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ABSTRACT  

The phase field method provides a simple mass conserving 
method for solving two-phase immiscible - incompressible 
Navier-Stokes Equations. The relative ease in implementing 
this method compared to other interface reconstruction 
methods, coupled with its conservativeness and boundedness 
makes it an attractive alternative. We implement the method in 
a parallel structured multi-block generalized coordinate finite 
volume solver using a collocated grid arrangement within the 
framework of the fractional-step method. The discretization 
uses a second-order central difference method for both the 
Navier-Stokes and the phase field equations. A TVD-based 
averaging technique is used for calculating density at cell faces 
in the pressure correction step to handle high-density ratios. The 
simulation framework is verified in standard test cases: Zalesak 
Disk, a droplet in shear flow, Solitary Wave Runup, Rayleigh 
Taylor Instability, and the Dam Break Problem. A second-order 
rate of convergence and excellent phase volume conservation is 
observed. 
 
Keywords: Multiphase Flows, Diffused Interface Method, 
Phase Field Method, Finite Volume Method, Computational 
Fluid Dynamics  
 
1. INTRODUCTION  

The development of computational fluid dynamics tools for 
multiphase flows has found many applications in recent times, 
including, but not limited to large-scale flows such as wave-
energy harvesting [1–4], to flows at much smaller scales such 
as droplet impact on surfaces [5–7]. 

While many methods exist, one-fluid methods such as the 
Diffused Interface Method are considered in this paper. The 
Diffused Interface Methods involve discretizing the domain 
into two different phases using a phase variable 𝜙, which varies 
smoothly but sharply over the interface. The material 
properties, such as viscosity and density, are then interpolated 
from the phase field. These methods are typically categorized 
either as, Level Set Methods, or Phase Field Methods. While 
the Level Set Method involves a re-initialization step [8–10] 
which often results in a loss of accuracy, the Phase Field 
Method does not need a re-initialization step; instead, the phase 
convection and restoration are done at the same time. Typically, 
either Cahn-Hillard [11]  or Allen-Cahn [12] equations are used 

to solve for the phase. However, both have their disadvantages. 
The Cahn-Hillard equation, while being mass conserving, 
involves solving for fourth-order terms, whereas the Allen-
Cahn equation, which only has second-order terms, is not mass 
conserving in nature. 

Chiu and Lin [13] formulated the conservative phase field 
based on the conservative level set method [10] as follows: 

𝐷𝜙

𝐷𝑡
= 𝛾𝜵 ⋅ (𝜖𝜵𝜙 − 𝜙(1 − 𝜙)

𝜵𝜙

|𝜵𝜙|
), (1) 

where 𝐷(⋅)/𝐷𝑡, is the material derivative, 𝜖 represents interface 
width, and 𝛾, the reinitialization parameter is representative of 
the strength of the right-hand-side of equation (1), responsible 
for reinitializing and maintaining a hyperbolic tangent profile 
for the interface: 

𝜙 = 1
2⁄ (1 + 𝑡𝑎𝑛ℎ (

𝜓
2𝜖⁄ )) (2) 

where 𝜓 is the signed distance function varying which 
represents distance normal to the interface such that 𝜓(𝜙 =
0.5) = 0. While the knowledge of the hyperbolic tangent 
profile is derived from the thermodynamics of the interface, 
thermodynamics plays no further role in the mechanics of the 
advection of the phase field [13,14]. The right-hand side, which 
contains a diffusion and an anti-diffusion term, for the 
hyperbolic tangent profile cancel each other out, ensuring that 
the phase is convected only by the flow.  

Material properties 𝛩 (such as density and viscosity) can be 
derived from 𝜙 as 

𝛩(𝑥, 𝑦, 𝑧, 𝑡) = 𝛩0𝜙(𝑥, 𝑦, 𝑧, 𝑡)

+ (1 −  𝜙(𝑥, 𝑦, 𝑧, 𝑡))𝛩1 (3) 

where 𝛩1 correspond to material properties for the phase given 
by  𝜙 = 1 and 𝛩0 correspond to material properties for the 
phase given by  𝜙 = 0. 

