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Abstract

Identifying conditions that promote egalitarian major transi-
tions, where unlike replicating units unite to form a higher-
level unit, is an open problem with far-reaching implications.
We propose that egalitarian major transitions can only begin
in ecological communities that are conducive to them. To
formalize this idea, we introduce the concept of “transition-
ability”, which describes the extent to which a community
is poised to undergo an egalitarian major transition. We hy-
pothesize that transitionability is a property of ecological in-
teraction networks, which represent the set of pairwise in-
teractions among members of a community. Using a digital
artificial ecology that simulates interactions between species
based on a static interaction network, we test the transition-
ability of interaction networks created by a range of graph-
generation techniques, as well as some real-world ecological
networks. To measure the extent to which a community is
moving towards a major transition, we quantify the increase
in community-level fitness relative to individual-level fitness
across five different fitness proxies. We find that some net-
work generation protocols produce more transitionable net-
works than others. In particular, interaction strengths (i.e.
edge weights) have a substantial impact on transitionability,
despite receiving low attention in the literature.

Introduction
It has been theorized that ecological dynamics were an emer-
gent property of pre-biotic chemistry. Auto-catalytic (i.e.
effectively self-replicating) cycles of chemical reactions in-
teracted with each other in ways analogous to predation, mu-
tualism, and competition (Peng et al., 2020). However, these
auto-catalytic cycles would not have been capable of muta-
tion, and so would not have experienced evolution by natural
selection. Indeed, one commonly-proposed dividing line for
distinguishing between this soup of chemicals and the origin
of life is the beginning of Darwinian evolution (Kauffman,
1993). From this perspective, the origin of life can be seen as
an egalitarian major evolutionary transition in individuality
in which a set of autocatalytic cycles came together to form
a self-replicating individual (Queller and Strassmann, 2016).
Populations of these self-replicating individuals would be

capable of evolution by natural selection because they would
experience mutations (gain or loss of an autocatalytic cy-
cle), differential reproductive success (via varying ability to
spread), and heredity (due to their constituent auto-catalytic
cycles self-replicating and co-dispersing).

Major evolutionary transitions in individuality happen
when the nature of what it means to be an individual changes
(Smith and Szathmary, 1997). Often, major transitions in-
volve a higher-level evolutionary unit capable of inheritance
emerging from the unification of independent lower-level
units. Major transitions can be either egalitarian, where
lower-level units are unrelated, or fraternal, where lower-
level units are related (Queller, 1997). The origin of life via
the emergence of adapting communities of autocatalytic cy-
cles would be an egalitarian major transition (Queller and
Strassmann, 2016). Understanding how these transitions oc-
cur is important for many open questions across evolution-
ary biology and artificial life, including open-ended evolu-
tion (Taylor et al., 2016; Banzhaf et al., 2016).

The idea that the emergence of collectives of self-
replicating molecules in compartments can be thought of
as major transitions dates back to Maynard Smith’s foun-
dational book (Smith and Szathmary, 1997). Nevertheless,
the origin of life differs from other egalitarian major tran-
sitions in an important way: co-evolution between con-
stituent species, an important dynamic in other egalitarian
major transitions, is impossible in the origin of life. We
propose that this difference is actually useful for research
purposes; the feedback loops inherent in egalitarian major
transitions with co-evolution can be challenging to untangle.
Thinking about the origin of life makes it clear that the fac-
tors affecting whether an egalitarian major transition occurs
can be split into two categories: 1) those not involving co-
evolution between lower-level species, and 2) those involv-
ing co-evolution between lower-lever species. Factors in
category one should act on all egalitarian major transitions.
Here, we explore how they operate in the absence of co-
evolution, an important first step towards eventually under-
standing how they operate in the presence of co-evolution.
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What factors make a given chemistry more or less likely
to lead to the origin of life? We suggest that these factors
fall into two categories: 1) external (abiotic) factors such as
diffusion, disturbance, and seeding of new chemicals, and
2) properties of the ecological interactions within the chem-
istry. For an exploration of the former, see Foreback et al.
(2023a). Here, we focus on the latter. We hypothesize that
answering this question in the context of chemical cycles is
actually the same problem as identifying ecological commu-
nities that are poised to undergo egalitarian major transitions
(i.e. those which could undergo a major transition purely on
the basis of changes to their abiotic environment), a property
which we term ”transitionability.” To facilitate the connec-
tion of this work to general ecological theory, we describe
ecological communities using the abstraction of ecological
networks, also called interaction matrices. These networks
describe how units within the community interact with or
affect each other. The structure of the network captures the
extent to which the units’ community possesses ecological
features such as trophic levels, instances of facilitation, and
instances of antagonism.

