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Abstract

We study the Stochastic Shortest Path (SSP) prob-
lem with a linear mixture transition kernel, where
an agent repeatedly interacts with a stochastic en-
vironment and seeks to reach certain goal state
while minimizing the cumulative cost. Existing
works often assume a strictly positive lower bound
of the cost function or an upper bound of the ex-
pected length for the optimal policy. In this paper,
we propose a new algorithm to eliminate these
restrictive assumptions. Our algorithm is based
on extended value iteration with a fine-grained
variance-aware confidence set, where the vari-
ance is estimated recursively from high-order mo-
ments. Our algorithm achieves an O(dB,vK)
regret bound, where d is the dimension of the fea-
ture mapping in the linear transition kernel, B,
is the upper bound of the total cumulative cost
for the optimal policy, and K is the number of
episodes. Our regret upper bound matches the
Q(dB. VK ) lower bound of linear mixture SSPs
in Min et al. (2022), which suggests that our algo-
rithm is nearly minimax optimal.

1. Introduction

Stochastic Shortest Path (SSP) (Bertsekas, 2012) is a type
of reinforcement learning problem where the agent aims
to reach a predefined goal state while minimizing the total
expected cost. In an SSP, for each episode, the agent starts
at a specific initial state, chooses an action from the action
set, receives some cost from the environment, and transits to
the next state. The agent will stop at a fixed goal state (i.e.,
terminal state) and ends the current episode. Compared with
episodic Markov Decision Processes (MDPs) and infinite-
horizon MDPs, the SSP model is more general and thus
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more suitable to many modern applications such as Atari
games, GO games, and navigation (Andrychowicz et al.,
2017; Nasiriany et al., 2019).

For an SSP, since the agent only stops after reaching a goal
state, the length of the episode usually depends on the cur-
rent policy and can be different from episode to episode.
Therefore, learning an SSP is usually more difficult than
learning episodic MDPs and infinite-horizon MDPs. In
recent years, there has been a sequence of works develop-
ing efficient algorithms for learning SSPs. We use regret
to measure each algorithm, which is defined as the differ-
ence between the total cost and the lowest expected cost
achieved by the optimal policy. For the tabular SSP set-
ting where the state space and action space are finite, Tar-
bouriech et al. (2020) proposed an algorithm with a regret
of O(D?/2S\/AK /cmin), where D is the smallest expected
hitting time from any starting state to the goal state and ¢,
is the assumed positive lower bound of the cost function.
Rosenberg et al. (2020) proposed an algorithm with a regret
of O(B.SV AK) and showed that every algorithm should
suffer from an Q(B,vSAK) regret. Later, Cohen et al.
(2021) developed an algorithm reduced from algorithms for
episodic MDPs, which achieves the minimax lower bound.
Tarbouriech et al. (2021b) made significant contributions
to the study of SSP. One of their notable achievements is
the development of an algorithm that does not rely on the
assumption that cpi, > 0. This algorithm achieves a nearly
optimal regret bound of O(B,+v SAK). Furthermore, they
introduced the algorithms that do not require knowledge of
T, or B, as well.

Many modern RL problems work with a large state and
action spaces. In these cases, linear function approximation
can be employed as a tool to make RL scalable to large state
and action spaces (Bradtke & Barto, 1996). For the SSP
setting, Vial et al. (2022) is the first one to consider linear
function approximation on it. They proposed a computa-
tionally inefficient algorithm with an O(\/d?B2K /cmin)
regret, where d is the dimension of the linear representation
used in the algorithm. Later, Chen et al. (2022) proposed
a computationally efficient algorithm with an improved re-
gret of O(1/d3B2T, K) using the fact that T, < B, /cnin.
Min et al. (2022) considered the linear mixture SSP set-
ting and proposed an algorithm LEVIS™ with a regret of
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5(dB* M) Chen et al. (2022) also proposed an al-
gorithm (UCRL-VTR-SSP) for linear mixture SSP with an
O(B,dT, K + dB,VK) regret. On the other hand, Min
et al. (2022) proved a lower bound of Q(dB,vK).

