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A B S T R A C T

With the increasing need for handling large state and action spaces, general function
approximation has become a key technique in reinforcement learning (RL). In this
paper, we propose a general framework that unifies model-based and model-free
RL, and an Admissible Bellman Characterization (ABC) class that subsumes nearly
all Markov Decision Process (MDP) models in the literature for tractable RL. We
propose a novel estimation function with decomposable structural properties for
optimization-based exploration and the functional eluder dimension as a com-
plexity measure of the ABC class. Under our framework, a new sample-efficient
algorithm namely OPtimization-based ExploRation with Approximation (OPERA)
is proposed, achieving regret bounds that match or improve over the best-known
results for a variety of MDP models. In particular, for MDPs with low Witness
rank, under a slightly stronger assumption, OPERA improves the state-of-the-art
sample complexity results by a factor of dH . Our framework provides a generic
interface to design and analyze new RL models and algorithms.

1 I N T R O D U C T I O N

Reinforcement learning (RL) is a decision-making process that seeks to maximize the expected
reward when an agent interacts with the environment (Sutton & Barto, 2018). Over the past decade,
RL has gained increasing attention due to its successes in a wide range of domains, including Atari
games (Mnih et al., 2013), Go game (Silver et al., 2016), autonomous driving (Yurtsever et al.,
2020), Robotics (Kober et al., 2013), etc. Existing RL algorithms can be categorized into value-
based algorithms such as Q-learning (Watkins, 1989) and policy-based algorithms such as policy
gradient (Sutton et al., 1999). They can also be categorized as a model-free approach where one
directly models the value function classes, or alternatively, a model-based approach where one needs
to estimate the transition probability.
Due to the intractably large state and action spaces that are used to model the real-world complex
environment, function approximation in RL has become prominent in both algorithm design and
theoretical analysis. It is a pressing challenge to design sample-efficient RL algorithms with general
function approximations. In the special case where the underlying Markov Decision Processes
(MDPs) enjoy certain linear structures, several lines of works have achieved polynomial sample
complexity and/or

√
T regret guarantees under either model-free or model-based RL settings. For

linear MDPs where the transition probability and the reward function admit linear structure, Yang
& Wang (2019) developed a variant of Q-learning when granted access to a generative model, Jin
et al. (2020) proposed an LSVI-UCB algorithm with a Õ(

√
d3H3T ) regret bound and Zanette et al.

(2020a) further extended the MDP model and improved the regret to Õ(dH
√
T ). Another line of

work considers linear mixture MDPs Yang & Wang (2020); Modi et al. (2020); Jia et al. (2020);
Zhou et al. (2021a), where the transition probability can be represented by a mixture of base models.
In Zhou et al. (2021a), an Õ(dH

√
T ) minimax optimal regret was achieved with weighted linear

∗Equal contribution.
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Figure 1: Venn-Diagram Visualization of Prevailing Sample-Efficient RL Classes. As by far the
richest concept, the DEC framework is both a necessary and sufficient condition for sample-efficient
interactive learning. BE dimension is a rich class that subsumes both low Bellman rank and low
eluder dimension and addresses almost all model-free RL classes. The generalized Bilinear Class
captures model-based RL settings including KNRs, linear mixture MDPs and low Witness rank MDPs,
yet precludes some eluder-dimension based models. Bellman Representability is another unified
framework that subsumes the vanilla bilinear classes but fails to capture KNRs and low Witness
rank MDPs. Our ABC class encloses both generalized Bilinear Class and Bellman Representability
and subsumes almost all known solvable MDP cases, with the exception of the Q∗ state-action
aggregation and deterministic linear Q∗ MDP models, which neither Bilinear Class nor our ABC
class captures.

regression and a Bernstein-type bonus. Other structural MDP models include the block MDPs (Du
et al., 2019) and FLAMBE (Agarwal et al., 2020b) 1, to mention a few.
In a more general setting, however, there is still a gap between the plethora of MDP models and
sample-efficient RL algorithms that can learn the MDP model with function approximation. The
question remains open as to what constitutes minimal structural assumptions that admit sample-
efficient reinforcement learning. To answer this question, there are several lines of work along this
direction. Russo & Van Roy (2013); Osband & Van Roy (2014) proposed an structural condition
named eluder dimension, and Wang et al. (2020) extended the LSVI-UCB for general linear function
classes with small eluder dimension. Another line of works proposed low-rank structural conditions,
including Bellman rank (Jiang et al., 2017; Dong et al., 2020) and Witness rank (Sun et al., 2019).
Recently, Jin et al. (2021) proposed a complexity called Bellman eluder (BE) dimension, which
unifies low Bellman rank and low eluder dimension. Concurrently, Du et al. (2021) proposed Bilinear
Classes, which can be applied to a variety of loss estimators beyond vanilla Bellman error. Very
recently, Foster et al. (2021) proposed Decision-Estimation Coefficient (DEC), which is a necessary
and sufficient condition for sample-efficient interactive learning. To apply DEC to RL, they proposed
a RL class named Bellman Representability, which can be viewed as a generalization of the Bilinear
Class. Nevertheless, Sun et al. (2019) is limited to model-based RL, and Jin et al. (2021) is restricted
to model-free RL. The only frameworks that can unify both model-based and model-free RL are Du
et al. (2021) and Foster et al. (2021), but their sample complexity results when restricted to special
MDP instances do not always match the best-known results. Viewing the above gap, we aim to
answer the following question:

Is there a unified framework that includes all model-free and model-based RL classes while
maintaining sharp sample efficiency?

In this paper, we tackle this challenging question and give a nearly affirmative answer to it. We
summarize our contributions as follows:

• We propose a general framework called Admissible Bellman Characterization (ABC) that covers
a wide set of structural assumptions in both model-free and model-based RL, such as linear

1In this paper, we use FLAMBE to refer to both the algorithm and the low-rank MDP with unknown feature
mappings.
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MDPs, FLAMBE, linear mixture MDPs, kernelized nonlinear regulator (Kakade et al., 2020),
etc. Furthermore, our framework encompasses comparative structural frameworks such as the low
Bellman eluder dimension and low Witness rank.

• Under our ABC framework, we design a novel algorithm, OPtimization-based ExploRation with
Approximation (OPERA), based on maximizing the value function while constrained in a small
confidence region around the model minimizing the estimation function.

• We apply our framework to several specific examples that are known to be not sample-efficient
with value-based algorithms. For the kernelized nonlinear regulator (KNR), our framework is the
first general framework to derive a

√
T regret-bound result. For the witness rank, our framework

yields a sharper sample complexity with a mild additional assumption compared to prior works.

We visualize and compare prevailing sample-efficient RL frameworks and ours in Figure 1. We can
see that both the general Bilinear Class and our ABC frameworks capture most existing MDP classes,
including the low Witness rank and the KNR models.
Notation. For a state-action sequence s1, a1, . . . , sH in our given context, we use Jh :=
σ(s1, a1, . . . , sh) to denote the σ-algebra generated by trajectories up to step h ∈ [H]. Let πf
denote the policy of following the max-Q strategy induced by hypothesis f . When f = f i we
write πfi as πi for notational simplicity. We write sh ∼ π to indicate the state-action sequence are
generated by step h ∈ [H] by following policy π(· | s) and transition probabilities P(· | s, a) of the
underlying MDP model M . We also write ah ∼ π to mean ah ∼ π(· | sh) for the h-th step. Let
∥ · ∥2 denote the ℓ2-norm and ∥ · ∥∞ the ℓ∞-norm of a given vector. Other notations will be explained
at their first appearances.

2 P R E L I M I N A R I E S

We consider a finite-horizon, episodic Markov Decision Process (MDP) defined by the tuple M =
(S,A,P, r,H), where S is the space of feasible states, A is the action space. H is the horizon in
each episode defined by the number of action steps in one episode, and P := {Ph}h∈[H] is defined
for every h ∈ [H] as the transition probability from the current state-action pair (sh, ah) ∈ S ×A
to the next state sh+1 ∈ S. We use rh(s, a) ≥ 0 to denote the reward received at step h ∈ [H]
when taking action a at state s and assume throughout this paper that for any possible trajectories,∑H

h=1 rh(sh, ah) ∈ [0, 1].
A deterministic policy π is a sequence of functions {πh : S 7→ A}h∈[H], where each πh specifies
a strategy at step h. Given a policy π, the action-value function is defined to be the expected
cumulative rewards where the expectation is taken over the trajectory distribution generated by
{(Ph(· | sh, ah), πh(· | sh))}h∈[H] as

Qπ
h(s, a) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣ sh = s, ah = a

]
.

Similarly, we define the state-value function for policy π as the expected cumulative rewards as

V π
h (s) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣ sh = s

]
.

We use π∗ to denote the optimal policy that satisfies V π∗

h (s) = maxπ V
π
h (s) for all s ∈ S (Puterman,

2014). For simplicity, we abbreviate V π∗

h as V ∗
h and Qπ∗

h as Q∗
h. Moreover, for a sequence of value

functions {Qh}h∈[H], the Bellman operator at step h is defined as:

(ThQh+1) (s, a) = rh(s, a) + Es′∼Ph(·|s,a) max
a′∈A

Qh+1(s
′, a′).

We also call Qh − (ThQh+1) the Bellman error (or Bellman residual). The goal of an RL algorithm
is to find an ϵ-optimal policy such that V π

1 (s1)− V ∗
1 (s1) ≤ ϵ. For an RL algorithm that updates the

policy πt for T iterations, the cumulative regret is defined as

Regret(T ) :=
T∑

t=1

[
V ∗
1 (s1)− V πt

1 (s1)
]
,

3



Published as a conference paper at ICLR 2023

Hypothesis Classes. Following Du et al. (2021), we define the hypothesis class for both model-free
and model-based RL. Generally speaking, a hypothesis class is a set of functions that are used
to estimate the value functions (for model-free RL) or the transitional probability and reward (for
model-based RL). Specifically, a hypothesis class F on a finite-horizon MDP is the Cartesian product
of H hypothesis classes F := F1 × . . . × FH in which each hypothesis f = {fh}h∈[H] ∈ F
can be identified by a pair of value functions {Qf , Vf} = {Qh,f , Vh,f}h∈[H]. Based on the value
function pair, it is natural to introduce the greedy policy πh,f (s) = argmaxa∈AQh,f (s, a) at each
step h ∈ [H], and the corresponding πf (s) as the sequence of time-dependent policies {πh,f}H−1

h=0 .
An example of a model-free hypothesis class is defined by a sequence of action-value function
{Qh,f}h∈[H]. The corresponding state-value function is given by:

Vh,f (s) = Ea∼πh,f
[Qh,f (s, a)] .

In another example that falls under the model-based RL setting, where for each hypothesis f ∈ F
we have the knowledge of the transition matrix Pf and the reward function rf . We define the value
functionQh,f corresponding to hypothesis f as the optimal value function followingMf := (Pf , rf ):

Qh,f (s, a) = Q∗
h,Mf

(s, a) and Vh,f (s) = V ∗
h,Mf

(s).

We also need the following realizability assumption that requires the true model Mf∗ (model-based
RL) or the optimal value function f∗ (model-free RL) to belong to the hypothesis class F .
Assumption 1 (Realizability). For an MDP model M and a hypothesis class F , we say that the
hypothesis class F is realizable with respect to M if there exists a f∗ ∈ F such that for any h ∈ [H],
Q∗

h(s, a) = Qh,f∗(s, a). We call such f∗ an optimal hypothesis.

This assumption has also been made in the Bilinear Classes (Du et al., 2021) and low Bellman
eluder dimension frameworks (Jin et al., 2021). We also define the ϵ-covering number of F under a
well-defined metric ρ of a hypothesis class F :2

Definition 2 (ϵ-covering Number of Hypothesis Class). For any ϵ > 0 and a hypothesis class F , we
use NF (ϵ) to denote the ϵ-covering number, which is the smallest possible cardinality of (an ϵ-cover)
Fϵ such that for any f ∈ F there exists a f ′ ∈ Fϵ such that ρ(f, f ′) ≤ ϵ.

Functional Eluder Dimension. We proceed to introduce our new complexity measure, functional
eluder dimension, which generalizes the concept of eluder dimension firstly proposed in bandit
literature (Russo & Van Roy, 2013; 2014). It has since become a widely used complexity measure for
function approximations in RL (Wang et al., 2020; Ayoub et al., 2020; Jin et al., 2021; Foster et al.,
2021). Here we revisit its definition:
Definition 3 (Eluder Dimension). For a given space X and a class F of functions defined on X , the
eluder dimension dimE(F , ϵ) is the length of the existing longest sequence x1, . . . , xn ∈ X satisfying

for some ϵ′ ≥ ϵ and any 2 ≤ t ≤ n, there exist f1, f2 ∈ F such that
√∑t−1

i=1 (f1(xi)− f2(xi))
2 ≤ ϵ′

while |f1(xt)− f2(xt)| > ϵ′.

The eluder dimension is usually applied to the state-action space X = S ×A and the corresponding
value function class F : S × A → R (Jin et al., 2021; Wang et al., 2020). We extend the concept
of eluder dimension as a complexity measure of the hypothesis class, namely, the functional eluder
dimension, which is formally defined as follows.
Definition 4 (Functional Eluder Dimension). For a given hypothesis class F and a function G
defined on F × F , the functional eluder dimension (FE dimension) dimFE(F , G, ϵ) is the length of
the existing longest sequence f1, . . . , fn ∈ F satisfying for some ϵ′ ≥ ϵ and any 2 ≤ t ≤ n, there

exists g ∈ F such that
√∑t−1

i=1 (G(g, fi))
2 ≤ ϵ′ while |G(g, ft)| > ϵ′. Function G is dubbed as the

coupling function.

The notion of functional eluder dimension introduced in Definition 4 is generalizable in a straightfor-
ward fashion to a sequence G := {Gh}h∈[H] of coupling functions: we simply set dimFE(F , G, ϵ) =
maxh∈[H] dimFE(F , Gh, ϵ) to denote the FE dimension of {Gh}h∈[H]. The Bellman eluder (BE)

2For example for model-free cases where f, g are value functions, ρ(f, g) = maxh∈[H] ∥fh − gh∥∞. For
model-based RL where f, g are transition probabilities, we adopt ρ(P,Q) = maxh∈[H]

∫
(
√
dPh −

√
dQh)

2

which is the maximal (squared) Hellinger distance between two probability distribution sequences.
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dimension recently proposed by (Jin et al., 2021) is in fact a special case of FE dimension with a
specific choice of coupling function sequence.3 As will be shown later, our framework based on FE
dimension with respect to the corresponding coupling function captures many specific MDP instances
such as the kernelized nonlinear regulator (KNR) (Kakade et al., 2020) and the generalized linear
Bellman complete model (Wang et al., 2019), which are not captured by the framework of low BE
dimension. As we will see in later sections, introducing the concept of FE dimension allows the
coverage of a strictly wider range of MDP models and hypothesis classes.

3 A D M I S S I B L E B E L L M A N C H A R A C T E R I Z AT I O N F R A M E W O R K

In this section, we introduce the framework of admissible Bellman characterization.

3 . 1 A D M I S S I B L E B E L L M A N C H A R A C T E R I Z AT I O N

Given an MDP M , a sequence of states and actions s1, a1, . . . , sH , two hypothesis classes F
and G satisfying the realizability assumption (Assumption 1),4 and a discriminator function class
V = {v(s, a, s′) : S ×A×S → R}, the estimation function ℓ = {ℓh,f ′}h∈[H],f ′∈F is an Rds -valued
function defined on the set consisting of oh := (sh, ah, sh+1) ∈ S×A×S , f ∈ F , g ∈ G and v ∈ V
and serves as a surrogate loss function of the Bellman error. Note that our estimation function is a
vector-valued function, and is more general than the scalar-valued estimation function (or discrepancy
function) used in Foster et al. (2021); Du et al. (2021). The discriminator v originates from the
function class the Integral Probability Metrics (IPM) (Müller, 1997) is taken with respect to (as a
metric between two distributions), and is also used in the definition of Witness rank (Sun et al., 2019).
We use a coupling function Gh,f∗(f, g) defined on F ×F to characterize the interaction between two
hypotheses f, g ∈ F . The subscript f∗ is an indicator of the true model and is by default unchanged
throughout the context. When the two hypotheses coincide, our characterization of the coupling
function reduces to the Bellman error.
Definition 5 (Admissible Bellman Characterization). Given an MDP M , two hypothesis classes
F ,G satisfying the realizability assumption (Assumption 1) and F ⊂ G, an estimation function
ℓh,f ′ : (S ×A× S)×F × G × V → Rds , an operation policy πop and a constant κ ∈ (0, 1], we say
that G is an admissible Bellman characterization of (M,F ,G, ℓ) if the following conditions hold:

(i) (Dominating Average Estimation Function) For any f, g ∈ F

max
v∈V

Esh∼πg,ah∼πop ||Esh+1
[ℓh,g(oh, fh+1, fh, v) | sh, ah] ||2 ≥ (Gh,f∗(f, g))

2
.

(ii) (Bellman Dominance) For any (h, f) ∈ [H]×F ,

κ ·
∣∣Esh,ah∼πf

[Qh,f (sh, ah)− r(sh, ah)− Vh+1,f (sh+1)]
∣∣ ≤ |Gh,f∗(f, f)| .

We further say (M,F ,G, ℓ, G) is an ABC class if G is an admissible Bellman characterization of
(M,F ,G, ℓ).
In Definition 5, one can choose either πop = πg or πop = πf . We refer readers to §D for further
explanations on πop. The ABC class is quite general and de facto covers many existing MDP models;
see §3.2 for more details.
Comparison with Existing MDP Classes. Here we compare our ABC class with three recently pro-
posed MDP structural classes: Bilinear Classes (Du et al., 2021), low Bellman eluder dimension (Jin
et al., 2021), and Bellman Representability (Foster et al., 2021).

• Bilinear Classes. Compared to the structural framework of Bilinear Class in Du et al. (2021,
Definition 4.3), Definition 5 of Admissible Bellman Characterization does not require a bilinear
structure and recovers the Bilinear Class when we set Gh,f∗(f, g) = ⟨Wh(g)−Wh(f

∗), Xh(f)⟩.
Our ABC class is strictly broader than the Bilinear Class since the latter does not capture low
eluder dimension models, and our ABC class does. In addition, the ABC class admits an estimation
function that is vector-valued, and the corresponding algorithm achieves a

√
T -regret for KNR

case while the BiLin-UCB algorithm for Bilinear Classes (Du et al., 2021) does not.

3Indeed, when the coupling function is chosen as the expected Bellman error Gh(g, f) := Eπh,f (Qh,g −
ThQg,h+1) where Th denotes the Bellman operator, we recover the definition of BE dimension (Jin et al., 2021),
i.e. dimFE(F , G, ϵ) = dimBE(F , G, ϵ).

4We assume F ⊆ G throughout this paper and in the general case where F ̸⊆ G, we overload G := F ∪ G.

