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Abstract

The problem of identifying conditions that enable major evo-
lutionary transitions, in which distinct units come together to
form a new higher level unit, is a complex and difficult topic
spanning many disciplines. Here, we approach this prob-
lem from the perspective of the origin of life, which allows
us to make the simplifying assumption that the lower-level
units are not also evolving. This assumption lets us focus
on identifying environmental factors that promote egalitar-
ian major transitions in general and the origin of life specif-
ically. To study this question, we build a simple artificial
ecology model. We quantify major-transition-like dynamics
using a maximum likelihood approach and a set of null mod-
els predicting the behavior of our system under various dy-
namics. Ultimately, we find that, even in a maximally simple
artificial ecology model, we are able to observe evidence of
community-level selection and thus the beginnings of a major
evolutionary transition. The regions of parameter space that
promote community-level selection vary based on species in-
teractions but we observe consistent trends.

Introduction

From the unification of prokaryotic cells to form the first
eukaryotes to the evolution of eusocial insects, major transi-
tions have played a vital role in the complexification of life
on Earth (Smith and Szathmary, 1997; Herron, 2021). A ma-
jor transition occurs when a new biological unit of organiza-
tion begins acting as an evolutionary individual. Indeed, the
origin of life itself can be thought of as a major transition,
in which an ecological community (composed of interacting
autocatalytic chemical cycles (Smith and Szathmary, 1997;
Queller, 1997)) transitioned into a self-replicating unit. This
raises a general question: what factors predispose an eco-
logical community to become an emergent individual rather
than merely a sum of its component species? In subsequent
major transitions, the formation of a higher-level unit likely
involved evolution of the species that combined to form a

higher-level unit. However, based on the hypothesis that pre-

biotic chemical dynamics were purely ecological, such co-
evolution would have been impossible prior to the origin of
life. Thus, the first major transition must have been achieved

by only two factors working together: 1) the dynamics of
the abiotic environment, and 2) the properties of the (non-
evolving) ecological community. Here, we will attempt to
understand the abiotic conditions that promote a transition
from ecological to adaptive dynamics; for an investigation
of the properties of the ecological community, see Leither
et al. (2023).

The role of autocatalytic cycles, in which the products of
a chemical reaction promote their own formation, has long
been emphasized in studies of the origin of life (Kauffman,
1995). It has been shown that these autocatalytic cycles can
emerge even at only moderate levels of catalysis (Hordijk
et al., 2010) or even without any explicit catalysis as a re-
sult of the topology of chemical reaction networks (Blokhuis
et al., 2020; Peng et al., 2022). While significant work has
focused on individual autocatalytic cycles, less is known
about the ecological dynamics of communities of interact-
ing autocatalytic cycles. It has been shown that pairs of au-
tocatalytic cycles can interact similarly to pairs of biological
species, via competition, predation/parasitism, mutualism,
etc. (Peng et al., 2020). It has also been shown that chemi-
cal ecosystems can manifest dynamics similar to ecological
succession (Peng et al., 2023).

This perspective suggests that, rather than explicitly sim-
ulating complex chemical reaction networks, we might be
able to get a handle on the first major transition at the ori-
gin of life, by focusing strictly on the ecological dynamics
among pairs of autocatalytic cycles. In addition to elucidat-
ing the origin of life, such an abstract ecological approach
may allow us to draw general conclusions about the condi-
tions necessary to promote major transitions as a whole.

Major transitions can be split into two main categories,
egalitarian major transitions, and fraternal major transitions.
The difference comes from how the pre-transition units are
related - in egalitarian transitions these units are unlike,
while in fraternal transitions they are derived from the same
parental unit (Queller, 1997). While significant progress has
been made in recent years towards understanding fraternal
major transitions (Moreno and Ofria, 2019; Goldsby et al.,
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2020) the origin of life would likely have been an egalitar-
ian major transition since parent-offspring pairs would not
yet have existed.

Studying major transitions is difficult due to their slow
speed of occurrence and rarity in nature.  Digital systems
provide a unique advantage in that experiments are fast, re-
peatable, inexpensive, and provide perfect information. In-
vestigating major transitions in computational systems has
already proven valuable for fraternal transitions (Moreno
and Ofria, 2019; Goldsby et al., 2020). Here, we begin the
process of doing the same for egalitarian major transitions,
specifically those modelled after the origin of life.