However, the regret bounds of all the above works with lin-
ear function approximation depend on ¢y, or the expected
length 7%, polynomially, which prevents these algorithms
from matching the lower bound, unlike their counterparts in
the tabular setting. Therefore, a natural question arises:

Can we design an optimal algorithm for linear mixture
SSPs, whose regret matches the lower bound?

Our work gives a positive answer to this question. We
highlight our main contributions as follows,

* We propose a computationally-efficient algorithm for
learning linear mixture SSPs. Our regret bound is
O(dB. VK ), which matches the lower bound in Min et al.
(2022) up to logarithmic factors. To the best of our knowl-
edge, this is the first statistically near-optimal algorithm
for learning SSPs with linear function approximation.

* Our algorithm has a component that estimates the optimal
value function by solving a weighted regression problem,
following (Min et al., 2022). The difference between
our approach and the previous one is that the weights
adapted in our weighted regression depend on both the
variance of the estimated value function and the upper
bound of the error between the optimal value function and
the estimated value function, which has been studied in
the design of horizon-free algorithms of linear mixture
MDPs (Zhou & Gu, 2022). Our newly adapted weights
enable us to obtain a more accurate estimate of the value
function and improve the final regret.

* We also introduce a more delicate variance estimator. To
do this, we introduce high-order moment estimates of
the value function and build these estimates by solving
multiple groups of weighted regressions. Compared with
Min et al. (2022), our proposed variance estimates are
more accurate, which help us eliminate the polynomial
dependence of ¢y, in the regret.

Notation. For any positive number n, we denote by [n] =
{1,2,3,...,n}. We use lowercase letters to denote scalars
and use lower and uppercase bold face letters to denote
vectors and matrices respectively. For a vector x € R?
and matrix ¥ € R4, we define ||x||s = vx ' Xx and
define ||x||oc = max; |x;| to be the infinity norm of a vector.
For two sequences {a,, } and {b,}, we write a,, = O(b,,) if
there exists an absolute constant C' such that a,, < Cb,,, and
we write a,, = Q(b,,) if there exists an absolute constant C
such that a,, > Cb,,. We use O(-) and Q(-) to further hide

the logarithmic factors. We use 1{} to denote the indicator
function. For a,b € R satisfying a < b, we use [7][4,) to
denote the truncation function - 1{a < z < b}+a-1{z <
a} +b-1{x > b}.

2. Related Work

Tabular SSP. Stochastic Shortest Path (SSP) is a pop-
ular variant of Markov Decision Process, which can be
dated back to Bertsekas & Tsitsiklis (1991); Bertsekas &
Yu (2013); Bertsekas (2012). The regret minimization
problem of SSP was first studied by Tarbouriech et al.
(2020), which proposed the first algorithm with a regret of
O(D?/?28\/AK [cmin), and a parameter-free algorithm with
an O(K3/?) regret bound. Here D is the smallest expected
hitting time from any starting state to the goal state and ¢y,
is the assumed positive lower bound of the cost function. It
was improved by Rosenberg et al. (2020) to O(B.SV AK)

when B, is known and O(B> 125 AK ) in the parameter-
free case. There is still a /S gap from the lower bound
of Q(B.VSAK) proved in the same paper. Later, Cohen
et al. (2021) proposed an algorithm using the technique of
reducing SSP to a finite-horizon MDP with a large terminal
cost. This algorithm achieves the lower bound, but it re-
quires some prior knowledge of T, which can be bypassed
by using the trivial upper bound 7T, < B, /Cmin, and B, to
properly tune the horizon and terminal cost in the reduction.
As mentioned in Remark 2 of Cohen et al. (2021), this large
dependence on 1/cmi, will not work well without the as-
sumption cpip > 0. Concurrently, Tarbouriech et al. (2021b)
avoided this requirement. They first developed an algorithm
that knows 7T}, without assuming cyi, > 0. This algorithm
achieves an O(B,V SAK) regret upper bound, matching
the lower bound. They also introduced a parameter-free
algorithm that does not require knowing 7 in advance. For
the case where B, is unknown, Tarbouriech et al. (2021b)
proposed an algorithm with a ‘doubling trick’ to guess the
unknown B, from scratch. Using the analysis framework
called implicit finite horizon approximation, Chen et al.
(2021a) proposed the first model-free algorithm which is
minimax optimal under strictly positive costs. They also
introduced a model-based minimax optimal algorithm with-
out this assumption that is computationally more efficient.
In other aspects of the literature, Jafarnia-Jahromi et al.
(2021) introduced the first posterior sampling algorithm for
SSP. Tarbouriech et al. (2021a) studied the problem of SSP
with access to a generative model. Moreover, Rosenberg &
Mansour (2020); Chen & Luo (2021); Chen et al. (2021b)
studied the problem with adversarial costs.

