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Abstract
This paper studies the problem of matching two complete graphs with edge weights correlated

through latent geometries, extending a recent line of research on random graph matching with
independent edge weights to geometric models. Specifically, given a random permutation π∗ on
[n] and n iid pairs of correlated Gaussian vectors {Xπ∗(i), Yi} in Rd with noise parameter σ, the
edge weights are given by Aij = κ(Xi, Xj) and Bij = κ(Yi, Yj) for some link function κ. The
goal is to recover the hidden vertex correspondence π∗ based on the observation of A and B.
We focus on the dot-product model with κ(x, y) = ⟨x, y⟩ and Euclidean distance model with
κ(x, y) = ∥x − y∥2, in the low-dimensional regime of d = o(log n) wherein the underlying
geometric structures are most evident. We derive an approximate maximum likelihood estimator,
which provably achieves, with high probability, perfect recovery of π∗ when σ = o(n−2/d) and
almost perfect recovery with a vanishing fraction of errors when σ = o(n−1/d). Furthermore,
these conditions are shown to be information-theoretically optimal even when the latent coordinates
{Xi} and {Yi} are observed, complementing the recent results of Dai et al. (2019) and Kunisky
and Niles-Weed (2022) in geometric models of the planted bipartite matching problem. As a side
discovery, we show that the celebrated spectral algorithm of Umeyama (1988) emerges as a further
approximation to the maximum likelihood in the geometric model.

1. Introduction

Graph matching (or network alignment) refers to finding the best vertex correspondence between
two graphs that maximizes the total number of common edges. While this problem, as an instance
of quadratic assignment problem, is computationally intractable in the worst case, significant head-
ways, both information-theoretic and algorithmic, have been achieved in the average-case analysis
under meaningful statistical models Cullina and Kiyavash (2016, 2017); Ding et al. (2021a); Barak
et al. (2019); Fan et al. (2019a,b); Hall and Massoulié (2020); Wu et al. (2021); Ganassali and Mas-
soulié (2020); Ganassali et al. (2022); Mao et al. (2021b,a). One of the most popular models is
the correlated Erdős-Rényi graph model Pedarsani and Grossglauser (2011), where both observed
graphs are Erdős-Rényi graphs with edges correlated through a latent vertex matching; more gener-
ally, in the correlated Wigner model, the observations are two weighted graph with correlated edge
weights (e.g. Gaussians Ding et al. (2021a); Dai et al. (2019); Fan et al. (2019a); Ganassali (2021)).

© 2022 H. Wang, Y. Wu, J. Xu & I. Yolou.



WANG WU XU YOLOU

Despite their simplicity, these models inspired a number of new algorithms that achieve strong per-
formance both theoretically and practically Ding et al. (2021a); Fan et al. (2019a,b); Ganassali and
Massoulié (2020); Ganassali et al. (2022); Mao et al. (2021b,a). Nevertheless, one of the major
limitations of models with independent edges is that they fail to capture graphs with spatial struc-
ture Armiti and Gertz (2014), such as those arising in computer vision datasets (e.g. mesh graphs
obtained by triangulating 3D shapes Lähner et al. (2016)). In contrast to Erdős-Rényi-style model
with iid edges, geometric graph models, such as random dot-product graphs and random geometric
graphs, take into account the latent geometry by embedding each node in a Euclidean space and de-
termines edge connection between two nodes by the proximity of their geographical location. While
the coordinates are typically assumed to be independent (e.g. Gaussians or uniform over spheres or
hypercubes), the edges or edge weights are now dependent. The main objective for the present paper
is to study graph matching in correlated geometric graph models, where the network correlation is
due to that of the latent coordinates.

1.1. Model

Given two point clouds {X1, . . . , Xn} and {Y1, . . . , Yn} in Rd, we construct two weighted graphs
on the vertex set [n] with weighted adjacency matrices A and B as follows. For each i, j, let

Aij
ind∼ W (·|Xi, Xj) and Bij

ind∼ W (·|Yi, Yj), for some probability transition kernel W . The
coordinates are correlated through a latent matching as follows: Consider a Gaussian model

Yi = Xπ∗(i) + σZi, i = 1, . . . , n,

where Xi, Zi’s are iid N (0, Id) vectors and π∗ is uniform on Sn, the set of all permutations on [n].
In matrix form, we have

Y = Π∗X + σZ, (1)

where X,Y, Z ∈ Rn×d are matrices whose rows are Xi’s, Yi’s and Zi’s respectively, Π∗ ∈ Sn

denotes the permutation matrix corresponding to π∗, and Sn is the collection of all permutation
matrices. Given the observation A and B, the goal is to recover the latent correspondence π∗.

Of particular interest are the following special cases:

• Dot-product model: The observations are complete graphs with pairwise inner products as
edge weights, namely, Aij = ⟨Xi, Xj⟩ and Bij = ⟨Yi, Yj⟩. As such, the weighted adjacency
matrices are A = XX⊤ and B = Y Y ⊤, both Wishart matrices. It is clear that from A and
B one can reconstruct X and Y respectively, each up to a global orthogonal transformation
on the rows. In this light, the model is also equivalent to the so-called Procrustes Matching
problem Maron et al. (2016); Dym and Lipman (2017); Grave et al. (2019), where Y in
(1) undergoes a further random orthogonal transformation – see Appendix A for a detailed
discussion.

• Distance model: The edge weights are pairwise squared distances Aij = ∥Xi − Xj∥2 and
Bij = ∥Xi − Xj∥2. This setting corresponds to the classical problem of multi-dimensional
scaling (MDS), where the goal is to reconstruct the coordinates (up to global shift and orthog-
onal transformation) from the distance data (cf. Borg and Groenen (2005)).

• Random Dot Product Graph (RDPG): In this model, the observed data are two graphs with ad-
jacency matrices A and B, where Aij

ind∼ Bern (κ(⟨Xi, Xj⟩)) and Bij
ind∼ Bern (κ(⟨Yi, Yj⟩))
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conditioned on X and Y , and κ : R → [0, 1] is some link function, e.g. κ(t) = e−t2/2. In this
way, we observe two instances of RDPG that are correlated through the underlying points and
the latent matching. See Athreya et al. (2017) for a recent survey on RDPG.

• Random Geometric Graph (RGG): Similar to RDPG, Aij
ind∼ Bern(κ(∥Xi − Xj∥)) con-

ditioned on X1, . . . , Xn for some link function κ : R+ → [0, 1] applied to the pairwise
distances. The second RGG instance B is constructed in the same way using Y1, . . . , Yn. A
simple example is κ(t) = 1{t≤r} for some threshold r > 0, where each pair of points within
distance r is connected Gilbert (1961); see the monograph Penrose (2003) for a comprehen-
sive discussion on RGG.

Linear assignment
model

Dot product
model

Distance
model

Random dot product
graph (RDPG)

Random geometric
graph (RGG)

Figure 1: Geometric matching models. Here arrows denote statistical ordering.

Let us mention that the model where the two point clouds are directly observed has been recently
studied by Dai et al. (2019, 2020) in the context of feature matching and independently by Kunisky
and Niles-Weed (2022) as a geometric model for the planted matching problem, extending the
previous work in Chertkov et al. (2010); Moharrami et al. (2021); Ding et al. (2021b) with iid
weights to a geometric (low-rank) setting. In this model, X and Y in (1) are observed and the
maximum likelihood estimator (MLE) of π∗ amounts to solving

max
Π∈Sn

⟨Y,ΠX⟩. (2)

which is a linear assignment (max-weight matching) problem on the weighted complete bipartite
graph with weight matrix Y X⊤. In the sequel we shall refer to this setting as the linear assignment
model, which we also study in this paper for the sake of proving impossibility results for the more
difficult graph matching problem, as the coordinates are latent and only pairwise information are
available.

Fig. 1.1 elucidates the logical connections between the aforementioned models. Among these,
linear assignment model is the most informative, followed by the dot product model and the distance
model, whose further stochastically degraded versions are RDPG and RGG, respectively. As a first
step towards understanding graph matching on geometric models, in this paper we study the case of
weighted complete graphs in the dot product and distance models.

1.2. Main results

By analyzing the MLE (2) in the stronger linear assignment model (1), Kunisky and Niles-Weed
(2022) identified a critical scaling of dimension d at log n:
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• In the low-dimensional regime of d ≪ log n, accurate reconstruction requires the noise level
σ to be vanishingly small. More precisely, with high probability, the MLE (2) recovers the
latent π∗ perfectly (resp. with a vanishing fraction of errors) provided that σ = o(n−2/d)
(resp. σ = o(n−1/d)).

• In the high-dimensional regime of d ≫ log n, it is possible for σ2 to be as large as d
(4+o(1)) logn .

Since the dependency between the edges weakens as the latent dimension increases,1 this is
consistent with the known results in the planted matching model with independent Gaussian
weights Ding et al. (2021b).2

In this paper we mostly focus on the low-dimensional setting as this is the regime where geometric
graph ensembles are structurally distinct from Erdős-Rényi graphs. Our main findings are two-fold:

1. The same reconstruction thresholds remain achievable even when the coordinates are latent
and only inner-product or distance data are accessible.

2. Furthermore, these thresholds cannot be improved even when the coordinates are observed.

To make these results precise, we start with the dot-product model with A = XX⊤ and B =
Y Y ⊤, and Y = Π∗X + σZ according to (1). In this case the MLE turns out to be much more
complicated than (2) for the linear assignment model. As shown in Appendix B, the MLE takes the
form

Π̂ML = arg max
Π∈Sn

∫
O(d)

dQ exp

(
⟨B1/2,ΠA1/2Q⟩

σ2

)
, (3)

where the integral is with respect to the Haar measure on the orthogonal group O(d), A1/2 ≜
UΛ1/2 ∈ Rn×d based on the SVD A = UΛU⊤, and similarly for B1/2. It is unclear whether the
above Haar integral has a closed-form solution,3 let alone how to optimize it over all permutations.
Next, we turn to its approximation.

As we will show later, in the low-dimensional case of d = o(log n), meaningful reconstruction
of the latent matching is information-theoretically impossible unless σ vanishes with n at a certain
speed. In the regime of small σ, Laplace’s method suggests that the predominant contribution to the
integral in (3) comes from the maximum ⟨B1/2,ΠA1/2Q⟩ over Q ∈ O(d). Using the dual form of
the nuclear norm ∥X∥∗ = maxQ∈O(d)⟨X,Q⟩, where ∥X∥∗ denotes the sum of all singular values
of X , we arrive at the following approximate MLE:

Π̂AML = arg max
Π∈Sn

∥(A1/2)⊤Π⊤B1/2∥∗. (4)

We stress that the above approximation to the MLE (3) is justified for the low-dimensional regime
where σ is small. In the high-dimensional (high-noise) case, the approximate MLE actually takes

1. For the Wishart matrix, it is known Jiang and Li (2015); Bubeck et al. (2016); Bubeck and Ganguly (2018) that
the total variation between the joint law of the off-diagonals and their iid Gaussian counterpart converges to zero
provided that d = ω(n3). Based on these results, Bubeck et al. (2016) further shows that high-dimensional RGG is
approximately Erdős-Rényi.

2. Analogously, to match two GOE matrices with correlation coefficient ρ, the sharp reconstruction threshold is at
ρ2 = (4+o(1)) logn

n
Ganassali (2021); Wu et al. (2021).

3. The integral in (3) can be reduced to computing
∫
dQ exp(⟨Λ, Q⟩) for a diagonal Λ, which, in principle, can be

evaluated by Taylor expansion and applying formulas for the joint moments of Q in (Matsumoto, 2013, Theorem
2.2).
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on the form of a quadratic assignment problem (QAP), which is the MLE for the well-studied iid
model Cullina and Kiyavash (2016); in the special case of the dot-product model, it amounts to
replacing the nuclear norm in (4) by the Frobenius norm. We postpone this discussion to Section 4.

To measure the accuracy of a given estimator π̂, we define

overlap(π̂, π) ≜
1

n
| {i ∈ [n] : π̂(i) = π(i)} |

as the fraction of nodes whose matching is correctly recovered. The following result identifies the
threshold at which the approximate MLE achieves perfect or almost perfect recovery.

Theorem 1 (Recovery guarantee of AML in the dot-product model) Assume the dot-product model
with d = o(log n). Let π̂AML be the approximate MLE defined in (4).

(i) If σ ≪ n−2/d, the estimator π̂AML achieves perfect recovery with high probability:

P {overlap(π̂AML, π
∗) = 1} = 1− o(1). (5)

(ii) If σ ≪ n−1/d, the estimator π̂AML achieves almost perfect recovery with high probability:

P {overlap(π̂AML, π
∗) ≥ 1− o(1)} = 1− o(1). (6)

A few remarks are in order:

• In fact we will show the following nonasymptotic estimate that implies (6): For all sufficiently
small ε, if σ−d > 16n22/ε, then overlap(π̂AML, π

∗) ≥ 1− ε with probability tending to one.

• The estimator (4) has previously appeared in the literature of Procrustes matching Grave et al.
(2019), albeit not as an approximation to the MLE in a generative model. See Appendix A
for a detailed discussion.

• Unlike linear assignment, it is unclear how to solve the optimization in (4) over permutations
efficiently. Nevertheless, for constant d we show that it is possible to find an approximate
solution in time that is polynomial in n that achieves the same statistical guarantee as in
Theorem 1. Indeed, note that (3) is equivalent to the double maximization

Π̂AML = arg max
Π∈Sn

max
Q∈O(d)

⟨B1/2,ΠA1/2Q⟩. (7)

Approximating the inner maximum over a suitable discretization of O(d), each maximization
over Π for fixed Q is a linear assignment problem, which can be solved in O(n3) time. In
Section 3, we provide a heuristic that shows (7) can be further approximated by the classi-
cal spectral algorithm of Umeyama Umeyama (1988) which is much faster in practice and
achieves good empirical performance. For d that grows with n, it is an open question to find a
polynomial-time algorithm that attains the (optimal, as we show next) threshold in Theorem 1.

Next, we proceed to the more difficult distance model, where Aij = ∥Xi − Xj∥2 and Bij =
∥Yi − Yj∥2. Deriving the exact MLE in this model appears to be challenging; instead, we apply the
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estimator (4) to an appropriately centered version of the data matrices. Let 1 ∈ Rn denotes the all-
one vector and define F = 1

n11
⊤. Then A = −2XX⊤+a1⊤+1a⊤ and B = −2Y Y ⊤+b1⊤+1b⊤,

where a = (∥Xi∥2) and b = (∥Yi∥2). Strictly speaking, the vectors a and b are correlated with the
ground truth π∗, since b can be viewed as a noisy version of Π∗a; however, we expect them to
inform very little about π∗ because such scalar-valued observations are highly sensitive to noise
(analogous to degree matching in correlated Erdős-Rényi graphs (Ding et al., 2021a, Section 1.3)).
As such, we ignore a and b by projecting A and B to the orthogonal complement of the vector 1.
Specifically, we compute, as commonly done in the MDS literature (see e.g. Shang et al. (2003); Oh
et al. (2010)),

Ã = −1

2
(I − F)A(I − F), B̃ = −1

2
(I − F)B(I − F). (8)

It is easy to verify that Ã = X̃X̃⊤ and B̃ = Ỹ Ỹ ⊤, where X̃ = (I − F)X and Ỹ = (I − F)Y
consist of centered coordinates X̃i = Xi − X̄ and Ỹi = Yi − Ȳ respectively, with X̄ = 1

n

∑n
i=1Xi

and Ȳ = 1
n

∑n
i=1 Yi. Overall, we have reduced the distance model to a dot product model where

the latent coordinates are now centered.
One can show that the MLE of Π∗ given the reduced data (Ã, B̃) is of the same Haar-integral

form (3). Using again the small-σ approximation, we arrive at the following estimator by applying
(4) to the centered data Ã and B̃:

Π̃AML = arg max
Π∈Sn

∥(Ã1/2)⊤Π⊤B̃1/2∥∗. (9)

Theorem 2 (Recovery guarantee in the distance model) Assuming the distance model, Theorem 1
holds under the same condition on d and σ, with the estimator Π̃AML in (9) replacing Π̂AML in (4).