The conservative phase field method, which can be 
considered to be the one-step version of the conservative level 
set method of Olsson and Kreiss [10], requires no pseudo time 
marching, has been shown to have excellent conservative [13] 
and boundedness properties [14], is easy to implement and has 
been shown to have lower computational costs than the, 
otherwise more accurate Volume of Fluid Method (VOF) for 
cases where the interface spans the entire domain [15]. 

However, it has been observed that the conservative phase 
field method introduces artificial distortions in the interface 
[16]. S. S. Jain [17] reformulated the anti-diffusion term in (1), 
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using the signed distance function to introduce the Accurate 
Conservative Phase Field Method (ACPF):  

𝐷𝜙

𝐷𝑡
= 𝛾𝜵 ⋅ (𝜖𝜵𝜙 −

1

4
(1 − 𝑡𝑎𝑛ℎ2 (

𝜓

2𝜖
)) 𝒏̂) (4) 

Since 𝜓 varies linearly with the distance, as compared to the 
phase which has a sharp variation across the interface it 
becomes more convenient to calculate the normal vector field 
in terms of the signed distance function: 

𝒏̂ =
𝜵𝜙

|𝜵𝜙|
=

𝜵𝜓

|𝜵𝜓|
 (5) 

The signed distance function can be obtained analytically 
from the phase:  

𝜓 = 𝑙𝑛 (
𝜙̃ + 𝛼

1 − 𝜙̃ + 𝛼
) (6) 

where α is a very small number (10−50 in this paper) introduced 
to avoid 0 in the numerator, 𝜙̃ = 𝑚𝑎𝑥((𝛼, 𝜙), 1 − 𝛼), to limit 
the phase value within bounds. Further, the expression inside 
the bracket is constrained between 𝛼 and 1/𝛼 to avoid the 
calculations getting out of bounds.  

The Accurate Conservative Phase Field Method has been 
shown to be more accurate than the Conservative Phase Field 
method and demonstrates better boundedness and reduced 
truncation error for the calculation of the curvature [17].  

2. METHODOLOGY 
2.1 Accurate Phase Field Method 

The Accurate Conservative Phase Field Method is solved in 
a collocated grid framework using the second-order Adams-
Bashforth algorithm for time marching. The domain is first 
initialized using ones and zeros for the phase and then the phase 
field method solver is run to initialize the diffused phase field. 
The diffusion and convection terms are treated in a finite 
volume framework where, while the diffusion term is treated 
using the second-order central difference method, numerous 
schemes are available in the house code GenIDLEST for the 
treatment of the convection term, including second-order 
central difference, QUICK scheme, and TVD flux limiters. The 
anti-diffusion term is treated using the second-order central 
difference method in a finite difference framework and the re-
initialization parameter (γ) is updated every timestep as 𝛾 =
𝛾∗𝑢𝑚𝑎𝑥  [13–15,17], with a minimum value established as 𝛾 =
0.1𝛾∗𝑢𝑟𝑒𝑓, where γ∗ is a constant factor (typically chosen to be 
1.0), 𝑢𝑚𝑎𝑥 is the maximum velocity in the field, and 𝑢𝑟𝑒𝑓 is the 
reference velocity.  

While a boundedness criterion has been well established by 
Mirjalili et. al. [14], as a contingency, the phase is bounded by 
the limits [α, 1] to avoid any unforeseen division by zero errors, 
and the following treatment is provided to ensure phase volume 
conservation: 

1. Calculate 𝜙𝑑 = 𝜙(1 − 𝜙) for each node.  
2. Calculate Phase Volume: 

𝑉(𝑡) = ∫𝜙𝑑𝛺
𝛺

 (7) 

Where 𝛺 is the volume of the domain, and phase volume 
difference: 

Δ𝑉(𝑡) = 𝑉(𝑡 = 0) − 𝑉(𝑡) (8) 

3. Apply the correction: 

𝜙𝑐 = 𝜙 +
𝛥𝑉𝜙𝑑

∫ 𝜙𝑑𝑑𝛺𝛺

 (9) 

This can be considered to be a first-order operation in moving 
the interface uniformly throughout the domain by a distance 𝑑𝐿 
in the normal direction to incur a Δ𝑉 change in phase volume. 