RL with Linear Function Approximation. There exists a
large number of works studying RL with linear function ap-
proximation (Yang & Wang, 2019; Jin et al., 2020; Du et al.,
2019; Zanette et al., 2020; Wang et al., 2020; Fei et al., 2021;



Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic Shortest Path

Table 1. Comparison of algorithms for learning SSP in terms of their regret guarantee.

Model Algorithm Regret
Bernstein-SSP ~ s
(Rosenberg et al., 2020) 0 (B* 5 AK)

ULCVI -
Tabular SSP Conen etal. 2021) o( B+ B*)SAK)
EB-SSP . )
(Tarbouriech et al., 2021b) O( (BZ + B.)SAK + B.S A)
Lower Bound —
(Rosenberg et al., 2020) UB.VSAK)
LEVIS™ ~
(Min et al., 2022) 0 (dB <V K/ C’“i“)
UCRL-VTR-SSP 6 (B* JAT.EK + dB, \/E)
. . (Chen et al., 2022)
Linear Mixture SSP LEVIS*+ ~
2
(Our work) v (dB*\/K d B*>
Lower Bound Q(dB \/E)

(Min et al., 2022)

Zhou et al., 2021b; He et al., 2021; Zhou & Gu, 2022). The
counterpart of the SSP we study in episodic MDPs is called
linear mixture MDPs, where the transition probability of the
MDP is based on a linear mixture model (Modi et al., 2020;
Jia et al., 2020; Ayoub et al., 2020; Min et al., 2021; Zhou
et al., 2021b). Zhou et al. (2021a) proposed an algorithm to
achieve a nearly minimax optimal regret bound in episodic
MDP. Recently, a new work can achieve horizon-free regret
bound for linear mixture MDPs (Zhou & Gu, 2022). In the
SSP setting, Vial et al. (2022) is the first to study a linear SSP
model, which assumes there exist some feature maps and
that both the cost function and the transition probability are
linear in the feature maps. They proposed a computationally
inefficient algorithm with a regret of O(\/d?B2K/cmin).
Chen et al. (2022) improved this result by a computation-
ally efficient algorithm with an O(\/d3 B2T, K) regret. To
avoid the undesirable dependency on 7, Chen et al. (2022)
also proposed a computationally inefficient algorithm with
a regret bound of O(d*® B,v/K) by constructing some con-
fidence sets.

Linear Mixture SSP. Linear Mixture SSP is a different
type of linear function approximation from linear SSP,
which was first studied by Min et al. (2022). In their
work, they proposed an algorithm (LEVIS) with a regret
of O(dBL\/K/cmin) and an improved version (LEVIS™)
with a regret of (5(033* VK /cmin). Chen et al. (2022)
proposed another algorithm (UCRL-VTR-SSP) with an
O(BVdT. K + dB, \/I?) regret. When d > T,, the re-
sult is nearly optimal, but in other cases, the dependency
on T, is undesirable. Similar to the tabular setting, this
dependency can be bypassed by replacing T with the upper
bound T, < B, /cmin-

3. Preliminaries

Stochastic Shortest Path. An SSP is a tuple
(S, A, P, c, sinit, g), where: S is the state space, A is a finite
action space, Siy; is the initial state and g € S is the goal
state. P(s’|s, a) is the probability that action a in state s
will lead to state s’ at the next step, g is an absorbing state,
P(glg,a) = 1 for all action a € A, c is a function from
S x Ato [0, 1], where (s, a) is the immediate cost function
of taking action a in the state s. In addition, we assume that
in the goal state g, the cost for any action a € A satisfies
¢(g,a) = 0.