Finally, we state an impossibility result for the linear assignment model, proving that the perfect
and almost perfect recovery threshold of σ = o(n−2/d) and σ = o(n−1/d) obtained by analyzing
the MLE in Kunisky and Niles-Weed (2022) are in fact information-theoretically necessary. Com-
plementing Theorem 1 and Theorem 2, this result also establishes the optimality of the estimator
(4) and (9) for their respective model.

Theorem 3 (Impossibility result in the linear assignment model) Consider the linear assignment
model with d = o(log n).

(i) If there exists an estimator that achieves perfect recovery with high probability, then σ ≤
n−2/d.

(ii) If there exists an estimator that achieves almost perfect recovery with high probability, then
σ ≤ n−(1−o(1))/d.

Furthermore, in the special case of d = Θ(1), necessary conditions in (i) and (ii) can be improved
to σ ≤ o(n−2/d) and σ ≤ o(n−1/d), respectively.

Theorem 3(i) slightly improves the necessary condition for perfect recovery in Kunisky and
Niles-Weed (2022) from σ = O(n−2/d) to σ = o(n−2/d). For almost perfect recovery, the neg-
ative result in Kunisky and Niles-Weed (2022) is limited to MLE, while Theorem 3 holds for all
algorithms. Moreover, the necessary condition in Theorem 3(ii) was conjectured in (Kunisky and
Niles-Weed, 2022, Conjecture 1.4, item 1), which we now resolve in the positive. Finally, while
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our focus is in the low-dimensional case of d = o(log n), we also provide necessary conditions that
hold for general d. (See Appendix E for details).

In view of Fig. 1.1, since the negative results in Theorem 3 are proved for the strongest model
and the positive results in Theorem 2 are for the weakest model, we conclude that for all three
models, namely, linear assignment, dot-product, and distance model, the thresholds for exact and
almost perfect reconstruction is given by n−2/d and n−1/d, respectively.

2. Outline of proofs

2.1. Positive results

The positive results of Theorem 1 and Theorem 2 are proved in Appendix C and Appendix D. Here
we briefly describe the proof strategy in the dot product model. Suppose we want to bound the
probability that the approximate MLE Π̂AML in (4) makes more than t number of errors. Denote
by d(π1, π2) ≜

∑n
i=1 1{π1(i)̸=π2(i)} the Hamming distance between two permutations π1, π2 ∈ Sn.

Without loss of generality, we will assume that π∗ = Id. By the orthogonal invariance of ∥ · ∥∗, we
can assume, for the sake of analysis, that A1/2 = X and B1/2 = Y . Applying (7),

P
{
d(Π̂AML, Id) > t

}
≤P
{

max
π:d(π,Id)>t

∥X⊤Π⊤Y ∥∗ ≥ ∥X⊤Y ∥∗
}

≤P
{

max
π:d(π,Id)>t

max
Q∈O(d)

⟨X⊤Π⊤Y,Q⟩ ≥ ⟨X⊤Y, Id⟩
}
. (10)

For each fixed Π and Q, averaging over the noise yields, for some absolute constant c0,

P
{
⟨X⊤Π⊤Y,Q⟩ ≥ ⟨X⊤Y, Id⟩

}
≤ E exp

{
− c0
σ2

∥X −ΠXQ∥2F
}
. (11)

In the remaining argument, there are three places where the structure of the orthogonal group
O(d) plays a crucial role:

1. The quantity in (11) turns out to depend on Π through its cycle type and on Q through its
eigenvalues. Crucially, the eigenvalues of an orthogonal matrix Q lie on the unit circle, de-
noted by (eiθ1 , . . . , eiθd), with |θℓ| ≤ π. We then show that the error probability in (11) can
be further bounded by, for some absolute constant C0,

(C0σ)
d(n−c)

(
d∏

ℓ=1

C0σ

σ + |θℓ|

)n1

, (12)

where n1 is the number of fixed points in π and c is the total number of cycles.

2. In order to bound (10), we take a union bound over π and another union bound over an
appropriate discretization of O(d). This turns out to be much subtler than the usual δ-net-
based argument, as one needs to implement a localized covering and take into account the
local geometry of the orthogonal group. Specifically, note that the error probability in (11)
becomes larger when π is near Id and when Q is near Id (i.e. the phases |θℓ|’s are small);
fortunately, the entropy (namely, the number of such π and such Q within a certain resolution)
also becomes smaller, balancing out the deterioration in the probability bound. This is the
second place where the structure of O(d) is used crucially, as the local metric entropy of
O(d) in the vicinity of Id is much lower than that elsewhere.

7
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3. Controlling the approximation error of the nuclear norm is another key step. Note that for
any matrix norm of the dual form ∥A∥ = sup∥Q∥′≤1⟨A,Q⟩, where ∥ · ∥′ is the dual norm of
∥·∥, the standard δ-net argument (cf. (Vershynin, 2018, Lemma 4.4.1)) yields a multiplicative
approximation maxQ∈N ⟨A,Q⟩ ≥ (1−δ)∥A∥, where N is any δ-net of the dual norm ball. In
general, this result cannot be improved (e.g. for Frobenius norm); nevertheless, for the special
case of nuclear norm, this approximation ratio can be improved from 1 − δ to 1 − δ2, as the
following result of independent interest shows. This improvement turns out to be crucial for
obtaining the sharp threshold.

Lemma 4 Let N ⊂ O(d) be a δ-net in operator norm of the orthogonal group O(d). For
any A ∈ Rd×d,

max
Q∈N

⟨A,Q⟩ ≥
(
1− δ2

2

)
∥A∥∗. (13)

The proof of Theorem 1 is completed by combining (12) with a union bound over a specific dis-
cretization of O(d), whose cardinality satisfies the desired eigenvalue-based local entropy estimate,
followed by a union bound over π which can be controlled using moment generating function of the
number of cycles in a random derangement.

2.2. Negative results

The information-theoretic lower bounds in Theorem 3 for the linear assignment model are proved
in Appendix E. Here we sketch the main ideas. We first derive a necessary condition for almost
perfect recovery that holds for any d via a simple mutual information argument Hajek et al. (2017):
On one hand, the mutual information I(π∗;X,Y ) can be upper bounded by the Gaussian channel
capacity as nd

2 log(1 + σ−2). On the other hand, to achieve almost perfect recovery, I(π∗;X,Y )
needs be asymptotically equal to the full entropy H(π∗) which is (1−o(1)) log n. These two asser-
tions together immediately imply that nd

2 log(1+σ−2) ≥ ((1−o(1)) log n, which further simplifies
to σ = n−(1−o(1))/d when d = o(log n). However, for constant d, this necessary condition turns out
to be loose and the main bulk of our proof is to improve it to the optimal condition σ = o(n−1/d).
To this end, we follow the program recently developed in Ding et al. (2021b) in the context of the
planted matching model by analyzing the posterior measure of the latent π∗ given the data (X,Y ).

To start, a simple yet crucial observation in Ding et al. (2021b) is that to prove the impossibility
of almost perfect recovery, it suffices to show a random permutation sampled from the posterior
distribution is at Hamming distance Ω(n) away from the ground truth with constant probability. As
such, it suffices to show there is more posterior mass over the bad permutations (those far away
from the ground truth) than that over the good permutations (those near the ground truth) in the
posterior distribution. To proceed, we first bound from above the total posterior mass of good
permutations by a truncated first moment calculation applying the large deviation analysis developed
in the proof of the positive results. To bound from below the posterior mass of bad permutations, we
aim to construct exponentially many bad permutations π whose log likelihood L(π) is no smaller
than L(π∗). A key observation is that L(π) − L(π∗) can be decomposed according to the orbit
decomposition of (π∗)−1 ◦ π:

L(π)− L(π∗) =
1

σ2
⟨ΠX −Π∗X,Y ⟩ = 1

σ2

∑
O∈O

∆(O), (14)

8



GEOMETRIC GRAPH MATCHING

where O denotes the set of orbits in (π∗)−1 ◦ π and for any orbit O = (i1, i2, . . . , it),

∆(O) ≜
t∑

k=1

〈
Xπ∗(ik+1) −Xπ∗(ik), Yik

〉
. (15)

Thus, the goal is to find a collection of vertex-disjoint orbits O whose total lengths add up to Ω(n)
and each of which is augmenting in the sense that ∆(O) ≥ 0. Here, a key difference to Ding
et al. (2021b) is that in the planted matching model with independent edge weights studied there,
short augmenting orbits are insufficient to meet the Ω(n) total length requirement; instead, Ding
et al. (2021b) resorts to a sophisticated two-stage process that first finds many augmenting paths
then connects then into long cycles. Fortunately, for the linear assignment model in low dimen-
sions of d = Θ(1), as also observed in Kunisky and Niles-Weed (2022) in their analysis of the
MLE, it suffices to look for augmenting 2-orbits and take their disjoint unions. More precisely,
we show that there are Ω(n) many vertex-disjoint augmenting 2-orbits. This has already been
done in Kunisky and Niles-Weed (2022) using a second-moment method enhanced by an additional
concentration inequality. It turns out that the correlation among the augmenting 2-orbits is mild
enough so that a much simpler argument via a basic second-moment calculation followed by an ap-
plication of Turán’s theorem suffices to extract a large vertex-disjoint subcollection. Finally, these
vertex-disjoint augmenting 2-orbits give rise to exponentially many permutations that differ from
the ground truth by Ω(n).

Finally, we briefly remark on perfect recovery, for which it suffices to focus on the MLE (2)
which minimizes the error probability for uniform π∗. In view of the likelihood decomposition
given in (14), it further suffices to prove the existence of an augmenting 2-orbit. This can be easily
done using the second-moment method. A similar strategy was adopted in Dai et al. (2019), but our
first-moment and second-moment estimates are tighter and hence yield nearly optimal conditions.

3. Experiments

In this section we present preliminary numerical results on synthetic data from the dot product
model. As observed in Grave et al. (2019), the form of the approximate MLE Π̂AML in (7) as a
double maximization over Π ∈ Sn and Q ∈ O(d) naturally suggests an alternating maximization
strategy by iterating between the two steps: (a) For a fixed Q, the Π-maximization is a linear
assignment; (b) For a fixed Π, the Q-maximization is the so-called orthogonal Procrustes problem
and easily solved via SVD Schönemann (1966). However, with random initialization this method
performs rather poorly falling short of the optimal threshold predicted by Theorem 1. While more
informative initialization (such as starting from a Π obtained by the doubly-stochastic relaxation of
QAP Grave et al. (2019)) can potentially help, in this section we focus on methods that are closer to
the original approximate MLE.

As the proof of Theorem 1 shows, as far as achieving the optimal threshold is concerned it
suffices to consider a finely discretized O(d). This can be easily implemented in d = 2, since any 2×
2 orthogonal matrix is either a rotation or reflection of the form:

( cos(θ) − sin(θ)
sin(θ) cos(θ)

)
or
( cos(θ) sin(θ)
sin(θ) − cos(θ)

)
.

We then solve (7) on a grid of θ values, by solving the Π-maximization for each such Q and reporting
the solution with the highest objective value. As shown in Fig. 2(a) for n = 200, the performance
of the approximate MLE in the dot-product model (green) follows closely that of the MLE in the
linear assignment model (blue). Using the greedy matching algorithm (red) in place of the linear
assignment solver greatly speeds up the computation at the price of some performance degradation.
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(a) n = 200 and d = 2. The green and red
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Figure 2: Comparison of dot product model and linear assignment model (averaged over 10 random
instances). In the latter, the blue curve corresponds to the MLE (2).

As the dimension increases, it becomes more difficult and computationally more expensive to
discretize O(d). Instead, we take a different approach. Note that in the noiseless case (Y = Π∗X),
as long as all singular values have multiplicity one, we have B1/2 = Π∗A1/2Q for some Q in

Z⊗d
2 = {diag(qi) : qi ∈ {±1}}. (16)

As such, in the noiseless case it suffices to restrict the inner maximization of (7) to the subgroup
Z⊗d
2 corresponding to coordinate reflections. Since the noise is weak in the low-dimensional setting,

we continue to apply this heuristic by computing

Π̂AML,Z⊗d
2

= arg max
Π∈Sn

max
Q∈Z⊗d

2

⟨B1/2,ΠA1/2Q⟩, (17)

which turns out to work very well in practice. Taking this method one step further, notice that in
the low-dimensional regime, all non-zero singular values of X and Y are tightly concentrated on
the same value

√
n. If we ignore the singular values and simply replace A1/2 and B1/2 by their left

singular vectors U = [u1, . . . , ud] and V = [v1, . . . , vd], (17) can be written more explicitly as

Π̂Umeyama = arg max
Π∈Sn

max
q∈{±1}d

〈
Π,

d∑
i=1

qiviu
⊤
i

〉
, (18)

which, somewhat unexpectedly, coincides with the celebrated Umeyama algorithm Umeyama (1988),
a specific type of spectral method that is widely used in practice for graph matching. In Fig. 2(b)
we compare for n = 200 and d = 4. Consistent with Theorem 1, the error rates in the dot-product
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model and the linear assignment model are both near zero until σ exceeds a certain threshold, after
which the former departs from the latter. Finally, comparing Fig. 2(a) and Fig. 2(b) confirms that
the reconstruction threshold improves as the latent dimension increases as predicted by Theorem 1.

4. Discussion

In this paper we studied the problem of graph matching in the special case of correlated complete
weighted graphs in the dot product and distance model, as a first step towards the more challenging
case of random dot-product graphs and random geometric graphs. Within the confines of the present
paper, there still remain a number of interesting directions and open problems which we discuss
below.

Non-isotropic distribution The present paper assumes the latent coordinates Xi’s and Yi’s are
isotropic Gaussians. For the linear assignment model, Dai et al. (2019, 2020) has considered a more
general setup where Xi

i.i.d.∼ N(0,Σ) for some covariance matrix Σ. As explained in (Dai et al., 2019,
Appendix A), it is not hard to see, based on a simple reduction argument (by scaling both Xi’s
and Yi’s with Σ1/2 and add noise if needed), that as long as the singular values of Σ are bounded
from above and below, the information-theoretic limits in terms of σ remain unchanged. For the dot
product or distance model, this is also true but less obvious – see Appendix F for a proof.