Many abiotic conditions are hypothesized to have been
important in facilitating the origin of  life, most notably
the presence of spatial structure and/or compartmentaliza-
tion (Higgs and Lehman, 2015). Fundamentally, for such
a transition to have happened, there must have been some
factor that gave some kind of advantage to local commu-
nities that were jointly successful. Many properties of a
world could create this circumstance, but here we attempt
to bring it about with the simplest environment possible.
Thus, we conduct this first round of experiments in a simple
meta-community model governed by Lotka-Volterra dynam-
ics (Malcai et al., 2002; Leibold and Chase, 2017). In this
model, diffusion from locations with high biomass causes
communities that are collectively capable of rapid growth to
co-propagate to neighboring communities.

Methods

In order to examine egalitarian major transitions, we have
constructed an artificial ecological simulation. All code used
for this project is open source (Foreback et al., 2023a). This
artificial ecology simulates the growth of different species
within a world over a certain period of time. While many ar-
tificial life simulations define individuals that have discrete
life and reproductive cycles, we do not. Our species are de-
fined only by their interactions with each other - one indi-
vidual is no different from another individual of the same
species. Groups of these species make up what we call
communities. Each community is a unique combination of
species where only the presence or absence of the species

is considered, with a species being present if it exists at any
level in the community regardless of abundance. This def-
inition results in 27 possible communities, where n is the
number of species in the world.

Interactions among species are controlled by a square,
non-symmetric community interaction matrix. This matrix
contains values for every possible species interaction and is
of size N X nEach species has a row, which represents how
other species impact it, and a column, which represents its
effects on other species. The diagonal encodes the species’
intrinsic growth rate. The matrix is non-symmetric, as in-
teractions do not need to be equivalent in both directions
- if species A promotes the growth of species B, species
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Figure 1: An example world (top) and interaction matrix
(bottom). Each position in the world has a population count
for each species 0-8. In this world, there are two similar
communities that dominate. The first contains species 1, 3,
and 5, and the second contains only species 1 and 5. The
former community does not completely dominate the world
because species 3 represses itself, and will eventually drive
itself to extinction if seeded into a cell without other species
that support it. The darker the color in the cell, the more
abundant that species is.
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B could be neutral or even detrimental to the growth of
species A. The values within the matrix are encoded as
floating point values in the range of [—1, 1The more posi-
tive the value, the more beneficial the interaction for the row
species; negative values encode detrimental effects on the
row species. A value near zero means that the row species
is minimally impacted by the species represented by the col-
umn. The growth of any particular species is determined
by its intrinsic rate of growth, adjusted based on the local
abundance of all other species, weighted by their beneficial
or detrimental interactions. Mathematically, the growth of a
given species Min a single cell for one time-step is:

X
M1 = Silmi
i=0

where Sis a vector containing an ordered count of all species
in that cell at time t, and | is the interaction matrix.

The world is a square grid of cells that synchronously up-
dates species counts a certain number of times before termi-
nating. Cells on the edge of the world will wrap around to
the opposite side (i.e. the world is toroidal). An example
visualization of the world can be seen in Figure 1. Each cell
tracks the number of each species contained within it and be-
gins completely empty. Species counts are tracked as con-
tinuous values, as is typical in generalized Lotka-Volterra
models. Every time step, the world updates according to the
current communities in it and their compositions. Within a
cell, individuals who have more positive interactions acting
on them than negative interactions will increase in number
over time. Similarly, individuals who have more negative
interactions in their cell will decrease in number, possibly
going locally extinct if their count reaches zero.

In addition to community interactions, three abiotic pa-
rameters can greatly change the developmental trajectory of
the world. First is the diffusion rate, which ranges from 0 to
1 and dictates how individuals can move through the world.
It controls the proportion of individuals in any given cell
that will leave that cell and go to one of the neighboring
cells. One quarter of this amount will diffuse in each direc-
tion. Varying the diffusion rate impacts how quickly species
can spread and dominate the world.  In addition to diffu-
sion, there is a probability that exactly one individual from
arandomly selected species will be added into any given
cell. The parameter that controls this probability is called
the seeding rate, and represents an event like immigration
from a global species pool. Varying the seeding rate can also
change which species dominate the world. For example, a
very high seeding rate will quickly introduce all species to
the world, driving out species that are commonly negatively
impacted before they have a chance to establish. ~ For the
purposes of this paper, we bound seeding within the range
[0, .1Finally, the clear rate dictates the probability that all
species in a cell will go extinct, and represents ecological
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Figure 2: A simple assembly graph for three species. Each
community composition is represented by a bit  string. A
one indicates the species in that position is present, a zero
indicates its absence. The sink node here represents all three
species coexisting. Since there is no invasion that can de-
stabilize this community, we expect the entire world to con-
verge to it over time.