We use the framework of multi-level selection to concep-
tualize the extent to which selection is acting on the two dif-
ferent levels of organization (Bonner, 1998). In this context,
identifying shifts in the level of organization on which se-
lection is acting most strongly can be a proxy for identifying
major transitions (Ratcliff et al., 2015). Egalitarian major
transitions, then, can be qualitatively identified by observing
fitness increasing primarily at the level of the community.
Thus, interaction networks that are conducive to undergo-
ing egalitarian major evolutionary transitions are those for
which community-level fitness increases are possible.

Major transitions and ecological networks are both diffi-
cult to observe in nature, making it challenging to ascertain
how properties of ecological networks affect major transi-
tions using biological data. Real-world ecological networks
are usually created through field observation, which can only
capture a limited snapshot of the complete ecological real-
ity. Consequently, this problem lends itself to an artificial
life approach. We use an artificial ecology to explore what
kinds of ecological networks are more likely to lead to a ma-
jor transition. By studying both real-world interaction matri-
ces and five schemes for stochastically generating matrices,
we find evidence that both interaction network structure and
interaction strengths affect transitionability. By identifying
generation schemes that promote transitionability, we lay the
groundwork for follow-up research to determine what exact
properties of the networks are fostering the conditions for
major transitions.

Background
Interaction Matrices
Interaction matrices, also known as ecological networks, are
networks that define interactions between species in a com-

munity (Landi et al., 2018; Delmas et al., 2019). Inter-
action matrices are adjacency matrices representing graphs
whose nodes are species and edges are interactions be-
tween species. Interactions can be unweighted (binary pres-
ence/absence of interaction) or weighted (strength of inter-
action). Ecologists define different types of interaction ma-
trices by the set of interactions represented in them. Some
common kinds of interaction matrices include food webs
(D’Alelio et al., 2016), diet composition (Bulman et al.,
2001), or plant-pollinator networks (Kaiser-Bunbury et al.,
2009). Food webs typically have directed trophic interac-
tions where the interaction between speciesi and species j is
positive while the interaction between species j and species
i is negative (Pomeranz et al., 2019). Diet composition net-
works may have weighted interactions representing the per-
cent of a predator’s diet a prey species makes up (Bulman
et al., 2001), while plant-pollinator networks may have mu-
tualistic interactions that track the number of visits by a pol-
linator to a plant (Kaiser-Bunbury et al., 2009). Interaction
matrices can also include multiple kinds of interactions, al-
though in practice these are less frequently measured. In
this paper, interaction networks are directed and weighted.
Interactions represent the non-symmetric effect of species i
on species j , which can be beneficial or detrimental as indi-
cated by the sign of the weight.

There are many open questions regarding ecological net-
works, such as how the number of interactions vary with the
number of species (Landi et al., 2018). One of the most stud-
ied properties of ecological networks is stability. Prior work
has suggested that network structure/topology (Lurgi et al.,
2016) and interaction strengths (Tang et al., 2014) have an
impact on the stability of a community. It is unclear whether
we should expect stable communities to promote or inhibit
egalitarian major transitions. On one hand, stability may be
a prerequisite for fostering an environment capable of egal-
itarian major transitions, as an unstable community likely
could not reliably self-replicate if functioning as an individ-
ual. On the other hand, too much stability may make the
community resistant to seeding events, and thus unable to
undergo the community-level equivalent of mutation. Such
a community would have low community-level evolvability.