5



Published as a conference paper at ICLR 2023

• Low Bellman Eluder Dimension. Definition 5 subsumes the MDP class of low BE dimension
when ℓh,f ′(oh, fh+1, gh, v) := Qh,g(sh, ah) − rh − Vh+1,f (sh+1). Moreover, our definition
unifies the V -type and Q-type problems under the same framework by the notion of πop. We will
provide a more detailed discussion on this in §3.2. Our extension from the concept of the Bellman
error to estimation function (i.e. the surrogate of the Bellman error) enables us to accommodate
model-based RL for linear mixture MDPs, KNR model, and low Witness rank.

• Bellman Representability. Foster et al. (2021) proposed DEC framework which is another MDP
class that unifies both the Bilinear Class and the low BE dimension. Indeed, our ABC framework
introduced in Definition 5 shares similar spirits with the Bellman Representability Definition F.1
in Foster et al. (2021). Nevertheless, our framework and theirs bifurcate from the base point: our
work studies an optimization-based exploration instead of the posterior sampling-based exploration
in Foster et al. (2021). Structurally different from their DEC framework, our ABC requires
estimation functions to be vector-valued, introduces the discriminator function v, and imposes the
weaker Bellman dominance property (i) in Definition 5 than the corresponding one as in Foster
et al. (2021, Eq. (166)). In total, this allows broader choices of coupling function G as well as our
ABC class (with low FE dimension) to include as special instances both low Witness rank and
KNR models, which are not captured in Foster et al. (2021).

Decomposable Estimation Function. Now we introduce the concept of decomposable estimation
function, which generalizes the Bellman error in earlier literature and plays a pivotal role in our
algorithm design and analysis.

Definition 6 (Decomposable Estimation Function). A decomposable estimation function ℓ : (S ×
A × S) × F × G × V → Rds is a function with bounded ℓ2-norm such that the following two
conditions hold:

(i) (Decomposability) There exists an operator that maps between two hypothesis classes T (·) :
F → G5 such that for any f ∈ F , (h, f ′, g, v) ∈ [H]×F × G × V and all possible oh

ℓh,f ′(oh, fh+1, gh, v)− Esh+1
[ℓh,f ′(oh, fh+1, gh, v) | sh, ah] = ℓh,f ′(oh, fh+1, T (f)h, v).

Moreover, if f = f∗, then T (f) = f∗ holds.
(ii) (Global Discriminator Optimality) For any f ∈ F there exists a global maximum v∗h(f) ∈ V

such that for any (h, f ′, g, v) ∈ [H]×F × G × V and all possible oh

||Esh+1
[ℓh,f ′(oh, fh+1, fh, v

∗
h(f)) | sh, ah] || ≥ ||Esh+1

[ℓh,f ′(oh, fh+1, fh, v) | sh, ah] ||.

Compared with the discrepancy function or estimation function used in prior work (Du et al., 2021;
Foster et al., 2021), our estimation function (EF) admits the unique properties listed as follows:

(a) Our EF enjoys a decomposable property inherited from the Bellman error — intuitively speaking,
the decomposability can be seen as a property shared by all functions in the form of the difference
of a Jh-measurable function and a Jh+1-measurable function;

(b) Our EF involves a discriminator class and assumes the global optimality of the discriminator on
all (sh, ah) pairs;

(c) Our EF is a vector-valued function which is more general than a scalar-valued estimation function
(or the discrepancy function).

We remark that when f = g, Esh+1
[ℓh,f ′(oh, fh+1, fh, v) | sh, ah] measures the discrepancy in

optimality between f and f∗. In particular, when f = f∗, Esh+1

[
ℓh,f ′(oh, f

∗
h+1, f

∗
h , v) | sh, ah

]
=

0. Consider a special case when ℓh,f ′(oh, fh+1, gh, v) := Qh,g(sh, ah)− r(sh, ah)−Vh+1,f (sh+1).
Then the decomposability (i) in Definition 6 reduces to

[Qh,g(sh, ah)− r(sh, ah)− Vh+1,f (sh+1)]− [Qh,g(sh, ah)− (ThVh+1)(sh, ah)]

= (ThVh+1)(sh, ah)− r(sh, ah)− Vh+1,f (sh+1).

In addition, we make the following Lipschitz continuity assumption on the estimation function.

5The decomposability item (i) in Definition 6 directly implies that a Generalized Completeness condition
similar to Assumption 14 of Jin et al. (2021) holds.
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Assumption 7 (Lipschitz Estimation Function). There exists a L > 0 such that for any
(h, f ′, f, g, v) ∈ [H]×F ×F × G × V , (f̃ , g̃, ṽ, f̃ ′) ∈ F × G × V × F and all possible oh,∥∥∥ℓh,f ′(·, f, g, v)− ℓh,f ′(·, f̃ , g, v)

∥∥∥
∞

≤ Lρ(f, f̃), ∥ℓh,f ′(·, f, g, v)− ℓh,f ′(·, f, g̃, v)∥∞ ≤ Lρ(g, g̃),

∥ℓh,f ′(·, f, g, v)− ℓh,f ′(·, f, g, ṽ)∥∞ ≤ L ∥v − ṽ∥∞ ,
∥∥∥ℓh,f ′(·, f, g, v)− ℓh,f̃ ′(·, f, g, v)

∥∥∥
∞

≤ Lρ(f ′, f̃ ′).

Note that we have omitted the subscript h of hypotheses in Assumption 7 for notational simplicity.
We further define the induced estimation function class as L = {ℓh,f ′(·, f, g, v) : (h, f ′, f, g, v) ∈
[H]×F ×F × G × V}. We can show that under Assumption 7, the covering number of the induced
estimation function class L can be upper bounded as NL(ϵ) ≤ N2

F (
ϵ
4L )NG(

ϵ
4L )NV(

ϵ
4L ), where

NF (ϵ), NG(ϵ), NV(ϵ) are the ϵ-covering number of F , G and V , respectively. Later in our theoretical
analysis in §4, our regret upper bound will depend on the growth rate of the covering number or the
metric entropy, logNL(ϵ).

3 . 2 M D P I N S TA N C E S I N T H E A B C C L A S S

In this subsection, we present a number of MDP instances that belong to ABC class with low
FE dimension. As we have mentioned before, for all special cases with ℓh,f ′(oh, fh+1, gh, v) :=
Qh,g(sh, ah)− rh − Vh+1,f (sh+1), both conditions in Definition 5 are satisfied automatically with
Gh,f∗(f, g) = Esh∼πg,ah∼πop [Qh,f (sh, ah)− rh − Vh+1,f (sh+1)]. The FE dimension under this
setting recovers the the BE dimension. Thus, all model-free RL models with low BE dimension (Jin
et al., 2021) belong to our ABC class with low FE dimension. In the rest of this subsection, our focus
shifts to the model-based RLs that belong to the ABC class: linear mixture MDPs, low Witness rank,
and kernelized nonlinear regulator.
Linear Mixture MDPs. We start with a model-based RL with a linear structure called the linear
mixture MDP (Modi et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b). For known transition and
reward feature mappings ϕ(s, a, s′) : S×A×S → H, ψ(s, a) : S×A → H taking values in a Hilbert
space H and an unknown θ∗ ∈ H, a linear mixture MDP assumes that for any (s, a, s′) ∈ S ×A×S
and h ∈ [H], the transition probability Ph(s

′ | s, a) and the reward function r(s, a) are linearly
parameterized as

Ph(s
′ | s, a) = ⟨θ∗h, ϕ(s, a, s′)⟩ , r(s, a) = ⟨θ∗h, ψ(s, a)⟩ .

We provide the following proposition, which shows that linear mixture MDPs belong to the ABC
class with low FE dimension.
Proposition 8 (Linear Mixture MDP ⊂ ABC with Low FE Dimension). The linear mixture MDP
model belongs to the ABC class with estimation function

ℓh,f ′(oh, fh+1, gh, v) = θ⊤h,g

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,f ′(s′)

]
− rh − Vh+1,f ′(sh+1), (3.1)

and coupling functionGh,f∗(f, g) =
〈
θh,g − θ∗h,Esh,ah∼πf

[ψ(sh, ah) +
∑

s′ ϕ(sh, ah, s
′)Vh+1,f (s

′)]
〉
.

Moreover, it has a low FE dimension.
Low Witness Rank. We defer the formal definition of witness rank to §E.2 and provide the following
proposition showing that low Witness rank models belongs to our ABC class with low FE dimension.
Proposition 9 (Low Witness Rank ⊂ ABC with Low FE Dimension). The low Witness rank model
belongs to the ABC class with estimation function

ℓh,f ′(oh, fh+1, gh, v) = Es̃∼ghv(sh, ah, s̃)− v(sh, ah, sh+1), (3.2)
and coupling function Gh,f∗(f, g) = ⟨Wh(g), Xh(f)⟩. Moreover, it has a low FE dimension.
Kernelized Nonlinear Regulator. The kernelized nonlinear regulator (KNR) proposed recently
by Mania et al. (2020); Kakade et al. (2020) models a nonlinear control dynamics on an RKHS H of
finite or countably infinite dimensions. Under the KNR setting, given current sh, ah at step h ∈ [H]
and a known feature mapping ϕ : S ×A → H, the subsequent state obeys a Gaussian distribution
with mean vector U∗

hϕ(sh, ah) and homoskedastic covariance σ2I , where
{
U∗
h ∈ Rds ×H

}
h∈[H]

are true model parameters and ds is the dimension of the state space. Mathematically, we have for
each h = 1, . . . ,H ,

sh+1 = U∗
hϕ(sh, ah) + ϵh+1, where ϵh+1

i.i.d.∼ N (0, σ2I). (3.3)
Furthermore, we assume bounded reward r ∈ [0, 1] and uniformly bounded feature map ||ϕ(s, a)|| ≤
B. The following proposition shows that KNR belongs to the ABC class with low FE dimension.
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Algorithm 1 OPtimization-based ExploRation with Approximation (OPERA)
1: Initialize: Dh = ∅ for h = 1, . . . ,H
2: for iteration t = 1, 2, . . . , T do
3: Set πt := πft where f t is taken as argmaxf∈F Q1,f (s1, πf (s1)) subject to

max
v∈V

{
t−1∑
i=1

||ℓh,fi(o
i
h, fh+1, fh, v)||2 − inf

gh∈Gh

t−1∑
i=1

||ℓh,fi(o
i
h, fh+1, gh, v)||2

}
≤ β for all h ∈ [H]

(4.1)

4: For any h ∈ [H], collect tuple (rh, sh, ah, sh+1) by rolling in sh ∼ πt and executing ah ∼ πest

5: Augment Dh = Dh ∪ {(rh, sh, ah, sh+1)}
6: end for
7: Output: πout uniformly sampled from {πt}Tt=1

Proposition 10 (KNR ⊂ ABC with Low FE Dimension). KNR belongs to the ABC class with
estimation function

ℓh,f ′(oh, fh+1, gh, v) = Uh,gϕ(sh, ah)− sh+1, (3.4)

and coupling function Gh,f∗(f, g) :=
√
Esh,ah∼πg ||(Uh,f − U∗

h)ϕ(sh, ah)||2. Moreover, it has a
low FE dimension.

Although the dimension of the RKHS H can be infinite, our complexity analysis depends solely on
its effective dimension dϕ.

4 A L G O R I T H M A N D M A I N R E S U LT S

In this section, we present an RL algorithm for the ABC class. Then we present the regret bound of
this algorithm, along with its implications to several MDP instances in the ABC class.

4 . 1 O P E R A A L G O R I T H M

We first present the OPtimization-based ExploRation with Approximation (OPERA) algorithm in
Algorithm 1, which finds an ϵ-optimal policy in polynomial time. Following earlier algorithmic art in
the same vein e.g., GOLF (Jin et al., 2021), the core optimization step of OPERA is optimization-
based exploration under the constraint of an identified confidence region; we additionally introduce
an estimation policy πest sharing the similar spirit as in Du et al. (2021). Due to space limit, we focus
on the Q-type analysis here and defer the V -type results to §D in the appendix.6

Pertinent to the constrained optimization subproblem in Eq. (4.1) of our Algorithm 1, we adopt the
confidence region based on a general DEF, extending the Bellman-error-based confidence region
used in Jin et al. (2021). As a result of such an extension, our algorithm can deal with more complex
models such as low Witness rank and KNR. Similar to existing literature on RL theory with general
function approximation, our algorithm is in general computationally inefficient. Yet OPERA is oracle
efficient given the oracle for solving the optimization problem in Line 3 of Algorithm 1. We will
discuss its computational issues in detail in §E.1, §E.2 and §E.3.

4 . 2 R E G R E T B O U N D S

We are ready to present the main theoretical results of our ABC class with low FE dimension:

Theorem 11 (Regret Bound of OPERA). For an MDP M , hypothesis classes F ,G, a Decomposable
Estimation Function ℓ satisfying Assumption 7, an admissible Bellman characterization G, suppose
(M,F ,G, ℓ, G) is an ABC class with low functional eluder dimension. For any fixed δ ∈ (0, 1),
we choose β = O (log(THNL(1/T )/δ)) in Algorithm 1. Then for the on-policy case when
πop = πest = πt, with probability at least 1− δ, the regret is upper bounded by

Regret(T ) = O
(
H

κ

√
T · dimFE

(
F , G,

√
1/T

)
· β
)
.

6Here and throughout our paper we considers πest = πt for Q-type models. For V -type models, we instead
consider πest = U(A) to be the uniform distribution over the action space. Such a representation of estimation
policy allows us to unify the Q-type and V -type models in a single analysis.
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We defer the proof of Theorem 11, together with a corollary for sample complexity analysis, to
§C in the appendix. We observe that the regret bound of the OPERA algorithm is dependent
on both the functional eluder dimension dimFE and the covering number of the induced DEF
class NL(

√
1/T ). In the special case when DEF is chosen as the Bellman error, the relation

dimFE(F , G,
√

1/T ) = dimBE(F ,Π,
√
1/T ) holds with Π being the function class induced by

{πf , f ∈ F}, and our Theorem 11 reduces to the regret bound in Jin et al. (2021) (Theorem 15).
We will provide a detailed comparison between our framework and other related frameworks in §A
when applied to different MDP models in the appendix.

4 . 3 I M P L I C AT I O N F O R S P E C I F I C M D P I N S TA N C E S

Here we focus on comparing our results applied to model-based RLs that are hardly analyzable in
the model-free framework in §3.2. We demonstrate how OPERA can find near-optimal policies and
achieve a state-of-the-art sample complexity under our new framework. Regret-bound analyses of
linear mixture MDPs and several other MDP models can be found in §B in the appendix.
We highlight that Algorithm 1 not only provides a simple optimization-based scheme, recovers
previous near-optimal algorithms in literature (Algorithms 2 and 4 in §E) when applied to specific
MDP instances, but also reduces to a novel Algorithm 3 for low witness rank MDPs with improved
sample complexity.
Low Witness Rank. We first provide a sample complexity result for the low Witness rank model
structure. Let |M| and |V| be the cardinality of the model class7 M and discriminator class V ,
respectively, and Wκ be the witness rank (Definition 28) of the model. We have the following sample
complexity result for low Witness rank models.
Corollary 12 (Finite Witness Rank). For an MDP model M with finite witness rank structureand any
fixed δ ∈ (0, 1), we choose β = O (log(TH|M||V|/δ)) in Algorithm 1. With probability at least
1− δ, Algorithm 1 outputs an ϵ-optimal policy πout within T = Õ

(
H2|A|Wκβ/(κ

2ϵ2)
)

trajectories.

Proof of Corollary 12 is delayed to §E.4.8 Compared with previous best-known sample complexity
result of Õ

(
H3W 2

κ |A| log(T |M||V|/δ)/(κ2ϵ2)
)

due to Sun et al. (2019), our sample complexity is
superior by a factor of dH up to a polylogarithmic prefactor in model parameters.
Kernel Nonlinear Regulator. Now we turn to the implication of Theorem 11 for learning KNR
models. We have the following regret bound result for KNR.
Corollary 13 (KNR). For the KNR model in Eq. (3.3) and any fixed δ ∈ (0, 1), we choose β =
O
(
σ2dϕds log

2(TH/δ)
)

in Algorithm 1. With probability at least 1− δ, the regret is upper bounded
by Õ

(
H2
√
dϕTβ/σ

)
.

We remark that neither the low BE dimension nor the Bellman Representability classes admit the
KNR model with a sharp regret bound. Among earlier attempts, Du et al. (2021, §6) proposed to
use a generalized version of Bilinear Classes to capture models including KNR, Generalized Linear
Bellman Complete, and finite Witness rank. Nevertheless, their characterization requires imposing
monotone transformations on the statistic and yields a suboptimal O(T 3/4) regret bound. Our ABC
class with low FE dimension is free of monotone operators, albeit that the coupling function for the
KNR model is not of a bilinear form.

5 C O N C L U S I O N A N D F U T U R E W O R K

In this paper, we proposed a unified framework that subsumes nearly all Markov Decision Process
(MDP) models in existing literature from model-based and model-free RLs. For the complex-
ity analysis, we propose a new type of estimation function with the decomposable property for
optimization-based exploration and use the functional eluder dimension with respect to an admissible
Bellman characterization function as the complexity measure of our model class. In addition, we
proposed a new sample-efficient algorithm, OPERA, which matches or improves the state-of-the-art
sample complexity (or regret) results.
On the other hand, we notice that some MDP instances are not covered by our framework such as
the Q∗ state-action aggregation, and the deterministic linear Q∗ models where only Q∗ has a linear
structure. We leave it as a future work to include these MDP models.

7Hypothesis class reduces to model class (Sun et al., 2019) when restricted to model-based setting.
8The definition of witness rank adopts a V -type representation and hence we can only derive the sample

complexity of our algorithm. For detailed discussion on the V -type cases, we refer readers to §D in the appendix.
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A P P E N D I X

The appendix is organized as follows. §A discusses the related work, providing comparisons with
previous frameworks based on both coverage and sharpness of sample complexity. §B compares our
regret bound and sample complexity on specific examples and discusses several additional examples
including reactive POMDPs, FLAMBE, LQR, and the generalized linear Bellman complete model.
§C proves the main results (Theorem 11 and Corollary 26 on sample complexity of OPERA). §D
explains the V -type setting and the corresponding results. §E discusses the OPERA algorithm when
being applied to special examples (linear mixture MDPs, low Witness rank MDPs, KNRs). §F details
the delayed proofs of technical lemmas. §G details the proofs relevant to FE dimension.

A R E L AT E D W O R K

Tabuler RL. Tabular RL considers MDPs with finite state space S and action space A. This setting
has been extensively studied (Auer et al., 2008; Dann & Brunskill, 2015; Brafman & Tennenholtz,
2002; Agrawal & Jia, 2017; Azar et al., 2017; Zanette & Brunskill, 2019; Zhang et al., 2020) and the
minimax-optimal regret bound is proved to be Õ(

√
H2|S||A|T ) (Jin et al., 2018; Domingues et al.,

2021). The minimax optimal bounds suggests that the tabular RL is information-theoretically hard for
large |S| and |A|. Therefore, in order to deal with high-dimensional state-action space arose in many
real-world applications, more advanced structural assumptions that enable function approximation
are in demand.