disturbance. The clear rate is hypothesized to be important
because the resulting empty cells tend to be colonized by
diffusion of all species that are present in the neighboring
cells, which might allow compositions that sustain high to-
tal counts to (imperfectly) replicate into cleared neighbors.
The clear rate ranges from [0, 1]where 1 means that ev-
ery cell is cleared every time-step, and O means that cells
are never cleared. It is these abiotic parameters that we are
interested in investigating under different matrix structures,
in the hopes of determining whether some parameter ranges
promote community level adaptation.

Measuring Adaptation

One approach to identifying major evolutionary transitions
is to observe the extent to which fitness is increasing over
time across different levels of biological organization (e.g.
the “individual” vs. the “community”) . Although the theory
of multi-level selection suggests that we may see increases at
multiple levels, the level at which fitness increases the most
can be seen as the level that is acting most like a Darwinian
individual (Ratcliff et al., 2015). In the context of our sys-
tem, if that level is the level of the community, then we have
evidence of community-level selection.

A downside to this approach is that it requires being able
to quantify fitness, a difficult task, especially when the “in-
dividuals” that fitness is acting on change, as they do during
a major transition. Our approach is to deploy five different
measures of adaptation, each of which could be seen as a fit-
ness proxy. The metrics are calculated for every cell in the
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world and are as follows:

Biomass
The total number of individuals present in the cell.

Growth Rate
How quickly the total biomass in the cell will grow
given the current composition and interactions.

Heredity
The ability of a community to convert
empty cells to a composition similar to it.

formerly

Invasion Ability
How quickly a community can traverse an empty
world without seeding or clearing.

Resilience
How resistant the current community is to an inva-
sion.

For the purposes of this work, we focus only on biomass and
growth rate as our fitness proxies for two reasons: 1) these
are the properties that selection appears to be acting most
strongly on in our system, and 2) we have previously found
that the interaction matrices we are using in this work result
in adaptation to maximize these properties (Foreback et al.,
2023b).

Increases in these measures over time indicate that an in-
crease in community fitness is occurring, but this does not
necessarily mean that community-level adaptation is occur-
ring. Other ecological dynamics, such as community assem-
bly or succession, could be causing increases in fitness by
coincidence. To identify increases in fitness that are most
likely the result of community-level adaptive dynamics, we
need to compare the expected behavior of the system under
ecological vs. adaptive dynamics, as summarized in state-
transition graphs describing the possible behavior of a given
cell in the world. The graphs are directed, with each node
representing a stable community, and each edge represent-
ing a transition between stable communities. We define sta-
ble communities as those that, when left unperturbed, will
not drive any of their member species to extinction. In order
for a community composed of N species to be considered
stable, when that community is isolated from the stochas-
tic processes of the world (mainly diffusion and seeding) all
N species must be able to coexist at some level. If any are
driven extinct over time, the community is not stable.

We construct two types of graph for each run of the sim-
ulation, one for the case of pure community assembly, and
one representing adaptive dynamics optimizing for our mea-
sures of fitness. The former is called the community as-
sembly graph, and contains all stable communities that can
exist in the current world. We can determine which transi-
tions between stable communities are possible by simulating
the effect that possible invasions have on stable communi-
ties. If an invasion by a particular species causes a stable

community to transition to another, an edge is added from
the starting community to the ending community.  Nodes
that have an out degree of zero represent stable communi-
ties that cannot be invaded by any species, and are called
sink nodes. Under pure community assembly dynamics, the
development of communities would be equivalent to a ran-
dom walk on this graph. Over a long enough time frame,
we would expect the communities in the world to converge
only to communities represented by sink nodes. There are
scenarios in which this graph will have no sink nodes, 1i.e.
there are no community compositions that are resilient to all
invasions. In this case it is possible for a subset of nodes to
develop that act collectively as sink nodes, as they only have
transitions to each other. An example assembly graph can
be seen in Figure 2.