Real-world interaction matrices are measured through
field observation and literature review. As such, they are
expensive to create and represent an incomplete ecological
reality based on limited observation. Models exist to gen-
erate networks that capture properties thought to be found
in real-world networks, such as Barabási and Albert (1999),
Watts and Strogatz (1998), and Klemm and Eguiluz (2002),
which generate networks with scale-free behavior, small-
world behavior, or both, respectively. However, the extent
to which these behaviors are present in real-world ecologi-
cal networks is controversial; while some studies have ob-
served these properties in nature (Montoya and Solé, 2002),
others have not Dunne et al. (2002). Furthermore, these net-
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work generation models only generate matrix structure, so
weights must be set manually or by using another method
to generate weighted ecological networks. A study by Tang
et al. (2014) finds that matching the distribution and corre-
lation of interaction strengths to real-world ecological net-
works allows random network structures to preserve stabil-
ity. This observation implies that interaction strengths may
play an important role in producing specific ecological dy-
namics. However, relatively few studies have focused on
interaction strengths, suggesting that they may be an under-
studied aspect of ecological networks. Network topology is
much more commonly studied, likely due to the difficultly
of measuring real-world interaction strengths.

Role of Ecology in Major Transitions
It has been widely speculated that the presence of ecolog-
ical dynamics is critical for open-ended evolution in gen-
eral (Soros and Stanley, 2014; Taylor et al., 2016; Dolson
et al., 2019). Moreover, hallmarks of open-ended evolution
such as egalitarian major evolutionary transitions trivially
require preexisting ecological dynamics, as such transitions
require the presence of multiple distinct species (Dolson
et al., 2019). However, while ecology in general is thought
to be important in these contexts, less is known about the
specific ecological dynamics necessary to bring these phe-
nomena about. Here we seek to identify such dynamics
through our examination of interaction networks.

The origin of life is a useful case study of a major egalitar-
ian transition, because it allows us to make the helpful sim-
plifying assumption that the interaction network itself does
not evolve. Historically, efforts to study the impact of inter-
action network structure on adaptation have been stymied by
the fact that these two factors are locked in a feedback loop;
the interaction network influences adaptation and adaptation
in turn changes the interaction network. If we conceive of
the origin of life as being the origin of the first adapter, how-
ever, we can, for now, set aside the possibility of interaction
networks changing in response to evolution.

Methods
Artificial Ecology
Architecture The code used in this paper is open source
(Leither et al., 2023). We employ an artificial ecology to
conduct in silico experiments on major evolutionary tran-
sitions. The artificial ecology uses a generalized Lotka-
Volterra model to simulate growth of species within a
meta-community (Leibold and Chase, 2017). The meta-
community consists of a grid of local sites which contain a
combination of species that interact with each other. Species
are represented by continuous values indicating the sizes of
their populations at each site. The growth of each species is
directly proportional to the abundance of species beneficial
to it and the scarcity of species detrimental to it. The meta-
community goes through updates which modify the combi-

Figure 1: An example meta-community (left) and cor-
responding interaction matrix (right) with four species.
The meta-community is split into local sites, with colored
squares indicating the species at each site. The community
composition 0011is dominating, as most local sites have
only species 2 and 3 present. This community composition
is dominating because species 2and 3 interact positively, al-
lowing them to grow fast.

nation of species (i.e. the community composition) present
in each local site. Community compositions are represented
by binary strings indicating the presence or absence of each
species. For an example of a meta-community, see Figure 1.

Species are differentiated by their unique interactions
with each other as defined in a weighted and directed com-
munity interaction matrix. The matrix is non-symmetric,
meaning that the effect of species i on species j can be
different than the effect of species j on species i. Species
can interact with themselves (diagonal matrix values) which
defines their intrinsic growth rate. Interactions are contin-
uous in the range [−1, 1]. As an interaction value aij ap-
proaches one, species i has an increasingly beneficial effect
on species j , while a value approaching negative one has
an increasingly detrimental effect. A value of zero indicates
that species i does not interact with or affect species j .