Linear Mixture SSP. We assume that the unknown tran-
sition probability PP is a linear mixture function of feature
mapping (Modi et al., 2020; Ayoub et al., 2020; Zhou et al.,
2021a).

Assumption 3.1 (Linear Mixture SSP, Min et al. 2022).
We assume P(s'|s,a) = (¢p(s'|s, a), %), with ||0*|2 < 1,
where the feature mapping ¢(s|s,a) : S x S x A —
R? is known. For simplicity, for any bounded function
V : 8§ — [0,1], we define the notation ¢y as following:
ov(s,a) = Y s ®(8']s,a)V(s") and we also assume
[@v(s;a)ll2 < 1.

Proper Policies. We consider stationary and deterministic
policies in this work, where each of them is a mapping
m: S — A, such that in state s, the agent will take action
m(s) € A. A policy 7 is proper if, with probability 1, it can
get to the goal state in finite time. This definition of proper
policies is the same as that in Tarbouriech et al. (2021b);
Min et al. (2022). We define IIoper to be set of all the proper
policies. We make the assumption that IL;pe; is non-empty.
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Assumption 3.2. At least one proper stationary and deter-
ministic policy exists. Iproper 7 0

Value Function. We define the value function and the
corresponding Q-function as below.
S1 = ;| )

T
E CSt7 St
t=1
81 = S,a1 —a‘| .

V7™(s) ;== lim E

T—o0

Q"(s,a) =
T
TlgréoEl c(81,a1 +;c S, T

For a proper policy 7 and all state-action pair (s, a), we
have V™ (s), Q™ (s,a) < co. We define

a) =Y P(s|s,a)V(s)

s'es

= (9

s'es

= <¢V(57a)v 0*>7

and the Bellman operator as

(8'|s,a),0%)V (s

LV (s) = min {c(s, a) + PV (s, a)}.

ac
By satisfying an additional assumption, the lemma presented
here shows that we can derive an optimal policy denoted by
7*, which possesses numerous significant properties.

Lemma 3.3 (Bertsekas & Tsitsiklis 1991; Yu & Bertsekas
2013; Tarbouriech et al. 2021b). Suppose that Assumption
3.2 holds and for every improper policy w, there exists at
least one state s, such that V™ (s) = oo, then there exists an
optimal policy *, which is a stationary, deterministic, and
proper. What’s more, V* = V™ is the unique solution of
the equation V.= LV.

Note that if the cost function is strictly positive, the sec-
ond assumption inherently satisfied. In the absence of this
assumption and with the knowledge of T, we employ the
perturbation technique used in Tarbouriech et al. (2021b);
Min et al. (2022) to bypass the second assumption. To clar-
ify the discussion, we first propose an algorithm under the
assumption that cpi, > 0. The regret of this algorithm is
proven in Theorem 5.1. In cases where this assumption
does not hold, we introduce a positive parameter p > 0.
We then apply our algorithm to a perturbed problem with
a modified cost function defined as ck = p+ c,i, where
ck,; represents the received cost. Slmultaneously, we adjust
the parameter B, := B + T p. This adjustment ensures that
our algorithm can handle an upper bound of the modified
cost function. We prove the regret bound for this case in
Theorem 5.3.

We denote by 7* the optimal policy. We define V*(s) =
v (s) = mingen- V™(s), B. = maxses V*(s) and
Q*(s,a) = Q™ (s,a). We assume that we know an up-
per bound B > B,. Denote by 7™ (s) the expected time
that policy 7 takes to reach the goal state g starting from s.
T, is defined to be the expected time for the optimal policy
to reach goal, i.e. T, = max,es 1™ ().

Regret. The regret over the total K episodes is defined as

K Iy

Ri = Z ch,i — KV*(Sinit),

k=1 1=1

3.1)

where [}, is the length of the k-th episode and ¢ ; =
¢(Sk,i,ak,i) is the cost triggered at the 4-th step in the k-
th episode. Our learning goal is to minimize this regret.