While the statistical limits in the nonisotropic case remain the same, potentially it allows more
computationally tractable algorithms to succeed. For example, the spectral method recently pro-
posed in Fan et al. (2019a,b) finds a matching by rounding the so-called GRAMPA similarity matrix

X =

n∑
i,j=1

⟨ui,1⟩⟨vj ,1⟩
(λi − µj)2 + η2

uiv
⊤
j . (19)

Here A =
∑

λiuiu
⊤
i and B =

∑
µjvjv

⊤
j are the SVD of the observed weighted adjacency matri-

ces, and η is a small regularization parameter. In the isotropic case, applying this algorithm to the
dot-product model is unlikely to achieve the optimal threshold in Theorem 1. The reason is that in
the low-dimensional regime of small d, both A and B and rank-d and all singular values λi’s and
µj’s are largely concentrated on the same value of

√
n. As such, the similarity matrix (19) degen-

erates into X ≈ 1
nη2
∑n

i,j=1 λiµj⟨ui,1⟩⟨vj ,1⟩uiv⊤j ∝ ab⊤, where a = A1 and b = B1 are the
row-sum vectors. Rounding ab⊤ to a permutation matrix is equivalent to “degree-matching”, that
is, finding the permutation by sorting a and b, which can only tolerate σ = n−c type of noise level,
for constant c independent of the dimension d, due to the small spacing in the order statistics Ding
et al. (2021a). However, in the nonisotropic case where Σ has distinct singular values, we expect
A and B to have descent spectral gaps and the spectral method (19) may succeed at the dimension-
dependent thresholds of Theorem 1. A theoretical justification of this heuristic is outside the scope
of this paper.

High-dimensional regime Recall the exact MLE (3), wherein the objective function is an average
over the Haar measure on O(d), can be approximated by (4) for small σ. Next, we derive its large-σ
approximation. Rewriting the objective function in (3) as E[exp( 1

σ2 ⟨B1/2,ΠA1/2Q⟩)] for a random
uniform Q ∈ O(d) and taking its second-order Taylor expansion for large σ, we get

E
[
exp

(
1

σ2
⟨B1/2,ΠA1/2Q⟩

)]
= 1 +

1

2dσ4
⟨B,ΠAΠ⊤⟩+ o(σ−4),
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where we applied E[⟨Q, X⟩] = 0, E[⟨Q, X⟩2] = ∥X∥2F /d, and ∥(A1/2)⊤Π⊤B1/2∥2F = ⟨B,ΠAΠ⊤⟩.
This expansion suggests that for large σ (which can be afforded in the high-dimensional regime of
d ≫ log n), the MLE is approximated by the solution to the following QAP:

Π̂QAP = arg max
Π∈Sn

⟨B,ΠAΠ⊤⟩. (20)

This observation aligns with the better studied correlated Erdős-Rényi models or correlated Gaus-
sian Wigner models, where the MLE is exactly given by the QAP (20).

To further compare with the estimator (4) that has been shown optimal in low dimensions, let
us rewrite (20) in a form that parallels (7):

Π̂QAP = arg max
Π∈Sn

∥(A1/2)⊤Π⊤B1/2∥F = arg max
Π∈Sn

max
∥Q∥F≤1

⟨B1/2,ΠA1/2Q⟩. (21)

In contrast, the dual variable Q in (7) is constrained to be an orthogonal matrix, which, as discussed
in the proof sketch in Section 2.1, is crucial for the proof of Theorem 1. Overall, the above evidence
points to the potential suboptimality of QAP in low and moderate-dimensional regime of d ≲ log n
and its potential optimality in the high-dimensional regime of d ≫ log n.

Practical algorithms As demonstrated by extensive numerical experiments in (Fan et al., 2019a,
Sec. 4.2), for correlated random graph models with iid pairs of edge weights, the Umeyama algo-
rithm (18) significantly improves over classical “low-rank” spectral methods involving only the top
few eigenvectors, but still lags behind the more recent spectral methods such as the GRAMPA algo-
rithm (19) that uses all pairs of eigenvalues and eigenvectors. Surprisingly, in the low-dimensional
dot product model with d = o(log n), while the GRAMPA algorithm is expected to perform poorly,
empirical result in Section 3 indicates that the Umeyama method actually works very well in this
setting. In fact, it is not hard to show that the Umeyama algorithm returns the true permutation with
high probability in the noiseless case of σ = 0; however, understanding its theoretical performance
in the noisy setting remains open.

Random geometric and intersection graphs As mentioned in Section 1.1, one of the motivations
for studying complete weighted graphs is to understand random geometric graphs (RGG) which
provides more realistic models than Erdős-Rényi graphs for datasets with geometric structures.
Note that the necessary conditions in Theorem 3 proved for the linear assignment model also hold
for RGG. For the positive side, one conceivable approach is to first estimate the latent positions X,Y
up to rotation and translation using multidimensional scaling algorithms (such as MDS-MAP Oh
et al. (2010)) based on the two correlated RGGs, and apply the AML estimator in (4) to the estimated
latent positions X̂ and Ŷ to reconstruct the latent matching. Establishing performance guarantee
of this procedure is an interesting open problem. Another interesting variation is to consider the
Bernoulli latent positions, which includes the random intersection graph model Singer (1996) as a
special case.
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Appendix A. Further related work

The present paper bridges several streams of literature such as planted matching, feature matching,
Procrustes matching, and graph matching, which we describe below.

Planted matching and feature matching The planted matching problem aims to recover a per-
fect matching hidden in a weighted complete n × n bipartite graph, where the edge weights are
independently drawn from either P or Q depending on whether edges are on the hidden matching
or not. Originally proposed by Chertkov et al. (2010) to model the application of object tracking, a
sharp phase transition from almost perfect recovery to partial recovery is conjectured to exist for the
special case where P is a folded Gaussian and Q is a uniform distribution over [0, n]. A recent line
of work initiated by Moharrami et al. (2021) and followed by Semerjian et al. (2020); Ding et al.
(2021b) has successfully resolved the conjecture and characterized the sharp threshold for general
distributions.

Despite these fascinating advances, they crucially rely on the independent weight assumption
which does not account for the latent geometry in the object tracking applications. As a remedy,
the linear assignment model (1) was proposed and studied by Kunisky and Niles-Weed (2022) as a
geometric model for planted matching, where the edge weights are pairwise inner products and no
longer independent. In the low-dimensional setting of d = o(log n), the MLE is shown to achieve
perfect recovery when σ = o(n−2/d) and almost perfect recovery when σ = o(n−1/d). Further
bounds on the number of errors made by MLE and recovery guarantees in the high-dimensional
setting are provided. However, the necessary conditions derived in Kunisky and Niles-Weed (2022)
only pertain to the MLE, leaving open the possibility that almost perfect recovery might be attained
by other algorithms at lower threshold. This is resolved in the negative by the information-theoretic
converse in Theorem 3, showing that σ = o(n−1/d) is necessary for any algorithm to achieve
almost perfect recovery. Along the way, we also slightly improve the necessary condition for perfect
recovery from σ = O(n−2/d) to σ = o(n−2/d).
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The linear assignment model (1) was in fact studied earlier in Dai et al. (2019, 2020) in a
different context of feature matching, where Xi’s and Yi’s are viewed as two correlated Gaussian
feature vectors in Rd and the goal is to find their best alignment. It is shown in Dai et al. (2019)
that perfect recovery is possible when d

4 log
(
1 + σ−2

)
− log n → +∞, and impossible when

d
4 log

(
1 + σ−2

)
≤ (1 − Ω(1)) log n and 1 ≪ d = O(log n).4 In comparison, the necessary

condition in Theorem 19 is tighter and holds for any d, agreeing with their sufficient condition
within an additive log d factor. It is also shown in Dai et al. (2020) that almost perfect recovery is
possible when d

2 log
(
1 + σ−2

)
≥ (1 + ϵ) log n in the high-dimensional regime d = ω(log n) for a

small constant ϵ > 0. This matches our necessary condition in Proposition 13 with a sharp constant.
Related problems on feature matching were also studied in the statistics literature. For example,

Collier and Dalalyan (2016) studies the model of observing Y = X + σZ and Y ′ = Π∗X + σZ ′,
where Z,Z ′ are two independent random Gaussian matrices and X is deterministic. The minimum
separation (in Euclidean distance) of rows of X needed for perfect recovery, denoted by κ, is shown
to be on the order of σmax{(log n)1/2, (d log n)1/4}. Note that in the low-dimensional regime
d = o(log n), this condition is comparable to our threshold for perfect recovery σ = o(n−2/d), as
the typical value of κ scales as n−2/d when X is Gaussian. However, the average-case setup is more
challenging as κ can be atypically small due to the stochastic variation of X .

Procrustes matching Our dot-product model is also closely related to the problem of Procrustes
matching, which finds numerous applications in natural language processing and computer vi-
sion Rangarajan et al. (1997); Maron et al. (2016); Dym and Lipman (2017); Grave et al. (2019).
Given two point clouds stacked as rows of X and Y , Procrustes matching aims to find an orthogonal
matrix Q ∈ O(d) and a permutation Π ∈ Sn that minimizes the Euclidean distance between the
point clouds, i.e., minΠ∈Sn minQ∈O(d) ∥Y Q − ΠX∥2F. As observed in Grave et al. (2019), this is
equivalent to maxΠ∈Sn maxQ∈O(d) ⟨Y Q,ΠX⟩, which further reduces to maxΠ∈Sn ∥X⊤Π⊤Y ∥∗.
Thus our approximate MLE (4) under the dot-product model is equivalent to Procrustes matching
on A1/2 and B1/2. A semi-definite programming relaxation is proposed in Maron et al. (2016)
and further shown to return the optimal solution in the noiseless case when X is generic and
asymmetric Maron et al. (2016); Dym and Lipman (2017). In contrast, the more recent work
Grave et al. (2019) proposes an iterative algorithm based on the alternating maximization over
Π and Q with an initialization provided by solving a doubly-stochastic relaxation of the QAP
maxΠ∈Sn ∥X⊤Π⊤Y ∥2F. Its performance is empirically evaluated on real datasets, but no theoreti-
cal performance guarantee is provided. Since the dot-product model is equivalent to the statistical
model for Procrustes matching, where Y = Π∗XQ+σZ for a random permutation Π∗ and orthog-
onal matrix Q, our results in Theorem 1 and Theorem 3 thus characterize the statistical limits of
Procrustes matching.

Graph matching There has been a recent surge of interest in understanding the information-
theoretic and algorithmic limits of random graph matching Cullina and Kiyavash (2016, 2017);
Hall and Massoulié (2020); Wu et al. (2021); Ding et al. (2021a); Barak et al. (2019); Fan et al.
(2019a,b); Ganassali and Massoulié (2020); Ganassali et al. (2022); Mao et al. (2021b,a), which
is an average-case model for the QAP and a noisy version of random graph isomorphism Babai
et al. (1980). Most of the existing work is restricted to the correlated Erdős-Rényi-type models in

4. While the impossibility result in (Dai et al., 2019, Theorem 2) only states the assumption that d ≫ 1, its proof,
specifically the proof of (Dai et al., 2019, Lemma 4.5), implicitly assumes σ = O(1) which further implies d =
O(logn).
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which
(
Aπ∗(i)π∗(j), Bij

)
are iid pairs of two correlated Bernoulli or Gaussian random variables. In

this case, the maximum likelihood estimator reduces to solving the QAP (20). Sharp information-
theoretic limits are derived by analyzing this QAP Cullina and Kiyavash (2016, 2017); Ganassali
(2021); Wu et al. (2021) and various efficient algorithms are developed based on its spectral or con-
vex relaxations Umeyama (1988); Zaslavskiy et al. (2008); Aflalo et al. (2015); Vogelstein et al.
(2015); Lyzinski et al. (2016); Dym et al. (2017); Fan et al. (2019a,b). However, as discussed in
Section 4, for geometric models such as the dot-product model, the QAP is the high-noise approx-
imation of the MLE (3), which differs from the low-noise approximation (3) that is shown to be
optimal in the low-dimensional regime of d = o(log n). This observation suggests that for geo-
metric models one may need to rethink the algorithm design and move beyond the QAP-inspired
methods.

Appendix B. Maximal likelihood estimator in the dot-product model

To compute the “likelihood” of the observation (A,B) given the ground truth Π∗, it is useful to
keep in mind of the graphical model

Π∗ Y B

X A

where X,Y,Π∗ is related via (1), A = XX⊤, and B = Y Y ⊤.
Note that A are B are rank-deficient. To compute the density of (A,B) conditioned on Π∗

meaningfully, one needs to choose an appropriate reference measure µ and evaluate the relative
density

dPA,B|Π∗

dµ . Let us choose µ to be the product of the marginal distributions of A and B,
which does not depend on Π∗. For any rank-d positive semidefinite matrices A0 and B0, define
A

1/2
0 ≜ U0Λ

1/2 and B
1/2
0 ≜ V0D

1/2 based on the SVD A0 = U0Λ
1/2
0 Q⊤

0 and B0 = V0D0O
⊤
0 ,

where Q0, O0 ∈ O(d) and U0, V0 ∈ Vn,d ≜ {U ∈ Rn×d : U⊤U = Id} (the Stiefel manifold). We
aim to show

dPA,B|Π∗(A0, B0|Π)
dµ(A0, B0)

= h(A0, B0)

∫
O(d)

dQ exp

(
⟨B1/2

0 ,ΠA
1/2
0 Q⟩

σ2

)
(22)

for some fixed function h, where the integral is with respect to the Haar measure on O(d). This
justifies the MLE in (3) for the dot-product model.

To show (22), denote by Nδ(U0) = {U ∈ Vn,d : ∥U −U0∥F ≤ δ} and Nδ(Λ0) = {Λ diagonal :
∥Λ − Λ0∥ℓ∞ ≤ δ} neighborhoods of U0 and Λ0 respectively. (Their specific definitions are not
crucial.) Consider a δ-neighborhood of A0 of the following form:

Nδ(A0) ≜ {UΛU⊤ : U ∈ Nδ(U0),Λ ∈ Nδ(Λ0)}

and similarly define Nδ(B0). Write the SVD for X as X = URQ⊤, where U ∈ Vn,d, Q ∈ O(d)
and the diagonal matrix R are mutually independent; in particular, Q is uniformly distributed over
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O(d). Then for constant C = C(n, d, σ),

P[A ∈ Nδ(A0), B ∈ Nδ(B0)|Π∗ = Π]

= E[1{XX⊤∈Nδ(A0)}1{Y Y ⊤∈Nδ(B0)}|Π
∗ = Π]

= E[1{U∈Nδ(U0)}1
{
R∈Nδ(D

1/2
0 )

}1{Y Y ⊤∈Nδ(B0)}|Π
∗ = Π]

= C · E
[
1{U∈Nδ(U0)}1

{
R∈Nδ(D

1/2
0 )

} ∫
Rn×d

dy1{yy⊤∈Nδ(B0)} exp
(
−
∥y −ΠURQ⊤∥2F

2σ2

)]
= C · E

[
1{U∈Nδ(U0)}1

{
R∈Nδ(D

1/2
0 )

} ∫
Rn×d

dy1{yy⊤∈Nδ(B0)} exp
(
−
∥y∥2F + ∥R∥2F

2σ2

)
F (y,ΠUR)

]
,

where F : Rn×d × Rn×d → R+ is defined by

F (y, x) ≜ EQ

[
exp

(
⟨y, xQ⊤⟩

σ2

)]
=

∫
O(d)

dQ exp

(
⟨y, xQ⊤⟩

σ2

)
.