Abiotic parameters, which define how species interact
with the environment at each time step, also affect how the
meta-community updates and have an impact on ecologi-
cal dynamics. The artificial ecology has three continuous-
valued abiotic parameters in the range[0, 1]: diffusion, seed-
ing, and clear rate. Diffusion defines what proportion of
the species present in the local site will spread into adja-
cent local sites on each time step, and is analogous to wind-
or water-assisted dispersal in nature. Seeding controls the
probability that new species are introduced into a local site;
it acts separately on each species and if activated will in-
crease the count of that species by one. An analogous pro-
cess in nature is immigration from an outside population (of-
ten referred to in ecology as the “regional species pool”).
From the perspective of community-level adaptation, seed-
ing is analogous to mutation. Clear rate is the probabil-
ity that a local site will have all its species counts reset to
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Figure 2: A simple example community assembly graph
with three species. Community compositions are repre-
sented as bit strings where ones indicate species presence
and zeros indicate species absence. For example, node
110represents a community composition of species 0 and
species 1. The edge from 110to 111indicates that species
2 can invade the community composition 110and the new
community composition 111can exist stably.

zero on a given time step, which is analogous to disturbance
from seasonality or weather events. Clear offers a way for
a species to be removed from a local site without being
driven to extinction by the other species in the local site.
At each time step, the artificial ecology updates by grow-
ing the species via their interactions, clearing, diffusing, and
then seeding. Other tunable parameters in the artificial ecol-
ogy are meta-community size, number of time steps, and the
maximum population size for each species in each local site,
which we keep constant throughout the experiments in this
paper at 10 × 10, 1000, and 10000respectively.

Measures of Adaptation Earlier, we noted that major
transitions can be identified by observing an increase in
community-level fitness relative to the concurrent increase
in individual-level fitness. Putting this definition into prac-
tice requires identifying a way to measure fitness. We iden-
tified five proxies for community-level fitness and analyzed
each one. Since there are no individual members of any
species in the artificial ecology, there cannot be mutation at
the species level and any adaptation must occur at the com-
munity level. The five measures of adaptation are calculated
from five fitness proxies: biomass, growth rate, heredity, in-
vasion ability, and resilience. Biomass is the sum of each
species’ population size within each local site. It is a fitness
proxy because, in the presence of diffusion, communities
with high biomass will spread more of themselves to neigh-
boring sites in the meta-community. Growth rate is how
quickly a local site’s biomass will grow given the current
state of the community. It is perhaps the most direct fitness
proxy, as it is essentially a measurement of how fast the com-
munity can copy itself. Heredity is calculated by placing the

species at each local site into an empty meta-community free
of competition. Heredity is then measured as the similarity
between the originally seeded community and its descen-
dants that spread across the empty meta-community, where
similarity is the Euclidean distance between the two com-
munities. Heredity is not a direct fitness proxy, but some
level of heritability is needed for true self-replication. Inva-
sion ability is the speed at which a community can traverse
empty local sites while maintaining its composition. Inva-
sion ability is another fairly direct metric of the community’s
ability to replicate itself. Lastly, resilience is how resistant
a community is to an invasion (addition of a new species)
that would cause it to shift to a different stable community
composition, where a stable community composition is one
in which the present species could coexist permanently in
the absence of perturbations. Like heredity, resilience is not
a direct fitness measure, but is likely a necessary feature for
continued existence in our system.

Since major transitions are generally understood to be
rare, there is a somewhat high burden of proof associated
with identifying them. Consequently, we want to err on
the side of under-counting the number of major transitions
rather than over-counting them. Thus, our null hypothesis
is that no adaptive dynamics are present. If there are no
community-level adaptive dynamics, then the only dynam-
ics that should be present are purely ecological community
assembly processes. To identify community-level adaptive
dynamics (as we would expect to see in a major transition),
we determine whether each of the fitness proxies are in-
creasing beyond the extent expected under purely ecologi-
cal dynamics. We create two models: one model predicting
the expected dynamics if the changes in community com-
positions are governed by purely ecological forces and the
other model predicting the expected dynamics if the changes
are governed by purely community-level adaptive dynamics.
Using a maximum likelihood approach, we compare the re-
sults of each run of our artificial ecology to these models and
identify which model is more likely to have produced the ob-
served results. The models are built as directed graphs with
one (the community assembly graph) describing ecological
dynamics and five (the fitness landscapes) describing adap-
tive dynamics under each of the fitness proxies. Ultimately,
this process yields five measures of adaptation calculated
based on the discrepancy between the community assem-
bly graph prediction and each of the five fitness landscape
predictions. A high probability of adaptation for any given
score is indicative of adaptive dynamics working to maxi-
mize that fitness proxy, even if the other adaptation scores
have low probabilities.