Complexity Measures for Statistical Learning. In classic statistical learning, a variety of com-
plexity measures have been proposed to upper bound the sample complexity required for achieving
a certain accuracy, including VC Dimension (Vapnik, 1999), covering number (Pollard, 2012),
Rademacher Complexity (Bartlett & Mendelson, 2002), sequential Rademacher complexity (Rakhlin
et al., 2010) and Littlestone dimension (Littlestone, 1988). However, for reinforcement learning, it is
a major challenge to find such general complexity measures that can be used to analyze the sample
complexity under a general framework.

RL with Linear Function Approximation. A line of work studied the MDPs that can be repre-
sented as a linear function of some given feature mapping. Under certain completeness conditions,
the proposed algorithms can enjoy sample complexity/regret scaling with the dimension of the feature
mapping rather than |S| and |A|. One such class of MDPs is linear MDPs (Jin et al., 2020; Wang et al.,
2019; Neu & Pike-Burke, 2020), where the transition probability function and reward function are
linear in some feature mapping over state-action pairs. Zanette et al. (2020a;b) studied MDPs under a
weaker assumption called low inherent Bellman error, where the value functions are nearly linear
w.r.t. the feature mapping. Another class of MDPs is linear mixture MDPs (Modi et al., 2020; Jia
et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b; Cai et al., 2020), where the transition probability
kernel is a linear mixture of a number of basis kernels. The above paper assumed that feature vectors
are known in the MDPs with linear approximation while Agarwal et al. (2020b) studied a harder
setting where both the feature and parameters are unknown in the linear model.

RL with General Function Approximation. Beyond the linear setting, a recent line of research
attempted to unify existing sample-efficient approaches with general function approximation. Osband
& Van Roy (2014) proposed an structural condition named eluder dimension. Wang et al. (2020)
further proposed an efficient algorithm LSVI-UCB for general linear function classes with small eluder
dimension. Another line of works proposed low-rank structural conditions, including Bellman rank
(Jiang et al., 2017; Dong et al., 2020) and Witness rank (Sun et al., 2019). Yang et al. (2020) studied
the MDPs with a structure where the action-value function can be represented by a kernel function
or an over-parameterized neural network. Recently, Jin et al. (2021) proposed a complexity called
Bellman eluder (BE) dimension. The RL problems with low BE dimension subsume the problems
with low Bellman rank and low eluder dimension. Simultaneously Du et al. (2021) proposed Bilinear
Classes, which can be applied to a variety of loss estimators beyond vanilla Bellman error, but with
possibly worse sample complexity. Very recently, Foster et al. (2021) proposed Decision-Estimation
Coefficient (DEC), which is a necessary and sufficient condition for sample-efficient interactive
learning. To apply DEC to reinforcement learning, Foster et al. (2021) further proposed a RL class
named Bellman Representability, which can be viewed as a generalization of the Bilinear Class.
In Table 1, we compare our ABC framework with other structural RL frameworks in terms of the
model coverage and sample complexity.
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Bilinear Low BE DEC and Bellman ABC Class (with
Class Dimension Representability Low FE Dimension)

Linear MDPs
(Yang & Wang, 2019; Jin et al., 2020) d3H4/ϵ2 d2H2/ϵ2 d3H3/ϵ2 d2H2/ϵ2

Linear Mixture MDPs
(Modi et al., 2020) d3H4/ϵ2 ✘ d3H3/ϵ2 d2H2/ϵ2

Bellman Rank
(Jiang et al., 2017) d2H5|A|/ϵ2 dH2|A|/ϵ2 d2H3|A|/ϵ2 dH2|A|/ϵ2

Eluder Dimension
(Wang et al., 2020)

✘ dimE H
2/ϵ2 dim2

E H
3/ϵ2 dimE H

2/ϵ2

Witness Rank
(Sun et al., 2019)

— ✘ — WκH
2|A|/ϵ2

Low Occupancy Complexity
(Du et al., 2021) d3H4/ϵ2 d2H2/ϵ2 d3H3/ϵ2 d2H2/ϵ2

Kernelized Nonlinear Regulator
(Kakade et al., 2020)

— ✘ — d2ϕdsH
4/ϵ2

Linear Q∗/V ∗

(Du et al., 2021) d3H4/ϵ2 d2H2/ϵ2 d3H3/ϵ2 d2H2/ϵ2

Table 1: Comparison of sample complexity for different MDP models under different RL frameworks.
“—” indicates that the original work of framework does not provide an explicit sample complexity
result for that model (although can be computed in principle), “✘” indicates the model is not included
in the framework for complexity analysis. For models with the linear structure on a d-dimensional
space, we present the sample complexity in terms of d. For models with their own complexity
measures, we use Wκ to denote the witness rank, dimE the eluder dimension, dϕ the dimension of
H in KNR and ds the dimension number of the state space of KNR. The dependency on ρ-covering
number is deliberately ignored for Bellman rank, eluder dimension, and the witness rank.

B A D D I T I O N A L E X A M P L E S

In this section, we compare our work with other results in the literature in terms of regret
bounds/sample complexity. First of all, as we mentioned earlier in §3 when taking DEF as
ℓh,f ′(oh, fh+1, gh, v) = Qh,g(sh, ah)−rh−Vh+1,f (sh+1) the ABC function reduces to the average
Bellman error, and our ABC framework recovers the low Bellman eluder dimension framework for
all cases compatible with such an estimation function. On several model-free structures, our regret
bound is equivalent to that of the GOLF algorithm (Jin et al., 2021). For example for linear MDPs,
OPERA exhibits a Õ(dH

√
T ) regret bound that matches the state-of-the-art result on linear function

approximation provided in Zanette et al. (2020a). For low eluder dimension models, the dependency
on the eluder dimension d in our regret analysis is Õ(

√
d) while the dependency in Wang et al. (2020)

is Õ(d). Also, for models with low Bellman rank d, our sample complexity scales linearly in d as
in Jin et al. (2021) while complexity in Jiang et al. (2017) scales quadratically.
For model-based RL settings with linear structure that are not within the low BE dimension framework
such as the linear mixture MDPs, our OPERA algorithm obtains a dFEH

√
T regret bound and

d2FEH
2/ϵ2 sample complexity result. In comparison, Jia et al. (2020); Modi et al. (2020) proposed an

UCRL-VTR algorithm on linear mixture MDPs with a dH
√
T regret bound, and Zhou et al. (2021a)

improves this result by
√
H via a Bernstein-type bonus for exploration. The Bilinear Classes (Du

et al., 2021) is a general framework that covers linear mixture MDPs as a special case. The sample
complexity of the BiLin-UCB algorithm when constrained to linear mixture models is d3H4/ϵ2,
which is dH2 worse than that of OPERA in this work. In terms of lower bound, when specialized
to linear mixture MDPs, our result of Õ(dH

√
T ) matches the lower bound provided in Zhou et al.

(2021a) up to a factor of H1/2.
In the rest of this section, we compare on six additional examples: the linear Q∗/V ∗ model (Du
et al., 2021), the low occupancy complexity model (Du et al., 2021), kernel reactive POMDPs,
FLAMBE/Feature Selection, Linear Quadratic Regulator, and finally Generalized Linear Bellman
Complete. Moreover, we added a discussion on the Q∗ state-action aggregation model.
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B . 1 L I N E A R Q∗ /V ∗

The linear Q∗/V ∗ model was proposed in Du et al. (2021). In addition to the linear structure of
the optimal action-value function Q∗, we further assume linear structure of the optimal state-value
function V ∗. We formally define the linear Q∗/V ∗ model as follows:
Definition 14 (Linear Q∗/V ∗, Definition 4.5 in Du et al. 2021). A linear Q∗/V ∗ model satisfies for
two Hilbert spaces H1,H2 and two given feature mappings ϕ(s, a) : S ×A → H1, ψ(s′) : S → H2,
there exist w∗

h ∈ H1, θ
∗
h ∈ H2 such that

Q∗
h(s, a) = ⟨w∗

h, ϕ(s, a)⟩ and V ∗
h (s

′) = ⟨θ∗h, ψ(s′)⟩

for any h ∈ [H] and (s, a, s′) ∈ S ×A× S .

Suppose that H1 and H2 has dimension number d1 and d2, separately, Du et al. (2021) shows that
linear Q∗/V ∗ model belongs to the Bilinear Class with dimension d = d1 + d2 and BiLin-UCB
algorithm achieves an Õ(d

3H4

ϵ2 ) sample complexity. On the other hand the sample complexity of
OPERA is of Õ(d

2H2

ϵ2 ).

B . 2 L O W O C C U PA N C Y C O M P L E X I T Y

The low occupancy complexity model assumes linearity on the state-action distribution and has been
proposed in Du et al. (2021). We recap its definition formally as follows:
Definition 15 (Low Occupancy Complexity, Definition 4.7 in Du et al. 2021). A low occupancy
complexity model is an MDP M satisfying for some hypothesis class F , a Hilbert space H and
feature mappings ϕh(·, ·) : S ×A → H, ∀h ∈ [H] that there exists a function on hypothesis classes
βh : F → H such that

dπf (sh, ah) = ⟨βh(f), ϕh(sh, ah)⟩ , ∀f ∈ F , ∀(sh, ah) ∈ S ×A.

Du et al. (2021) proved that the low occupancy complexity model belongs to the Bilinear Classes
and has a sample complexity of d3H4/ϵ2 under the BiLin-UCB algorithm. In the meantime, the low
occupancy complexity model admits an improved sample complexity of d2H2/ϵ2 under the OPERA
algorithm.

B . 3 K E R N E L R E A C T I V E P O M D P S

The Reactive POMDP (Krishnamurthy et al., 2016) is a partially observable MDP (POMDP) model
that can be described by the tuple (S,A,O,T,O, r,H), where S and A are the state and action spaces
respectively, O is the observation space, T is the transition matrix that maps each (s, a) ∈ S ×A to a
probability measure on S and determines the dynamics of the next state as sh+1 ∼ T(· | sh, ah), O
is the emission measure that determines the observation oh ∼ O(· | sh) given current state sh. The
reactiveness of a POMDP refers to the property that the optimal value function Q∗ depends only on
the current observation and action. In other words, for all h, there exists a f∗h : O ×A → [0, 1] such
that for any given trajectory τh = [o1, a1, . . . , oh] and ah, we have

Q∗(τh, ah) = f∗h(oh, ah).

Given the definition of a reactive POMDP, we define the kernel reactive POMDP (Jin et al., 2021) as
follows:
Definition 16 (Kernel Reactive POMDP). A kernel reactive POMDP is a reactive POMDP that
satisfies for each h ∈ [H] and a given seperable Hilbert space H, there exist feature mappings
ϕh : S×A → H andψh : S → H such that the transition matrix Th(s

′ | s, a) = ⟨ϕh(s, a), ψh(s
′)⟩H

and ψ is bounded in the sense that for any V (·) : S → [0, 1],
∥∥∑

s′∈S V (s′)ψ(s′)
∥∥
H ≤ 1.

In Jin et al. (2021), the authors showed that the kernel reactive POMDP with vanilla estimation
function ℓh(oh, fh+1, gh, v) = Qh,g(sh, ah)−rh−Vh+1,f (sh+1) has V -type BE dimension bounded
by the effective dimension. According to Proposition 34, the kernel reactive POMDP model also has
low FE dimension bounded by the effective dimension.

B . 4 F L A M B E / F E AT U R E S E L E C T I O N

For FLAMBE/feature selection model firstly introduced in Agarwal et al. (2020b), similarity is shared
with the linear MDP setting but the main difference lies in that the feature mappings are unknown.
We formally define the feature selection model as follows:

3



Published as a conference paper at ICLR 2023

Definition 17 (Feature Selection). A low rank feature selection model is an MDP M that satisfies for
any h ∈ [H] and a given Hilbert space H, there exist unknown feature mappings µ∗

h : S → H and
ϕ∗ : S ×A → H such that the transition probability satisfies:

Ph(s
′ | s, a) = µ∗

h(s
′)⊤ϕ∗(s, a), ∀(s, a, s′) ∈ S ×A× S.

We consider the feature selection model with DEF ℓh(oh, fh+1, gh, v) := Qh,g(sh, ah) − rh −
Vh+1,f (sh+1). In Du et al. (2021) they have proved in Lemma A.1 that

Esh∼πg,ah∼πf
[Qh,f (sh, ah)− rh − Vh+1,f (sh+1)] = ⟨Wh(f), Xh(g)⟩ , (B.1)

where

Wh(f) :=

∫
s∈S

µ∗
h(s)

(
Vh,f (s)− r(s, πf (s))− Es′∼Ph(·|s,πf (s)) [Vh+1,f (s

′)]
)
ds,

Xh(g) := Esh−1,ah−1∼πg
[ϕ∗(sh−1, ah−1)] .

We note that Eq. (B.1) ensures condition (i) and (ii) in Definition 5 at the same time and the ABC
of the feature selection setting has a bilinear structure that enables us to apply Proposition 35 to
conclude low FE dimension.

B . 5 L I N E A R Q U A D R AT I C R E G U L AT O R

In a linear quadratic regulator (LQR) model (Bradtke, 1992; Anderson & Moore, 2007; Dean et al.,
2020), we consider the d dimensional state space S ⊆ Rd and K dimensinal action space A ⊆ RK .
The transition dynamics of an LQR model can be written in matrix form so that the induced value
function is quadratic (Jiang et al., 2017). We formally define the LQR model as follows:

Definition 18 (Linear Quadratic Regulator). A linear quadratic regulator model is an MDP M such
that there exist unknown matrix A ∈ Rd×d, B ∈ Rd×K and Q ∈ Rd×d satisfying for ∀h ∈ [H] and
zero-centered random variables ϵh, τh with E[ϵhϵ⊤h ] = Σ and E[τ2h ] = σ2 that

sh+1 = Ash +Bah + ϵh,

rh = s⊤hQsh + a⊤h ah + τh.

The LQR model has been analyzed in Du et al. (2021) and proved to belong to the Bilinear Classes.
Du et al. (2021) used the hypothesis class defined as

Fh =
{
(Ch,Λh, Oh) : Ch ∈ RK×d,Λh ∈ Rd×d, Oh ∈ R

}
h∈[H]

.

For each hypothesis in the class f ∈ F , the corresponding policy and value function are

πf (sh) = Ch,fsh, Vh,f (sh) = s⊤hΛh,fsh +Oh,f .

Under the above setting, we use the DEF for LQR ℓh(oh, fh+1, gh, v) := Qh,g(sh, ah) − rh −
Vh+1,f (sh+1) and Lemma A.4 in Du et al. (2021) showed that

Esh,ah∼πg [Qh,f (sh, ah)− rh − Vh+1,f (sh+1)] = ⟨Wh(f), Xh(g)⟩ , (B.2)

where

Wh(f) =
[
vec(Λh,f −Q− C⊤

h,fCh,f − (A+BCh,f )
⊤Λh+1,f (A+BCh,f )),

Oh,f −Oh+1,f − trace(Λh+1,fΣ)] ,

Xh(f) =
[
vec(Esh∼πf

[shs
⊤
h

]
), 1].

We note that Eq. (B.2) ensures condition (i) and (ii) in Definition 5 simultaneously and the ABC
of the LQR model setting admits a bilinear structure that enables us to apply Proposition 35 and
conclude low FE dimension.

B . 6 G E N E R A L I Z E D L I N E A R B E L L M A N C O M P L E T E

Next we introduce the generalized linear Bellman complete model, showing that our ABC class with
low FE dimension captures this model even without the monotone operator

√
x used in Du et al.

(2021).
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Definition 19 (Generalized Linear Bellman Complete). A generalized linear Bellman complete
model consists of an inverse link function σ : R → R+ and a hypothesis class F :={
Fh = σ(θ⊤h ϕ(s, a)) : θh ∈ H, ||θh|| ≤ R

}
h∈[H]

such that for any f ∈ F and ∀h ∈ [H] the Bell-
man completeness condition holds:

r(s, a) + Es′∈Ph
max
a′∈A

σ(θ⊤h+1,fϕ(s
′, a′)) ∈ Hh.

By the choice of the hypothesis class F , we know that there exists a mapping Th : H → H such that

σ
(
Th(θh+1,f )

⊤ϕ(s, a)
)
= r(s, a) + Es′∈Ph

max
a′∈A

σ(θ⊤h+1,fϕ(s
′, a′)). (B.3)

We note that in Du et al. (2021) they choose a discrepancy function dependent on a discriminator
function v. In this work, we choose a different estimation function that allows much simpler
calculation and sharper sample complexity result. We let

ℓh(oh, fh+1, gh, v) := σ(θ⊤h,gϕ(sh, ah))− rh −max
a′

θ⊤h+1,fϕ(sh+1, a
′).

By Eq. (B.3), it is easy to check that the above DEF satisfies the decomposable condition. Assuming
a ≤ σ′(x) ≤ b, Lemma 6.2 in Du et al. (2021) has already shown the Bellman dominance property
that∣∣Esh,ah∼πf

[Qh,f (sh, ah)− rh − Vh+1,f (sh+1)]
∣∣

≤ b
√〈

vec ((θh,f − Th(θh+1,f )(θh,f − Th(θh+1,f )⊤)) , vec
(
Esh,ah∼πf

ϕ(sh, ah)ϕ(sh, ah)⊤
)〉

= b
√

⟨Wh(f), Xh(f)⟩.

Next, we illustrate that the Dominating Average EF condition holds in our framework. We have

Esh∼πg,ah∼πop ||Esh+1
[ℓh,g(oh, fh+1, fh, v) | sh, ah] ||2

= Esh,ah∼πg
||σ(θ⊤h,fϕ(sh, ah))− σ(Th(θh+1,f )

⊤ϕ(s, a))||2

≥ aEsh,ah∼πg

(
(θh,f − Th(θh+1,f ))

⊤ϕ(sh, ah)
)2 ≥ a ⟨Wh(f), Xh(g)⟩ ,

where

Wh(f) := vec
(
(θh,f − Th(θh+1,f )(θh,f − Th(θh+1,f )

⊤)
)
,

Xh(f) := vec
(
Esh,ah∼πf

ϕ(sh, ah)ϕ(sh, ah)
⊤) .

Analogous to the KNR case and the proof of Lemma 30, the aforementioned model with ABC
function

√
⟨Wh(f), Xh(f)⟩ has low FE dimension.