Note that this function is continuous, strictly positive, and right-invariant, in the sense that F (Y O,XO′) =
F (Y,X) for any O,O′ ∈ O(d). Thus, as δ → 0, we have for some constant C ′ = C ′(n, d, σ),

P[A ∈ Nδ(A0), B ∈ Nδ(B0)|Π∗ = Π]

= (1 + o(1))C ′ exp

(
Tr(A0)

2σ2
− Tr(B0)

2σ2(σ2 + 1)

)
︸ ︷︷ ︸

≜h(A0,B0)

F (B
1/2
0 ,ΠA

1/2
0 )

· E
[
1{U∈Nδ(U0)}1

{
R∈Nδ(D

1/2
0 )

}] · (2π(1 + σ2))−nd/2

∫
Rn×d

dy1{yy⊤∈Nδ(B0)} exp
(
−

∥y∥2F
2(1 + σ2)

)
︸ ︷︷ ︸

µ[A∈Nδ(A0),B∈Nδ(B0)]

,

proving (22).

Appendix C. Analysis of approximate maximum likelihood

In this section we prove Theorem 1 for the dot product model. The proof of Theorem 2 for the
distance model follows the same program and is postponed to Appendix D.

C.1. Discretization of orthogonal group

We first prove Lemma 4 on the approximation of nuclear norm on a discretization of O(d).
Proof [Proof of Lemma 4] Consider the singular value decomposition A = UDV ⊤, where U, V ∈
O(d) and D is diagonal. Then the nuclear norm ∥A∥∗ = maxQ∈O(d) ⟨A,Q⟩ = Tr(D) is attained at
Q∗ = UV ⊤. Pick an element Q ∈ N with Q = Q∗ +∆, where ∥∆∥ ≤ δ. By orthogonality of Q
and Q∗, we have

∆Q⊤
∗ +Q∗∆

⊤ +∆∆⊤ = 0. (23)

Note that
AQ⊤

∗ = Q∗A
⊤ = UDU⊤ =: B. (24)
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Also, we have

⟨A,∆⟩ =
〈
AQ⊤

∗ ,∆Q⊤
∗

〉
, ⟨A,∆⟩ =

〈
A⊤,∆⊤

〉
=
〈
Q∗A

⊤, Q∗∆
⊤
〉
.

Adding the above equations and applying (23)-(24) yield

⟨A,∆⟩ = 1

2

〈
B,∆Q⊤

∗ +Q∗∆
⊤
〉
= −1

2

〈
B,∆∆⊤

〉
.

This implies

|⟨A,∆⟩| ≤ 1

2
∥B∥∗∥∆∥2 = 1

2
∥A∥∗∥∆∥2,

which completes the proof.

Next we give a specific construction of a δ-net for O(d) that is suitable for the purpose of
proving Theorem 1. Since orthogomal matrices are normal, by the spectral decomposition theorem,
each orthogonal matrix Q ∈ O(d) can be written as Q = U∗ΛU , where Λ = diag(eiθ1 , . . . , eiθd)
with θj ∈ [−π, π] for all j = 1, . . . , d and U ∈ U(d) is an unitary matrix. To construct a net for
O(d), we first discretize the eigenvalues uniformly and then discretize the eigenvectors according
to the optimal local entropy of orthogonal matrices with prescribed eigenvalues.

For any fixed δ > 0, let Θ ≜ {θk = kδ
4 : k = ⌊−4π

δ ⌋, ⌊−4π
δ ⌋+ 1, . . . , ⌈4πδ ⌉}. Then the set

Λ ≜
{
(λ1, . . . , λd) ∈ Cd : λj = eiθj , θj ∈ Θ, j = 1, . . . , d

}
is a δ

4 -net in ℓ∞ norm for the set of all possible spectrum {(λ1, . . . , λd) ∈ Cd : |λj | = 1}. For
each (λ1, . . . , λd) ∈ Cd, let O(λ1, . . . , λd) denote the set of orthogonal matrices with a prescribed
spectrum {λj}dj=1, i.e.

O(λ1, . . . , λd) ≜ {O ∈ O(d) : λi(O) = λi, i = 1, . . . , d} ,

where λi(O)’s are the eigenvalues of O sorted in the counterclockwise way from −π to π. Similarly,
define U(λ1, . . . , λd) to be the set of unitary matrices with a given spectrum

U(λ1, . . . , λd) ≜ {U∗diag(λ1, . . . , λd)U : U ∈ U(d)}.

Then O(λ1, . . . , λd) ⊂ U(λ1, . . . , λd) ⊂ U(d). Let N ′(λ1, . . . , λd) be the optimal δ
4 -net in oper-

ator norm for U(λ1, . . . , λd), and let N(λ1, . . . , λd) be the projection (with respect to ∥ · ∥op) of
N ′(λ1, . . . , λd) to O(d). Define

N ≜
⋃

(λ1,...,λd)∈Λ

N(λ1, . . . , λd). (25)

We claim that N is a δ-net in operator norm for the orthogonal group.

Lemma 5 The set N ⊂ O(d) defined in (25) is a δ-net in operator norm for O(d).
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Proof Given Q ∈ O(d), let its eigenvalue decomposition be Q = U∗ΛU . where Λ = diag(λ1, . . . , λd).
Then there exists Λ̃ = diag(λ̃1, . . . , λ̃d) where (λ̃1, . . . , λ̃d) ∈ Λ, such that ∥Λ− Λ̃∥ ≤ δ

4 . By defi-
nition, there exists Ũ ∈ U(d) such that Ũ∗Λ̃Ũ ∈ N ′(λ̃1, . . . , λ̃d) and ∥Ũ∗Λ̃Ũ − U∗Λ̃U∥ ≤ δ

4 . Let
Q̃ ∈ N denote the projection of Ũ∗Λ̃Ũ . Then

∥Q− Q̃∥ ≤ ∥Q− Ũ∗Λ̃Ũ∥+ ∥Ũ∗Λ̃Ũ − Q̃∥

≤ 2∥Ũ∗Λ̃Ũ −Q∥

= 2∥Ũ∗Λ̃Ũ − U∗ΛU∥

≤ 2(∥Ũ∗Λ̃Ũ − U∗Λ̃U∥+ ∥U∗(Λ̃− Λ)U∥) ≤ δ,

where the second inequality follows from projection.

The size of this δ-net is estimated in the following lemma.

Lemma 6 (Local entropy of O(d)) For each (λ1, . . . , λd) where λℓ = eiθℓ , we have

|N(λ1, . . . , λd)| ≤
(
1 +

2max |θℓ|
δ

)2d2

(26)

Proof Note that

U(λ1, . . . , λd) = I + {U∗diag (λ1 − 1, . . . , λd − 1)U : U ∈ U(d)} =: I + Ũ(λ1, . . . , λd).

For any matrix Q ∈ Ũ(λ1, . . . , λd), we have

∥Q∥2op = max
∣∣∣eiθℓ − 1

∣∣∣2 = max |2− 2 cos θℓ| ≤ max |θℓ|2.

where ∥ · ∥op is the the operator norm with respect to Cd → Cd. This implies

U(λ1, . . . , λd) ⊂ B(I,max |θℓ|),

where B(I, r) is the operator norm ball centered at Id with radius r. As a normed vector space over
R, the space of d × d complex matrices has dimension 2d2 since Cd×d ≃ R2d2 . Then the desired
result follows from a standard volume bound (c.f. e.g. (Pisier, 1999, Lemma 4.10)) for the metric
entropy

|N(λ1, . . . , λd)| ≤
∣∣N ′(λ1, . . . , λd)

∣∣ ≤ (1 + 2max |θℓ|
δ

)2d2

.

C.2. Moment generating functions and cycle decomposition

This subsection is devoted to estimating the following quantity∑
Π ̸=In

∑
(λ1,...,λd)∈Λ

∑
Q∈N(λ1,...,λd)

p(Π, Q),
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where

p(Π, Q) ≜ E exp

{
− 1

32σ2
∥X −ΠXQ∥2F

}
. (27)

As we will see later in (55), this quantity bounds the probability that our AMLE is not the ground
truth. The moment generating function (MGF) p(Π, Q) in the summation is estimated in the fol-
lowing lemma.

Lemma 7 For any fixed Π ∈ Sn, let O denote the set of orbits of the permutation and nk be the
number of orbits with length k. Let Q ∈ O(d) and denote by eiθ1 , . . . , eiθd the eigenvalues of Q,
where θ1, . . . , θd ∈ [−π, π]. Then

p(Π, Q) =
∏

O∈O,|O|≥1

a|O|(Q) =

n∏
k=1

ak(Q)nk , (28)

where

ak(Q) ≜ (4σ)kd
d∏

ℓ=1

[
(
√

1 + 4σ2 + 2σ)2k + (
√
1 + 4σ2 − 2σ)2k − 2 cos(kθℓ)

]−1/2
, (29)

satisfying, for all 1 ≤ k ≤ n,
ak(Q) ≤ ak(I) ≤ (4σ)(k−1)d. (30)

Furthermore,

a1(Q) ≤ (Cσ)d
d∏

ℓ=1

1

σ + |θℓ|
, (31)

where C > 0 is a universal constant independent of d, n, σ.

Proof For simplicity, denote t = 1
32σ2 . Let x = vec(X) ∈ Rnd be the vectorization of X , and note

that x ∼ N (0, Ind). Through the vectorization, we have

∥X −ΠXQ∥2F =
∥∥∥(Ind −Q⊤ ⊗Π)x

∥∥∥2 .
Let H ≜ Ind −Q⊤ ⊗Π, then

p(Π, Q) = E exp
(
−tx⊤H⊤Hx

)
=
[
det
(
I + 2tH⊤H

)]− 1
2
. (32)

Note that the eigenvalues of H are

λij(H) = 1− λi(Q
⊤)λj(Π), i = 1, . . . , d, j = 1, . . . , n.

This leads to

p(Π, Q) =

d∏
i=1

n∏
j=1

(
1 + 2t

∣∣∣1− λi(Q
⊤)λj(Π)

∣∣∣2)− 1
2

. (33)
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Through a cycle decomposition, the spectrum of Π is the same as a block diagonal matrix Π̃ of
the following form

Π̃ = diag
(
P

(1)
1 , . . . , P (1)

n1
, . . . , P

(k)
1 , . . . , P (k)

nk
, . . . , P

(n)
1 , . . . , P (n)

nn

)
,

where nk is the number of k-cycles in π, and P
(k)
1 = · · · = P

(k)
nk = P (k) is a k× k circulant matrix

given by

P (k) =


0 1 · · · 0
0 0 1
... 0 0

. . .
...

. . . . . . 1
1 · · · 0 0

 .

It is well known that the eigenvalues of P (k) are the k-th roots of unity {ei
2π
k
j}k−1

j=0 . Therefore, the
spectrum of Π is the following multiset

Spec(Π) = {ei
2π
k
jk with multiplicity nk : 1 ≤ k ≤ n, jk = 0, . . . , k − 1}. (34)

Recall that eiθ1 , . . . , eiθd are the eigenvalues of Q. Note that the eigenvalues of Q⊤ are the complex
conjugate of the eigenvalues of Q. Combined with (33) and (34), we have

p(Π, Q) =

 d∏
ℓ=1

n∏
k=1

k−1∏
j=0

(
1 + 2t

∣∣∣1− e−iθℓei
2π
k
j
∣∣∣2)nk

−1/2

=
n∏

k=1

 d∏
ℓ=1

k−1∏
j=0

(
1 + 4t− 4t cos(−θℓ +

2π
k j)

)−1/2

nk

≜
n∏

k=1

ak(Q)nk . (35)

Define

f(θ) ≜
k−1∏
j=0

(
1 + 4t− 4t cos(θ + 2π

k j)
)
,

To simplify f(θ), let p =
√
1+8t+1

2 and q =
√
1+8t−1

2 so that p2 + q2 = 1 + 4t and pq = 2t. Thus,

f(θ) =

k−1∏
j=0

(
p2 + q2 − 2pq cos

(
2π
k j + θ

))
.

Note that

pk − qkeikθ =

k−1∏
j=0

(
p− qei

2π
k
j+iθ

)
, pk − qke−ikθ =

k−1∏
j=0

(
p− qei

2π
k
j−iθ

)
.

Multiplying the above two equations gives us

p2k + q2k − 2pkqk cos kθ =
k−1∏
j=0

(
p2 + q2 − 2pq cos

(
2π
k j + θ

))
= f(θ).
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which implies

f(θ) =

(√
1 + 8t+ 1

2

)2k

+

(√
1 + 8t− 1

2

)2k

− 2(2t)k cos(kθ)

=

(
1

4σ

)2k [(√
1 + 4σ2 + 2σ

)2k
+
(√

1 + 4σ2 − 2σ
)2k

− 2 cos kθ

]
.

Note that ak(Q) =
∏d

ℓ=1 f(−θℓ)
−1/2, and therefore we have shown (29). In particular,

a1(Q) = (4σ)d
d∏

ℓ=1

(2− 2 cos θℓ + 16σ2)−
1
2 . (36)

Since sin2 θ ≥ θ2

4 for θ ∈ [−π
2 ,

π
2 ], we have

√
2− 2 cos θℓ + 16σ2 =

√
4 sin2(θℓ/2) + 16σ2 ≥

√
2 sin2(θℓ/2) +

√
8σ2

≥
√
2(θℓ/4)2 +

√
8σ2 =

√
2|θℓ|/4 + 2

√
2σ

Consequently, this gives us (31). In general, note that

(
√
1 + 4σ2 + 2σ)2k + (

√
1 + 4σ2 − 2σ)2k − 2 ≥ (4kσ)2,

which completes the proof for (30). To see this, define g(x) = xk − x−k which is increasing in x.
Then

(
√

1 + 4σ2+2σ)2k+(
√

1 + 4σ2− 2σ)2k− 2 = g
(√

1 + 4σ2 + 2σ
)2

≥ g (1 + 2σ)2 ≥ (4kσ)2,

where the last inequality holds because (1 + a)k − (1− a)k ≥ 2ak for a ≥ 0. Finally, (28) follows
from (35).

Based on the above representation via cycle decomposition, we have the following estimate for
the moment generating function. This estimate is a key result in this paper as it is the basis of both
Theorem 1 and Lemma 9.

Lemma 8 Suppose d = o(log n). For some σ0 > 0, let δ = σ0/
√
n and N ⊂ O(d) be the δ-net

defined in (25).

(i) If σ0 = o(n−2/d), then∑
Π ̸=In

∑
Q∈N

E exp

{
− 1

32σ2
0

∥X −ΠXQ∥2F
}

= o(1). (37)

(ii) For any ε = ε(n) > 0, if σ−d
0 > 16n22/ε, then the following is true∑

d(π,Id)≥εn

∑
Q∈N

E exp

{
− 1

32σ2
0

∥X −ΠXQ∥2F
}

= o(1). (38)
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Proof (i) For any fixed Π ∈ Sn, combining (30) and (31) yields∏
k≥1

ak(Q)nk ≤ (Cσ0)
n1d+

∑
k≥2 nk(k−1)d

(
d∏

ℓ=1

1

θℓ + σ0

)n1

= (Cσ0)
d(n−

∑
k≥2 nk)

(
d∏

ℓ=1

1

θℓ + σ0

)n1

≤ (Cσ0)
n+n1

2
d

(
d∏

ℓ=1

1

θℓ + σ0

)n1

. (39)

Note that by Lemma 6, we have∣∣∣N (eim1δ
4 , . . . , ei

mdδ

4

)∣∣∣ ≤ (1 + max |mℓ|
2

)2d2

≤

(
1 +

∑d
ℓ=1 |mℓ|
2

)2d2

≤
d∏

ℓ=1

(
1 +

|mℓ|
2

)2d2

.