2.2 Conservation of Mass and Momentum 
The dynamics of two-phase incompressible immiscible 

flows are determined by the incompressible Navier-Stokes 
Equations: 

𝛁 ⋅ 𝒖 =  0 (10) 

𝜌 (
𝜕𝒖

𝜕𝑡
+ 𝜵 ⋅ (𝒖𝒖)) = −𝜵𝑝 + 𝜵 ⋅ (𝜇𝜵𝒖) + 𝜌𝒈, (11) 

where 𝑝 is pressure, 𝑢 is the velocity, 𝒈 is the acceleration due 
to gravity, and density (𝜌) & dynamic viscosity (𝜇) are 
approximated using equation (3). Capillary forces have been 
neglected in this paper.  
        These simulations are performed using the in-house FVM 
CFD code Generalized Incompressible Direct and Large Eddy 
Simulation of Turbulence (GenIDLEST) [18] using the 
fractional step method. A collocated grid framework is adopted 
where phase, the signed distance function, velocity, pressure, 
density, and viscosity are stored at cell centers and a fully 
explicit second-order Adams-Bashforth algorithm is adopted 
for time marching. At each time step, the following steps are 
performed: 

1. Predict a velocity field 𝒖∗ using the momentum 
equation and interpolate to cell faces to calculate cell 
face fluxes 𝒄 using the available pressure field, 𝑝0. 

2. Solve for the phase using the following steps: 
a. Calculate the signed distance function 𝜓 and the 

term 𝑺 =
1

4
(1 − 𝑡𝑎𝑛ℎ2 (

𝜓

2𝜖
)) 𝒏̂ at cell centres. 

Calculate the divergence of 𝑺 to obtain the source 
term. 

b. Use cell face velocity fluxes to calculate the 
convection term and use second-order central 
difference to obtain the diffusion term.  

c. Find the new phase values by using the 2nd order 
Adams-Bashforth Method. Adjust the phase 
between the limits [α, 1] and apply the correction 
for phase volume conservation. Update density 
and viscosity.  

3. Use 𝒖∗ interpolate to cell faces to calculate cell face 
fluxes 𝒄 ∗. 

4. Using predicted cell face flux values 𝒄 ∗, calculate 
pressure correction with the variable coefficient 
Poisson equation using a preconditioned BICG-STAB 
solver: 

𝜵 ⋅ (
1

𝜌
𝜵(𝑝′𝛥𝑡)) = 𝜵 ⋅ 𝒄∗ (12) 

5. Update the pressure as 𝑝 = 𝑝0 + 𝑝′,where 𝑝0 is the 
pressure at the previous timestep. Use the pressure 
correction to update the velocity, 𝒖, field, and the cell 
face velocity fluxes, 𝒄. 
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3. VALIDATION AND VERIFICATION  
Five generic test cases were considered for numerical 

verification of the phase field method:  
a. Droplet in Shear flow 
b. Zalesak Disk 
c. Rayleigh Taylor Instability 
d. Solitary Wave 
e. Dam Break Problem 

The first two are the standard test cases for evaluating advection 
schemes [19] whereas the latter involves solving the full 
Navier-Stokes coupled with the Phase Field Method. 

3.1 Droplet in Shear Flow  
In this standard test case introduced by Rider and Kothey 

[20], a droplet of radius 0.15 is introduced at the position 
(0.50,0.75) in the domain of [0,1] × [0,1] with a prescribed 
velocity field given by the following stream function: 

𝜓 =
1

𝜋
sin2(𝜋𝑥) sin2(𝜋𝑦) cos(𝜋𝑡 𝑇⁄ ) (13) 

where 𝑇 = 4. 
The droplet is allowed to deform as much as possible and at 

𝑡 = 𝑇/2, the velocity field is reversed, and the circular droplet 
is restored. The initial and final shapes are compared to 
calculate the shape error as: 

𝑆ℎ𝑎𝑝𝑒 𝐸𝑟𝑟𝑜𝑟 = Σ𝑖,𝑗|𝜙𝑡=0(𝑖, 𝑗) − 𝜙𝑡=𝑇(𝑖, 𝑗)|Δ𝑥Δ𝑦 (14) 
Five simulations for grid sizes 32 × 32, 64 × 64, 128 ×