4. The Proposed Algorithm

In this section, we will propose our algorithm for linear
mixture SSPs.

4.1. Algorithm Description

Our algorithm is displayed in Algorithm 1. Generally speak-
ing, Algorithm 1 follows LEVIST (Min et al., 2022) to
construct é\t,O as the estimate of the model parameter 8 at
the ¢-th step, using a weighted linear regression (Line 7 to
9) with weights 7; ¢ (Line 6). In detail, §t70 is the solution
of the weighted regression problem

B0 — argmin {Awn%
OcRd

3 [l (50:00,0) = ViGsisn))” 2 |

i=1

where j is the index representing the update times of the con-
fidence region. For simplicity of expression, the dependence
of the index j on the specific time ¢ within the summation is
omitted in the equation. Given é\t,o, Algorithm 1 occasion-
ally updates the confidence region CAJ (7 is the index of the
update times of the confidence region) in Line 16 and runs
the subalgorithm LEVIS™ (Algorithm 2) to obtain its value
function estimates Q; and V.

Our algorithm, similar to LEVIS™ in Min et al. (2022), di-
vides each episode into intervals of different length. The
switch between two intervals is triggered by the updating
criterion (Algorithm 1 Line 10). In Algorithm 1, we define
two indices ¢ and j, where the number of steps is indexed
by ¢ and the number of intervals is represented by j. The
first updating criterion is based on the determinant of L
groups of covariance matrices X, ;,! € [L] of some given
features. The definition of the L groups and the features will
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Algorithm 1 LEVIS* T
Require: Regularization parameter A, confidence radius
{Et}tzl, level L, variance parameters oy, v, [L] =
{0,1,---,L—1}.
1: Initialize: set ¢ « 1,j < 0,t =0,
EO,I «— M, 9071 0, boJ 0,
Qo(s,+), Vo(s) < 1 forall s # g and 0 otherwise.
2: fork=1,2,..., K do
3 Set s; = Sinit-
4:  while s; # g do
5: Take action a; = argmin,c 4 Q;(s¢,a),
receive cost ¢; = ¢(s¢, at),
and next state s;11 ~ P(+]s¢, ar).

6: Set &4, < Algorithm 3
({¢Vzl (sta at)7 0t,l7 z:t,lv 2:j,l}le[L] 3 Bta O, 7)
J ~ ~
7: Forl € [L],set 30, < Xy_1
+5—;l2¢v_21 (St, at)¢v_2z (St, at)T.
J J
8: Forl € [L],setby; < b1,
— l
+5't7l2¢v_21 (st at)Vj2 (St41)-
J ~
9: Set 0, < X, by .
10: if 30 € (L], det(Syy) > 2det(Sy, ) ort > 2t;
then
11: Jj—J+1
. . . 1 .. 1
12: tjet,ejetj,qjetj.
13: for [ € [L] do
14: Set EjJ = Etj,l~
15: end for
16: Set confidence ellipsoid
~ ~ 1 ~ ~
Cj {01540~ Bu,0)ll < B, }.
17: Set Q;(-,-) - DEVI(C;, €7, q;)-
18: Set V;(+) < minge 4 Q,(+, a).
19: end if
20: Sett«—t+1.

21:  end while
22:  Setj <« j+1.
23: end for

be revealed afterwards. If at least one of the determinant
of covariance matrices is doubled compared with its deter-
minant at the end of the previous step, we will trigger the
DEVI process, update the value function, end the current
interval and start a new one. (Line 10). The first updating
criterion cannot guarantee the finite length for each interval,
so we follow Min et al. (2022) and introduce the second
updating criterion. If the number of steps ¢ is doubled com-
pared with the index of step ¢; at the end of the previous
interval, we will end the current interval and start a new one.
This criterion can occur at most O(logT’) times and will
not add too much complexity to the algorithm.