(40)
Using Lemma 7 and (39), this leads to∑
Π ̸=In

∑
Q∈N

p(Π, Q)

≤
n−2∑
n1=0

⌈ 4π
δ
⌉∑

m1,...,md=⌊− 4π
δ
⌋

∣∣∣N (eim1δ
4 , . . . , ei

mdδ

4

)∣∣∣ (n− n1)!

(
n

n1

)
(Cσ0)

n+n1
2

d

(
d∏

ℓ=1

1
δ|mℓ|
4 + σ0

)n1

≤
n−2∑
n1=0

(Cσ0)
n+n1

2
d(n− n1)!

(
n

n1

) ⌈ 4π
δ
⌉∑

m=⌊− 4π
δ
⌋

1

( δ|m|
4 + σ0)n1

(1 + |m|
2 )2d

2


d

≤
n−2∑
n1=0

(Cσ0)
n−n1

2
d(n− n1)!

(
n

n1

) ⌈ 4π
δ
⌉∑

m=⌊− 4π
δ
⌋

1

(1 + δ
4σ0

|m|)n1
(1 + |m|

2 )2d
2


d

≤
n−2∑
n1=0

(
(Cσ0)

dn2
)n−n1

2

 ⌈ 4π
δ
⌉∑

m=⌊− 4π
δ
⌋

1

(1 + δ
4σ0

|m|)n1
(1 + |m|

2 )2d
2


d

,

where the second line follows from Lemma 6 and the fourth line follows from the fact that the
number of permutations with n1 fixed points is at most (n− n1)!

(
n
n1

)
≤ nn−n1 .

Recall that δ = σ0/
√
n and σ0 = o(n−2/d). For any fixed 1 ≤ n1 ≤ n− 2,

Tn1 ≜

⌈ 4π
δ
⌉∑

m=⌊− 4π
δ
⌋

1

(1 + δ
4σ0

|m|)n1
(1 + |m|

2 )2d
2
=

⌈ 4π
δ
⌉∑

m=⌊− 4π
δ
⌋

1

(1 + |m|
4
√
n
)n1

(1 + |m|
2 )2d

2
.

If n1 ≤
√
n, we have

Tn1 ≤
⌈ 4π

δ
⌉∑

m=⌊− 4π
δ
⌋

(
1 +

|m|
2

)2d2

≤ 8π

δ

(
1 +

2π

δ

)2d2

≤ 2

(
4π

√
n

σ0

)2d2+1

. (41)
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Therefore, let σ−d
0 = L and L = n2K where K ≫ 1, then

√
n∑

n1=0

(
(Cσ0)

dn2
)n−n1

2
T d
n1

≤
√
n

[
2

(
4π

√
n

σ0

)2d2+1
]d (

(Cσ0)
dn2
)n−

√
n

2

≤ Cd3n2d3L2d2+1K−n−
√
n

2

≤ Cd3n2d3L3d2K−n
3

≤ Cd3n2d3 exp
(
3d2 log(n2K)

)
exp

(
−n

3
logK

)
≤ Cd3 exp

(
(6d2 + 2d3) log n−

(n
3
− 3d2

)
logK

)
= o(1), (42)

where the last line follows from K ≫ 1 and d = o(log n).
On the other hand, for

√
n ≤ n1 ≤ n− 2,we decompose it into two parts Tn1 = J1+J2, where

J1 ≜
∑

|m|≤8
√
n

1

(1 + |m|
4
√
n
)n1

(1 + |m|
2 )2d

2
,

J2 ≜
∑

8
√
n<|m|≤ 4π

δ

1

(1 + |m|
4
√
n
)n1

(1 + |m|
2 )2d

2
.

We first show that the contribution of J2 is negligible. To see this, note that

J2 ≤ C(4
√
n)n1

4π/δ∑
m=1+8

√
n

m−n1+2d2

≤ C(4
√
n)n1

∫ 4π/δ

8
√
n

x−(n1−2d2)dx

≤ C(4
√
n)n1

1

n1 − 2d2 − 1
(8
√
n)−n1+2d2+1

≤ C2−n1+6d2+3 1

n1 − 2d2 − 1
nd2+ 1

2

≤ C2−n1/2nd2 .

Recall that n1 ≥
√
n and d = o(log n). Therefore we have J2 = o(1). Moreover, a simple

observation is that Tn1 ≥ 1. This concludes that J2 is negligible and it suffices to bound J1. Note
that for 0 ≤ x ≤ 2 we have 1 + x ≥ ex/2. Therefore, this implies

J1 ≤ C

8
√
n∑

m=0

exp

(
−
(

n1

8
√
n
− 2d2

)
m

)
.

For n1 ≥ 32
√
n(log n)2, we have n1

8
√
n
− 2d2 > n1

16
√
n

since d = o(log n). Consequently, in this
regime we have

J1 ≤ C

8
√
n∑

m=0

exp

(
− n1

16
√
n
m

)
≤ C

1− e
− n1

16
√
n

≤ C

1− e−4(logn)2
.
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Thus, for n1 ≥ 32
√
n(log n)2, we have

T d
n1

≤ (2J1)
d ≤ Cd

(
1− e−4(logn)2

)−d
≤ Cd exp

(
de−4(logn)2

)
≤ Cd. (43)

For
√
n ≤ n1 < 32

√
n(log n)2, we use a trivial bound

J1 ≤ C

8
√
n∑

m=0

(
1 +

m

2

)2d2
≤ C(8

√
n)2d

2+1.

In this case,
T d
n1

≤ Cd(8
√
n)2d

2+1. (44)

Thus, (43) and (44) together imply

n−2∑
n1=

√
n

(
(Cσ0)

dn2
)n−n1

2
T d
n1

≤
32

√
n(logn)2∑

n1=
√
n

(
(Cσ0)

dn2
)n−n1

2
T d
n1

+

n−2∑
n1=32

√
n(logn)2

(
(Cσ0)

dn2
)n−n1

2
T d
n1

≤ 32
√
n(log n)2Cd2(8

√
n)2d

3+d2−n + Cdσd
0n

2

= o(1) (45)

Combining (42) and (45) together, we obtain∑
Π ̸=In

∑
Q∈N

p(Π, Q) = o(1),

which completes the proof.
(ii) Due to the stronger noise level, we need to be more careful in (39):

∏
j≥1

ak(Q)nj ≤ (Cσ0)
n1d+

∑
j≥2 nj(j−1)d

(
d∏

ℓ=1

1

|θℓ|+ σ0

)n1

= (Cσ0)
dn−d

∑n
j=1 nj

d∏
ℓ=1

1

(1 + |θℓ|
σ0

)n1

. (46)

For simplicity, denote by k ≜ d(π, Id) = n− n1 the number of non-fixed points of π. Let π̃ be the
restriction of the permutation π ∈ Sn on its non-fixed points, which by definition is a derangement.
Denote the number of cycles of a permutation π by c(π). An observation is that c(π) =

∑n
j=1 nj =

n1 + c(π̃). Then Lemma 7 and (46) yield∑
d(π,Id)≥εn

∑
Q∈N

p(Π, Q)

≤
n∑

k=εn

(
n

k

) ∑
π̃ derangement

⌈ 4π
δ
⌉∑

m1,...,md=⌊− 4π
δ
⌋

∣∣∣N (eim1δ
4 , . . . , ei

mdδ

4

)∣∣∣ (Cσ0)
d(k−c(π̃))

d∏
ℓ=1

1

(1 + δ|mℓ|
4σ0

)n−k
.
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Denote L = σ−d
0 . Using (40) and rearranging the above inequality give us∑

d(π,Id)≥εn

∑
Q∈N

p(Π, Q)

≤
n∑

k=εn

(
n

k

)
L−k

∑
π̃ derangement

Lc(π̃)

 ⌈ 4π
δ
⌉∑

m=⌊− 4π
δ
⌋

1

(1 + δ
4σ0

|m|)n−k
(1 + |m|

2 )2d
2


d

. (47)

Note that ∑
π̃ derangement

Lc(π̃) = k!Eτ

[
Lc(τ)

1{τ is a derangement}

]
,

where the expectation Eτ is taken for a uniformly random permutation τ ∈ Sk. To bound the
above truncated generating function, recall that the generating function of c(τ) is given by (see,
e.g., (Flajolet and Sedgewick, 2009, Eq. (39)))

Eτ [L
c(τ)] =

(
L+ k − 1

k

)
=

L(L+ 1) · · · (L+ k − 1)

k!
. (48)

Pick some α ∈ (0, 1) to be determined later and obtain the following

Eτ

[
Lc(τ)

1{τ is a derangement}

]
≤ Eτ

[
Lc(τ)

1{c(τ)≤k/2}

]
≤ Eτ

[
Lαc(τ)+(1−α) k

2

]
= L(1−α) k

2Eτ

[
Lαc(τ)

]
= L(1−α) k

2

(
Lα + k − 1

k

)
.

Choosing α = log k
logL , we have

Eτ

[
Lc(τ)

1{τ is a derangement}

]
≤
(
2k − 1

k

)(
L

k

)k/2

≤
(
16L

k

)k/2

. (49)

Recall that

Tn−k =

⌈ 4π
δ
⌉∑

m=⌊− 4π
δ
⌋

1

(1 + δ
4σ0

|m|)n−k
(1 + |m|

2 )2d
2
.

For k ≤ n−
√
n, each term Tn−k is bounded by (43) and (44). On the other hand, if k ≥ n−

√
n,

we control Tn−k via (41). Here in the case of almost perfect recovery, combined with (49), the
assumption on σ0 yields a superexponentially decaying term in the summation (47). Specifically,
combined this with (47) and (49), we obtain∑

d(π,Id)≥εn

∑
Q∈N

p(Π, Q) ≤ J1 + J2,

where

J1 ≜ Cd

n−32
√
n(logn)2∑

k=εn

(
n

k

)
L−kk!

(
16L

k

)k/2

,

J2 ≜ Cd3n2d3L2d2+1
n∑

k=n−32
√
n(logn)2+1

(
n

k

)
L−kk!

(
16L

k

)k/2

.
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Let L = nK where ε
2 log

K
16 > log 2. Recall that d = o(log n). Then applying Stirling’s approxi-

mation gives us

J1 ≤ Cdn2n
(
16n

L

)εn/2

≤ Cdn exp

(
n log 2− εn

2
log

K

16

)
= o(1), (50)

and

J2 ≤ Cd3n2d3+1L2d2+12n
(
16n

L

)n/3

≤ Cd3n2d3+1 exp

[
(2d2 + 1) log n+ (2d2 + 1) logK + n log 2− n

3
log

K

16

]
= o(1). (51)

Combining (50) and (51) implies ∑
d(π,Id)≥εn

∑
Q∈N

p(Π, Q) = o(1),

which completes the proof.

The estimate of the moment generating functions results in the following lemma, which plays a
crucial rule in the probability reduction estimate (55).

Lemma 9 For some σ0 > 0, let δ = σ0/
√
n and N be the δ-net defined in (25).

(i) If σ0 = o(n−2/d), for any constant c > 0, the following inequality is true with high probability

min
Π ̸=In

min
Q∈N

∥X −ΠXQ∥F ≥ c
√
dσ0. (52)

(ii) For any ε = ε(n) > 0, if σ−d
0 > 16n22/ε, the following is true for any fixed constant c > 0

with high probability

min
d(π,Id)≥εn

min
Q∈N

∥X −ΠXQ∥F ≥ c
√
dσ0. (53)

Proof (i) For fixed Π ̸= In and Q ∈ N , by the Chernoff bound, for every t ≥ 0 we have

P
{
∥X −ΠXQ∥F < c

√
dσ0

}
= P

{
e−t∥X−ΠXQ∥2F > e−tc2dσ2

0

}
≤ etc

2dσ2
0E exp

(
−t ∥X −ΠXQ∥2F

)
.

Taking t = 1
32σ2

0
, by the union bound we have

P
{
min
Π ̸=In

min
Q∈N

∥X −ΠXQ∥F ≥ c
√
dσ0

}
= 1− P {∃Π ̸= In,∃Q ∈ N s.t. ∥X −ΠXQ∥F ≤ cσ0}

≥ 1− e
c2d
32

∑
Π ̸=Id

∑
Q∈N

E exp

{
− 1

32σ2
0

∥X −ΠXQ∥2F
}

≥ 1− o(1),
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where the last step follows from Lemma 8.

(ii) The arguments are similar with Part (i). Using Chernoff bound and Lemma 8, we have

P
{

min
d(π,Id)≥εn

min
Q∈N

∥X −ΠXQ∥F ≥ c
√
dσ0

}
≥ 1− e

c2d
32

∑
d(π,Id)≥εn

∑
Q∈N

E exp

{
− 1

32σ2
0

∥X −ΠXQ∥2F
}

≥ 1− o(1),

which completes the proof.

C.3. Proof of Theorem 1

Proof (i) For σ ≪ n−2/d, let δ = σ/
√
n and let N be the δ-net in operator norm for O(d) defined

in (25). Applying Lemma 4, we have

P
{
∥X⊤Π⊤Y ∥∗ ≥ ∥X⊤Y ∥∗

}
≤ P

{
max

Q∈O(d)
⟨X⊤Π⊤Y,Q⟩ ≥ ⟨X⊤Y, Id⟩

}
≤ P

{
max
Q∈N

⟨X⊤Π⊤Y,Q⟩ ≥ (1− δ2)⟨X⊤Y, Id⟩
}
.

For fixed Π and Q, we have

P
{
⟨X⊤Π⊤Y,Q⟩ ≥ (1− δ2)⟨X⊤Y, Id⟩

}
= P

{
σ⟨Z, (1− δ2)X −ΠXQ⟩ ≥ (1− δ2)∥X∥2F − ⟨X,ΠXQ⟩

}
.

Note that we have the following observations

∥X∥2F − ⟨X,ΠXQ⟩ = 1

2
∥X −ΠXQ∥2F ,

and ∥∥(1− δ2)X −ΠXQ
∥∥2
F
= (1− δ2)2 ∥X∥2F + ∥X∥2F − 2(1− δ2) ⟨X,ΠXQ⟩
= (1− δ2) ∥X −ΠXQ∥2F − δ4 ∥X∥2F .

Therefore,

P
{
⟨X⊤Π⊤Y,Q⟩ ≥ (1− δ2)⟨X⊤Y, Id⟩

}
=P
{
σN

(
0, (1− δ2) ∥X −ΠXQ∥2F − δ4 ∥X∥2F

)
≥ 1

2
∥X −ΠXQ∥2F − δ2 ∥X∥2F

}
≤P
{
σN

(
0, ∥X −ΠXQ∥2F

)
≥ 1

2
∥X −ΠXQ∥2F − δ2 ∥X∥2F

}
. (54)
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Consider the following events

E1 ≜
{
cdn ≤ ∥X∥2F ≤ Cdn

}
, E2 ≜

{
min
Π ̸=I

min
Q∈N

∥X −ΠXQ∥F ≥ C
√
dσ

}
.

It is well known that P {E1} = 1− o(1), and by Lemma 9 we also have P {E2} = 1− o(1). On the
events E1 and E2, the previous estimate (54) for Π ̸= I reduces to

P
{
⟨X⊤Π⊤Y,Q⟩ ≥ (1− δ2)⟨X⊤Y, Id⟩, E1, E2

}
≤ P

{
σN

(
0, ∥X −ΠXQ∥2F

)
≥ 1

4
∥X −ΠXQ∥2F

}
≤ E exp

{
− 1

32σ2
∥X −ΠXQ∥2F

}
.