The second type of  graph, called a fitness landscape
graph, is constructed from the assembly graph. It has
the same structure as the community assembly graph, with
nodes for stable communities and edges for possible transi-
tions between communities. However, when calculating the
fitness landscape graphs, we remove edges that lead from
a community with higher fitness to one with lower fitness,
as these transitions should be unlikely under purely adaptive
dynamics. A separate fitness graph is created for each fitness
proxy used, in this case yielding a biomass fitness landscape
graph and a growth rate fitness landscape graph. As an ex-
ample, in the growth rate fitness graph, a community compo-
sition that could be invaded and stably transition to another
community would only retain its edge if the new community
had the same or greater growth rate than the original commu-
nity. Thus, sink nodes in the fitness landscape graph repre-
sent local fitness optima. Note that these fitness landscapes
are a slight oversimplification of actual adaptive dynamics
(in which deleterious mutations are possible).

We can utilize these two types of graphs — fitness and as-
sembly — to understand what we would expect to happen
to the world on average under different dynamics. A ran-
dom walk along the assembly graph would be our expecta-
tion under the scenario in which ecological succession is the
main driving force. A random walk along a fitness graph,
however, represents a world in which community-level se-
lection on that given fitness proxy was the primary dynamic
(i.e. adaptive dynamics). Since both ecological and adap-
tive dynamics are likely play some role, our goal with this
analysis is to determine which factor is dominating the dy-
namics we observe. To do so, we examine the final state of
the world and record the distribution of community compo-
sitions. If this set of communities is more likely to result
from a random walk on one of the fitness graphs than on
the community assembly graph, then we have evidence of
adaptive dynamics.

To calculate the probability of arriving at different nodes
via random walks on our graphs we utilize the PageRank
algorithm and a maximum likelihood statistical —approach.
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Figure 3: Structures for the four classes of matrices found to promote adaptive dynamics. Note that the genetic algorithm used
to generate these structures did not allow for a species to have an intrinsic growth rate, which is why the diagonals are empty.

Each node on the graph, and therefore each stable commu-
nity that could possibly arise in the world, will be given
a PageRank score that reflects the probability a simulated
run would end up there over a long period of time. These
PageRank values can then be used along with the final world
state to calculate the likelihood that we would have observed
the resulting set of communities under either assembly dy-
namics (the community assembly graph PageRank scores)
or adaptive dynamics (fitness graph PageRank scores). The
likelihood of community composition under community as-
sembly is given by the following equation:

X
L(assembly) =
i=0

pi (P ageRank(community))
Similarly for adaptive dynamics:

X
L(adaptive) =
i=0

pi (P ageRank(community))

Here n is the number of final communities and p is what
proportion that final community was of the whole world.
P ageRank is the given community’s PageRank score in
the given fitness graph, and P ageRank is the given com-
munity’s PageRank score in the assembly graph. To aggre-
gate these score into a single score for each fitness measure,
we take the difference between them,

AdaptivenessScore = L(adaptive) — L(assembly)

We use the difference rather than the ratio, which is more
commonly used for likelihoods, for ease of data visualiza-
tion (the likelihoods tend to create extreme values).  This
leaves us with two adaptability scores, one for each used fit-
ness proxy. Since any of the fitness proxies could potentially
represent the characteristics being acted on by community
level selection, a high value of either of the scores is poten-
tial evidence of adaptive dynamics.

Exploring adaptive worlds

Choosing which species interaction matrices to explore is
an important decision, as the conditions under which adap-

tive dynamics occur are largely unknown. To constrain our
search space to a reasonable size, we explore worlds which
have nine species. As a result we have2® possible communi-
ties that can form, only some of which are stable. A commu-
nity interaction matrix for nine species will have 81 entries
of continuous values, which makes searching for the combi-
nations that manifest community adaptation using enumer-
ation computationally expensive. When combined with the
fact that the three abiotic parameters may change the results
of the world under any given matrix, there is a vast parame-
ter space to consider, even when constrained to 9 species.