B . 7 Q∗ S TAT E - A C T I O N A G G R E G AT I O N

Finally, we consider the Q∗ state-action aggregation model (Dong et al., 2019), which cannot be
covered by the bilinear classes (Du et al., 2021). We illustrate that our ABC framework covers this
model with a nonlinear coupling function.
Definition 20 (Q∗ state-action aggregation). We call an MDP M a Q∗ state-action model if there
exists a ξ(s, a) : S × A → B such that for any state-action pairs (s, a), (s′, a′) ∈ S × A, if
ξ(s, a) = ξ(s′, a′), then Q∗(s, a) = Q∗(s′, a′). The dimension d of the Q∗ state-action aggregation
model is defined as the cardinality of B, i.e., d = |B|.
For each element b ∈ B, we note that for all (s, a) ∈ S × A satisfying ξ(s, a) = b, they share
the same value of Q(s, a). For notational simplicity, we use Q(b) to denote this common value
for all ξ(s, a) = b. Moreover, we let w∗

h be a d-dimensional vector of all aggregated values with
(w∗

h)b = Q(b) and Q∗(s, a) can be expressed as a linear function on the aggregated values:

Q∗
h(s, a) = ⟨w∗

h, ψ(s, a)⟩

where ψ(s, a) : S ×A → {0, 1}d is a one-hot vector satisfying

(ψ(s, a))b = 1 when ξ(s, a) = b and (ψ(s, a))b = 0 otherwise.
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For this case, we use the hypothesis class defined as

Fh =
{
wh ∈ Rd

}
h∈[H]

,

where we take

Qh,g(s, a) = ⟨wh,g, ψ(s, a)⟩ , Vh,g(s
′) = max

a′∈A
⟨wh,g, ψ(s

′, a′)⟩ .

We define the DEF as the Bellman residual and conclude that

ℓh(oh, gh+1, gh, v) = Qh,g(sh, ah)− rh − Vh,g(sh+1)

= Qh,g(sh, ah)− Vh,g(sh+1)− [Q∗
h(sh, ah)− V ∗

h (sh+1)]

= ⟨wh,g − w∗
h, ψ(s, a)⟩ −

[
max
a′∈A

⟨wh,g, ψ(sh+1, a
′)⟩ −max

a′∈A
⟨w∗

h, ψ(sh+1, a
′)⟩
]
.

(B.4)

Taking expectation over the distribution on oh given by sh, ah ∼ πf and sh+1 ∼ Ph, we have

Esh,ah∼πf
[ℓh(oh, gh+1, gh, v)]

=
〈
wh,g − w∗

h,Esh,ah∼πf
ψ(sh, ah)

〉
− Esh,ah∼πf ,sh+1∼Ph

[
max
a′∈A

⟨wh,g, ψ(sh+1, a
′)⟩ −max

a′∈A
⟨w∗

h, ψ(sh+1, a
′)⟩
]
. (B.5)

If we define G(g, f) by the right hand side of (B.5), it is obvious that Gh,f∗(·, ·) with ℓ defined
in (B.4) serves as the coupling function and the estimation function of an ABC class, respectively. In
the mean time, Equation (B.5) cannot be expressed as a inner product of some Wh(f), Xh(g) and
thus cannot be covered by Du et al. (2021). Nevertheless, in our ABC framework, it is unclear if the
FE dimension of F with respect to Gh,f∗(·, ·) can be bounded in a nontrivial way (i.e., ≪ |S| · |A|).

C P R O O F O F M A I N R E S U LT S

In this section, we provide proofs of our main result Theorem 11 and a sample complexity corollary
of the OPERA algorithm. Originated from proof techniques widely used in confidence bound based
RL algorithms Russo & Van Roy (2013) our proof steps generalizes that of the GOLF algorithm Jin
et al. (2021) but admits general DEF and ABCs. We prove our main result as follows:

C . 1 P R O O F O F T H E O R E M 1 1

Proof of Theorem 11. We recall that the objective of an RL problem is to find an ϵ-optimal pol-
icy satisfying V ∗

1 (s1) − V πt

1 (s1) ≤ ϵ. Moreover, the regret of an RL problem is defined as∑T
t=1 V

∗
1 (s1)− V πt

1 (s1), where πt is the output policy of an algorithm at time t.

Step 1: Feasibility of f∗. First of all, we show that the optimal hypothesis f∗ lies within the
confidence region defined by Eq. (4.1) with high probability:

Lemma 21 (Feasibility of f∗). In Algorithm 1, given ρ > 0 and δ > 0 we choose β =
c(log (THNL(ρ)/δ) + Tρ) for some large enough constant c. Then with probability at least 1− δ,
f∗ satisfies for any t ∈ [T ]:

max
v∈V

{
t−1∑
i=1

||ℓh,fi
h
(oih, f

∗
h+1, f

∗
h , v)||2 − inf

gh∈Gh

t−1∑
i=1

||ℓh,fi
h
(oih, f

∗
h+1, gh, v)||2

}
≤ O(β).

Lemma 21 shows that at each round of updates the optimal hypothesis f∗ stays in the confidence
region depicted by Eq. (4.1) with radius O(β). We delay the proof of Lemma 21 to §F.2. Lemma 21
together with the optimization procedure Line 3 of Algorithm 1 implies an upper bound of V ∗

1 (s1)−
V πt

1 (s1) with probability at least 1− δ as follows:

V ∗
1 (s1)− V πt

1 (s1) ≤ V1,ft(s1)− V πt

1 (s1). (C.1)

Step 2: Policy Loss Decomposition. The second step is to upper bound the regret by the summation
of Bellman errors. We apply the policy loss decomposition lemma in Jiang et al. (2017).
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Lemma 22 (Lemma 1 in Jiang et al. 2017). ∀f ∈ H,

V1,ft(s1)− V πt

1 (s1) =
H∑

h=1

Esh,ah∼πt [Qh,ft(sh, ah)− rh − Vh+1,ft(sh+1)] .

Combining Lemma 22 with Eq. (C.1) we have the following:

V ∗
1 (s1)− V πt

1 (s1) ≤ V1,ft(s1)− V πt

1 (s1) =
H∑

h=1

Esh,ah∼πt [Qh,ft(sh, ah)− rh − Vh+1,ft(sh+1)] .

(C.2)

Step 3: Small ABC Value in the Confidence Region. The third step is devoted to controlling
the cumulative square of Admissible Bellman Characterization function. Recalling that the ABC
function is upper bounded by the average DEF, where each feasible DEF stays in the confidence
region that satisfies Eq. (4.1), we arrive at the following Lemma 23:
Lemma 23. In Algorithm 1, given ρ > 0 and δ > 0 we choose β = c(log (THNL(ρ)/δ) + Tρ) for
some large enough constant c. Then with probability at least 1− δ, for all (t, h) ∈ [T ]× [H], we have

t−1∑
i=1

(
Gh,f∗(f t, f i)

)2 ≤ O(β). (C.3)

The proof of Lemma 23 makes use of Freedman’s inequality (the precise version as in Agarwal et al.
(2014)) and we delay the proof to §F.1.

Step 4: Bounding the Cumulative Bellman Error by Functional Eluder Dimension. In the
fourth step, we aim to traslate the upper bound of the cumulative squared ABC at (f t, f i) in Eq. (C.3)
to an upper bound of the cumulative ABC at (f t, f t). The following Lemma 24 is adapted from
Lemma 41 in Jin et al. (2021) and Lemma 2 in Russo & Van Roy (2013). Lemma 24 controls the
sum of ABC functions by properties of the functional eluder dimension.
Lemma 24. For a hypothesis class F and a given coupling function G(·, ·) : F × F → R with
bounded image space |G(·, ·)| ≤ C. For any pair of sequences {ft}t∈[T ], {gt}t∈[T ] ⊆ F satisfying
for all t ∈ [T ],

∑t−1
i=1(G(ft, gi))

2 ≤ β, the following inequality holds for all t ∈ [T ] and ω > 0:

t∑
i=1

|G(fi, gi)| ≤ O
(√

dimFE(F , G, ω)βt+ C ·min{t, dimFE(F , G, ω)}+ tω
)
.

The proof of Lemma 24 is in §F.3.

Step 5: Combining Everything. In the final step, we combine the regret bound decomposition
argument, the cumulative ABC bound, and the Bellman dominance property together to derive our
final regret guarantee.

For any h ∈ [H], we take G(·, ·) = Gh,f∗(·, ·), gi = f i, ft = f t and ω =
√

1
T in Lemma 24. By

Eq. (C.3) in Lemma 23, we have for any h ∈ [H] and t ∈ [T ],

t∑
i=1

|Gh,f∗(f i, f i))| ≤ O
(√

dimFE(F , Gh,f∗ ,
√
1/T )βt+ C ·min{t, dimFE(F , Gh,f∗ ,

√
1/T )}+

√
t

)
≤ O

(√
dimFE(F , Gh,f∗ ,

√
1/T )βt

)
.

We recall our choice of β = c (log (THNL(ρ)/δ) + Tρ). Taking ρ = 1
T , we have

t∑
i=1

|Gh,f∗(f i, f i))| ≤ O

(√
dimFE

(
F , Gh,f∗ ,

√
1/T

)
log (THNL(1/T )/δ) · t

)

≤ O

(√
dimFE

(
F , G,

√
1/T

)
log (THNL(1/T )/δ) · t

)
.
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Combining this with property (ii) in Definition 5 and decomposition (C.2), we conclude our main
result that with probability at least 1− δ,

T∑
t=1

V ∗
1 (s1)− V πt

1 (s1) ≤
1

κ

T∑
t=1

H∑
h=1

|Gh,f∗(f t, f t)|

≤ O
(
H

κ

√
T · dimFE(F , G,

√
1/T ) log (THNL(1/T )/δ)

)
.

This completes the whole proof of Theorem 11.

C . 2 S A M P L E C O M P L E X I T Y O F O P E R A

Corollary 25 (Sample Complexity of OPERA). For an MDP M with hypothesis classes F , G that
satisfies Assumption 1 and a Decomosable Estimation Function ℓ satisfying Assumption 7. If there
exists an Admissible Bellman Characterzation G with low functional eluder dimension. For any
ϵ ∈ (0, 1], we choose β = c

(
log(THNL

(
κ2ϵ2

dimFE(F,G,κϵ
H )H2

)
/δ) + T κ2ϵ2

dimFE(F,G,κϵ
H )H2

)
for some

large enough constant c. For the on-policy case when πop = πest = πt, with probability at least 1− δ
Algorithm 1 outputs a ϵ-optimal policy πout within T trajectories where

T =
dimFE(F , G, κϵH ) log

(
THNL

(
κ2ϵ2

dimFE(F,G,κϵ
H )H2

)
/δ
)
H2

κ2ϵ2
.

Proof of Corollary 25. By the policy loss decomposition (C.2), (C.3) in Lemma 23 and Lemma 24,
we have that

1

T

T∑
t=1

V ∗
1 (s1)− V πt

1 (s1) ≤
1

κT

T∑
t=1

H∑
h=1

∣∣Gh,f∗(f t, f t)
∣∣

≤ O
(H
κ

√
dimFE(F , G, ω)

(
log (THNL(ρ)/δ)

T
+ ρ

)
+
Hω

κ

)
.

(C.4)

Taking ω = κϵ
H and ρ = κ2ϵ2

dimFE(F,G,κϵ
H )H2 , the above Eq. (C.4) becomes

1

T

T∑
t=1

V ∗
1 (s1)− V πt

1 (s1) ≤ O
(H
κ

√
dimFE(F , G, κϵH ) log (THNL(ρ)/δ)

T
+ ϵ
)
.

Taking

T =
dimFE(F , G, κϵH ) log (THNL(ρ)/δ)H

2

κ2ϵ2

yields the desired result.

D Q- T Y P E A N D V - T Y P E S A M P L E C O M P L E X I T Y A N A LY S I S

In Definition 5, we note that there are two ways to calculate the ABC of an MDP model depending
on the different choices of the operating policy πop. Specifically, if πop = πg, we call it the Q-type
ABC. Otherwise, if πop = πf , we call it the V -type ABC. For example, when taking

Gh,f∗(f, g) = Esh∼πg,ah∼πg [Qh,f (sh, ah)− r(sh, ah)− Vh+1,f (sh+1)]

the FE dimension of Gh,f∗(f, g) recovers the Q-type BE dimension (Definition 8 in Jin et al. (2021).
When taking

Gh,f∗(f, g) = Esh∼πg,ah∼πf
[Qh,f (sh, ah)− r(sh, ah)− Vh+1,f (sh+1)]

the FE dimension of Gh,f∗(f, g) recovers the V -type BE dimension (Definition 20 in Jin et al. (2021).
The algorithm for solving Q-type or V -type models slightly differs in the executing policy πest. We
use πest = πt for Q-type models in Algorithm 1, while πest = U(A) is the uniform distribution on
action set for V -type models.

8
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The Q-type characterization and the V -type characterization have respective applicable zones. For
example, the reactive POMDP model belongs to ABC with low FE dimension with respect to V -
type ABC while inducing large FE dimension with respect to Q-type ABC. On the contrary, the
low inherent bellman error problem in Zanette et al. (2020a) is more suitable for using a Q-type
characterization rather than a V -type characterization. For general RL models, we often preferQ-type
ABC because the sample complexity of V -type algorithms scales with the dimension of the action
space |A|. Due to the uniform executing policy, we will only be able to derive regret bound for
Q-type characterizations, as is explained in Jin et al. (2021).
In §4 and §C, we have illustrated regret bound and sample complexity results for the Q-type cases
where we let πop = πest = πt through Algorithm 1. In the following Corollary 26, we prove sample
complexity result for V -type ABC models.
Corollary 26. For an MDP M with hypothesis classes F , G that satisfies Assumption 1 and a
Decomposable Estimation Function ℓ satisfying Assumption 7. If there exists an Admissible Bellman
Characterization G with low functional eluder dimension. For any ϵ ∈ (0, 1], if we choose β =
O (log(THNL(ρ)/δ) + Tρ). For V -type models when πop = πest = πt, with probability at least

1− δ Algorithm 1 outputs a ϵ-optimal policy πout within T = |A| dimFE(F,G,κϵ/H) log(THNL(ρ)/δ)H2

κ2ϵ2

trajectories where ρ = κ2ϵ2

dimFE(F,G,κϵ
H )H2 .

Proof of Corollary 26. The proof of Corollary 26 basically follows the proof of Theorem 11 and
Corollary 25. We again have feasibility of f∗ and policy loss decomposition. However, due to
different sampling policy, the proof of Lemma 23 differs at Eq. (F.5). Instead, we have

t−1∑
i=1

max
v∈V

Esh∼πi,ah∼πtEsh+1

[
Xi(h, f

t, v) | sh, ah
]

=

t−1∑
i=1

max
v∈V

Esh∼πi,ah∼U(A)
1(aih = πf (s

i
h))

1/|A|
Esh+1

[
Xi(h, f

t, v) | sh, ah
]

=
t−1∑
i=1

max
v∈V

Esh∼πi,ah∼U(A)
1(aih = πf (s

i
h))

1/|A|
||Esh+1

[
ℓh,fi(oh, f

t
h+1, f

t
h, v) | sh, ah

]
||2

≤ O(|A|
(
β +Rtρ+R2ι

)
). (D.1)

Thus, Eq. (C.3) in Lemma 23 becomes
t−1∑
i=1

(
Gh,f∗(f t, f i)

)2 ≤ O(|A|β).

The rest of the proof follow the proof of Corollary 25 with an additional |A| factor. By the policy
loss decomposition (C.2) and Lemma 24, we have that

1

T

T∑
t=1

V ∗
1 (s1)− V πt

1 (s1) ≤
1

κT

T∑
t=1

H∑
h=1

∣∣Gh,f∗(f t, f t)
∣∣

≤ O
(H
κ

√
|A| dimFE(F , G, ω)

(
log (THNL(ρ)/δ)

T
+ ρ

)
+
Hω

κ

)
.

(D.2)

Taking ω = κϵ
H and ρ = κ2ϵ2

dimFE(F,G,κϵ
H )H2 , the above Eq. (D.2) becomes

1

T

T∑
t=1

V ∗
1 (s1)− V πt

1 (s1) ≤ O
(H
κ

√
|A| dimFE(F , G, κϵH ) log (THNL(ρ)/δ)

T
+ ϵ
)
.

Taking

T =
|A| dimFE(F , G, κϵH ) log (THNL(ρ)/δ)H

2

κ2ϵ2

yields the desired result.

9
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E P R O O F F O R S P E C I F I C E X A M P L E S

In this section, we consider three specific examples: linear mixture MDPs, low Witness rank
MDPs, and KNRs. We explains how our framework exhibits superior properties than other general
frameworks on these three instances of MDPs. For reader’s convenience, we summarize the conditions
introduced in Items (i), (ii) in Definition 6 and also Items (i), (ii) in Definition 5, that are essential for
any RL models to fit in our framework:

• Decomposability:

ℓh,f ′(oh, fh+1, gh, v)− Esh+1
[ℓh,f ′(oh, fh+1, gh, v) | sh, ah] = ℓh,f ′(oh, fh+1, T (f)h, v).

• Global Discriminator Optimality:

||Esh+1
[ℓh,f ′(oh, fh+1, fh, v

∗
h(f)) | sh, ah] || ≥ ||Esh+1

[ℓh,f ′(oh, fh+1, fh, v) | sh, ah] ||.

• Dominating Average EF:

max
v∈V

Esh∼πg,ah∼πop ||Esh+1
[ℓh,g(oh, fh+1, fh, v) | sh, ah] ||2 ≥ (Gh,f∗(f, g))

2
.

• Bellman Dominance:

κ ·
∣∣Esh,ah∼πf

[Qh,f (sh, ah)− r(sh, ah)− Vh+1,f (sh+1)]
∣∣ ≤ |Gh,f∗(f, f)| .

E . 1 L I N E A R M I X T U R E M D P S

In this case, we choose Fh = Gh = {θh ∈ H}. Thus, the hypothesis classes F and G consist of the
set of parameters θ1, . . . , θH ∈ H. Moreover, for each hypothesis class f = (θ1,f , . . . , θH,f ) ∈ F ,
the value function with respect to f satiafies for any h ∈ [H] that

Qh,f (s, a) = θ⊤h,f
(
ψ(s, a) + ϕVh+1,f

(s, a)
)
,

where ϕVh+1,f
(s, a) :=

∑
s′∈S ϕ(s, a, s

′)Vh+1,f (s
′). It is natural to define the DEF by

ℓh,f ′(oh, fh+1, gh, v) = θ⊤h,g

[
ψ(sh, ah) + ϕVh+1,f′ (sh, ah)

]
− rh − Vh+1,f ′(sh+1).