(55)

By Lemma 8, the reduction (55) and a union bound, we have

P
{
max
Π ̸=I

∥X⊤Π⊤Y ∥∗ ≥ ∥X⊤Y ∥∗
}

≤ P
{
max
Π ̸=I

∥X⊤Π⊤Y ∥∗ ≥ ∥X⊤Y ∥∗, E1, E2
}
+ P {Ec

1}+ P {Ec
2}

≤ P
{
max
Π̸=In

max
Q∈N

⟨X⊤Π⊤Y,Q⟩ ≥ (1− δ2)⟨X⊤Y, Id⟩, E1, E2
}
+ o(1)

≤
∑
Π ̸=In

∑
Q∈N

P
{
⟨X⊤Π⊤Y,Q⟩ ≥ (1− δ2)⟨X⊤Y, Id⟩, E1, E2

}
+ o(1)

≤
∑
Π ̸=In

∑
Q∈N

E exp

{
− 1

32σ2
∥X −ΠXQ∥2F

}
+ o(1)

= o(1).

This implies that the ground truth Π∗ = In is the approximate MLE with probability 1− o(1), i.e.,

P
{
argmaxΠ∈Sn

∥X⊤Π⊤Y ∥∗ = In

}
= 1− o(1),

which shows the success of perfect recovery with high probability.

(ii) The arguments are essentially the same as Part (i). For a sufficiently small ε = ε(n) > 0,
take σ−d > 16n22/ε and consider the event

E ′
2 ≜

{
min

d(π,Id)≥εn
min
Q∈N

∥X −ΠXQ∥F ≥ C
√
dσ

}
.

Then Lemma 9 implies P {E ′
2} = 1 − o(1). On the event E1 and E ′

2, the reduction estimate for Π
with d(π, Id) ≥ εn still holds

P
{
⟨X⊤Π⊤Y,Q⟩ ≥ (1− δ2)⟨X⊤Y, Id⟩, E1, E ′

2

}
≤ E exp

{
− 1

32σ2
∥X −ΠXQ∥2F

}
.
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Combining this with Lemma 8, we have

P
{

max
d(π,Id)≥εn

∥X⊤Π⊤Y ∥∗ ≥ ∥X⊤Y ∥∗
}

≤
∑

d(π,Id)≥εn

∑
Q∈N

E exp

{
− 1

32σ2
∥X −ΠXQ∥2F

}
+ o(1) = o(1).

Thus,
P {overlap(π̂AML, π

∗) ≥ 1− ε} = 1− o(1).

Taking σ ≪ n−1/d so that ϵ = o(1), this implies the desired (6).

Appendix D. Proof for the distance model

In this section, we prove Theorem 2. Let X̃ ≜ (I−F)X , Ỹ ≜ (I−F)Y and Z̃ ≜ (I−F)Z. Recall
that the approximate MLE for the distance model is given by (9). As in the proof of Theorem 1,
thanks to the orthogonal invariance of the nuclear norm ∥ · ∥∗, we may assume Ã1/2 = X̃ and
B̃1/2 = Ỹ without loss of generality, so that

Π̃AML = arg max
Π∈S(n)

∥X̃⊤Π⊤Ỹ ∥∗.

Following the arguments for the dot-product model in Appendix C, a key step is to extend the
estimate for p(Π, Q) in (27) to the following MGF:

p̃(Π, Q) ≜ E exp

{
− 1

32σ2

∥∥∥X̃ −ΠX̃Q
∥∥∥2
F

}
, (56)

where Π ∈ Sn and Q ∈ O(d). The following lemma gives a comparison between the MGF for the
distance model and that for the dot-product model defined in (27), the latter of which was previous
estimated in Lemma 7.

Lemma 10 Fix a permutation matrix Π ∈ Sn. For Q ∈ O(d), denote by eiθ1 , . . . , eiθd the eigen-
values of Q, where θ1, . . . , θd ∈ [−π, π]. Then

p̃(Π, Q) ≤ p(Π, Q)

d∏
ℓ=1

(
1 +

θ2l
16σ2

)1/2

. (57)

Proof Let t = 1
32σ2 . Denote by x̃ = vec(X̃) ∈ Rnd the vectorization of X̃ and recall that

x = vec(X) ∈ Rnd satisfies x ∼ N (0, Ind). Then∥∥∥X̃ −ΠX̃Q
∥∥∥2
F
=
∥∥∥(Ind −Q⊤ ⊗Π)x̃

∥∥∥2 = ∥∥∥(Ind −Q⊤ ⊗Π)(Id ⊗ (In − F))x
∥∥∥2 .

Denote H̃ ≜ (Ind −Q⊤ ⊗Π)(Id ⊗ (In − F)), then

p̃(Π, Q) = E exp
(
−tx⊤H̃⊤H̃x

)
=
[
det
(
I + 2tH̃⊤H̃

)]− 1
2
.
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It suffices to compute the eigenvalues of H̃ . Recall that the spectrum of Π is given by (34). We
claim that the spectrum of H̃ is the following multiset

Spec(H̃) =
(
Spec(H)\{1− e−iθℓ : ℓ = 1, . . . , d}

)
∪ {0 with multiplicity d} , (58)

where Spec(H) is the spectrum of H defined in Lemma 7, given by

Spec(H) =
{
1− e−iθℓλj : λj ∈ Spec(Π), j = 1, . . . , n, ℓ = 1, . . . , d

}
.

Now we prove (58). As shown in (34), Π has eigenvalue 1 with multiplicity c(Π), where c(Π)
denote the number of cycles. We denote these by λ1 = · · · = λc(Π) = 1. Using the cycle decompo-
sition and the block diagonal structure as in Lemma 7, we know that the eigenvectors corresponding
to λ1, . . . , λc(Π) are of the following form

vi = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0)⊤, i = 1, . . . , c(Π)

where the number of 1’s equals the length of the corresponding cycle. In particular, due to the
block diagonal structure, the 1 blocks in vi’s do not overlap. Therefore, we know that the vector
ṽ1 = 1√

n

∑c(Π)
i=1 vi = 1√

n
1 = 1√

n
(1, . . . , 1)⊤ ∈ Rn is in the eigenspace of 1. Using the Gram-

Schmidt process, we can construct vectors ṽ2, . . . , ṽc(Π) such that {ṽi}ni=1 is a orthonormal basis of
the eigenspace, i.e.

⟨ṽi, ṽj⟩ = δij , span(ṽ1, . . . , ṽc(Π)) = span(v1, . . . , vc(Π)).

Pick an arbitrary eigenvalue µ of Q⊤ with eigenvector w ∈ Rd, and also pick an arbitrary eigenvalue
λ of Π with eigenvector v ∈ Rn. Based on the arguments above, if λ ̸= λ1, then v ⊥ ṽ1, and
therefore

H̃(w⊗ v) = w⊗ (I−F)v− (Q⊤w)⊗Π(I−F)v = w⊗ v−µw⊗λv = (1−µλ)(w⊗ v). (59)

For the eigenpair (λ1, ṽ1), we have

H̃(w ⊗ ṽ1) = w ⊗ (I − F)ṽ1 − (Q⊤w)⊗Π(I − F)ṽ1 = w ⊗ 0− µw ⊗ 0 = 0. (60)

Combining (59) and (60), we conclude that for ℓ = 1, . . . , d and j = 2, . . . , n, the eigenvalue
1− e−iθℓλj of H remains to be an eigenvalue of H̃ , while the eigenvalues 1− e−iθℓλ1 = 1− e−iθℓ

of H are replaced by 0 in the spectrum of H̃ . Hence we have shown (58) is true.
Using (58) and (33), we obtain

p̃(Π, Q) =

n∏
j=2

d∏
ℓ=1

(
1 + 2t|1− e−iθℓλj |2

)−1/2

= p(Π, Q)
d∏

ℓ=1

(
1 + 2t|1− e−iθℓ |2

)1/2
= p(Π, Q)

d∏
ℓ=1

(1 + 2t(2− 2 cos θℓ))
1/2

≤ p(Π, Q)

d∏
ℓ=1

(
1 +

θ2ℓ
16σ2

)1/2

,
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which completes the proof.

Applying Lemma 10, the following lemma is the counterpart of Lemma 8.

Lemma 11 Suppose d = o(log n). For some σ0 > 0, let δ = σ0/
√
n and N ⊂ O(d) be the δ-net

defined in (25).

(i) If σ0 = o(n−2/d), then

∑
Π ̸=In

∑
Q∈N

E exp

{
− 1

32σ2
0

∥∥∥X̃ −ΠX̃Q
∥∥∥2
F

}
= o(1). (61)

(ii) For any ε = ε(n) > 0, if σ−d
0 > 16n22/ε, then the following is true

∑
d(π,Id)≥εn

∑
Q∈N

E exp

{
− 1

32σ2
0

∥∥∥X̃ −ΠX̃Q
∥∥∥2
F

}
= o(1). (62)

Proof (i) Similarly as in Lemma 8 Part (i), using (57) we have∑
Π ̸=In

∑
Q∈N

p̃(Π, Q)

≤
n−2∑
n1=0

⌈ 4π
δ
⌉∑

m1,...,md=⌊− 4π
δ
⌋

{∣∣∣N (eim1δ
4 , . . . , ei

mdδ

4

)∣∣∣ (n− n1)!

(
n

n1

)
(Cσ0)

n+n1
2

d

×

[
d∏

ℓ=1

1

( δ|mℓ|
4 + σ0)n1

(
1 +

δ2m2
ℓ

256σ2
0

) 1
2

]}

≤
n−2∑
n1=0

(
(Cσ0)

dn2
)n−n1

2

 ⌈ 4π
δ
⌉∑

m=⌊− 4π
δ
⌋

1

(1 + δ
4σ0

|m|)n1

(
1 +

δ2m2

256σ2
0

) 1
2
(
1 +

|m|
2

)2d2

d

=
n−2∑
n1=0

(
(Cσ0)

dn2
)n−n1

2

 ⌈ 4π
δ
⌉∑

m=⌊− 4π
δ
⌋

1

(1 + |m|
4
√
n
)n1

(
1 +

m2

256n

) 1
2
(
1 +

|m|
2

)2d2

d

≤
n−2∑
n1=0

(
(Cσ0)

dn2
)n−n1

2

 ⌈ 4π
δ
⌉∑

m=⌊− 4π
δ
⌋

1

(1 + |m|
4
√
n
)n1

(
1 +

|m|
2

)2d2+1


d

.

Let

T̃n1 ≜

⌈ 4π
δ
⌉∑

m=⌊− 4π
δ
⌋

1

(1 + |m|
4
√
n
)n1

(
1 +

|m|
2

)2d2+1

.
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Using the same arguments as in (41), (43) and (44), T̃n1 can be bounded by

T̃ d
n1

≤


Cd3nd3+dL2d2+2 if n1 ≤

√
n,

Cd(8
√
n)2d

2+2 if
√
n < n1 < 32

√
n(log n)2,

Cd if n1 ≥ 32
√
n(log n)2,

(63)

where L = σ−d
0 . Consequently, following the similar estimates in (42) and (45),∑

Π ̸=In

∑
Q∈N

p̃(Π, Q) = o(1),

which completes the proof.
(ii) Combined with (57), using the same arguments as in Lemma 8 Part (ii) yields

∑
d(π,Id)≥εn

∑
Q∈N

p̃(Π, Q) ≤
n∑

k=εn

(
n

k

)
L−kk!

(
16L

k

)k/2

T̃ d
n−k = J̃1 + J̃2

where

J̃1 ≜
n−32

√
n(logn)2∑

k=εn

(
n

k

)
L−kk!

(
16L

k

)k/2

T̃ d
n−k,

J̃2 ≜
n∑

k=n−32
√
n(logn)2+1

(
n

k

)
L−kk!

(
16L

k

)k/2

T̃ d
n−k.

By (63), these two term can be bounded in the same way as in (50) and (51). Thus,∑
d(π,Id)≥εn

∑
Q∈N

p̃(Π, Q) = o(1),

which completes the proof.

Lemma 11 implies the following high probability estimates. The proof is the same as in Lemma
9 via Chernoff bound and therefore we omit it here.

Lemma 12 Suppose d = o(log n). For some σ0 > 0, let δ = σ0/
√
n and N ⊂ O(d) be the δ-net

defined in (25).

(i) If σ0 = o(n−2/d), for any constant c > 0, the following inequality is true with high probability

min
Π ̸=In

min
Q∈N

∥∥∥X̃ −ΠX̃Q
∥∥∥
F
≥ c

√
dσ0. (64)

(ii) For any ε = ε(n) > 0, if σ−d
0 > 16n22/ε, the following is true for any fixed constant c > 0

with high probability

min
d(π,Id)≥εn

min
Q∈N

∥∥∥X̃ −ΠX̃Q
∥∥∥
F
≥ c

√
dσ0. (65)
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Now we are ready to prove Theorem 2 . Similarly as in the dot-product model (see the remark
following Theorem 1), for almost perfect recovery, we actually prove a stronger nonasymptotic
bound: For all sufficiently small ε, if σ−d > 16n22/ε, then overlap(π̃AML, π

∗) ≥ 1 − ε with high
probability, which clearly implies Theorem 2 by taking σ ≪ n−1/d.

Proof [Proof of Theorem 2] (i) Let N be the δ-net for O(d) defined in (25). Following the same
argument as in Theorem 1

P
{
∥X̃⊤Π⊤Ỹ ∥∗ ≥ ∥X̃⊤Ỹ ∥∗

}
≤ P

{
max
Q∈N

⟨X̃⊤Π⊤Ỹ , Q⟩ ≥ (1− δ2)⟨X̃⊤Ỹ , Id⟩
}
.

For fixed Π and Q, we have

P
{
⟨X̃⊤Π⊤Ỹ , Q⟩ ≥ (1− δ2)⟨X̃⊤Ỹ , Id⟩

}
= P

{
σ⟨Z̃, (1− δ2)X̃ −ΠX̃Q⟩ ≥ (1− δ2)∥X̃∥2F − ⟨X̃,ΠX̃Q⟩

}
.

Since the entries of Z̃ are not independent, we need to be more careful:

⟨Z̃, (1− δ2)X̃ −ΠX̃Q⟩ = ⟨(I − F)Z, (1− δ2)X̃ −ΠX̃Q⟩

= ⟨Z, (I − F)((1− δ2)X̃ −ΠX̃Q)⟩

= ⟨Z, (1− δ2)X̃ −ΠX̃Q⟩,

because (I −F)X̃ = X̃ and I −F commutes with any permutation matrix Π. Therefore, similarly
as in (54),

P
{
⟨X̃⊤Π⊤Ỹ , Q⟩ ≥ (1− δ2)⟨X̃⊤Ỹ , Id⟩

}
=P
{
σN

(
0, (1− δ2)

∥∥∥X̃ −ΠX̃Q
∥∥∥2
F
− δ4

∥∥∥X̃∥∥∥2
F

)
≥ 1

2

∥∥∥X̃ −ΠX̃Q
∥∥∥2
F
− δ2

∥∥∥X̃∥∥∥2
F

}
≤P
{
σN

(
0,
∥∥∥X̃ −ΠX̃Q

∥∥∥2
F

)
≥ 1

2

∥∥∥X̃ −ΠX̃Q
∥∥∥2
F
− δ2

∥∥∥X̃∥∥∥2
F

}
. (66)

Consider the events

E1 ≜
{
cdn ≤

∥∥∥X̃∥∥∥2
F
≤ Cdn

}
, E2 ≜

{
min
Π ̸=I

min
Q∈N

∥∥∥X̃ −ΠX̃Q
∥∥∥
F
≥ C

√
dσ

}
.