128, 256 × 256, and 512 × 512 were performed with the 
parameters  𝜖 = 1.0 Δ𝑥, 𝛾 = 1.0 𝑢𝑚𝑎𝑥  using both the 
Conservative Phase Field (CPF) and Accurate Conservative 
Phase Field Method (ACPF). The shape errors were compared 
with the results of S. S. Jain [17] and a near second-order rate 
of convergence, comparable to previous studies (Figure 1) is 
observed. It is also observed that the Accurate Phase Field 
Method is more accurate than the Conservative Phase Field 
Method (Table 1). The final shapes were also visually 
compared for different grid sizes (Figure 2) to the exact 
solution and convergence is observed for higher resolutions.  

Table 1: Shape Error comparison for Droplet in Shear 
Flow test case between Conservative Phase Field (CPF) 
and Accurate Conservative Phase Field (ACPF) methods 

Grid Size Δ𝑡 Shape Error 
CPF ACPF 

32 × 32 2.00e-3 5.23E-02 5.43E-02 
64 × 64 1.00e-3 1.63E-02 1.40E-02 
128 × 128 5.00e-4 3.74E-03 3.57E-03 
256 × 256 2.50e-4 1.11E-03 8.66E-04 
512 × 512 1.25e-4 4.37E-04 2.88E-04 

 

3.2 Zalesak Disk  
In this standard test case introduced by Zalesak [21], a 

circular disk of radius 15 with a notch of width 5 and height 25 
is introduced at the position (50,75) in the domain of 
[0,100] × [0,100] with a prescribed rigid body velocity field: 

𝑢𝑥 = 𝜋
50 − 𝑦

314
, 𝑢𝑦 = 𝜋

𝑥 − 50

314
 (15) 

We set 𝜖 = 0.7 Δ𝑥, 𝛾 = 2.5 𝑢𝑚𝑎𝑥 . The problem is non-
dimensionalized with 𝑙𝑟𝑒𝑓 = 100.0 and 𝑢𝑟𝑒𝑓 = 1.0. This test 

case is used to test the ability to preserve sharp corners; the 
slotted disk should be convected as it is by the flow field 
undergoing minimal possible deformations [19]. The initial and 
final shapes at 𝑇 = 0 and 𝑇 = 628 are compared in Figure 3 
for grid sizes 128x128, 256x256 and 512×512, with Δ𝑡 =
 0.064 Δ𝑥 and it is observed that higher resolutions are able to 
preserve the sharp corners better.  

 
Figure 1: Shape Errors for Droplet in Shear Flow test 
case 

 

  
(a) 𝑡 = 𝑇 (b) 𝑡 = 𝑇/2 

Figure 2: Phase Field Contour line for 𝛟 = 𝟎. 𝟓  for the 
Droplet in Shear Flow test case 

3.3 Rayleigh Taylor Instability 
The first dynamic test case considered is the evolution of 

Rayleigh Taylor instability for low Atwood numbers. Such 
instability occurs due to the action of gravitational forces when 
a heavier fluid sits on top of a lighter fluid. 

The domain [0, 𝐷] × [−2𝐷, 2𝐷] is filled with two fluids in 
equal volumes of density ratio prescribed by Atwood number 
𝐴𝑡 = (𝜌1 − 𝜌0)/(𝜌1 + 𝜌0) = 0.5, and equal viscosity. For the 
phase, we use, 𝛾∗ = 1.0 and 𝜖 = 2.0Δ𝑥. The interface is located 
at 𝑦(𝑥) = 0.1𝐷 𝑐𝑜𝑠(2𝜋𝑥/𝐷). The reference velocity is 𝑢𝑟𝑒𝑓 =

√𝑔𝐷 and time is non-dimensionalized using 𝑡𝑟𝑒𝑓 = 𝐷/𝑢𝑟𝑒𝑓 . 
The Reynolds number is 𝑅𝑒 = 𝜌1𝑢𝑟𝑒𝑓𝐷/𝜇 = 3000, the Froude 
Number is 𝐹𝑟 = 𝑢𝑟𝑒𝑓/√𝑔𝐷 = 1 and surface tension forces are 
neglected. No-slip boundary conditions are used on the top and 
bottom walls and periodic boundary conditions are used on the 
left and right sides of the domain. 