Algorithm 2 DEVI(Min et al., 2022)
Require: Confidence set C, error parameter €, set 3 defined
in (4.1), transition bonus q.
1: Initialize: i < 0, Q9 (-,-) = 0,
VO () =0and V(1) = .
Set Q(+,-) + QUO(,-).
if C N B # () then
while ||V — VD || > e do
QUEN(,) (-,
+(1 — g) mingecns (0, dyo (- -))
VD () & minge4 QU ()
Seti <1+ 1.
end while
Q(" ) — Q(H_l)(" )
end if
Output Q(-, -).

DY e

Ju—

We construct the confidence ellipsoid éj in Line 16 and feed
it to Algorithm 2 to get the estimation of the ()-function.
We define a constraint set,

B=1{6:Y(s,a),(¢(:|s,a),8) is a probability

distribution and (¢(s'[g,a),0) = 1{s' = g}}. (4.1
It can be shown that @ N B contains the true parameter 6*
with high probability. Then each one-step value iteration in
DEVI (Algorithm 2, Line 5) applies the Bellman operator
to the confidence set C'; N B, which will find an optimistic
estimate to the true optimal value function V*. To prevent
DEVI runs infinitely long (since the while loop condition in
Line 4 may not be satisfied), we follow Min et al. (2022) to
add the transition bonus ¢; = 1/t; since the value iteration
may not converge without such a bonus (Min et al., 2022).
The additional bias caused by this bonus can be bounded by
O(log T') with our choice of ¢; through our next following
analysis.

4.2. Comparison with LEVIS™ (Min et al., 2022)

In this subsection, we will compare our algorithm with
LEVIS' (Min et al., 2022). Before telling the key difference
between Algorithm 1 and LEVIS™, we first recall the proof
of the algorithm LEVIS™ in Min et al. (2022) to see several
key technical challenges we need to recover.

LEVIS™ applies weighted ridge regression to obtain their
estimate to the 8* by the regression weights ;. First we
rewrite the regret definition Rx by another formulation of
double summation, which is

K Iy M H,,
RK + KV*<Sjni‘) = Z ch,i = Z Z Cm,h» (42)
k=11i=1 m=1h=1
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Algorithm 3 High-order Moment Estimation (HOME)
{Pei}iern)

{Ot 1}1e[L)> covariance matrix {Et 1, 251 helr)»

Require Features Vector estimators

confidence radius ﬁt, parameters oy, 7.
1: fori=0,1,...,L —2do
2 Set [V V2] (se,a0) <

|:<¢t,l+17é\t,l+1>][O’B2l+1] - [<¢t,la§t,l>} [20’321]'
~ ~ 1
3 Set By = min{l,?ﬂtHZ;fqbtl/BQlH }
+min{1 Ef” Jl+1¢f z+1/B l+1H }
[Vt lV+1](5t7at)/B +Et,l-
Set 57, B2 max {afﬁhaf,
~_1
VQHEt,lzd’t,l/BZZHJ'
6: end for .
7: Set 5?7,4_1 +— B2 max{l,af,

P8t iben /B,
Ensure: {57 }1c(1)-

»

Set at b

bl

where m is a regrouping index of k, where the m-th interval
has the end points either from the end of an episode or the
time steps when the confidence region is updated, H,, is
the length of m-th interval. The following theorem plays a
central role in Min et al. (2022)’s proof.

Theorem 4.1 (Theorem G.2 in Min et al. 2022). For any
§ > 0, let p=0,\ = 1/B> Supposing that cpi, > 0,
K > d® + B2d*/cyiy, then with probability at least 1 — 76,
The regret of algorithm LEVIS™ satisfies

R = O (\/B%lT n BZd?M) ,

where O(-) hides a term of C - log? (T B/ (Adcmin)) for
some problem-independent constant C, and cpiy is a mini-
mum of the cost function.

However, Theorem 4.1 cannot directly provide a O(v/K)
upper bound for the regret since in the SSP setting, the total
number of steps 7' can be much greater than episode K. In
order to control the number of steps 7', Min et al. (2022)
proved the following upper bound of the total length 7",

KB, o ( KB
T=
© ( Cmin g <>\50min ) ) ’

which brings a cpi, dependency to the regret. Therefore,
if we want to achieve our goal to remove the polynomial
dependency of cni, from our regret, one way is to remove
the 1" dependency from the regret in Theorem 4.1.