We claim that P {E1} = 1− o(1). To see this, note that

∥X̃∥2F = ⟨(I − F)X, (I − F)X⟩ = ⟨X, (I − F)X⟩

= Tr(X⊤(I − F)X) =
d∑

i=1

n∑
α,β=1

XαiXβi(I − F )αβ.

For each i = 1, . . . , d, we have
∑n

α,β=1XαiXβi(I − F)αβ = Coli(X)⊤(I − F)Coli(X), where
Coli(X) ∼ N (0, In) is the i-th column of X . By Hanson-Wright inequality (see e.g. (Rudelson
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and Vershynin, 2013, Theorem 1.1)), for each t ≥ 0,

P
{
|Coli(X)⊤(I − F)Coli(X)− EColi(X)⊤(I − F)Coli(X)| > t

}
≤ 2 exp

[
−cmin

(
t2

∥I − F∥2F
,

t

∥I − F∥

)]
.

Taking t = n3/4 and simplifying the above inequality yield

P
{
|Coli(X)⊤(I − F)Coli(X)− (n− 1)| > n3/4

}
≤ 2 exp

(
−cn1/2

)
. (67)

Note that (67) is true for every i = 1, . . . , d, and the columns Coli(X)’s are independent. This
immediately gives us P {E1} = 1−o(1). Moreover, by Lemma 12 we also have P {E2} = 1−o(1).
On the events E1 and E2, the estimate (66) reduces to

P
{
⟨X̃⊤Π⊤Ỹ , Q⟩ ≥ (1− δ2)⟨X̃⊤Ỹ , Id⟩, E1, E2

}
≤ P

{
σN

(
0,
∥∥∥X̃ −ΠX̃Q

∥∥∥2
F

)
≥ 1

4

∥∥∥X̃ −ΠX̃Q
∥∥∥2
F

}
≤ E exp

{
− 1

32σ2

∥∥∥X̃ −ΠX̃Q
∥∥∥2
F

}
.

(68)

Combining this with Lemma 11 and applying a union bound, we have

P
{
max
Π ̸=I

∥X̃⊤Π⊤Ỹ ∥∗ ≥ ∥X̃⊤Ỹ ∥∗
}

≤ P
{
max
Π ̸=In

max
Q∈N

⟨X̃⊤Π⊤Ỹ , Q⟩ ≥ (1− δ2)⟨X̃⊤Ỹ , Id⟩, E1, E2
}
+ P {Ec

1}+ P {Ec
2}

≤
∑
Π ̸=In

∑
Q∈N

P
{
⟨X̃⊤Π⊤Ỹ , Q⟩ ≥ (1− δ2)⟨X̃⊤Ỹ , Id⟩, E1, E2

}
+ o(1)

≤
∑
Π ̸=In

∑
Q∈N

E exp

{
− 1

32σ2

∥∥∥X̃ −ΠX̃Q
∥∥∥2
F

}
+ o(1)

= o(1).

This implies π̃AML = Id with high probability, which completes the proof.

(ii) The idea is the same as Theorem 1 Part (ii). For a sufficiently small ε = ε(n) > 0, take
σ−d > 16n22/ε and consider the event

E ′
2 ≜

{
min

d(π,Id)≥εn
min
Q∈N

∥∥∥X̃ −ΠX̃Q
∥∥∥
F
≥ C

√
dσ

}
.

Then Lemma 12 implies P {E ′
2} = 1− o(1). On the event E1 and E ′

2, the reduction estimate (66) for
Π with d(π, Id) ≥ εn still holds

P
{
⟨X̃⊤Π⊤Ỹ , Q⟩ ≥ (1− δ2)⟨X̃⊤Ỹ , Id⟩, E1, E ′

2

}
≤ E exp

{
− 1

32σ2

∥∥∥X̃ −ΠX̃Q
∥∥∥2
F

}
.
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Combined with Lemma 11, we have

P
{

max
d(π,Id)≥εn

∥X̃⊤Π⊤Ỹ ∥∗ ≥ ∥X̃⊤Ỹ ∥∗
}

≤
∑

d(π,Id)≥εn

∑
Q∈N

E exp

{
− 1

32σ2

∥∥∥X̃ −ΠX̃Q
∥∥∥2
F

}
+ o(1) = o(1).

Thus,
P {overlap(π̃AML, π

∗) ≥ 1− ε} = 1− o(1),

which completes the proof.

Appendix E. Information-theoretic necessary conditions

In this section, we derive necessary conditions for both almost perfect recovery and perfect recovery
for the linear assignment model (1). These conditions also hold for the weaker dot-product and
distance models.

E.1. Impossibility of almost perfect recovery

We first derive a necessary condition for almost perfect recovery that holds for any d via a simple
mutual information argument. Then we focus on the special case where d is a constant and give a
much sharper analysis, improving the necessary condition from σ ≤ n−(1−o(1))/d to σ = o(n−1/d).
Note that achieving a vanishing recovery error in expectation is equivalent to that with high proba-
bility (see e.g. (Hajek et al., 2017, Appendix A)). Thus without loss of generality, we focus on the
expected number of errors Ed (π∗, π̂) in this subsection.

Proposition 13 For any ϵ ∈ (0, 1), if there exists an estimator π̂ ≡ π̂(X,Y ) such that Ed (π∗, π̂) ≤
ϵn, then

d

2
log

(
1 +

1

σ2

)
− (1− ϵ) log n+ 1 +

log(n+ 1)

n
≥ 0. (69)

The necessary condition (69) further specializes to:

• d = o(log n):

σ = O
(
n−(1−ϵ)/d

)
. (70)

This yields Theorem 3(ii) and resolves (Kunisky and Niles-Weed, 2022, Conjecture 1.4, item
1) in the positive;

• d = Θ(log n):

σ ≤ 1− ϵ+ o(1)√
n2/d − 1

;
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• d = ω(log n):

σ ≤

√
d

2(1− ϵ− o(1)) log n
.

In this case, this necessary condition matches the sufficient condition of almost perfect re-
covery in (Dai et al., 2020, Theorem 1) and (Kunisky and Niles-Weed, 2022, Section A.2)
up to 1 + o(1) factor, thereby determining the sharp information-theoretic limit for the linear
assignment model in high dimensions.

Proof Since π∗ → (X,Y ) → π̂ form a Markov chain, by the data processing inequality of mutual
information, we have

I (π∗;X,Y ) ≥ I (π∗; π̂) = H(π∗)−H (π∗|π̂) . (71)

On the one hand, note that H(π∗) = log(n!) ≥ n log n − n. Moreover, for any fixed realization
of π̂, the number of π∗ such that d (π∗, π̂) = ℓ is

(
n
ℓ

)
!ℓ ≤ nℓ, where !ℓ denotes the number of

derangements of ℓ elements, given by

!ℓ = ℓ!
ℓ∑

i=0

(−1)i

i!
=

[
ℓ!

e

]
,

and [·] denotes rounding to the nearest integer. Therefore,

H (π∗|π̂,d (π∗, π̂)) ≤ Ed (π∗, π̂) log n ≤ ϵn log n.

Furthermore, d (π∗, π̂) takes values in {0, 1, . . . , n}. Thus from the chain rule,

H(π∗|π̂) = H(d (π∗, π̂) |π̂) +H (π∗|π̂,d (π∗, π̂)) ≤ log(n+ 1) + ϵn log n. (72)

On the other hand, the information provided by the observation (X,Y ) about π∗ satisfies

I(π∗;X,Y ) = I (Π∗X; Π∗X + σZ|X)

(a)

≤ nd

2
log

(
1 +

E[∥X∥2]
ndσ2

)
=

nd

2
log

(
1 +

1

σ2

)
, (73)

where (a) follows from the Gaussian channel capacity formula and the fact that the mutual infor-
mation in the Gaussian channel under a second moment constraint is maximized by the Gaussian
input distribution. Combining (71)–(73), we get that

nd

2
log

(
1 +

1

σ2

)
≥ (1− ϵ)n log n− n− log(n+ 1),

arriving at the desired necessary condition (69).

While the negative result in Proposition 13 holds for any d, the necessary condition (69) turns
out to be loose for bounded d. The following result gives the optimal condition in this case.
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Theorem 14 Assume σ = σ0n
−1/d for any constant σ0 ∈ (0, 1/2). There exists a constant

δ0(σ0, d) that only depends on σ0, d such that for any estimator Π̂ and all sufficiently large n,

Ed
(
Π∗, Π̂

)
≥ δ0n.

Theorem 14 readily implies that for constant d, σ = o(n−1/d) is necessary for achieving the al-
most perfect recovery, i.e., Ed(Π∗, Π̂) = o(n). To prove Theorem 14, we follow the program
in Ding et al. (2021b) of analyzing the posterior distribution. The likelihood function of (X,Y )
given Π∗ = Π is proportional to exp(− 1

2σ2 ∥Y − ΠX∥2F). Therefore, conditional on (X,Y ), the
posterior distribution of Π∗ is a Gibbs measure, given by

µX,Y (Π) =
1

Z(X,Y )
exp (L(Π)) , where L(Π) =

1

σ2
⟨ΠX,Y ⟩ ,

and Z(X,Y ) is the normalization factor.
As observed in (Ding et al., 2021b, Section 3.1), in order to prove the impossibility of almost

perfect recovery, it suffices to consider the estimator Π̃ which is sampled from the posterior distri-
bution µX,Y (Π). To see this, given any estimator Π̂ ≡ Π̂(X,Y ), (Π̂,Π∗) and (Π̂, Π̃) are equal in
law, and hence

E[d(Π̃,Π∗)] ≤ E[d(Π̃, Π̂)] + E[d(Π∗, Π̂)] = 2E[d(Π∗, Π̂)],

which shows that Π̃ is optimal within a factor of two. Thus it suffices to bound E[d(Π̃,Π∗)] from
below.

To this end, fix some δ to be specified later and define the sets of good and bad solutions
respectively as

Πgood = {Π ∈ Sn : d(Π,Π∗) < δn},
Πbad = {Π ∈ Sn : d(Π,Π∗) ≥ δn}.

By the definition of Π̃, we have

E[d(Π̃,Π∗)] ≥ δn · E[µX,Y (Πbad)].

Next we show two key lemmas, which bound the posterior mass of Πgood and Πgood from above
and below, respectively.

Lemma 15 Assume σ = σ0n
−1/d for any constant σ0 ∈ (0, 1/2). For any constant δ such that

δ ≤ 16(2σ0)
d, with probability at least 1− 4δne−δn/ logn,

µX,Y (Πgood)

µX,Y (Π∗)
≤ 2

(
16e2(2σ0)

d

δ

)δn

. (74)

Lemma 16 Assume σ = σ0n
−1/d for some constant σ0. There exist constants δ0(σ0, d) and

c(σ0, d) that only depend on σ0, d such that for all δ ≤ δ0 and sufficiently large n, with probability
at least 1/2− c/n,

µX,Y (Πbad)

µX,Y (Π∗)
≥ eδ0n/2. (75)

Given the above two lemmas, Theorem 14 readily follows. Indeed, combining Lemma 15 and
Lemma 16 and choosing δ such that δ log(16e2(2σ0)d/δ) = δ0/4 we get µX,Y (Πbad) ≥ eδ0n/4

2+eδ0n/4

with probability at least 1/2−c/n−4δne−δn/ logn, which shows that E[d(Π̃,Π∗)] ≳ δn as desired.
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E.2. Upper bounding the posterior mass of good permutations

In this section, we prove Lemma 15 by a truncated first moment calculation. We need the following
key auxiliary result.

Lemma 17 Assume that n(2σ)d ≤ 1. Then for any ℓ ∈ [0, n],

∑
Π:d(Π,Π∗)=ℓ

Eexp
(
− 1

8σ2
∥ΠX −Π∗X∥2F

)
≤
(
16n2(2σ)d

ℓ

)ℓ/2

.

Proof It follows from (30) in Lemma 7 that

Eexp
(
− 1

8σ2
∥ΠX −Π∗X∥2F

)
≤

n∏
k=1

[
(2σ)k−1

]dnk

≤ (2σ)d(ℓ−c(π̃)) ,

where ℓ = n− n1 is the number of non-fixed points, π̃ is the restriction of the permutation π on its
non-fixed points, and c(π̃) denotes the number of cycles of π̃. It follows that

∑
Π:d(Π,Π∗)=ℓ

Eexp
(
− 1

8σ2
∥ΠX −Π∗X∥2F

)
≤
(
n

ℓ

)
ℓ!

Lℓ
Eτ

[
Lc(τ)

1{τ is a derangement}

]
≤
(n
L

)ℓ
Eτ

[
Lc(τ)

1{τ is a derangement}

]
≤
(
16n2

ℓL

)ℓ/2

,

where L = (2σ)−d, the expectation Eτ is taken for a uniformly random permutation τ ∈ Sℓ, and
the last inequality follows from (49).

Proof [Proof of Lemma 15] Note that

µX,Y (Πgood)

µX,Y (Π∗)
=

∑
Π∈Πgood

eL(Π)−L(Π∗) = R1 +R2,

where

R1 ≜
∑

Π:d(Π,Π∗)<βn/ logn

eL(Π)−L(Π∗)

R2 ≜
∑

Π: βn
logn

≤d(Π,Π∗)<δn

eL(Π)−L(Π∗)

for some β to be specified. Next we bound R1 and R2 separately.
First, the number of permutations Π such that Π−1 ◦Π∗ has ℓ non-fixed points is

|{Π ∈ Sn : d(Π,Π∗) = ℓ}| =!ℓ ·
(
n

ℓ

)
, (76)
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where !ℓ =
[
ℓ!
e

]
. Thus

1

2e
n(n− 1) · · · (n− ℓ+ 1) ≤ |{Π ∈ Sn : d(Π,Π∗) = ℓ}| ≤ 2

e
n(n− 1) · · · (n− ℓ+ 1). (77)

Furthermore, for any Π,

EeL(Π)−L(Π∗) = Eexp
(

1

σ2
⟨ΠX −Π∗X,Y ⟩

)
= Eexp

(
1

σ2
⟨ΠX −Π∗X,Π∗X⟩+ 1

2σ2
∥ΠX −Π∗X∥2F

)
= 1, (78)

where the first equality holds due to Y = Π∗X + σ2Z and Eexp(⟨A,Z⟩) = exp(∥A∥2F/2) and the
second equality follows from ⟨ΠX −Π∗X,Π∗X⟩ = −1

2∥ΠX −Π∗X∥2F.
To bound R1, using (77) and (78) we have

ER1 =
∑

d(Π,Π∗)< βn
logn

EeL(Π)−L(Π∗) ≤
∑

ℓ< βn
logn

2

e
nℓ ≤ 2βn

e log n
exp(βn).