We studied this case for two grid sizes 200 × 800 and 
400 × 1600. These simulations were performed in a multi-
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block framework, with 16 blocks stacked over each other in the 
𝒚̂ direction. 

 
Figure 3: Zalesak Disk: Final Shape for grid sizes 128x128, 
256x256 and 512×512 

The phase contour profile for the evolution of the instability 
is given in Figure 5. We also compare the y-coordinates of the 
top and bottom of the interface with previously performed 
numerical simulations [13,22,23] and good agreement is 
observed, as seen in Figure 4. Here, the time is non-
dimensionalized using Atwood Number, as 𝑡∗ = (𝑡/

𝑡𝑟𝑒𝑓)√(𝐴𝑡). 

3.4 Solitary Wave Run-up 

This test case is used to quantify the effects of viscous 
damping and study the interaction of the interface with solid 
walls for high-density ratios. In a 2-dimensional domain 
[−ℎ, ℎ] × [0,20ℎ], the water free surface is prescribed using the 
following elevation profile: 

𝐴(𝑥, 𝑡 = 0) =
𝐴0

𝑐𝑜𝑠ℎ2(𝑥√0.75𝐴0)
 (16) 

We use ℎ = 0.1 𝑚, and the theoretical wave speed is 𝐶𝑤 =

√𝑔ℎ = 1 𝑚/𝑠. We use 𝑔 = 10𝑚/𝑠2 for the sake of 
convenience. The density and viscosity of water and air are 
prescribed as 𝜌𝑎 = 1.2 𝑘𝑔/𝑚3,   𝜇𝑎 = 1.8𝑒 − 05 𝑃𝑎. 𝑠, 𝜌𝑤 =
1000 𝑘𝑔/𝑚3 and 𝜇𝑤 = 1.0𝑒 − 03 𝑃𝑎. 𝑠, the Reynolds number 
is 𝑅𝑒 = 𝜌𝑤𝐶𝑤ℎ/𝜇𝑤 = 1.0 × 105 and the Froude number is 
𝐹𝑟 = 𝑢𝑟𝑒𝑓/√𝑔ℎ = 1. 

 
Figure 4: The evolution of the y-coordinate of the top and 
bottom of the interface with time for Rayleigh Taylor 
Instability. 

 

A grid of 400 × 200 is employed with a fixed time step size 
Δ𝑡/𝑡𝑟𝑒𝑓 = 1.0 × 10−4. These simulations were performed on 
25 blocks in the 𝒙 direction. For the phase, 𝛾∗ = 1.0 and 𝜖 =

√𝐴𝑐𝑒𝑙𝑙  is used. TVD flux limiters are used to calculate the 
density cell face values for pressure correction. Figure 6 
depicts the evolution of the solitary wave for 𝐴0/ℎ = 0.5. For 
𝐴0/ℎ = 0.5, a maximum phase volume change of |Δ𝑉/𝑉0| ≈
5.15 × 10−6 % is observed, and the wave speed is ~1.0625 𝑚/
𝑠, which is close to the theoretical wave speed.  

We first study the wave run-up height (𝐴𝑟𝑢𝑛𝑢𝑝) as a function 
of the wave amplitude when the wave is at 𝑥 = 10 (𝐴𝑐) in 
Figure 7. The results compare favourably against both, 
previously performed numerical simulations [24,25], and the 
experiment by Chan and Street [26]. 

     
(a) 𝑡/𝑡𝑟𝑒𝑓 = 0 (b) 2.0 (c) 2.5 (d) 3.0 (e) 3.5 

Figure 5: The evolution of the interface for Rayleigh 
Taylor instability for grid sizes 𝟒𝟎𝟎 × 𝟏𝟔𝟎𝟎 (black) and 
𝟐𝟎𝟎 × 𝟖𝟎𝟎 (red) 

 