If we use Φt−1
h to denote the matrix

(
(ψ + ϕVh+1,f1 )(s

1
h, a

1
h), . . . , (ψ + ϕVh+1,ft−1 )(s

t−1
h , at−1

h )
)

and yt−1
h to denote the vector

(
rh − Vh+1,f1(sih+1), . . . , rh − Vh+1,ft−1(st−1

h+1)
)
, Eq. (4.1) in Algo-

rithm 1 under linear mixture setting can be written in a matrix form as:

||θ⊤h,fΦt−1
h − yt−1

h ||2 − inf
θ
||θ⊤Φt−1

h − yt−1
h ||2 ≤ β. (E.1)

Taking θ̂h,t = argmin
θ

||θ⊤Φt−1
h − yt−1

h ||2 =
(
Φt−1

h

(
Φt−1

h

)⊤)−1

Φt−1
h

(
yt−1
h

)⊤
and Σt−1

h :=

Φt−1
h

(
Φt−1

h

)⊤
, simple algebra yields

||θ⊤h,fΦt−1
h − yt−1

h ||2 − inf
θ
||θ⊤Φt−1

h − yt−1
h ||2 = ||

(
θh,f − θ̂h,t

)⊤
Φt−1

h ||2 =
∥∥∥θh,f − θ̂h,t

∥∥∥2
Σt−1

h

,

(E.2)

So Algorithm 1 reduces to Algorithm 2.
In particular, the confidence region defined by Eq. (E.2) in Algorithm 2 is the same as the confidence
region used in the upper confidence RL with value-targeted regression (UCRL-VTR) algorithm (Jia
et al., 2020; Ayoub et al., 2020). While in UCRL-VTR, they perform step-by-step local optimization
within the confidence region, resulting in a confidence bonus added upon the Q value function, our
Algorithm 2 follows a global optimization scheme, where the objective is the total expected return
by following the optimal policy under the current hypothesis. The design principle of the global
optimization is the same as the ELEANOR algorithm (Zanette et al., 2020a). In fact, the difference
between UCRL-VTR with Algorithm 2 is analogous to the difference between LSVI-UCB (Jin et al.,
2020) with ELEANOR (Zanette et al., 2020a).
Algorithm 2 exhibits a dH

√
T regret bound and d2H2/ϵ2 sample complexity result, as will be shown

later in this subsection. Compared with the d3H4/ϵ2 sample complexity in Du et al. (2021), our

10
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Algorithm 2 OPERA (linear mixture MDPs)
1: Initialize: Dh = ∅ for h = 1, . . . ,H
2: for iteration t = 1, 2, . . . , T do
3: Set πt := πft where f t is taken as argmaxf∈F Q1,f (s1, πf (s1)) subject to

θ̂h,t =
(
Φt−1

h

(
Φt−1

h

)⊤)−1

Φt−1
h

(
yt−1
h

)⊤
,

∥∥∥θh,f − θ̂h,t

∥∥∥2
Σt−1

h

≤ β for all h ∈ [H] (E.3)

4: For any h ∈ [H], collect tuple (rh, sh, ah, sh+1) by executing sh, ah ∼ πt

5: Augment Dh = Dh ∪ {(rh, sh, ah, sh+1)}
6: end for
7: Output: πout uniformly sampled from {πt}Tt=1

algorithm improves over the best-known results on general frameworks that subsumes linear mixture
MDPs. We provide more comparisons on the linear mixture model in §B.
In terms of computation, assume that there exists a planning oracle for the optimization problem in
Line 3 of Algorithm 2 that requires B time complexity to solve. Then for each t ∈ [T ], h ∈ [H], the
computational complexity of the rest of the algorithm is dominated by the computation of

(
Σt−1

h

)−1
,

and the total computational complexity would be O(BT + d2HT ).
Next, we proceed to prove that a linear mixture MDP belongs to ABC class with low FE dimension.

Proof of Proposition 8. In the linear mixture model, we choose hypothesis class Fh = Gh = {θh ∈
H}, and DEF function

ℓh,f ′(oh, fh+1, gh, v) = θ⊤h,g

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,f ′(s′)

]
− rh − Vh+1,f ′(sh+1).

(a) Decomposability. Taking expectation over sh+1 and we obtain that

Esh+1
[ℓh,f ′(oh, fh+1, gh, v) | sh, ah] = (θh,g − θ∗h)

⊤

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,f ′(s′)

]
.

Thus, we have

ℓh,f ′(oh, fh+1, gh, v)− Esh+1
[ℓh,f ′(oh, fh+1, gh, v) | sh, ah]

= (θ∗h)
⊤

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,f ′(s′)

]
− rh − Vh+1,f ′(sh+1)

= ℓh,f ′(oh, fh+1, f
∗
h , v).

(b) Global Discriminator Optimality holds automatically since ℓ is independent of v.
(c) Dominating Average EF. We have the following inequality for linear mixture models:

Esh,ah∼πg ||E [ℓh,g(oh, fh+1, fh, v) | sh, ah] ||2

= Esh,ah∼πg

(
(θh,f − θ∗h)

⊤

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,g(s

′)

])2

≥

(
(θh,f − θ∗h)

⊤ Esh,ah∼πg

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,g(s

′)

])2

. (E.4)

(d) Bellman Dominance. On the other hand, we know that

Esh,ah∼πf [Qh,f (sh, ah)− rh − Vh+1,f (sh+1)]

= Esh,ah∼πf (θh,f − θ∗h)
⊤

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,f (s

′)

]

= (θh,f − θ∗h)
⊤ Esh,ah∼πf

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,f (s

′)

]
. (E.5)
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Algorithm 3 OPERA (Low Witness Rank MDPs)
1: Initialize: Dh = ∅ for h = 1, . . . ,H
2: for iteration t = 1, 2, . . . , T do
3: Set πt := πft where f t is taken as argmaxf∈F Q1,f (s1, πf (s1)) subject to

max
v∈V

{
t−1∑
i=1

(
Es̃∼fhv(s

i
h, a

i
h, s̃)− v(sih, a

i
h, s

i
h+1)

)2
− inf

gh∈Gh

t−1∑
i=1

(
Es̃∼ghv(s

i
h, a

i
h, s̃)− v(sih, a

i
h, s

i
h+1)

)2}
≤ β for all h ∈ [H] (E.7)

4: For any h ∈ [H], collect tuple (rh, sh, ah, sh+1) by rolling in sh ∼ πt and executing ah ∼
U(A)

5: Augment Dh = Dh ∪ {(rh, sh, ah, sh+1)}
6: end for
7: Output: πout uniformly sampled from {πt}Tt=1

(e) Low FE Dimension. Observe from Eqs. (E.4) and (E.5) that we can choose ABC function of an
linear mixture MDP as

Gh,f∗(f, g) := (θh,f − θ∗h)
⊤ Esh,ah∼πg

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,g(s

′)

]
. (E.6)

The next Lemma 27 proves that the FE dimension of F with respect to the coupling function
Gh,f∗(f, g) is less than the effective dimension d of the parameter space H.

Lemma 27. The linear mixture MDP model has FE dimension ≤ Õ(d) with respect to the ABC
defined in (E.6).

We prove Lemma 27 in §G.

Thus, we conclude our proof of Proposition 8.

From the above Proof of Proposition 8, we see that linear mixture MDPs perfectly fit our framework.
We apply Theorem 11 and Corollary 25 to linear mixture MDPs and conclude directly that Algorithm 2
has a regret upper bound of dH

√
T together with a sample complexity upper bound of d2H2/ϵ2,

matching the best-known results that uses a Hoeffding-type bonus for exploration.

E . 2 L O W W I T N E S S R A N K M D P S

In this subsection, we provide a novel method for solving low Witness rank MDPs as a direct
application of the OPERA algorithm. The witness rank is an important model-based assumption
that covers several structural models including the factored MDPs (Kearns, 1998). Also, all models
with low Bellman rank structure belong to the class of low Witness rank models while the opposite
does not hold (Sun et al., 2019). Although the witness rank models can be solved in a model-free
manner, model-free algorithms cannot find near-optimal solutions of general witness rank models
in polynomial time. Meanwhile, existing frameworks (Sun et al., 2019; Du et al., 2021) with an
efficient algorithm does not exhibit sharp sample complexity results. We recall that in low Witness
rank settings, hypotheses on model-based parameters (transition kernel and reward function) are
made. Based on this, there are two recent lines of related approaches. Sun et al. (2019) first
proposed an algorithm that eliminates candidate models with high estimated witness model misfits.
On the other hand, Du et al. (2021) proposed a general algorithmic framework that would imply an
optimization-based algorithm on low Witness rank models.
The following definition is a generalized version of the witness rank in Sun et al. (2019), where we
require the discriminator class V to be complete, meaning that the assemblage of functions by taking
the value at (s, a) from different functions also belongs to V .

Definition 28 (Witness Rank). For an MDP M , a given symmetric and complete discriminator class
V = {Vh}h∈[H], Vh ⊂ S ×A× S 7→ R and a hypothesis class F , we define the Witness rank of M
as the smallest d such that for any two hypotheses f, g ∈ F , there exist two mappings Xh : F → Rd

12
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and Wh : F → Rd and a constant κ ∈ (0, 1], the following inequalities hold for all h ∈ [H]:

max
v∈Vh

Esh∼πf ,ah∼πg [Es̃∼ghv(sh, ah, s̃)− Es̃∼Ph
v(sh, ah, s̃)] ≥ ⟨Wh(g), Xh(f)⟩ , (E.8)

κ · Esh∼πf ,ah∼πg
[Es̃∼ghVh+1,g(s̃)− Es̃∼Ph

Vh+1,g(s̃)] ≤ ⟨Wh(g), Xh(f)⟩ . (E.9)

We prove an improved sample complexity result over existing literature and illustrate the differences
in design scheme of our algorithm. We present the pseudocode in Algorithm 3. Note that in
Eq. (E.7), we replace the DEF in Eq. (4.1) by (3.2). Next, we elaborate the design scheme of
our algorithm in comparison with Sun et al. (2019) and Du et al. (2021). Note that the DEF
Es̃∼ghv(sh, ah, s̃)− v(sh, ah, sh+1) is similar with the discrepancy function used in Du et al. (2021)
except for an importance sampling factor. Moreover, after taking sup over discriminator functions,
the expected DEF equals the witnessed model misfit in Sun et al. (2019). Although Du et al. (2021)
did not explicitly give an algorithm for witness rank, we observe some general differences between
OPERA and BiLin-UCB (Du et al., 2021). The confidence region used in Algorithm 3 (simplified
version for comparison) is

∑
i[(ℓ

i
f )

2 − infg(ℓ
i
g)

2] ≤ β centered at the optimal hypothesis, while

the confidence region used in BiLin-UCB is
∑

i

(
1
m

∑
j≤m ℓ

i,(j)
f

)2
≤ β′ that bound an estimate

of ℓ centered at 0. Similarly as in BiLin-UCB, Sun et al. (2019) also attempts to bound a batched
estimate of ℓ. Their algorithm constantly eliminates out of range models, enforcing small witness
model misfit on prior distributions. The analysis in Sun et al. (2019) and Du et al. (2021), however,
does not enforce the additional assumption on the discriminator class; we obtain a sharper sample
complexity as in Corollary 12.
If we assume that there exists a planning oracle for solving the optimization problem in Line 3 of
Algorithm 3 with B time complexity. The computation in the rest of the algorithm is dependent on
the structure of discriminator class V and the hypothesis class G. We omit the discussion here as the
planning oracle with a total computational complexity of O(BT ) is usually the dominating term.
In the forthcoming, we prove that low Witness rank MDPs belongs to ABC class with low FE
dimension.

Proof of Proposition 9. In the low Witness rank model, we choose hypothesis class Fh = Gh = M,
and DEF function

ℓh(oh, fh+1, gh, v) = Es̃∼ghv(sh, ah, s̃)− v(sh, ah, sh+1). (E.10)

Without loss of generality, we assume that the discriminator class V is rich enough in the sense that
if ∀s, a ∈ S × A, vs,a(·, ·, ·) ∈ V , then v(s, a, s′) := vs,a(s, a, s

′) ∈ V (if not, we can use a rich
enough V ′ induced by V), an assumption generally satisfied by common discriminator classes. For
example, Total variation, Exponential family, MMD, Factored MDP in Sun et al. (2019) all use a rich
enough discriminator class. Also, if V = {v : ∥v∥∞ ≤ c} for some absolute constant c, the function
class is rich enough.

(a) Decomposability. Taking expectation over sh+1 of Eq. (E.10) and we obtain that

Esh+1
[ℓh(oh, fh+1, gh, v) | sh, ah] = Es̃∼ghv(sh, ah, s̃)− Es̃∼Ph

v(sh, ah, s̃). (E.11)

Thus, we have

ℓh(oh, fh+1, gh, v)− Esh+1
[ℓh(oh, fh+1, gh, v) | sh, ah] = Es̃∼Ph

v(sh, ah, s̃)− v(sh, ah, sh+1)

= ℓh(oh, fh+1, f
∗
h , v).

(b) Global Discriminator Optimality. Eq. (E.11) implies that

Esh+1
[ℓh(oh, fh+1, fh) | sh, ah] =

∫
v(sh, ah, s) (fh(s | sh, ah)− Ph(s | sh, ah)) ds.

We define v∗h(f)(s, a, s
′) = vs,a(s, a, s

′) where

vs,a := argmax
v∈V

∫
v(s, a, s̃) (fh(s̃ | s, a)− Ph(s̃ | s, a)) ds̃.

It is easy to verify that v∗h(f) satisfies for all h ∈ [H] and (sh, ah) ∈ S ×A,

Esh+1
[ℓh(oh, fh+1, fh, v

∗
h(f)) | sh, ah] ≥ Esh+1

[ℓh(oh, fh+1, fh, v) | sh, ah] .
Finally, the symmetry of V concludes the global discriminator optimality.
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(c) Dominating Average EF. We have the following inequality for low Witness rank model:

max
v∈V

Esh∼πg,ah∼πf
||E [ℓh(oh, fh+1, fh, v) | sh, ah] ||2

= max
v∈V

Esh∼πg,ah∼πf
(Es̃∼fhv(sh, ah, s̃)− Es̃∼Ph

v(sh, ah, s̃))
2

≥
(
max
v∈V

Esh∼πg,ah∼πf
[Es̃∼fhv(sh, ah, s̃)− Es̃∼Ph

v(sh, ah, s̃)]

)2 (i)

≥ ⟨Wh(f), Xh(g)⟩2 .

(E.12)

where the last inequality (i) follows Definition 28 of witness rank.
(d) Bellman Dominance. On the other hand, by Definition 28 we know that

κ · Esh,ah∼πf
[Qh,f (sh, ah)− rh − Vh+1,f (sh+1)] ≤ ⟨Wh(f), Xh(f)⟩ . (E.13)

(e) Low FE Dimension. We see from Eq. (E.12) and (E.13) that we can choose ABC function with
low Witness rank RL model as

Gh,f∗(f, g) := ⟨Wh(f), Xh(g)⟩ . (E.14)

The next Lemma 29 proves that the FE dimension of F with respect to the coupling function
Gh,f∗(f, g) is less than the dimension Wκ of the witness model.

Lemma 29. The low Witness rank MDP model has FE dimension ≤ Õ(Wκ) with respect to the
ABC defined in (E.14).

We prove Lemma 29 in §G.

Thus, we conclude our proof of Proposition 9.

By Proposition 9 we can straightforwardly derive the sample complexity by applying Corollary 26.
For better understanding of the context, we present a complete proof of the sample complexity result
of witness rank model in §E.4.

E . 3 K E R N E L I Z E D N O N L I N E A R R E G U L AT O R

In the KNR setting introduced in §3.2, the norm of sh+1 might be arbitrarily large if the random
vector ϵh+1 is large in magnitude. On the contrary, our framework requires the boundedness of the
DEF. To resolve this issue, we note the tail bound of one-dimensional Gaussian distribution indicates
that for any given positive x:

ex
2/2

∫ ∞

x

e−t2/2dt ≤ ex
2/2

∫ ∞

x

t

x
e−t2/2dt =

1

x
.

Thus, for TH i.i.d. Rds-valued random vectors ϵth ∼ N (0, σ2I) and a fixed δ ∈ (0, 1), there exists

an event B with P(B) ≥ 1− δ such that ∥ϵth∥∞ ≤ O
(
σ
√
log(THds/δ)

)
holds on event B.

We first provide the application of OPERA on the KNR model, the algorithm is written in Algorithm 4.
Note that by similar algebra as in Eq. (E.2), the confidence set (E.15) is equivalent to

||(Uh,f − Ûh,f )(Σ
t−1
h )1/2||2 ≤ β,

where Σt−1
h := Φt−1

h (Φt−1
h )⊤ and Ûh,f is the optimal solution to the least square problem

argminU
∑t−1

i=1 ||Uϕ(sih, aih) − sih+1||2. The OPERA algorithm reduces to the LC3 algorithm
in Kakade et al. (2020) except that LC3 is under a homogeneous setting. The only difference between
Algorithm 4 and LC3 is that in Eq. (E.15), LC3 sums over t and H and we can only sum over t
because of the inhomogeneous setting.

Bringing in the choice of β in Corollary 13 yields a regret bound of Õ
(√

d2ϕdsH
4T
)

. In comparison,

LC3 in Kakade et al. (2020) has a regret bound of Õ
(√

dϕ(ds + dϕ)H3T
)

. The improved factor

of
√
H is due to the reduction from the time-inhomogeneous setting to the time-homogeneous

setting. Thus, our regret bound matches the state-of-the-art result on KNR instances (Kakade et al.,
2020) regarding the dependencies on dϕ, ds, H . However, d2ϕds in our result is slightly looser than

14
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Algorithm 4 OPERA (kernelized nonlinear regulator)
1: Initialize: Dh = ∅ for h = 1, . . . ,H
2: for iteration t = 1, 2, . . . , T do
3: Set πt := πft where f t is taken as argmaxf∈F Q1,f (s1, πf (s1)) subject to

t−1∑
i=1

||Uh,fϕ(s
i
h, a

i
h)− sih+1||2 − inf

gh∈Gh

t−1∑
i=1

||Uh,gϕ(s
i
h, a

i
h)− sih+1||2 ≤ β for all h ∈ [H]

(E.15)

4: For any h ∈ [H], collect tuple (rh, sh, ah, sh+1) by executing sh, ah ∼ πt

5: Augment Dh = Dh ∪ {(rh, sh, ah, sh+1)}
6: end for
7: Output: πout uniformly sampled from {πt}Tt=1

dϕ(ds + dϕ) in Kakade et al. (2020) and can be possibly improved by instance-specific analysis of
KNR. Similar to the linear mixture MDP case, if we assume that there exists a planning oracle for
the optimization problem in Line 3 of Algorithm 4 that requires B time complexity to solve, the
rest of the algorithm can be solved efficiently in O(dϕ(dϕ + ds)HT ) time complexity. So the total
computational complexity of Algorithm 4 is O(BT + dϕ(dϕ + ds)HT ).
In addition, we would like to remark that we can adapt algorithms from the optimal control literature
such as MPPI (Williams et al., 2015) and DMDMPC (Wagener et al., 2019) to solve the optimization
problem in Line 3 of Algorithm 4. This approach has been used in Kakade et al. (2020), where they
designed the LC3 algorithm for solving KNRs. In particular, they leveraged the MPPI algorithm for
the planning oracle and provided rich empirical results.