A community assembly graph contains nodes represent-
ing all stable communities that can theoretically exist and the
possible transitions between them (Hang-Kwang and Pimm,
1993; Serván and Allesina, 2021). Nodes in our assembly
graph represent a single community composition out of the
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2n possible community compositions, where n is the num-
ber of species. Only stable community compositions are in-
cluded in the graph. Edges between nodes represent pos-
sible invasions that could cause one community composi-
tion to transition to another. If the meta-community is being
governed by purely ecological dynamics, it should behave
like a random walk on the community assembly graph and
eventually be populated only by community compositions
that correspond to sink nodes (assuming the graph has sink
nodes). Sink nodes are those which have an out degree of
zero, meaning that they cannot be stably invaded. In some
cases, the assembly graph has no sink nodes because there
are no stable communities that are incapable of being in-
vaded. In this case, graphs usually contain some basin of
attraction that we would expect a random walk to ultimately
conclude in. For example, a subset of nodes might contain
only out-transitions amongst themselves. The five fitness
landscape graphs are defined similarly to the community as-
sembly graph, except they have an additional rule: a tran-
sition cannot occur from a node of higher community-level
fitness to a node of lower community-level fitness. An ex-
ample community assembly graph is shown in Figure 2.

To determine whether our results are best explained by
ecological or adaptive dynamics, we determine whether sta-
ble community compositions present at the end of a run of
the artificial ecology are more likely to be reached by a ran-
dom walk on each of the fitness graphs or by a random walk
on the assembly graph. We quantify the probability of a
random walk ending up on a given node by calculating the
PageRank (Page et al., 1999) of the nodes in each graph.
The likelihood of each individual stable community compo-
sition being present under ecological or adaptive dynamics
is given by the corresponding node’s PageRank in the cor-
responding graph. The likelihood that observed results are
primarily due to ecological dynamics, L(ecological), is the
product of the community assembly graph’s PageRanks for
each stable community composition present at the end of
a run. Similarly, the likelihood that the results are primar-
ily due to adaptive dynamics according to each measure of
adaptation, L(adaptive), is the product of the corresponding
fitness graph’s PageRanks for each stable community com-
position present. Formally, the adaptation score for a given
fitness measure is the likelihood ratio:

Q i=n
i=0 (PageRankF(communityi ))Q i=n
i=0 (PageRankA(communityi ))

where n is the number of stable community composi-
tions, PageRankA is the community composition’s PageR-
ank score on the assembly graph, and PageRankF is the com-
munity composition’s PageRank score on the given fitness
landscape graph. Likelihood ratios greater than one suggest
that our results are more likely under purely adaptive dynam-
ics than under purely ecological dynamics. We describe the
interaction matrices of these runs as “transitionable”, as they

can produce communities that selection is capable of acting
on under right combination of abiotic parameters, and so are
likely able to foster an egalitarian major transition similar to
the origin of life. We hypothesize that they also foster other
egalitarian major transitions, but further research is neces-
sary to test this hypothesis.