 
Figure 6: Evolution of solitary wave for 𝑨𝟎/𝒉 = 0.5 

We also study the viscous damping effects, by comparing 
the evolution of wave amplitude for 𝐴0/ℎ =
(0.1, 0.3, 0.5, 0.7, 0.9), starting from 𝑡/𝑡𝑟𝑒𝑓 = 6 (when the 
wave is free from the wall) to 𝑡/𝑡𝑟𝑒𝑓 = 14, with the analytical 
solution predicted by Mei et al [27]: 

𝐴𝑚𝑎𝑥
−1/4

= 𝐴0𝑚𝑎𝑥
−1/4

+ 0.08356
𝐶𝑤𝑡∗

ℎ
√(

1

𝑅𝑒ℎ1/2
) (17) 

where 𝐴0𝑚𝑎𝑥 is the wave amplitude at 𝑡/𝑡𝑟𝑒𝑓 = 6, 𝑡∗ = 𝑡 −

6𝑡𝑟𝑒𝑓 and 𝐴𝑚𝑎𝑥 is the wave amplitude. The numerical solutions 
show good agreement with the perturbation solutions for low 
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values of 𝐴0𝑚𝑎𝑥 (Figure 8) while higher viscous damping is 
observed for higher amplitudes; this is expected as the small 
amplitude approximation is only valid for 𝐴0𝑚𝑎𝑥/ℎ ≤ 0.1. 

 
Figure 7: Wave run-up versus wave amplitude when the 
wave is at 𝒙/𝒉 = 𝟏𝟎 

 

 
Figure 8: Evolution of wave amplitude versus time to 
quantify viscous damping effects 

3.5 Dam Break Problem 
This free surface problem involves simulating the collapse 

of the water column. A water column of height 2𝐿 and width 𝐿 
is prescribed in the bottom left corner of the domain: 
[0,4𝐿] × [0,4𝐿]. The same material properties as in the solitary 
wave example are used, surface tension forces are neglected 
and acceleration due to gravitation is 𝑔 = −9.81𝑚/𝑠2. 𝐿 =

0.146 𝑚 is used as a reference length, 𝑢𝑟𝑒𝑓 = √𝑔(2𝐿) =

1.6295 𝑚/𝑠 is used as a reference velocity which leads to the 
Reynolds Number 𝑅𝑒 = 𝜌𝑤𝑢𝑟𝑒𝑓𝐿/𝜇𝑤 ≈ 2.38 × 105 and the 
Froude Number 𝐹𝑟 = 𝑢𝑟𝑒𝑓/√𝑔𝐿 ≈ 1.414. . For the phase, 
𝛾∗ = 1.0 and 𝜖 = 4.0Δ𝑥 is used. 

TVD flux limiters are employed to calculate convective 
terms in both, phase and momentum equations, and density cell 
face values and a no-slip boundary condition are applied to all 
the domain boundaries. The simulation is first performed for a 
two-dimensional uniform grid of size 600 × 600 with a fixed 
time step size Δ𝑡/𝑡𝑟𝑒𝑓 = 2.5 × 10−5.  

This simulation was repeated on a non-uniform grid of size 
400 × 400 with the grid refined to Δ𝑥 = 2𝐿/600 at the left, 
right, and the bottom walls, with a fixed time step size 
Δ𝑡/𝑡𝑟𝑒𝑓 = 0.625 × 10−5. For the phase, 𝛾∗ = 1.0 and 𝜖 =

7.6808√𝑚𝑖𝑛(𝐴𝑐𝑒𝑙𝑙) is used. Both simulations were performed 
on 25 blocks (5 in each direction). We compare the position of 
the surge front versus time for both the simulations with 
previously performed numerical simulations [13,28] and 
experiments [29,30] and a good agreement is observed as seen 
in Figure 9. 

A maximum phase volume change of |Δ𝑉/𝑉0| ≈ 5.06 ×
10−4 % and 9.23 × 10−3 % was observed for the uniform and 
non-uniform grids respectively between 𝑡 = 0 and 𝑡 = 4𝑡𝑟𝑒𝑓. 

