration due to gravitation is g = —9.81m/s?. L =

0.146 m is used as a reference length, u..; =+/g(2L) =
1.6295 m/s is used as a reference velocity which leads to the
Reynolds Number Re = p,,uyerL/1hy, ~ 2.38 X 10° and the

Froude Number Fr = uref/\/ﬁ ~ 1.414. . For the phase,
y* = 1.0 and € = 4.0Ax is used.

TVD flux limiters are employed to calculate convective
terms in both, phase and momentum equations, and density cell
face values and a no-slip boundary condition are applied to all
the domain boundaries. The simulation is first performed for a
two-dimensional uniform grid of size 600 X 600 with a fixed
time step size At /tyef = 2.5 X 1075,

This simulation was repeated on a non-uniform grid of size
400 x 400 with the grid refined to Ax = 2L/600 at the left,
right, and the bottom walls, with a fixed time step size
At/t,er = 0.625 x 107>, For the phase, y* = 1.0 and € =
7.6808,/min(Acqy is used. Both simulations were performed
on 25 blocks (5 in each direction). We compare the position of
the surge front versus time for both the simulations with
previously performed numerical simulations [13,28] and
experiments [29,30] and a good agreement is observed as seen
in Figure 9.

A maximum phase volume change of |AV/V,| = 5.06 X
107* % and 9.23 X 1072 % was observed for the uniform and
non-uniform grids respectively between t = 0 and t = 4t,f.
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Figure 9: Evolution of the wave front position of the
collapsing water column with time

4. CONCLUSION

We implemented the Accurate Conservative Phase Field
Method in a Finite Volume parallel multi-block collocated grid
framework, and with the help of the droplet in shear flow test
case and observed that it is more accurate than the Conservative
Phase Field Method. The implementation was also verified
against standard test cases such as Zalesak Disk, Rayleigh
Taylor Instability, Solitary Wave, and the Dam Break Problem,
and showed good agreement with theoretical, experimental, and
previously performed numerical results. The method shows
excellent phase volume conservativeness, even in cases where
we have very high-density ratios.
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NOMENCLATURE

¢ Phase --
P Signed Distance Function [m]
€ Interface Width Parameter [m]
14 Reinitialization Parameter [m/s]
y* Scaled Reinitialization Parameter --
%4 Gradient Operator [1/m]
2] Material Properties --
n Normal Vector Field --



V(t) Phase Volume [m?]
u Velocity [m/s]
p Pressure [Pa]
p Density [kg/ m?]
u Dynamic Viscosity [Pa.s]
g Acceleration due to gravity [m/s?]
At Atwood Number --
Re Reynolds Number --
Fr Froude Number --
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