Proof of Proposition 10. In the KNR model, we choose hypothesis class Fh = Gh = {U ∈ H →
Rds : ||U || ≤ R}, and DEF function

ℓh(oh, fh+1, gh, v) = Uh,gϕ(sh, ah)− sh+1.

(a) Decomposability. Taking expectation over sh+1 and we obtain that

Esh+1
[ℓh(oh, fh+1, gh, v) | sh, ah] = (Uh,g − U∗

h)ϕ(sh, ah).

Thus, we have

ℓh(oh, fh+1, gh, v)− Esh+1 [ℓh(oh, fh+1, gh, v) | sh, ah] = U∗
hϕ(sh, ah)− sh+1 = ℓh(oh, fh+1, f

∗
h , v).

(b) Global Discriminator Optimality holds automatically since ℓ is independent of v.
(c) Dominating Average EF. We have the following inequality for the KNR model:

Esh,ah∼πg
||E [ℓh(oh, fh+1, fh, v) | sh, ah] ||2 = Esh,ah∼πg

||(Uh,f − U∗
h)ϕ(sh, ah)||2. (E.16)

(d) Bellman Dominance. On the other hand, we know that

Esh,ah∼πf
[Qh,f (sh, ah)− rh − Vh+1,f (sh+1)] ≤

2H

σ
Esh,ah∼πf

∥(Uh,f − U∗
h)ϕ(sh, ah)∥2 .

(E.17)

(e) Low FE Dimension. We see from Eqs. (E.16) and (E.17) that we can choose ABC function of an
linear mixture MDP as

Gh,f∗(f, g) :=
√

Esh,ah∼πg
||(Uh,f − U∗

h)ϕ(sh, ah)||2, (E.18)

and KNR has an ABC with κ = σ
2H . The next Lemma 30 proves that the FE dimension of F with

respect to the coupling function Gh,f∗(f, g) can be controlled by dϕ:

Lemma 30. The KNR model has FE dimension ≤ Õ(dϕ) with respect to the ABC defined
in (E.18).

We prove Lemma 30 in §G.

Thus, we conclude our proof of Proposition 10.
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E . 4 P R O O F O F C O R O L L A RY 1 2

In this subsection, we provide sample complexity guarantee for models with low Witness rank.
In the main text in §4.3 we presented our Corollary 12 for M and V with finite cardinality for
convenience of comparison with previous works. Here, we prove general result for model class M
and discriminator class V with finite ρ-covering.

Proof of Corollary 12. We start the proof by showing that V ∗(s1)− V πt

1 (s1) can be upper bounded
by a sum of Bellman errors, which is a simple deduction from the policy loss decomposition lemma
in Jiang et al. (2017) and is the same as the equality in Eq. (C.2) in the proof of Theorem 11 in
§C. Next, we verify that f∗ satisfies constraint (E.7) so that taking f t = argmaxV1,f (s1) in the
confidence region yields V ∗

1 (s1) ≤ V1,ft(s1).
Lemma 31 (Feasibility of f∗). In Algorithm 3, given ρ > 0 and δ > 0, we choose β =
c(log (TH|Mρ||Vρ|/δ) + Tρ) for some large enough constant c, then with probability at least
1− δ, f∗ satisfies for any t ∈ [T ]:

max
v∈V

{
t−1∑
i=1

(
Es̃∼f∗

h
v(sih, a

i
h, s̃)− v(sih, a

i
h, s

i
h+1)

)2
− inf

gh∈Gh

t−1∑
i=1

(
Es̃∼ghv(s

i
h, a

i
h, s̃)− v(sih, a

i
h, s

i
h+1)

)2} ≤ β.

We prove Lemma 31 in §F.5. The next Lemma 32 is devoted to controlling the average squared DEF.
Lemma 32. In Algorithm 3, given ρ > 0 and δ > 0, we choose β = c(log (TH|Mρ||Vρ|/δ) + Tρ)
for some large enough constant c, then with probability at least 1− δ, for all (t, h) ∈ [T ]× [H], we
have

t−1∑
i=1

max
v∈V

Esh∼πi,ah∼πf

(
Es̃∼fhv(s

i
h, a

i
h, s̃)− Es̃∼f∗v(sih, a

i
h, s̃)

)2 ≤ O(|A|β).

Proof is delayed to §F.4. By Lemma 32 and properties of the witness rank in Definition 28, we have
t−1∑
i=1

⟨Wh(f), Xh(fi)⟩2 ≤
t−1∑
i=1

{
max
v∈V

Esh∼πi,ah∼πf

(
Es̃∼fhv(s

i
h, a

i
h, s̃)− Es̃∼f∗v(sih, a

i
h, s̃)

)}2

≤
t−1∑
i=1

max
v∈V

Esh∼πi,ah∼πf

(
Es̃∼fhv(s

i
h, a

i
h, s̃)− Es̃∼f∗v(sih, a

i
h, s̃)

)2 ≤ O (|A|β) .

Applying Lemma 24 with Gh,f∗(f, g) := ⟨Wh(f), Xh(g)⟩ and gi = f i, ft = f t, we have
t∑

i=1

|⟨Wh(f), Xh(fi)⟩| ≤ O
(√

|A| dimFE(F , Gh,f∗ , ω)βt+ tω

)
.

Policy loss decomposition (C.2) yields

1

T

T∑
t=1

V ∗
1 (s1)− V πt

1 (s1) ≤ O

(
H

κ

√
|A| dimFE(F , Gh,f∗ , ω)

(
log (TH|Mρ||Vρ|/δ)

T
+ ρ

)
+
Hω

κ

)
.

Taking ω = κϵ
H and ρ = ϵ2

dimFE(F,G, ϵ
H )H2 , the above Eq. (C.4) becomes

1

T

T∑
t=1

V ∗
1 (s1)− V πt

1 (s1) ≤ O
(H
κ

√
|A|

dimFE(F , G, ϵ
H ) log (TH|Mρ||Vρ|/δ)

T
+ ϵ
)
.

Taking

T =
|A| dimFE(F , G, ϵ

H ) log (TH|Mρ||Vρ|/δ)H2

κ2ϵ2h+1

yields the desired result.
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E . 5 P R O O F O F C O R O L L A RY 1 3

We can directly apply Theorem 11 to the KNR model based on Proposition 10 to obtain the regret
bound result. For better understanding of our framework, we illustrate the main features in the proof
of Corollary 13 that are different from the proof of Theorem 11.

Proof of Corollary 13. To resolve the unboundedness issue, we unfold the analysis of KNR case and
conclude a high-probability event B analogous to the argument in §E.3. However, doing so would
impose an additional

√
ds factor induced by estimating the ℓ2-norm of multivariate Gaussians. In lieu

to this, we present a sharper convergence analysis that incorporates KNR instance-specific structures.
We recall the DEF of the KNR model:

ℓh(oh, fh+1, gh, v) = Uh,gϕ(sh, ah)− sh+1.

We first define an auxilliary random variable

Xt(h, f, v) :=
(
ℓh(o

t
h, fh+1, gh, v)

)2 − (ℓh(oth, fh+1, T (f)h, v)
)2

=
∥∥Uh,fϕ(s

t
h, a

t
h)− sth+1

∥∥2
2
−
∥∥U∗

hϕ(s
t
h, a

t
h)− sth+1

∥∥2
2

=
〈
(Uh,f − U∗

h)ϕ(s
t
h, a

t
h), (Uh,f − U∗

h)ϕ(s
t
h, a

t
h)− 2ϵth+1

〉
= ||(Uh,f − U∗

h)ϕ(s
t
h, a

t
h)||2 − 2

〈
(Uh,f − U∗

h)ϕ(s
t
h, a

t
h), ϵ

t
h+1

〉
.

By the boundedness of operator Uh,f , U∗
h and uniform boundedness of ϕ(s, a), we obtain that

||(Uh,f−U∗
h)ϕ(s

t
h, a

t
h)||2 ≤ 4B2

UB
2. The conditional distribution of

〈
(Uh,f − U∗

h)ϕ(s
t
h, a

t
h), ϵ

t
h+1

〉
is a zero-mean Gaussian with variance σ2||(Uh,f −U∗

h)ϕ(s
t
h, a

t
h)||2 ≤ 4B2

UB
2σ2. By the tail bound

of Gaussian distributions along with standard union bound, we know that with probability at least
1− δ, ∣∣〈(Uh,f − U∗

h)ϕ(s
t
h, a

t
h), ϵ

t
h+1

〉∣∣ ≤ O
(
σ
√
log (TH/δ)

)
holds uniformly for all t ∈ [T ] and h ∈ [H]. Thus, we bound the absolute value of the auxillary
variable Xt by |Xt| ≤ Rσ where R is positive and of order O

(√
log(TH/δ)

)
. Taking expectation

with respect to sh+1, we have

Esh+1
[Xt(h, f, v) | sh, ah] =

∥∥(Uh,f − U∗
h)ϕ(s

t
h, a

t
h)
∥∥2 .

On the other hand,

Esh+1

[
(Xt(h, f, v))

2 | sh, ah
]

= Esh+1

[(
||(Uh,f − U∗

h)ϕ(s
t
h, a

t
h)||2 − 2

〈
(Uh,f − U∗

h)ϕ(s
t
h, a

t
h), ϵ

t
h+1

〉)2 | sh, ah
]

= Esh+1

[
||(Uh,f − U∗

h)ϕ(s
t
h, a

t
h)||4 + 4

〈
(Uh,f − U∗

h)ϕ(s
t
h, a

t
h), ϵ

t
h+1

〉2 | sh, ah
]

= Esh+1

[
||(Uh,f − U∗

h)ϕ(s
t
h, a

t
h)||4 + 4||(Uh,f − U∗

h)ϕ(s
t
h, a

t
h)||2σ2 | sh, ah

]
≤ O

(
σ2R2E [Xt(h, f, v) | sh, ah]

)
.

By taking Zt = Xt(h, f, v)− Esh+1
[Xt(h, f, v) | sh, ah] with |Zt| ≤ 2Rσ in Freedman’s inequal-

ity (F.1) in Lemma 33, we have for any η satisfying 0 < η < 1
2R2σ2 almost surely, with probability at

least 1− δ:
t∑

i=1

Zi ≤ O

(
R2σ2η

t∑
i=1

Esh+1
[Xi(h, f, v) | sh, ah] +

log(δ−1)

η

)
.

Optimizing over η, we have

t∑
i=1

Zi ≤ O

Rσ
√√√√ t∑

i=1

Esh+1
[Xi(h, f, v) | sh, ah] log(δ−1) +R2σ2 log(δ−1)

 . (E.19)
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Following the same Freedman’s inequality (Lemma 33) and ρ-covering argument as as in the
proof of Theorem 11 with derivations detailed in §F.1, we have with probability ≥ 1 − δ and
β = O

(
σ2 log(THNL(ρ)/δ) + σρT

)
:

t∑
i=1

(
Esh,ah∼πi ||(Uh,ft − U∗

h)ϕ(sh, ah)||
)2 ≤

t∑
i=1

Esh,ah∼πi ||(Uh,ft − U∗
h)ϕ(sh, ah)||2 ≤ O(β).

Feasibility of f∗ can be derived by taking the same auxilliary random variable and analyze on
−
∑t

i=1Xi(h, f, v) as in the proof of Lemma 31.

As explained in §E.3 , we can apply Lemma 24 with ω =
√

1
T , ρ = 1

T ,

Gh,f∗(f, g) =
√
Esh,ah∼πg ||(Uh,f − U∗

h)ϕ(sh, ah)||2,

and have
t∑

i=1

Esh,ah∼πi

√
||(Uh,ft − U∗

h)ϕ(sh, ah)||2 ≤ σ

√
dimFE

(
F , G,

√
1/T

)
log (THNL(1/T )) · t.

The rest of the proof follows by applying Bellman dominance, policy loss decomposition and
calculating the FE dimension based on Gh,f∗(f, g), which is shown in Lemma 30. We therefore
obtain that

T∑
t=1

V ∗
1 (s1)− V πt

1 (s1) ≤
1

κ

T∑
t=1

H∑
h=1

|Gh,f∗(f t, f t)|

≤ O
(
H

κ
σ

√
T · dimFE(F , G,

√
1/T ) log (THNL(1/T )/δ)

)
= Õ

(
H2
√
d2ϕdsT

)
.

F P R O O F O F T E C H N I C A L L E M M A S

We start with introducing the Freedman’s inequality that are crucial in proving concentration properties
in our main results.
Lemma 33 (Freedman-Style Inequality, Agarwal et al. 2014). Consider an adapted sequence
{Zt,Jt}t=1,2,...,T that satisfies E [Zt | Jt−1] = 0 and Zt ≤ R for any t = 1, 2, . . . T . Then
for any δ > 0 and η ∈ [0, 1

R ], it holds with probability at least 1− δ that
T∑

t=1

Zt ≤ (e− 2)η
T∑

t=1

E
[
Z2
t | Jt−1

]
+

log(δ−1)

η
. (F.1)

Before proving our technical lemmas, we note that for notational simplicity we use the expectation
Esh+1

[· | sh, ah] to denote the conditional expectation with respect to the transition probability of
the true model at h. The value of sh, ah is data dependent (might be sih, a

i
h or sth, a

t
h depending on

the function inside the expectation).

F. 1 P R O O F O F L E M M A 2 3

Proof of Lemma 23. We recall that ℓ has a bounded ℓ2-norm in Definition 6 and assume that
||ℓh,f ′(·, fh+1, gh, v)|| ≤ R for ∀h ∈ [H], f ′, f ∈ F , g ∈ G, v ∈ V throughout the paper. For
a sequence of data Dh = {rth, sth, ath, sth+1}t=1,2,...,T , we first build an auxiliary random variable
defined for every (t, h, f, v) ∈ [T ]× [H]×F × V and consider

Xi(h, f, v) := ||ℓh,fi(oih, fh+1, fh, v)||2 − ||ℓh,fi(oih, fh+1, T (f)h, v)||2,
where the randomness is due to uniformly sampling the data sequence Dh. We know that |Xt(h, f)| ≤
R2. Take conditional expectation of Xi with respect to sh, ah, we have by definition that

Esh+1
[Xi(h, f, v) | sh, ah]

= Esh+1

[
||ℓh,fi(oih, fh+1, fh, v)||2 − ||ℓh,fi(oih, fh+1, T (f)h, v)||2 | sh, ah

]
18
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Using the fact that ∥a∥2 − ∥b∥2 = ⟨a − b, a + b⟩ for arbitrary vectors a, b and property (i) in
Definition 6 we have

Esh+1
[Xi(h, f, v) | sh, ah] =

〈
ℓh,fi(oih, fh+1, fh, v)− ℓh,f ′(oih, fh+1, T (f)h, v),

Esh+1

[
ℓh,fi(oih, fh+1, fh, v) + ℓh,f ′(oih, fh+1, T (f)h, v) | sh, ah

]〉
= ||Esh+1

[
ℓh,fi(oih, fh+1, fh, v) | sh, ah

]
||2.

On the other hand,

Esh+1

[
(Xi(h, f, v))

2 | sh, ah
]
≤ Esh+1

[
||ℓh,fi(oih, fh+1, fh, v)− ℓh,fi(oih, fh+1, T (f)h, v)||2

·||ℓh,f ′(oih, fh+1, fh, v) + ℓh,f ′(oih, fh+1, T (f)h, v)||2 | sh, ah
]

≤ 4||Esh+1

[
ℓh,fi(oih, fh+1, fh, v) | sh, ah

]
||2R2

≤ 4R2Esh+1
[Xi(h, f, v) | sh, ah] .

By taking Zt = Xt(h, f, v)− Esh+1
[Xt(h, f, v) | sh, ah] with |Zt| ≤ 2R2 in Freedman’s inequal-

ity (F.1) in Lemma 33, we have for any η satisfying 0 < η < 1
2R2 , with probability at least 1− δ:

t∑
i=1

Zi ≤ O

(
η

t∑
i=1

Var [Xi(h, f, v) | sh, ah] +
log(δ−1)

η

)

≤ O

(
η

t∑
i=1

Esh+1

[
X2

i (h, f, v) | sh, ah
]
+

log(δ−1)

η

)

≤ O

(
4R2η

t∑
i=1

Esh+1
[Xi(h, f, v) | sh, ah] +

log(δ−1)

η

)
.

Taking η =

√
log(δ−1)

2R
√∑t

i=1 E[Xi(h,f,v)|sh,ah]
∨ 1

2R2 , we have

t∑
i=1

Zi ≤ O

2R

√√√√ t∑
i=1

Esh+1
[Xi(h, f, v) | sh, ah] log(δ−1) + 2R2 log(δ−1)

 . (F.2)

Similarly by applying Freedman’s inequality to
∑t

i=1 −Zt and combining with Eq. (F.2), we have
that for any three-tuple (t, h, f), the following holds with probability at least 1− 2δ:∣∣∣∣∣

t∑
i=1

Zi

∣∣∣∣∣ ≤ O

2R

√√√√ t∑
i=1

Esh+1
[Xi(h, f, v) | sh, ah] log(δ−1) + 2R2 log(δ−1)

 .

We note that in §3 we have that L admits a ρ-covering of F ,G,V , meaning that for any ℓh,f ′(·, f, g, v)
and a ρ > 0 there exists a ρ̃ and a four-tuple (f̃ ′, f̃ , g̃, ṽ) ∈ Fρ̃ × Fρ̃ × Gρ̃ × Vρ̃ such that∥∥∥ℓh,f̃ ′(·, f̃ , g̃, ṽ)− ℓh,f ′(·, f, g, v)

∥∥∥
∞

≤ ρ, where Fρ̃,Gρ̃,Vρ̃ are ρ̃-covers of F ,G,V respectively.

This is denoted by (f̃ ′, f̃ , g̃, ṽ) ∈ Lρ. In definition of Xt, g̃ is always taken as f̃ or a function of
T (f̃). Then if T is Lipschitz, as it is mostly the expectation operator, we omit the g̃ in the tuple and
use (f̃ ′, f̃ , ṽ) ∈ Lρ to denote an element in the ρ-covering. By taking a union bound over Lρ, we
have with probability at least 1− 2δ that the following holds for any (f̃ i, f̃ , ṽ) ∈ Lρ,∣∣∣∣∣

t∑
i=1

X̃i(h, f̃ , ṽ)−
t∑

i=1

Esh+1

[
X̃i(h, f̃ , ṽ) | sh, ah

]∣∣∣∣∣
≤ O

2R

√√√√ t∑
i=1

Esh+1

[
X̃i(h, f̃ , ṽ) | sh, ah

]
ι+ 2R2ι

 , (F.3)
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where X̃i(h, f̃ , ṽ) := ||ℓ
h,f̃i(o

i
h, f̃h+1, f̃h, ṽ)||2 − ||ℓ

h,f̃i(o
i
h, f̃h+1, T (f̃)h, ṽ)||2 and ι =

log
(

HTNL(ρ)
δ

)
. Further for any Xi(h, f

t, v), we choose the three-tuple (f̃ i, f̃ t, ṽ) :=

argmin
(f̃i,f̃t,ṽ)∈Lρ

∣∣∣Xi(h, f
t, v)− X̃i(h, f̃ t, ṽ)

∣∣∣ ≤ ρ and by the ρ-covering argument, we arrive at

t−1∑
i=1

X̃i(h, f̃ t, ṽ) =
t−1∑
i=1

[
||ℓh,f̃i(o

i
h, f̃

t
h+1, f̃

t
h, ṽ)||2 − ||ℓh,f̃i(o

i
h, f̃

t
h+1, T (f̃)th, ṽ)||2

]
≤

t−1∑
i=1

[
||ℓh,fi(oih, f

t
h+1, f

t
h, v)||2 − ||ℓh,fi(oih, f

t
h+1, T (f t)h, v)||2

]
+O(Rtρ)

(i)

≤ O(β +Rtρ),

(F.4)

where (i) comes from the constraint (4.1) of Algorithm 1.
Combining (F.3) with (F.4), we derive the following

t−1∑
i=1

Esh+1

[
X̃i(h, f̃ t, ṽ) | sh, ah

]
≤ O(β +Rtρ+R2ι).