Matrix Generation Schemes
In order to identify interaction matrices that lead to greater
rates of transitionability, we employ three matrix generation
schemes and also test real-world networks. Testing different
matrix generation schemes allows us to see how different
matrix properties, both in terms of topology and in terms of
interaction strength, affect adaptive dynamics in our artifi-
cial ecology. It also allows us to explore different matrices
systematically, which would not be tractable through enu-
meration due to the large parameter space of the matrices.
Interaction matrices contain N species consist of N 2 ele-
ments, each with a continuous value in the range[−1, 1]. We
used N = 9 for our generated matrices, although some of
the real-world matrices were larger. Furthermore, the three
abiotic parameters diffusion, seeding, and clear rate also af-
fect the presence of adaptive dynamics, so each matrix gen-
eration scheme must be tested with differing abiotic param-
eters. To do so we rigorously sample the parameter space
(i.e. the matrix generation parameters in combination with
the abiotic parameters) of each matrix generation scheme us-
ing latin hypercube sampling (McKay et al., 2000). This ap-
proach tests a representative sample of the parameter space
without conducting an expensive exhaustive search. Previ-
ously, we utilized evolutionary computation to explore the
parameter space of one matrix generation scheme (plus abi-
otic parameters) to find local regions of adaptive dynamics
(Foreback et al., 2023b). We run the artificial ecology on
50, 000samples from the parameter space over ten repli-
cates, each with a different random seed, ensuring there are
ten unique matrices from each sampled part of the land-
scape.

Real World We investigate whether real-world interaction
matrices exhibit transitionability within the artificial ecology
when combined with the right abiotic parameters by utiliz-
ing the Mangal database (Poisot et al., 2016). The Man-
gal database serializes ecological networks from across the
world into a consistent format for accessible and efficient
analysis. We chose to use all dietary composition matri-
ces with less than twenty species 1, a total of four unique
networks. Mangal’s dietary matrices by default have inter-
actions directed from predator to prey species. The weight
of the interaction indicates the percent of the predator’s diet
that the prey comprises. As this direction is the opposite
of what our system expects, we switch the direction of the

1This limitation was necessary due to the exponential scaling of
the size of the community assembly graph.
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Matrix Scheme Biomass Growth Rate Heredity Invasion Ability Resilience
Mangal 0.22 0.06 0.22 0.05 0.08

Klemm-Eguı́luz + LFR 0.27 0.25 0.02 0.03 0.20
Klemm-Eguı́luz + Random 0.22 0.20 0.05 0.02 0.22

Motifs 0.19 0.17 0.03 0.02 0.22
Random 0.20 0.20 0.03 0.03 0.18

Table 1: Proportion of transitionable runs for each generation scheme.

Figure 3: The dietary matrices analyzed. Negative interac-
tions are randomized. Labels show Mangal network IDs.

interaction so it goes from prey to predator, indicating how
much the prey species positively affects the predator species.
We add negative interactions from the predator species to the
prey species for predation and herbivory interaction types.
Negative interactions are not added for the other two in-
teraction types present in the dietary matrices: unspecified
and detritivore. Because we do not know the strength of the
predator’s effect on the prey, each dietary matrix is repli-
cated five times with different random weights for these in-
teractions drawn from a normal distribution centered on the
original prey-predator interaction strength with a standard
deviation of 0.1. One of the five replicated matrices for
each of the four dietary composition networks are shown in
Figure 3, labeled with their Mangal network ID. By repli-
cating matrices with different negative interaction strengths
we can study the effect of the strength of the predator’s in-
teraction on the prey. Each of the replicated matrices are
run through the artificial ecology with combinations of the
three abiotic parameters sampled from a representative set
of values [0.001, 0.333, 0.666, 0.999]. As we have four in-
teraction matrices each replicated five times on 34 com-
binations of abiotic parameters, this amounts to a total of

4 × 5 × 64 = 1, 280runs of the artificial ecology.

Klemm-Eguı́luz We generate interaction matrix topolo-
gies using the Klemm-Egu ı́luz network generation scheme
(Klemm and Eguiluz, 2002). Weights are set using two dif-
ferent methods: Lancichinetti–Fortunato–Radicchi (LFR)
(Lancichinetti and Fortunato, 2009) and random. Klemm-
Eguı́luz matrices are scale-free networks with small world
behavior as they hold the following three properties com-
monly found in networks representing real-world systems:
a small shortest average path length, a large clustering co-
efficient, and a scale-free degree distribution (Klemm and
Eguiluz, 2002). Real-world ecological networks may or may
not hold these properties, as discussed in the background
section, but we leave it to future work to explore how de-
viating from these properties affects the artificial ecology.
Klemm-Eguı́luz matrices are generated by initially creating
a clique of a given size m, called the active nodes, and se-
quentially connecting the remaining nodes in a preferential
attachment process. Each remaining node is connected to
either one of the active nodes or a non-active node with
probability µ. Once connected, the node becomes active and
another active node is deactivated, where active nodes with
lower degrees are more likely to be deactivated.