By Markov’s inequality,

P
{
R1 ≥ e2βn

}
≤ 2n

e
exp(−βn). (79)

To bound R2, the calculation above shows that directly applying the Markov inequality is too
crude since E[R2] = eΘ(n logn). Note that although L(Π) − L(Π∗) is negatively biased, when
L(Π)−L(Π∗) is atypically large it results in an excessive contribution to the exponential moments.
Thus we truncate on the following event:

E ≜
⋂

Π: βn
logn

≤d(Π,Π∗)<δn

{L(Π)− L(Π∗) ≤ τ (d(Π,Π∗))}

for some threshold τ(ℓ) to be chosen.
Then for any c′ > 0,

P
{
R2 ≥ ec

′n
}

≤ P {Ec}+ P
{
{R2 ≥ ec

′n} ∩ E
}

≤ P {Ec}+ P


∑

βn
logn

≤d(Π,Π∗)<δn

eL(Π)−L(Π∗)1{L(Π)−L(Π∗)≤τ(d(Π,Π∗))} ≥ ec
′n


≤ P {Ec}+ e−c′n

∑
βn

logn
≤d(Π,Π∗)<δn

EeL(Π)−L(Π∗)1{L(Π)−L(Π∗)≤τ(d(Π,Π∗))}. (80)

To bound the first term, note that for any t > 0,

P {L(Π)− L(Π∗) ≥ τ}

≤ e−tτEexp
(

t

σ2
⟨ΠX −Π∗X,Y ⟩

)
= e−tτEexp

(
t2 − t

2σ2
∥ΠX −Π∗X∥2F

)
.
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By choosing t = 1/2, we get that

P {L(Π)− L(Π∗) ≥ τ} ≤ e−τ/2Eexp
(
− 1

8σ2
∥ΠX −Π∗X∥2F

)
.

Recall from Lemma 17, we have that

∑
Π:d(Π,Π∗)=ℓ

Eexp
(
− 1

8σ2
∥ΠX −Π∗X∥2F

)
≤
(
16n2(2σ)d

ℓ

)ℓ/2

=

(
16n(2σ0)

d

ℓ

)ℓ/2

.

Therefore, it follows from a union bound that

P {Ec} =
∑

βn
logn

≤d(Π,Π∗)<δn

P {L(Π)− L(Π∗) ≥ τ (d(Π,Π∗))}

≤
∑

βn
logn

≤ℓ<δn

e−τ(ℓ)/2

(
16n(2σ0)

d

ℓ

)ℓ/2

=
∑

βn
logn

≤ℓ<δn

e−ℓ ≤ δne
− βn

logn , (81)

where the last equality holds by choosing τ(ℓ) = ℓ log(16e2n(2σ0)
d/ℓ).

For the second term in (81), we bound the truncated MGF as follows:∑
Π:d(Π,Π∗)=ℓ

EeL(Π)−L(Π∗)1{L(Π)−L(Π∗)≤τ(d(Π,Π∗))}

≤
∑

Π:d(Π,Π∗)=ℓ

Eexp
(
1

2
(L(Π)− L(Π∗) + τ(ℓ))

)

≤
∑

Π:d(Π,Π∗)=ℓ

Eexp
(
− 1

8σ2
∥ΠX −Π∗X∥2F

)
eτ(ℓ)/2

≤
(
16n(2σ0)

d

ℓ

)ℓ/2

eτ(ℓ)/2

≤
(
16en(2σ0)

d

ℓ

)ℓ

.

It follows that

∑
βn

logn
≤d(Π,Π∗)<δn

EeL(Π)−L(Π∗)1{L(Π)−L(Π∗)≤rd(Π,Π∗)} ≤
∑

βn
logn

≤ℓ<δn

(
16en(2σ0)

d

ℓ

)ℓ

≤ δn

(
16e(2σ0)

d

δ

)δn

,
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where the last inequality holds for all δ ≤ 16(2σ0)
d. Choosing c′ = δ log(16e2(2σ0)

d/δ), we get
that

e−c′n
∑

βn
logn

≤d(Π,Π∗)<δn

EeL(Π)−L(Π∗)1{L(Π)−L(Π∗)≤rd(Π,Π∗)} ≤ δne−δn (82)

Substituting (81) and (82) into (80), we get

P

{
R2 ≥

(
16e2(2σ0)

d

δ

)δn
}

≤ 2δne−βn/ logn.

Combining this with (79) and upon choosing β = δ, we have

P

{
R1 +R2 ≥ 2

(
16e2(2σ0)

d

δ

)δn
}

≤ 4δne−δn/ logn,

concluding the proof.

E.3. Lower bounding the posterior mass of bad permutations

In this section, we prove Lemma 16. We aim to construct exponentially many bad permutations
π whose log likelihood L(π) is no smaller than L(π∗). It turns out that L(π) − L(π∗) can be
decomposed according to the orbit decomposition of (π∗)−1 ◦ π as per (14). Thus, following Ding
et al. (2021b), we look for vertex-disjoint orbits O whose total lengths add up to Ω(n) and each of
them is augmenting in the sense that ∆(O) ≥ 0.

In the planted matching model with independent weights Ding et al. (2021b), a great challenge
lies in the fact that short augmenting orbits (even after taking their disjoint unions) are insufficient to
meet the Ω(n) total length requirement. As a result, one has to search for long augmenting orbits of
length Ω(n). However, due to the excessive correlations among long augmenting orbits, the second-
moment calculation fundamentally fails. To overcome this challenge, Ding et al. (2021b) invents a
two-stage finding scheme which first finds many but short augmenting paths and then patches them
together to form a long augmenting orbit using the so-called sprinkling idea. Fortunately, in our
low-dimensional case of d = Θ(1), as also observed in Kunisky and Niles-Weed (2022), it suffices
to look for augmenting 2-orbits and take their disjoint unions. More precisely, the following lemma
shows that there are Ω(n) vertex-disjoint augmenting 2-orbits, from which we can easily extract
exponentially many different unions of total length Ω(n). In contrast, to prove the failure of the
MLE for almost perfect recovery in Kunisky and Niles-Weed (2022), a single union of Ω(n) vertex-
disjoint augmenting 2-orbits is sufficient.

Lemma 18 If σ = σ0n
−1/d, then there exist constants c(σ0, d), δ0(σ0, d), and n0(σ0, d) that only

depend on σ0 and d such that for all n ≥ n0, with probability at least 1/2− c/n, there are at least
δ0n many vertex-disjoint augmenting 2-orbits.

This lemma is proved in (Kunisky and Niles-Weed, 2022, Section 4) using the so-called concentration-
enhanced second-moment method. For completeness, here we provide a much simpler proof via the
vanilla second-moment method combined with Turán’s theorem.
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Proof Let Iij denote the indicator that (i, j) is an augmenting 2-orbit and I =
∑

i<j Iij . To extract
a collection of vertex-disjoint augmenting 2-orbits, we construct a graph G = (V,E), where the
vertices correspond to (i, j) for which Iij = 1, and (i, j) and (k, ℓ) are connected if (i, j) and (k, ℓ)
share a common vertex. By construction, any collection of vertex-disjoint 2-orbits corresponds to
an independent set in G. By Turán’s theorem (see e.g. (Alon and Spencer, 2008, Theorem 1, p. 95)),
there exists an independent set S in G of size at least |V |2/(2|E| + |V |). It remains to bound |V |
from below and |E| from above.

Note that |V | = I =
∑

i<j Iij . For all n sufficiently large, σ2 ≤ d/40 and it follows from (Ku-
nisky and Niles-Weed, 2022, Prop. 4.3) that

p ≜ P {Iij = 1} ≥ 1

1000
√
d

(
1 +

1

σ2

)−d/2

.

Therefore,

EI =
∑
i<j

P {Iij = 1} ≥
(
n

2

)
1

1000
√
d

(
1 +

1

σ2

)−d/2

. (83)

Under the assumption that σ = σ0n
−1/d, it follows that EI ≥ c0(d, σ0)n for some constant

c0(d, σ0) that only depends on d and σ0. Moreover,

var(I) =
∑

i<j,k<ℓ

Cov (Iij , Ikℓ)

=
∑
i<j

var(Iij) +
∑
i<j

∑
k:k ̸=i,j

(Cov (Iij , Iik) + Cov (Iij , Ijk))

≤
∑
i<j

EI2ij +
∑
i<j

∑
k:k ̸=i,j

(EIijIik + EIijIjk) ,

where the second equality holds because Iij and Ikℓ are independent when {i, j} ∩ {k, ℓ} = ∅.
Recall that EI2ij = EIij = p. Moreover, it follows from (Kunisky and Niles-Weed, 2022, Prop. 4.5)
that

EIijIik ≤
(
1 +

3

4σ2

)−d

.

Combining the last three displayed equation yields that

var(I) ≤ EI + n3

(
1 +

3

4σ2

)−d

. (84)

Under the assumption that σ = σ0n
−1/d, it follows that var(I) ≤ EI+c1(d, σ0)n for some c1(d, σ0)

that only depends on d and σ0. By Chebyshev’s inequality,

P
{
I ≤ 1

2
EI
}

≤ 4var(I)

(EI)2
≤ 4(c0 + c1)

c20n
.

Moreover,
|E| =

∑
i<j

∑
k:k ̸=i,j

(IijIik + IijIjk)
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and hence

E|E| =
∑
i<j

∑
k:k ̸=i,j

(EIijIik + EIijIjk) ≤ n3

(
1 +

3

4σ2

)−d

≤ c1(d, σ0)n.

By Markov’s inequality, |E| ≤ 2E|E| with probability at least 1/2. Therefore, with probability at
least 1/2− 4c1/(c

2
0n),

|S| ≥ |V |2

2|E|+ |V |
≥ (EI)2 /4

4E|E|+ EI/2
≥ c20n

2/4

4c1n+ c0n/2
≥ δ0n,

for some constant δ0(d, σ0) that only depends on d and σ0.

Proof [Proof of Lemma 16] By Lemma 18, from δ0n such vertex-disjoint augmenting 2-orbits,
we choose δ0n/2 many of them and form a union of augmenting 2-orbits with the total length
δ0n/2 × 2 = δ0n. There are

(
δ0n

δ0n/2

)
many different unions, and each of such union corresponds

to a permutation Π with d(Π,Π∗) = δ0n and L(Π) ≥ L(Π∗) in view of (14). Therefore, for any
δ ≤ δ0,

µX,Y (Πbad)

µX,Y (Π∗)
≥
(

δ0n

δ0n/2

)
≥ 2δ0n/2.

E.4. Impossibility of perfect recovery

In this section, we prove an impossibility condition of perfect recovery.

Theorem 19 Suppose that σ2 ≤ d/40 and

d

4
log

(
1 +

1

σ2

)
− log n+ log d ≤ C, (85)

for a constant C > 0. Then there exists a constant c that only depends on C such that for any
estimator π̂, P {π̂ ̸= π∗} ≥ c.

Theorem 19 immediately implies that if there exists an estimator that achieves perfect recovery with
high probability, then

d

4
log

(
1 +

1

σ2

)
− log n+ log d → +∞. (86)

In comparison, it is shown in (Dai et al., 2019, Theorem 1) that perfect recovery is possible if
d
4 log

(
1 + 1

σ2

)
− log n → +∞. Thus our necessary condition agrees with their sufficient condition

up to an additive log d factor. Our necessary condition (86) further specializes to

• d ≪ log n:

σ ≤

{
o(n−2/d) if d = O(1)

n−2/d if d ≫ 1
.

This yields Theorem 3(i) and slightly improves over the necessary condition of MLE in (Ku-
nisky and Niles-Weed, 2022, Theorem 1.1), that is, σ = O(n−2/d).
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• d = Θ(log n):

σ ≤ 1√
n4/d − 1

;

• d ≫ log n:

σ ≤

√
d

4 log(n/d) + ω(1)
.

Note that the previous work Dai et al. (2019) shows that d
4 log

(
1 + 1

σ2

)
≥ (1 − Ω(1)) log n is

necessary for perfect recovery, under the additional assumption that 1 ≪ d = O(log n). The
analysis therein is based on showing the existence of an augmenting 2-orbit via the second-moment
method. We follow a similar strategy, but our first and second moment estimates are sharper and
thus yield a tighter condition.
Proof Recall that Iij denote the indicator that (i, j) is an augmenting 2-orbit and I =

∑
i<j Iij . For

the purpose of lower bound, consider the Bayesian setting where π∗ is drawn uniformly at random.
Then the MLE π̂ML given in (2) minimizes the probability of error. Hence, it suffices to bound from
below P {π̂ML ̸= π∗}. Note that on the event {I > 0}, there exists at least one permutation π ̸= π∗

whose likelihood is at least as large as that of π∗ and hence the error probability of MLE is at least
1/2. Therefore,

P {π̂ML ̸= π∗} ≥ 1

2
P {I > 0} .

It remains to bound P {I > 0} from below. To this end, we first bound var(I)/ (EI)2. In view
of (84),

var(I)

(EI)2
≤ 1

EI
+

1

(EI)2
n3

(
1 +

3

4σ2

)−d

.

By assumption σ2 ≤ d/40 and (85), it follows from (83) that

EI ≳
n2

√
d

(
1 +

1

σ2

)−d/2

≥ exp

(
3

2
log d− 2C

)
≥ exp (−2C) .

Moreover,

1

(EI)2
n3

(
1 +

3

4σ2

)−d

≲
d

n

(
1 + 1/σ2

1 + 3/(4σ2)

)d (a)

≤ d

n

(
1 +

1

σ2

)d/4 (b)

≤ eC ,

where (a) holds because 1+3x/4 ≥ (1+x)3/4 for all x ≥ 0 and (b) holds due to assumption (85),
Combining the last three displayed equation yields that var(I)/ (EI)2 ≤ c0 for some constant

c0 that only depends on C. By the Paley-Zygmund inequality,

P {I > 0} ≥ P
{
I ≥ 1

2
EI
}

≥ (EI)2

4
(
var(I) + (EI)2

) ≥ 1

4c0 + 1
.
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Appendix F. Recovery thresholds in the nonisotropic case

In this section we argue that Theorem 1 continues to hold under the same conditions in the non-
isotropic case of Xi

i.i.d.∼ N (0,Σ), provided that Σ ≻ cI for some absolute constant c > 0. In the
general nonisotropic case, we denote by p(Σ, σ,Π, Q) the moment generating function given by
(27) to highlight the dependency on the covariance matrix Σ and the noise level σ. As in the proof
of Lemma 8, recall x = vec(X) denotes the vectorization of X . Since Xi

i.i.d.∼ N (0,Σ), the vector
x ∈ Rnd has distribution x ∼ N (0, In⊗Σ). Note that In⊗Σ ≻ cInd. Modifying (32) accordingly,
we have

p(Σ, σ,Π, Q) = E exp

(
− 1

32σ2
x⊤H⊤Hx

)
=

[
det

(
I +

1

16σ2
H⊤H(In ⊗ Σ)

)]− 1
2

≤
[
det
(
I +

c

16σ2
H⊤H

)]− 1
2
= p(I, σ′,Π, Q),

where H = Ind − Q⊤ ⊗ Π and σ′ = σ/
√
c. This shows that the MGF p(Σ, σ,Π, Q) satisfies the

same estimates (30), (31) and Lemma 8 for the isotropic case with the original noise σ replaced by
a constant multiple of it σ′. This constant multiplicative factor keeps σ′ satisfying the same noise
threshold in Theorem 1, which implies both prefect recovery and almost perfect recovery can still
be achieved for the nonisotropic case under the same conditions, hence confirming our claim in
Section 4.
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