In order to limit our search to a feasible space, we ex-
amine the effects of the abiotic parameters on four different
classes of matrices that we previously found to display adap-
tive dynamics, shown in Figure 3. These matrix classes were
discovered via a genetic algorithm based search of the pa-
rameter space for conditions that promote adaptive dynam-
ics (Foreback et al., 2023b). While that work identified some
parameter ranges that promote adaptive dynamics for these
matrices, it did not conduct a systematic analysis on how
the abiotic parameters influence the emergence of adaptive
dynamics. Here, we perform an extensive search of param-
eter combinations for all four matrix structures by running
simulations for each condition and examining the final set
of communities that develop. The examined matrix classes
are known to perform well for scores of biomass and growth
rate.

Results
Proof-of-concept experiment

To confirm that our adaptiveness metrics are capturing the
properties we want, we performed a proof-of-concept ex-
periment with diffusion set to 0. Worlds in which there is no
diffusion represent an extreme scenario where species are
unable to traverse the world. Consequently, each cell in the
meta-community should be governed purely by ecological
assembly dynamics, as the only processes affecting species
in a cell are seeding and clearing events.

We can also generate worlds governed purely by adaptive
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Figure 4: Heatmaps of adaptiveness scores when diffusion
is set to 0. Top: A world in which group level reproduction
was disabled. Bottom: A world in which group level repro-
duction was enabled.

dynamics by introducing the possibility for group-level re-
production. Under this condition, once the total biomass of
a cell reaches a certain threshold, we seed all of that cell’s
member species into an adjacent cell. In the absence of
diffusion, community-level reproduction is the only way to
spread to new cells, meaning that each cell should effectively
function as a Darwinian individual.

We tested both of these conditions. ~ While we did see
some communities classified as ‘“‘adaptive” under purely
ecological assembly dynamics, we saw dramatically higher
adaptiveness under the purely adaptive condition. These re-
sults illustrate that, while our metrics are imperfect due to
their probabilistic nature, by and large they do capture the
dynamics of interest (see Figure 4).

Parameter space exploration

To examine the results of different abiotic parameters on
each class of matrix systematically, we run our model over
the full range of possible values. We increment diffusion
and clearing probability by .1, and seeding by .01, and test
all possible combinations for our matrix classes. This set-
up results in 110 combinations of diffusion and seeding for
each increment of clear probability and a total of 1210 com-
binations for each matrix class. Seeding values of zero are
not included in the analysis, as worlds that are never seeded
cannot develop communities. For each permutation of pa-
rameters, we run five simulations and average their scores,
in order to minimize the noise that is inherent in our simula-
tion.
All worlds that develop a set of communities with posi-

tive biomass and growth rate scores are potentially undergo-
ing major transitions, as the dynamics of those worlds were
more likely to be produced by community level adaptation
than by assembly dynamics. However, higher adaptiveness
scores are stronger evidence of adaptation. As such, we dif-
ferentiate between relatively high scores and scores that are
only slightly above zero. In general we see two dominant
communities under each matrix structure, one that is adap-
tive (with a score of greater than .1) and one that is non-
adaptive (with a score of zero or slightly negative). In some
worlds there is a spectrum of compositions that can develop
with communities that are similar, but not identical, vying
for control. Exactly which community dominates the world
depends on the world’s abiotic parameters. Below, we dis-
cuss the results for each matrix class in turn.

Class 1 Matrices

Class one matrices are characterized by their  large num-
bers of small magnitude weights, both in the positive and
negative direction. These small weights have implications
for ecological stability in modeled food web interaction net-
works and have been shown to promote long term commu-
nity stability McCann et al. (1998). Under conditions of high
seeding, low clearing, and diffusion of around .5, class 1 ma-
trices tend to result in the appearance of an adaptive com-
munity of four species. Adaptive communities developed
most often with a clear probability of zero: of the 110 possi-
ble parameter combinations for zero clear, 101 produced an
adaptive community. Adaptive communities occurred more
rarely for clearing values of .1 and .2, and almost never for
higher clearing values. These values of clear probability
were also associated with low values of diffusion, typically
Jdor.2.