Weights are assigned to Klemm-Egu ı́luz matrices using
LFR’s directed graph weight-setting algorithm,originally
designed to generate benchmark graphs for testing com-
munity detection algorithms (Lancichinetti and Fortunato,
2009). The weight-setting algorithm takes in an existing
matrix structure, community memberships of each node i,
a parameter β controlling the sum of the edge weights of
each node, and a parameter µw controlling the sum of edge
weights between nodes in the same communities. Each node
has a power-law relation si = kβ

i between its sum of edge
weights si and its sum of in and out degrees ki . This prop-
erty is thought to be desirable, as a power-law relation be-
tween si and ki has been observed in networks representing
real-world systems (Barrat et al., 2004). The sum of edge
weights between nodes within the same communities is set
to s(in)

i = (1 − µw)si and the sum of edge weights between
nodes of differing communities is set to s(out)

i = µwsi . To
apply LFR weight-setting to Klemm-Egu ı́luz matrices, we
consider the original active nodes a community and the re-
maining nodes another community. Min-max normalization
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is applied to the final edge weights to keep them in the range
[0, 1]. We set a proportion pin of the weights between nodes
in the same community as negative and a different propor-
tion pout of the weights between nodes in differing commu-
nities as negative. There are six matrix parameters for this
generation scheme: m, µ, β, µw , pin , and pout .

As an additional matrix generation scheme, Klemm-
Eguı́luz matrix weights are set randomly in order to explore
how beneficial LFR weights are. Random weights are drawn
from a uniform distribution in range [−1, 1]. This scheme
has two matrix parameters: m and µ.

Motifs We generate motif-based interaction matrices
based on the motifs outlined in Losapio et al. (2021). Cer-
tain three-species motifs have been found to appear in eco-
logical networks with differing frequency than expected by
chance (Delmas et al., 2019), indicating that motifs may be
an ecologically significant aspect of real-world interaction
matrices. Losapio et al. (2021) explored 13motifs found
in alpine plant community ecological networks and found
that three motifs representing competition between facil-
itated species or facilitation between inferior competitors
were over-represented in the ecological networks. We create
interaction matrices from the defined motifs by adding a mo-
tif to each three-species block in the interaction matrix, for a
total of nine motifs in each nine species interaction matrix.
Motifs are drawn with replacement from a pool including a
motif consisting of all zeros. Motifs can be set with low,
medium, or high interaction strengths; the strength of the in-
teractions in the motifs is a random value chosen from the
range [0, 0.33], [0.33, 0.66]or [0.66, 1]respectively, depend-
ing on the selected strength category. There are eighteen ma-
trix parameters for the motif scheme: nine controlling which
motif goes in each of the three species blocks and nine con-
trolling the strength of each motif.

Random As a control, we also test random interaction ma-
trices. Similar to the above schemes, we create100, 000ma-
trices with nine species, each with random abiotic parame-
ters. The random matrices have a parameter that controls
the probability that each possible edge has a nonzero weight
drawn from a uniform distribution in range [−1, 1].