 
Figure 9: Evolution of the wave front position of the 
collapsing water column with time 

4. CONCLUSION 
We implemented the Accurate Conservative Phase Field 

Method in a Finite Volume parallel multi-block collocated grid 
framework, and with the help of the droplet in shear flow test 
case and observed that it is more accurate than the Conservative 
Phase Field Method. The implementation was also verified 
against standard test cases such as Zalesak Disk, Rayleigh 
Taylor Instability, Solitary Wave, and the Dam Break Problem, 
and showed good agreement with theoretical, experimental, and 
previously performed numerical results. The method shows 
excellent phase volume conservativeness, even in cases where 
we have very high-density ratios.  
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NOMENCLATURE  
𝜙 Phase -- 
𝜓 Signed Distance Function [m] 
𝜖 Interface Width Parameter [m] 
𝛾 Reinitialization Parameter  [m/s] 
𝛾∗ Scaled Reinitialization Parameter  -- 
𝜵 Gradient Operator [1/m] 
𝛩 Material Properties -- 
𝒏̂ Normal Vector Field -- 
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𝑉(𝑡) Phase Volume [m3] 
𝒖 Velocity [m/s] 
𝑝 Pressure [Pa] 
𝜌 Density [kg/ m3] 
𝜇 Dynamic Viscosity [Pa.s] 
𝑔 Acceleration due to gravity [m/s2] 
𝐴𝑡 Atwood Number -- 
𝑅𝑒 Reynolds Number -- 
𝐹𝑟 Froude Number -- 

REFERENCES  
[1] Khedkar, K., and Bhalla, A. P. S.,  0  , “A Model 

Predictive Control (MPC)-Integrated Multiphase 
Immersed Boundary (IB) Framework for Simulating 
Wave Energy Converters (WECs),” Ocean Eng., 260, p. 
111908. 

[2] Benites-Munoz, D., Huang, L., Anderlini, E., Marín-
Lopez,  . R., and Thomas, G.,  0 0, “ y drodynamic 
Modelling of An Oscillating Wave Surge Converter 
Including Power Take-Off,”  . Mar. Sci. Eng., 8(10), p. 
771. 

[3] Schmitt, P., and Elsaesser, B.,  01 , “On the Use of 
OpenFOAM to Model Oscillating Wave Surge 
Converters,” Ocean Eng., 108, pp. 98–104. 

[4] Wei,  . , Rafiee, A.,  en ry, A., and Dias, F.,  01 , “Wave 
Interaction with an Oscillating Wave Surge Converter, 
Part I: Viscous Effects,” Ocean Eng., 104, pp. 185–203. 

[5] Luo, L., Wang, X.-P., and Cai, X.-C.,  01 , “An Efficient 
Finite Element Method for Simulation of Droplet 
Spreading on a Topologically Rough Surface,”  . 
Comput. Phys., 349, pp. 233–252. 

[6] Yada, S., Lacis, U., van der Wijngaart, W., Lundell, F., 
Amberg, G., and Bagheri, S.,  0  , “Droplet Impact on 
Asymmetric  y drophobic Microstructures,” Langmuir, 
38(26), pp. 7956–7964. 

[7] Zhang, Q., Qian, T.-Z., and Wang, X.-P.,  01 , “Phase 
Field Simulation of a Droplet Impacting a Solid Surface,” 
Phys. Fluids, 28(2), p. 22103. 

[8] Sussman, M., and Smereka, P., 1   , “Axisymmetric 
Free Boundary Problems,”  . Fluid Mech., 341, pp. 269–
294. 

[9] Sethian,  . A., and Smereka, P.,  00 , “L EVEL S ET M 
ETHODS FOR F LUID I NTERFACES,” Annu. Rev. 
Fluid Mech., 35(1), pp. 341–372. 

[10] Olsson, E., and Kreiss, G.,  00 , “A Conservative Level 
Set Method for Two Phase Flow,”  . Comput. Phys., 
210(1), pp. 225–246. 

[11] Cahn,  . W., and  illiar d,  . E., “Free Energy of a 
 o nuniform System. I. Interfacial Free Energy,” p. 11. 

[12] Allen, S. M., and Cahn,  . W., 1   , “A Microscopic 
Theory for Antiphase Boundary Motion and Its 
Application to Antiphase Domain Coarsening,” Acta 
Metall., 27(6), pp. 1085–1095. 