Applying the ρ-covering argument as in before, we conclude

max
v∈V

t−1∑
i=1

Esh+1

[
Xi(h, f

t, v) | sh, ah
]
≤ O(β +Rtρ+R2ι).

Global optimality of the discriminator in (ii) of Definition 6 implies that v∗h is the optimal discriminator
under any distribution or summation of sh, ah (and thus max is interchangeable with summation):

t−1∑
i=1

Esh,ah∼πi ||Esh+1

[
ℓh,fi(oh, f

t
h+1, f

t
h, v

∗
h(f

t)) | sh, ah
]
||2

≥
t−1∑
i=1

Esh,ah∼πi ||Esh+1

[
ℓh,fi(oh, f

t
h+1, f

t
h, v) | sh, ah

]
||2, ∀v ∈ V .

Thus, we have
t−1∑
i=1

max
v∈V

Esh,ah∼πi ||Esh+1

[
ℓh,fi(oh, f

t
h+1, f

t
h, v) | sh, ah

]
||2

=
t−1∑
i=1

Esh,ah∼πi ||Esh+1

[
ℓh,fi(oh, f

t
h+1, f

t
h, v

∗
h(f

t)) | sh, ah
]
||2,

and also
t−1∑
i=1

Esh,ah∼πi ||Esh+1

[
ℓh,fi(oh, f

t
h+1, f

t
h, v

∗
h(f

t)) | sh, ah
]
||2

= max
v∈V

t−1∑
i=1

Esh,ah∼πi ||Esh+1

[
ℓh,fi(oh, f

t
h+1, f

t
h, v) | sh, ah

]
||2

= max
v∈V

t−1∑
i=1

Esh,ah∼πiEsh+1

[
Xi(h, f

t, v) | sh, ah
]
≤ O(β +Rtρ+R2ι). (F.5)

We apply property (i) in Definition 5 and conclude that

t−1∑
i=1

(
Gh,f∗(f t, f i)

)2 ≤ O(β),

which finishes the proof of Lemma 23.
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F. 2 P R O O F O F L E M M A 2 1

Proof of Lemma 21. For a data set Dh = {rth, sth, ath, sth+1}t=1,2,...T , we first build an auxillary
random variable defined for every (t, h, f, v) ∈ [T ]× [H]×F × V

Xi(h, f, v) := ||ℓh,fi(oih, f
∗
h , fh, v)||2 − ||ℓh,fi(oih, f

∗
h , f

∗
h , v)||2.

By similar derivations as in the proof of Lemma 23, we have

Esh+1
[Xi(h, f, v) | sh, ah] =

(
Esh+1

[
ℓh,fi(oih, f

∗
h , fh, v) | sh, ah

])2
,

Esh+1

[
(Xi(h, f, v))

2 | sh, ah
]
≤ 4R2Esh+1

[Xi(h, f, v) | sh, ah] .

Take Zt = Xt(h, f, v)−Esh+1
[Xt(h, f, v) | sh, ah] with |Zt| ≤ 2R2 in Freedman’s inequality (F.1)

in Lemma 33. Then via the same procedure as in the proof of Lemma 23 we have that for any
four-tuple (t, h, f, v), the following holds with probability at least 1− 2δ:∣∣∣∣∣

t∑
i=1

Xi(h, f, v)−
t∑

i=1

Esh+1
[Xi(h, f, v) | sh, ah]

∣∣∣∣∣
≤ O

2R

√√√√ t∑
i=1

Esh+1
[Xi(h, f, v) | sh, ah] log(δ−1) + 2R2 log(δ−1)

 .

Thus, we have

−
t∑

i=1

Xi(h, f, v) ≤ O(R2 log(δ−1)).

By the same ρ-covering argument as in the proof of Lemma 23, there exists a ρ-covering of L such
that we can take a union bound over Lρ and have −

∑t−1
i=1 X̃i(h, f̃ , ṽ) ≤ O

(
R2ι+Rtρ

)
where

ι = log
(

HTNL(ρ)
δ

)
. Then for f∗, any f ∈ F and any v ∈ V , we can use the nearest three-tuple

(f̃ i, f̃ , ṽ) in the ρ-covering and conclude that

max
v∈V

t−1∑
i=1

[
||ℓh,fi(oih, f

∗
h , f

∗
h , v)||2 − ||ℓh,fi(oih, f

∗
h , fh, v)||2

]
= max

v∈V

t−1∑
i=1

−Xi(h, f, v) ≤ O (β) .

This in sum finishes our proof of Lemma 21 with β = O
(
R2ι+Rρt

)
.

F. 3 P R O O F O F L E M M A 2 4

Proof of Lemma 24. The proof basically follows Appendix §C of Russo & Van Roy (2013) and
Appendix §D of Jin et al. (2021). We first prove that for all t ∈ [T ],

t∑
k=1

1(|G(fk, gk)| > ϵ) ≤ (β/ϵ2 + 1) dimFE(F , G, ϵ). (F.6)

Let m :=
∑t

k=1 1(|G(fk, gk)| > ϵ), then there exists {s1, . . . , sm} which is a subsequence of [t]
such that G(fs1 , gs1), . . . , G(fsm , gsm) > ϵ.
We first show that for the sequence {fs1 , . . . , fsm} ⊆ F , there exists j ∈ [m] such that fsj is
ϵ-independent on at least L = ⌈(m− 1)/ dimFE(F , G, ϵ)⌉ disjoint sequences in {fs1 , . . . , fsj−1

}
(Russo & Van Roy, 2013). We will prove this by following procedure. Starting with singleton
sequences B1 = {fs1}, . . . , BL = {fsL} and j = L + 1. For each j, if fsj is ϵ-dependent on
B1, . . . , BL we already achieved our goal and the process stops. Otherwise, there exist i ∈ [L]
such that fsj is ϵ-dependent of Bi and update Bi = Bi ∪ {fsj}. Then we add increment j by 1
and continue the process. By the definition of FE dimension, the cardinally of each set B1, . . . , BL

cannot larger than dimFE(F , G, ϵ) at any point in this process. Therefore, by pigeonhole principle
the process stops by step j = L dimFE(F , G, ϵ) + 1 ≤ m.
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Therefore, we have proved that there exists j such that |G(fsj , gsj )| > ϵ and fsj is ϵ-independent
with at least L = ⌈(m− 1)/ dimFE(F , G, ϵ)⌉ disjoint sequences in {fs1 , . . . , fsj−1

}. For each of
the sequences {f̂1, . . . , f̂l}, by definition of the FE dimension in Definition 3 we have that

l∑
k=1

(
G(f̂k, gsj )

)2 ≥ ϵ2. (F.7)

Summing all of bounds (F.7) for L disjoint sequences together we have that
sj−1∑
k=1

(
G(ft, gsj )

)2 ≥ Lϵ2 = ⌈(m− 1)/ dimFE(F , G, ϵ)⌉ · ϵ2. (F.8)

The left hand side of (F.8) can be upper bounded by β2 due to the condition of lemma. Therefore, we
have proved that β2 ≥ ⌈(m− 1)/ dimFE(F , G, ϵ)⌉ · ϵ2 which completes the proof of (F.6).
Now let d = dimFE(F , G, ω) and sort |G(f1, g1)|, . . . , |G(ft, gt)| in a nonincreasing order, denoted
by e1, . . . , et. Then we have that

t∑
k=1

|G(fk, gk)| =
t∑

k=1

ek =
t∑

k=1

ek 1(ek ≤ ω) +
t∑

i=1

ek 1(ek > ω) ≤ tω +
t∑

i=1

ek 1(ek > ω).

(F.9)

For k ∈ [t], we want to give an upper bound for those ek 1(ek > ω). Assume ek > ω, then for any α
such that ek > α ≥ ω, by (F.6), we have that

k ≤
t∑

i=1

1(ei > ω) ≤ (β/α2 + 1) dimFE(F , G, α) ≤ (β/α2 + 1)d,

which implies that α ≤
√
dβ/(k − d). Taking the limit α → e−k , we have that ek ≤

min{
√
dβ/(k − d), C}. Finally, we have that

t∑
k=1

ei 1(ek > ω) ≤ min{d, t} · C +

t∑
i=d+1

√
dβ

k − d

≤ min{d, t} · C +
√
dβ

∫ t

0

z−1/2dz ≤ min{d, t} · C + 2
√
dβt. (F.10)

Plugging (F.10) into (F.9) completes the proof.

F. 4 P R O O F O F L E M M A 3 2

Proof of Lemma 32. We assume that ∥v∥∞ ≤ B and treat B as an absolute constant (B = 2 in Sun
et al. (2019)) in the following derivations. For a dataset Dh = {rth, sth, ath, sth+1}t=1,2,...T , we first
build an auxillary random variable defined for every (t, h, f, v) ∈ [T ]× [H]×F × V

Xt(h, f, v) :=
[(
Es̃∼fv(s

t
h, a

t
h, s̃)− v(sth, a

t
h, s

t
h+1)

)2 − (Es̃∼f∗v(sth, a
t
h, s̃)− v(sth, a

t
h, s

t
h+1)

)2]
,

where the randomness lies in the sampling of the dataset Dh. We know that |Xt(h, f)| ≤ 4B2 almost
surely. Take conditional expectation of Xi with respect to sh, ah, we have by definition that

Esh+1
[Xi(h, f, v) | sh, ah] = Esh+1

[(
Es̃∼fv(s

i
h, a

i
h, s̃)− v(sih, a

i
h, s

i
h+1)

)2
−
(
Es̃∼f∗v(sih, a

i
h, s̃)− v(sih, a

i
h, s

i
h+1)

)2 | sh, ah
]
.

Using the fact that a2−b2 = (a−b)(a+b) and Es̃∼fv(s
i
h, a

i
h, s̃)−Es̃∼f∗v(sih, a

i
h, s̃) is nonrandom

given sh, ah, we have
Esh+1

[Xi(h, f, v) | sh, ah]
=
(
Es̃∼fv(s

i
h, a

i
h, s̃)− Es̃∼f∗v(sih, a

i
h, s̃)

)
· Esh+1

[
Es̃∼fv(s

i
h, a

i
h, s̃) + Es̃∼f∗v(sih, a

i
h, s̃)− 2v(sih, a

i
h, s

i
h+1) | sh, ah

]
=
(
Es̃∼fv(s

i
h, a

i
h, s̃)− Es̃∼f∗v(sih, a

i
h, s̃)

)2
.

22



Published as a conference paper at ICLR 2023

On the other hand,

Esh+1

[
Xi(h, f, v)

2 | sh, ah
]
≤ Esh+1

[[(
Es̃∼fv(s

i
h, a

i
h, s̃)− Es̃∼f∗v(sih, a

i
h, s̃)

)
4B
]2 | sh, ah

]
= 16B2

(
Es̃∼fv(s

i
h, a

i
h, s̃)− Es̃∼f∗v(sih, a

i
h, s̃)

)2
≤ 16B2Esh+1

[Xi(h, f, v) | sh, ah] .
By taking Zt = Xt(h, f, v) − Esh+1

[Xt(h, f, v) | sh, ah] with |Zt| ≤ 8B2 a.s. in Freedman’s
inequality (F.1) in Lemma 33, by the same procedure as in the proof of Lemma 23, we have that for
any four-tuple (t, h, f, v), the following holds with probability at least 1− 2δ:∣∣∣∣∣

t∑
i=1

Xi(h, f, v)−
t∑

i=1

Esh+1
[Xi(h, f, v) | sh, ah]

∣∣∣∣∣
≤ O

4B

√√√√ t∑
i=1

Esh+1
[Xi(h, f, v) | sh, ah] log(δ−1) + 8B2 log(δ−1)

 . (F.11)

Let Mρ be a ρ-cover of M and Vρ a ρ-cover of V . By taking a union bound over all (t, h, f ′, v‘) ∈
[T ] × [H] × Mρ × Vρ, we have with probability at least 1 − 2δ that the following holds for any
f ′ ∈ Mρ, v′ ∈ Vρ, ∣∣∣∣∣

t∑
i=1

Xi(h, f
′, v′)−

t∑
i=1

Esh+1
[Xi(h, f

′, v′) | sh, ah]

∣∣∣∣∣
≤ O

4B

√√√√ t∑
i=1

Esh+1
[Xi(h, f ′, v′) | sh, ah] ι+ 8B2ι

 , (F.12)

where ι = log(
HT |Mρ||Vρ|

δ ). Further for any f t calculated at t ∈ [T ] and any v ∈ V , we choose
f ′ = argminf̃∈Mρ

dist(f̃ , f t) where dist is the distance measure on M, v′ = minv′∈Vρ(v
′, v) and

conclude
t−1∑
i=1

Xi(h, f
′, v′)

=
t−1∑
i=1

[(
Es̃∼f ′v′(sih, a

i
h, s̃)− v′(sih, a

i
h, s

i
h+1)

)2 − (Es̃∼f∗v′(sih, a
i
h, s̃)− v′(sih, a

i
h, s

i
h+1)

)2]
≤

t−1∑
i=1

[(
Es̃∼ftv′(sih, a

i
h, s̃)− v′(sih, a

i
h, s

i
h+1)

)2 − (Es̃∼f∗v′(sih, a
i
h, s̃)− v′(sih, a

i
h, s

i
h+1)

)2]
+O(Btρ)

(i)

≤ O(β +Btρ), (F.13)
where (i) is due to the constraint of Algorithm 3. Combining (F.12) with (F.13), we derive the
following

t−1∑
i=1

Esh+1
[Xi(h, f

′, v′) | sh, ah] ≤ O(β +Btρ+B2ι).

Note that f ′ is chosen as the nearest model to f t in the ρ-covering of M and for any v there exists a
nearest v′ in the ρ-covering of V , we conclude

max
v∈V

t−1∑
i=1

Esh+1

[
Xi(h, f

t, v) | sh, ah
]
≤ O(β +Btρ+B2ι).

Note we also have proved property (ii) in Definition 6 in §E.2, and we apply the global optimality of
the discriminator as in the proof of Lemma 23 and obtains

t−1∑
i=1

max
v∈V

Esh+1

[
Xi(h, f

t, v) | sh, ah
]
≤ O(β +Btρ+B2ι).
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Multiplying
[
Es̃∼fv(s

i
h, a

i
h, s̃)− Es̃∼f∗v(sih, a

i
h, s̃)

]2
by 1(ai

h=πf (s
i
h))

1/|A| , taking expectation on sih ∼
πi, aih ∼ πf and again using the global discriminator optimality, we arrive at

t−1∑
i=1

max
v∈V

Esih∼πi,ai
h∼πf

[(
Es̃∼fhv(s

i
h, a

i
h, s̃)− Es̃∼f∗v(sih, a

i
h, s̃)

)2]
=

t−1∑
i=1

max
v∈V

Esih∼πi,ai
h∼U(A)

1(aih = πf (s
i
h))

1/|A|

[(
Es̃∼fhv(s

i
h, a

i
h, s̃)− Es̃∼f∗v(sih, a

i
h, s̃)

)2]
≤ O(|A|

(
β +Btρ+B2ι

)
),

which concludes the proof.

F. 5 P R O O F O F L E M M A 3 1

Proof of Lemma 31. For a dataset Dh = {rth, sth, ath, sth+1}t=1,2,...T , we first build an auxillary
random variable defined for every (t, h, f, v) ∈ [T ]× [H]×F × V

Xt(h, f, v) :=
[(
Es̃∼fv(s

t
h, a

t
h, s̃)− v(sth, a

t
h, s

t
h+1)

)2 − (Es̃∼f∗v(sth, a
t
h, s̃)− v(sth, a

t
h, s

t
h+1)

)2]
.

By Eq. (F.11), with probability at least 1− 2δ,∣∣∣∣∣
t∑

i=1

Xi(h, f, v)−
t∑

i=1

Esh+1
[Xi(h, f, v) | sh, ah]

∣∣∣∣∣
≤ O

4B

√√√√ t∑
i=1

Esh+1
[Xi(h, f, v) | sh, ah] log(δ−1) + 8B2 log(δ−1)

 .

Let Mρ be a ρ-cover of M and Vρ a ρ-cover of V . By taking a union bound over all (t, h, f ′, v‘) ∈
[T ] × [H] × Mρ × Vρ, we have with probability at least 1 − 2δ that the following holds for any
f ′ ∈ Zρ, ∣∣∣∣∣

t∑
i=1

Xi(h, f
′, v′)−

t∑
i=1

Esh+1
[Xi(h, f

′, v′) | sh, ah]

∣∣∣∣∣
≤ O

4B

√√√√ t∑
i=1

Esh+1
[Xi(h, f ′, v′) | sh, ah] ι+ 8B2ι

 ,

where ι = log
(

HT |Mρ||Vρ|
δ

)
. Thus, we have

−
t∑

i=1

Xi(h, f
′, v′) ≤ O

(
B2ι

)
.

Further for any f ∈ F and any v ∈ V , we choose f ′ = argminf̃∈Mρ
dist(f̃ , f) where dist is the

distance measure on M, v′ = minv′∈Vρ(v
′, v) and have

−
t−1∑
i=1

Xi(h, f, v) =
t−1∑
i=1

(
Es̃∼f∗v(sth, a

t
h, s̃)− v(sth, a

t
h, s

t
h+1)

)2 − t−1∑
i=1

(
Es̃∼fv(s

t
h, a

t
h, s̃)− v(sth, a

t
h, s

t
h+1

)2
≤ O

(
B2ι+Bρt

)
.

Thus,

max
v∈V

[
t−1∑
i=1

(
Es̃∼f∗v(sih, a

i
h, s̃)− v(sih, a

i
h, s

i
h+1)

)2 − inf
g∈Q

t−1∑
i=1

(
Es̃∼gv(s

i
h, a

i
h, s̃)− v(sih, a

i
h, s

i
h+1)

)2] ≤ β,

which concludes the proof.
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G P R O O F F O R F U N C T I O N A L E L U D E R D I M E N S I O N

In the following proposition, we prove that the Bellman eluder (BE) dimension (Jin et al., 2021) is a
special case of the FE dimension when Gh(g, f) := Eπh,f

(gh − Thgh+1).