Results and Discussion
The proportion of runs that had transitionable matrices for
each matrix generation scheme is shown in Figure 1. The
Klemm-Eguı́luz + LFR generation scheme had the high-
est proportion of transitionable matrices in four out of the
five fitness measures, while the other generation schemes all
performed similarly across fitness measures. The Klemm-
Eguı́luz + LFR matrices have the greatest control of interac-
tion strengths over all other generation schemes, as they had
power-law relation between the sum of edge weights and
node degree while all other schemes had strengths set semi-

Figure 4: A barplot showing the count of likely biomass
transitionable matrices for each Mangal matrix, colored by
replicate. Each replicate had unique negative interactions, so
the variation in results showing likely transitionable biomass
dynamics within the same matrix structure implies that inter-
action strengths have a substantial effect.

randomly. Existing literature on interaction matrices fo-
cuses more on the structure of networks rather than weights,
but Klemm-Eguı́luz + LFR being able to find more tran-
sitionable matrices in most adaptation measurements than
Klemm-Eguı́luz + random implies that non-random interac-
tion strengths may be important for finding transitionable
matrices. Further evidence for the importance of interaction
strengths can be seen by examining the Mangal results.

Each of the four Mangal matrices were replicated five
times with random negative weights and each of those five
were run through the artificial ecology with 64 different
combinations of abiotic parameters. We find that the nega-
tive interaction strengths are an important aspect of whether
a given matrix is transitionable or not. Even though each of
the five replicates had the same underlying structure, the pro-
portion of their runs that were transitionable varied based on
the strengths of the negative weights (see Figure 4). We ob-
served this dynamic for the other four adaptation measures
as well. Whether or not a given replicate Mangal matrix is
transitionable does not correlate with how often the negative
weight aij is larger than the respective positive weight aji .
Instead it appears to depend on the specific placement of the
stronger negative weight; the matrix may be less likely to
be transitionable if the negative interaction is preventing key
species from coexisting. Furthermore, the fact that Mangal
matrix 89 had a majority of its replicates transitionable while
the other Mangal matrices did not suggests that there are
properties of network structure important for transitionabil-
ity that go beyond just exhibiting real-world structure. This
idea is further supported by Mangal matrices not having the
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highest proportion of transitionable matrices. Another inter-
esting aspect of the Mangal results is that they had by far the
highest proportion of transitionable heredity results and the
lowest proportion of transitionable growth rate results com-
pared to the other matrix generation schemes. Furthermore,
all of the transitionable biomass results were also transition-
able in heredity which did not happen in the other schemes.

The distribution of adaptation scores for biomass, hered-
ity, and invasion ability are shown in Figure 5. While
Klemm-Eguı́luz + LFR matrices had the largest proportion
of results that are more likely than not to be transitionable,
the likelihood of those results actually being transitionable
was lower than for the other generation schemes. On the
other hand, while Mangal did not have the highest propor-
tion of transitionable matrices, among those that were more
likely than not to be transitionable it consistently had the
highest likelihood of transitionability. According to a set of
Kruskal-Wallis Tests (Kruskal and Wallis, 1952) (p < .05
for all fitness metrics) with followup pairwise Wilcoxon
rank-sum tests (Mann and Whitney, 1947) with a Bonfer-
roni correction for multiple comparisons (Dunn, 1961), the
medians of each score of each matrix scheme were signifi-
cantly different from each other (p < 0.005, the Bonferroni-
corrected significance level).

Conclusion
We find that instances of transitionability are likely to occur
in all adaptation measurements across all matrix schemes.
The Klemm-Eguı́luz + LFR matrices, which has the great-
est control over the interaction strengths, had the highest
proportion of transitionable results. Interestingly, the real-
world matrices, although not substantially more likely to
be transitionable than randomly-generated matrices, had the
highest likelihoods of transitionability among those matri-
ces that were transitionable. Note that these findings do
not imply the communities these networks were measured
in are undergoing major transitions, only that they might un-
der the right conditions. Our results suggest that systematic
weights and non-random structure in interaction matrices in-
crease the probability that they foster community-level adap-
tation. For future work we plan to identify specific proper-
ties of networks that promote transitionability across gener-
ation schemes. We will analyze more generation schemes
and real-world networks, including bipartite ones.

Acknowledgements
We thank David E. Smith and the Michigan State University
ECODE lab for feedback on the ideas in this paper. This
material is based upon work supported by the National Sci-
ence Foundation under Grant No. 2218818. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

Figure 5: Boxplots of transitionable adaptation scores for
biomass, heredity, and invasion ability (cut off at 1010).
Growth rate and resilience (not shown) are similar to
biomass.
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