[13] Chiu, P.-H., and Lin, Y.-T.,  011, “A Conservative Phase 
Field Method for Solving Incompressible Two-Phase 
Flows,”  . Comput. Phys., 230(1), pp. 185–204. 

[14] Mirjalili, S., Ivey, C. B., and Mani, A.,  0 0, “A 
Conservative Diffuse Interface Method for Two-Phase 

Flows with Provable Boundedness Properties,”  . 
Comput. Phys., 401, p. 109006. 

[15] Mirjalili, S., Ivey, C. B., and Mani, A., 2019, 
“Comparison between the Diffuse Interface and Volume 
of Fluid Methods for Simulating Two-Phase Flows,” Int. 
J. Multiph. Flow, 116, pp. 221–238. 

[16] Jain, S. S., Adler, M. C., West, J. R., Mani, A., Moin, P., 
and Lele, S. K.,  0 1, “Assessment of Diffuse-Interface 
Methods for Compressible Multiphase Fluid Flows and 
Elastic-Plastic Deformation in Solids.” 

[17]  ain, S. S.,  0  , “Accurate Conservative Phase-Field 
Method for Simulation of Two-Phase Flows,”  . Comput. 
Phys., 469, p. 111529. 

[18] Tafti, D. K.,  001, “GenIDLEST: A Scalable Parallel 
Computational Tool for Simulating Complex Turbulent 
Flows,” Fluids Engineering, American Society of 
Mechanical Engineers, New York, New York, USA, pp. 
347–356. 

[19] Prosperetti, A., and Tryggvason, G., eds., 2007, 
Computational Methods for Multiphase Flow, 
Cambridge University Press, Cambridge. 

[20] Rider, W., and Kothe, D., 1   , “Stretching and Tearing 
Interface Tracking Methods,” 12th Computational Fluid 
Dynamics Conference, American Institute of 
Aeronautics and Astronautics. 

[21] Zalesak, 1   , “Fully Multidimensional Flux-Corrected 
Transport Algorithms for Fluids.” 

[22] Ding,  . , Spelt, P. D. M., and Shu, C.,  00 , “Diffuse 
Interface Model for Incompressible Two-Phase Flows 
with Large Density Ratios,”  . Comput. Phys., 226(2), 
pp. 2078–2095. 

[23] Guermond, J.-L., and Quartapelle, L.,  000, “A 
Projection FEM for Variable Density Incompressible 
Flows,”  . Comput. Phys., 165(1), pp. 167–188. 

[24] Xie, Z., Stoesser, T., Yan, S., Ma, Q., and Lin, P., 2020, 
“A Cartesian Cut-Cell Based Multiphase Flow Model for 
Large-Eddy Simulation of Three-Dimensional Wave-
Structure Interaction,” Comput. Fluids, 213, p. 104747. 

[25] Yue, W., Lin, C.-L., and Patel, V. C.,  00 , “ u merical 
Simulation of Unsteady Multidimensional Free Surface 
Motions by Level Set Method,” Int.  .  u mer. Methods 
Fluids, 42(8), pp. 853–884. 

[26] Chan, R. K.-C., and Street, R. L., 1  0, “A Computer 
Study of Finite-Amplitude Water Waves,”  . Comput. 
Phys., 6(1), pp. 68–94. 

[27] Mei, C. C., Stiassnie, Michael., and Yue, D. K.-P., 2005, 
Theory and Applications of Ocean Surface Waves, 
World Scientific, Singapore; 

[28] Sun, D. L., and Tao, W. Q.,  010, “A Coupled Volume-
of-Fluid and Level Set (VOSET) Method for Computing 
Incompressible Two-Phase Flows,” Int.  .  ea t Mass 
Transf., 53(4), pp. 645–655. 

[29]  u , C., and Sueyoshi, M.,  010, “ u merical Simulation 
and Experiment on Dam Break Problem,”  . Mar. Sci. 
Appl., 9(2), pp. 109–114. 

[30] Martin,  . C., and Moyce, W.  ., 1   , “Part IV. An 
Experimental Study of the Collapse of Liquid Columns 
on a Rigid  o rizontal Plane,” Philos. Trans. R. Soc. 
Lond. Ser. Math. Phys. Sci., 244(882), pp. 312–324. 