Class 2 Matrices

Matrices of this class produce only one adaptive commu-
nity due to their strict structure. This adaptive community
is composed of species 8 and species 7 working together to
dominate all other species. All previous experiments under
this class contained the typical high seeding and low clear,
but also had low diffusion, less than .4 Our results show
that this matrix class is actually extremely resilient to many
different values of diffusion and seeding for clear values up
to .5 Of the 1210 possible parameter combinations, 600
produced the adaptive community. Of these, 392 occurred
for clearing values in the [0, .4tange. As expected, high
values of clear probability tended to produce low adaptation
in most scenarios; though some worlds with both very high
diffusion and seeding were able to occasionally produce an
adaptive community in high clearing values. Across all val-
ues of clear probability except zero, a diffusion of zero failed
to produce any adaptive communities.
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Adaptive scores for a class 1 matrix
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Class 3 Matrices

Similar to class 1, class 3 matrices have many weights, with
the difference being that class 3 matrices have a mix of
strongly positive and strongly negative interactions. These
matrices were previously associated with even lower diffu-
sion than class 2 matrices, tending toward values of less than
.2 We find that this class is actually capable of promoting
two different adaptive communities depending on the abiotic
parameters used. One community contains three species and
the other contains only two, with the former having a slightly
higher adaptive score than the latter.

In our experiments two worlds develop for this matrix
class, one in which the 3 species community completely
dominates, and one that contains a mix of the two species
and three species communities. The former turned out to
be far more common, emerging consistently for parameter
combinations up to a clear probability of .4. Contrary to pre-
vious results, low diffusion was not necessary for the adap-
tive community to occur, especially with low values of clear.
As expected, high clearing values failed to yield adaptive
communities, with near zero scores increasing in number as
clear probability increased.

Class 4 Matrices

Matrices of class 4 have few connections, that are typically
weak, with many species having no interaction at all. Pre-
vious work on this class indicated unique results for abiotic
parameters, namely high diffusion and seeding values along
the range [0, 1las opposed to the high seeding found in
other classes). Our search revealed that this matrix struc-
ture was actually very vulnerable to changes in clear.  Al-
most all of the observed adaptive communities develop for a
clear probability of zero, with all 110 possible combinations
for zero clear probability leading to adaptive communities,
while only 29 emerged for a clear probability of .1, and only
two more for all clearing values above that. These results in-
dicate that class 4 matrices are extremely dependant on very
low clearing values for the development of their adaptive
communities.

Discussion

There were some general patterns that emerged across ma-
trix classes. Most notably, a low clear probability was con-
sistently important for facilitating the development of adap-
tive communities across values of  diffusion and seeding.
This observation suggests that communities need adequate
time to develop within the world before being wiped out by
a clearing event. These results also suggest that frequently
disturbed environments may be unsuitable for major tran-
sitions to occur. Indeed, contrary to our initial hypothesis,
a non-zero clear probability does not appear to be neces-
sary for promoting adaptive dynamics. Note, however, that
it is possible that other interaction networks exist for which

a higher clear probability is necessary to promote adaptive
dynamics.

Contrary to previous results, high values of seeding were
not necessary for the development of adaptive communi-
ties with these matrix structures. As long as the world was
not cleared out too often relative to the seeding probability,
adaptive communities tended to develop for many different
combinations of diffusion and seeding. This finding seems
to suggest that, at least with these interaction matrices, dif-
fusion and seeding have less of an impact on the outcome of
the world than clear probability.

Conclusion

Some ecological interaction networks when examined in our
simple abiotic environment yield phenomena that resem-
ble major-transitions insofar as the dynamics are better ex-
plained by community-level adaptation than by purely eco-
logical dynamics. This suggests that we are indeed seeing
some level of community-level selection, and that certain
regions of parameter space are more likely to produce such
community-level selection. Contrary to our preliminary hy-
potheses, for the matrix classes examined here, adaption was
favored by lower values of clear; for example, even a clear
probability of zero produced dynamics consistent with adap-
tation under all matrix structures. Seeding and diffusion had
little impact except in a few cases where adaptation emerged
at higher clear probabilities.

In future work, we plan to more directly test whether these
conditions lead to major transitions. We will do so by 1)
allowing the interaction networks to evolve and observing
whether they evolve to favor more cooperation, and 2) al-
lowing species to evolve behaviors that harm the individual
but help the community. Ultimately, these results inform our
expectations about the circumstances under which the origin
of life could have occurred, as well as other circumstances
under which we would expect egalitarian major transitions
to occur.
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