Proposition 34. For any hypothesis class F , taking coupling function G to be the union of {Gh :
Fh ×Fh → R}h=1,...,H with each Gh(g, f) := Eπh,f

(gh − Thgh+1).

dimFE(F , G, ϵ) ≤ dimBE(F ,Π, ϵ).

Proof of Proposition 34. By definition of the functional eluder dimension,

dimFE(F , G, ϵ) = max
h∈[H]

dimFE(F , Gh, ϵ),

where dimFE(F , Gh, ϵ) is the length n of the longest sequence satisfying for every t ∈ [n],√∑t−1
i=1 (Gh(gt, fi))

2 ≤ ϵ′ and |Gh(gt, ft)| > ϵ′. Bringing in Gh(g, f) := Eπh,f
(gh − Thgh+1),

we have f1, . . . , fn is also the longest sequence that satisfies for some g1, . . . , gn that√√√√t−1∑
i=1

(
Eπh,fi

(gt,h − Thgt,h+1)
)2

≤ ϵ′, and
∣∣Eπh,ft

(gt,h − Thgt,h+1)
∣∣ > ϵ′.

Thus, dimDE((I − Th)F ,Πh, ϵ) ≥ n. Taking maximum over h ∈ [H], we have

dimFE(F , G, ϵ) = max
h∈[H]

dimFE(F , Gh, ϵ) ≤ max
h∈[H]

dimDE((I − Th)F ,Πh, ϵ) = dimBE(F ,Π, ϵ),

which concludes our proof.

Combining Proposition 34 with Proposition 29 in Jin et al. (2021), it is straightforward to conclude
that FE dimension is smaller than the effective dimension. In particular, Proposition 33 says dimFE
is controlled by dimBE, Proposition 29 in Jin et al. (2021) says dimBE is controlled by the effective
dimension dimeff, therefore low effective dimension would imply ABC with low FE dimension.
In the following paragraphs and Proposition 35 we prove this conclusion from sketch to grant a better
understanding of the FE dimension.
The effective dimension (Jin et al., 2021) (or equivalently, critical information gain (Du et al., 2021))
deff(X , ϵ) of a set X is defined as the smallest interger n > 0 such that

n > e · sup
x1,...,xn∈X

log det

(
I +

1

ϵ2

n∑
i=1

xix
⊤
i

)
.

Remark 5.2 in Du et al. (2021) showed that for finite dimensional setting with X ⊆ Rd and ||x|| ≤ B,
deff(X , ϵ) = Õ(d). Moreover, the effective dimension can be small even for infinite dimensional
RKHS case.
In the next proposition, we prove that when the coupling function exhibits a bilinear structure
G(f, g) = ⟨W (f), X(g)⟩H with feature space X := {X(g) ∈ H : g ∈ F} and ∥X(g)∥H ≤

√
B,

the functional eluder dimension in Definition 4 is always less than the effective dimesion of X .
Proposition 35. For any hypothesis class F and coupling function G(·, ·) : F × F → R that can be
expressed in bilinear form ⟨W (f), X(g)⟩H, we have

dimFE(F , G, ϵ) ≤ deff

(
X , ϵ/

√
B
)
.

Proof of Proposition 35. The proof basically follows the proof of Proposition 29 in Jin et al. (2021)
with modifications specified for the functional eluder dimension. Given a hypothesis class F and
a coupling function G(·, ·) : F × F → R. Suppose there exists an ϵ’-independent sequence
f1, . . . , fn ∈ F such that there exist g1, . . . , gn ∈ F ,

√√√√t−1∑
i=1

(G(gt, fi))
2 ≤ ϵ′, t ∈ [n],

|G(gt, ft)| > ϵ′, t ∈ [n].

(G.1)
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When G(f, g) := ⟨W (f), X(g)⟩H, the above becomes
√√√√t−1∑

i=1

⟨W (gt), X(fi)⟩2H ≤ ϵ′, t ∈ [n],

|⟨W (gt), X(ft)⟩H| > ϵ′, t ∈ [n].

(G.2)

Defining Σt =
∑t−1

i=1X(fi)X(fi)
⊤ + ϵ′2

B · I , we have by Eq. (G.2) that ∥W (gt)∥Σt
≤

√
2ϵ′.

Furthermore,

ϵ′ ≤ |⟨W (gt), X(ft)⟩H| ≤ ∥W (gt)∥Σt
· ∥X(ft)∥Σ−1

t
≤

√
2ϵ′ ∥X(ft)∥Σ−1

t
.

Thus, we have ∥X(ft)∥2Σ−1
t

≥ 1
2 for any t ∈ [n]. By applying the log-determinant argument, we have

n∑
t=1

log
(
1 + ∥xt∥2Σ−1

t

)
= log

(
det (Σn+1)

det (Σt)

)
= log det

(
1 +

B

ϵ′2

n∑
i=1

xix
⊤
i

)
.

The above equality implies

1

2
≤ min

t∈[n]
∥xt∥2Σ−1

t
≤ exp

(
1

n
log det

(
1 +

B

ϵ′2

n∑
i=1

xix
⊤
i

))
− 1. (G.3)

Taking n = deff(X , ϵ/
√
B) yields

exp

(
1

n
log det

(
1 +

B

ϵ′2

n∑
i=1

xix
⊤
i

))
≤ 1

n
sup

x1,...,xn∈X
log det

(
I +

B

ϵ2

n∑
i=1

xix
⊤
i

)
≤ e−1,

which contradicts with the inequality (G.3) and concludes our proof.

We now provide the detailed proofs of Lemmas 27, 29 and 30.

G . 1 P R O O F O F L E M M A 2 7

Proof of Lemma 27. Taking

Gh,f∗(f, g) := (θh,g − θ∗h)
⊤ Esh,ah∼πg

[
ψ(sh, ah) +

∑
s′

ϕ(sh, ah, s
′)Vh+1,g(s

′)

]
= ⟨Wh(f), Xh(g)⟩ ,

where Wh(f) := θh,f − θ∗h, Xh(g) := Esh,ah∼πg
[ψ(sh, ah) +

∑
s′ ϕ(sh, ah, s

′)Vh+1,g(s
′)] in

Proposition 35. Properties of the effective dimension yield that the FE dimension of the linear mixture
MDP model is ≤ Õ(d).

G . 2 P R O O F O F L E M M A 2 9

Proof of Lemma 29. Taking Gh,f∗(f, g) := ⟨Wh(f), Xh(g)⟩ in Proposition 35, and properties of
the effective dimension yields the conclusion that the FE dimension of low Witness rank MDP model
is ≤ Õ(Wκ).

G . 3 P R O O F O F L E M M A 3 0

We first introduce two auxillary lemmas:
Lemma 36. Let random variable xi ∈ Rd and E∥xi∥22 ≤ B2. Then we have that

1

n
log det

(
I +

1

λ

n−1∑
t=0

E[xtx⊤t ]
)
≤
d log

(
1 + nB2

dλ

)
n

.

Proof. We first have

trace
(
I +

1

λ

n−1∑
t=0

E[xtx⊤t ]
)
= d+

1

λ

n−1∑
t=0

E[∥xt∥22] ≤ d+
nB2

λ
.
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Therefore, using the Determinant-Trace inequality, we get the first result,

log det
(
I +

1

λ

n−1∑
t=0

E[xtx⊤t ]
)
≤ d log

trace
(
I + 1

λ

∑n−1
t=0 E[xtx⊤t ]

)
d

≤ d log
(
1 +

nB2

dλ

)
.

Dividing n from the both side of the inequality completes the proof.

The following lemma is a variant of the well-known Elliptical Potential Lemma (Dani et al., 2008;
Srinivas et al., 2009; Abbasi-Yadkori et al., 2011; Agarwal et al., 2020a).

Lemma 37 (Randomized elliptical potential). Consider a sequence of random vectors
{x0, . . . , xT−1}. Let λ > 0 and Σ0 = λI and Σt = Σ0 +

∑t−1
i=0 E[xix⊤i ], we have that

min
t∈[T ]

log

(
1 + E∥xt∥2Σ−1

t

)
≤ 1

T
log

(
det(ΣT )

det(λI)

)
.

Proof. By definition of Σt we have that

log det(Σt+1) = log det(Σt) + log det(I +Σ
−1/2
t E[xtx⊤t ](Σt)

−1/2). (G.4)

Denote Λt = Σ
−1/2
t E[xtx⊤t ](Σt)

−1/2 with eigenvalue λ1, . . . , λd ≥ 0, we have that

det(I + Λt) = Πd
i=1(λi + 1) ≥ 1 +

d∑
i=1

λi = trace(1 + Λt) = 1 + E∥xt∥2Σ−1
t
. (G.5)

Plugging (G.5) into (G.4) gives that

log det(Σt+1) ≥ log det(Σt) + log(1 + E∥xt∥2Σ−1
t
) ≥ log det(Σt) + min

t∈[T ]
log

(
1 + E∥xt∥2Σ−1

t

)
.

Taking telescope sum from t = 0 to t = T − 1 completes the proof.

Proof of Lemma 30. Given a hypothesis class F and a coupling function G(·, ·) : F × F → R. Let
n to be defined as follows,

n := min
{
n ∈ N : n ≥ edϕ log(1 + 4ndsR

4/(dϕϵ
′2))
}
.

Then we have that n = Õ(dϕ). We will prove dimFE(F , G, ϵ) ≤ n by contradiction. Suppose that
dimFE(F , G, ϵ) > n, there exists an ϵ′-independent (where ϵ′ ≥ ϵ) sequence f1, . . . , fn ∈ F such
that there exist g1, . . . , gn ∈ F ,

√√√√t−1∑
i=1

(G(gt, fi))
2 ≤ ϵ′, t ∈ [n],

|G(gt, ft)| > ϵ′, t ∈ [n].

(G.6)

Recall that the ABC function of KNR model is defiend as,

Gh,f∗(f, g) =
√〈

vec ((Uh,f − U∗
h)

⊤(Uh,f − U∗
h)) , vec

(
Esh,ah∼πgϕ(sh, ah)ϕ(sh, ah)

⊤
)〉

=
√

Esh,ah∼πg ||(Uh,f − U∗
h)ϕ(sh, ah)||2.

Therefore, condition (G.6) can be reduced to
√√√√t−1∑

i=1

Esh,ah∼πfi
||(Uh,gt − U∗

h)ϕ(sh, ah)||2 ≤ ϵ′, t ∈ [n],

√
Esh,ah∼πft

||(Uh,gt − U∗
h)ϕ(sh, ah)||2 > ϵ′, t ∈ [n].

(G.7)
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Denote Uh,gt,j , j ∈ [ds] and U∗
h,j , j ∈ [ds] to be the rows of Uh,gt and U∗

h . Taking square over both
side of the inequalities in (G.7) gives that

t−1∑
i=1

ds∑
j=1

Esh,ah∼πfi
[(Uh,gt,j − U∗

h,j)ϕ(sh, ah)]
2 ≤ ϵ′2, t ∈ [n],

ds∑
j=1

Esh,ah∼πft
[(Uh,gt,j − U∗

h,j)ϕ(sh, ah)]
2 > ϵ′2, t ∈ [n].

(G.8)

Define Σt =
∑t−1

i=1 Esh,ah∼πfi
[ϕ(sh, ah)ϕ(sh, ah)

⊤] + (ϵ′2/4dsR
2) · I . Then by (G.8), we have

that
ds∑
j=1

∥(Uh,gt,j − U∗
h,j)∥2Σt

=

t−1∑
i=1

ds∑
j=1

Esh,ah∼πfi
[(Uh,gt,j − U∗

h,j)ϕ(sh, ah)]
2 + (ϵ′2/4dsR

2) ·
ds∑
j=1

Esh,ah∼πft
∥Uh,gt,j − U∗

h,j∥22

≤
t−1∑
i=1

ds∑
j=1

Esh,ah∼πfi
[(Uh,gt,j − U∗

h,j)ϕ(sh, ah)]
2 + (ϵ′2/4dsR

2) ·
[
2ds max

j
∥Uh,gt,j∥

2
2 + 2ds max

j
∥U∗

h,j∥22
]

≤ 2ϵ′2,

where the first equality is by the Cauchy-Schwartz inequality and the last inequality is by ∥Uh,gt,j∥2 ≤
∥Uh,gt∥2 ≤ R, ∥U∗

h,j∥2 ≤ ∥U∗
h∥2 ≤ R. Furthermore we have that

ϵ′2 ≤
ds∑
j=1

Esh,ah∼πft
[(Uh,gt,j − U∗

h,j)ϕ(sh, ah)]
2

=

ds∑
j=1

Esh,ah∼πft
[(Uh,gt,j − U∗

h,j)Σ
1/2
t Σ

−1/2
t ϕ(sh, ah)]

2

≤
ds∑
j=1

Esh,ah∼πft
∥(Uh,gt,j − U∗

h,j)Σ
1/2
t ∥22 · Esh,ah∼πft

∥Σ−1/2
t ϕ(sh, ah)∥22

= Esh,ah∼πft
∥Σ−1/2

t ϕ(sh, ah)∥22 ·
ds∑
j=1

∥(Uh,gt,j − U∗
h,j)∥2Σt

,

where the last inequality is by the Cauchy-Schwarz inequality for random variables. Thus, we have
that Esh,ah∼πft

∥Σ−1/2
t ϕ(sh, ah)∥22 ≥ 1/2 for all t ∈ [n]. By applying Lemma 37, we have that

min
t∈[n]

log(1 + Esh,ah∼πft
∥Σ−1/2

t ϕ(sh, ah)∥22)

≤ 1

n
log
(det(Σn+1)

det(Σ1)

)
=

1

n
log det

(
1 +

4dsR
2

ϵ′2

n∑
i=1

Esh,ah∼πfi
[ϕ(sh, ah)ϕ(sh, ah)

⊤]
)
.

The above equation further implies that

1

n
log det

(
1 +

4dsR
2

ϵ′2

n∑
i=1

Esh,ah∼πfi
[ϕ(sh, ah)ϕ(sh, ah)

⊤]
))

≥ min
t∈[n]

log
(
1 + Esh,ah∼πft

∥Σ−1/2
t ϕ(sh, ah)∥22

)
≥ log(3/2).

On the other hand, Lemma 36 implies that

1

n
log det

(
1 +

4dsR
2

ϵ2

n∑
i=1

Esh,ah∼πfi
[ϕ(sh, ah)ϕ(sh, ah)

⊤]
)
≤
dϕ log

(
1 + 4ndsR

4

dϕϵ′2

)
n

≤ e−1.

This leads to a contradiction because ϵ′ ≥ ϵ and log(3/2) > e−1. We complete the proof of
dimFE(F , G, ϵ) = Õ(dϕ).
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Figure 2: Cumulative regret comparison in the first 10000 episodes of different RL algorithms (i.e.,
OPERA, Optimal Policy, Random Policy). Results are averaged over 10 runs.

H E X P E R I M E N T

In this section, we carry out experiments to evaluate the empirical performance of our algorithm
OPERA for linear mixture MDPs (Algorithm 2). In this experiment, we construct an MDP M
with dimension d = 3 and episode length H = 5. The state space S consists of H + 2 different
states x1, . . . , xH+2 and the action space A = {−1, 1}d−1 consists of 2d−1 different actions. For
each step h ∈ [H] and episode k ∈ [K], we assume that the reward function r(s, a) is known (so
no need to introduce ψ as in Section E.1). In particular, for all 1 ≤ h ≤ H , the reward function
rh(s, a) = 1 if and only if s = xH+2 and rh(s, a) = 0 otherwise. For each step h ∈ [H] and
corresponding transition probability function Ph, xH+1 and xH+2 are absorbing states. For other
states xh(1 ≤ h ≤ H), the transition probability satisfies that

Ph(xh+1|xh,a) = 0.95− ⟨0.01 · 1d−1,a⟩,
Ph(xH+2|xh,a) = 0.05 + ⟨0.01 · 1d−1,a⟩,

where each 1d−1 is a (d− 1)-dimensional vector of all ones, a ∈ A is also a (d− 1)-dimensional
vector. Then we have that Ph(xh′ | xh,a) = ⟨θ∗h, ϕ(xh′ ,a, xh)⟩ where θ∗h = [0.01 · 1d−1, 1], and
ϕ(xh′ ,a, xh) are as follows,

• ϕ(xh′ ,a, xh) = [−a, 0.95] if 1 ≤ h ≤ H and h′ = h+ 1,
• ϕ(xh′ ,a, xh) = [a, 0.05] if 1 ≤ h ≤ H and h′ = H + 2,
• ϕ(xh′ ,a, xh) = [0d−1, 1] if h′ = h = H + 1,
• ϕ(xh′ ,a, xh) = [0d−1, 1] if h′ = h = H + 2,
• ϕ(xh′ ,a, xh) = 0d, otherwise.

Here 0d−1 is a (d− 1)-dimensional vector of all zeros. We compare our algorithm OPERA with the
following two baselines: Optimal (optimal policy) and Random (uniformly random policy which
chooses actions uniformly from A). For numerical stability, we add λI to Σ

(t)
h with λ = 1 and

use CVX (Diamond & Boyd, 2016; Agrawal et al., 2018) to approximately solve (E.3) when we
implement Algorithm 2. The cumulative rewards of different algorithms averaged over 10 runs for
the first 10000 episodes are plotted in Figure 2. We can see that OPERA performs much better than
the random policy and can converge to the optimal policy after 10000 episodes.

29


	Introduction
	Preliminaries
	Admissible Bellman Characterization Framework
	Admissible Bellman Characterization
	MDP Instances in the ABC Class

	Algorithm and Main Results
	Opera Algorithm
	Regret Bounds
	Implication for Specific MDP Instances

	Conclusion and Future Work
	Related Work
	Additional Examples
	Linear Q*/V*
	Low Occupancy Complexity
	Kernel Reactive POMDPs
	FLAMBE/Feature Selection
	Linear Quadratic Regulator
	Generalized Linear Bellman Complete
	Q* state-action aggregation

	Proof of Main Results
	Proof of Theorem 11
	Sample Complexity of OPERA

	Q-type and V-type Sample Complexity Analysis
	Proof for Specific Examples
	Linear Mixture MDPs
	Low Witness Rank MDPs
	Kernelized Nonlinear Regulator
	Proof of Corollary 12
	Proof of Corollary 13

	Proof of Technical Lemmas
	Proof of Lemma 23
	Proof of Lemma 21
	Proof of Lemma 24
	Proof of Lemma 32
	Proof of Lemma 31

	Proof for Functional Eluder Dimension
	Proof of Lemma 27
	Proof of Lemma 29
	Proof of Lemma 30

	Experiment