In the proof of Theorem 4.1, Min et al. (2022) decomposed
the regret in the following way: with high probability, we

have the following decomposition of the regret,

M H.
S Vi (Smaer) = PV, (Smns amn)]

m=1

| AN
3

\
Il
—

1

I
M Hp,

+ Z Z Cm,h + ]P)V'm (Sm,h7 am,h) - ‘/jm (Sm,,h)]

m=1h=1

I
M H,,

YD Vi (smn) —

m=1 h=1

— Z V'm (Sinit) + 1.

meM(m)

Vi (Sm,thl)}

Here the first and second terms are dominant, denoted by Iy
and /5. The bounds of I; and I5 in Min et al. (2022) bring
a /T dependency in the results. We will go through the
process of their proof and see why the claims hold.

For term I, they derived the following result: with proba-
bility at least 1 — §, the following inequality holds

M H,,

S5 Vi Smanir) = BV, (St @)

m=1h=1
2T
< 2B,4/2T log <5)

This inequality will result in the /7" dependency in Theo-
rem 4.1. Thus, we need to make a more delicate estimation
for term I5.

For term I, Min et al. (2022) proved the following result.
With high probability, the following inequality holds

Hopp,

Z Z [cm,h + ]P)Vm (Sm,h7 am,h) - ‘/}'m (Sm,h)}

meMo(M) h=1

< ¥ fjmm{B*,4§Tu¢vjm<sm,h,am,h>|,2;1}

meMo(M) h=1

B

NSNS Z—

mEMo(M h 1 Jm

B>

where term Bs is non-dominant by the following inequality

from Min et al. (2022)
TB2d
)\* > + log T} .

By < 4.5B, [log <1 +
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For term B;, Min et al. (2022) proved that

el 2
Z Z (B* + 4BT3t>

meMo(M) h=1

B <

Hpp,

S Y min {1 v, (smamn/Fl% )
t

’I’TLEMQ(]\/[) h=1

Hp,
< 2d10g(1+T/A)-(2TB§+323% 3 Zag).

mEMo(M) h=1

Firstly, this result has a v/T dependency. Furthermore, the
term -, vo(ar) Sim G2 = O(T) will also provide a

VT dependency. Therefore, if we want to improve the
dependency of cyin, we need to use more delicate bound for
B . Furthermore, we will also need a new construction of
weights o; with a smaller upper bound.

4.3. Our Key Techniques

In this subsection, we will highlight the key techniques used
in our algorithm, which tackle the technical challenges faced
by LEVIS™.

Design of Variance-aware and Uncertainty-aware
Weights. From the above analysis, we can see that a *good’
selection of the weights &; ¢ can potentially help us to im-
prove the dependency of T in the final regret. The first
notable difference between our &, and &, in Min et al.
(2022) is that our weights are both variance-aware and
uncertainty-aware. More specifically,

5_t2’0 — B2 max { [Vt,OVj+1KSt7 at)/B2 —+ Et.,Oa
~_ 1
a?vVQHZt,oz ¢t70/B||2}7

where V, ¢ is the estimated variance operator we will intro-
duce in the next section, F;  is low-order error correction
term. To compare with, o; only depends on the variance
term. Zhou & Gu (2022) used the uncertainty-aware term to
avoid the dependency of the worst-case range of the noise in
a regression problem (Theorem 4.1 in Zhou & Gu (2022)).
For our setting, the noise represents the uncertainty of the
value function V;, and its range has a worst-case upper
bound which depends on cy;,. Thus, similar to Zhou & Gu
(2022), our regret improves the ¢y, polynomially.

High-order Moment Variance Estimator. Besides the
change of the definition we have mentioned , our adapted
weights are more refined by using a recursive construction
from the high-order moments estimates of the value func-
tion. A similar technique was used by Zhou & Gu (2022)
to achieve a horizon-free result for linear mixture MDPs.
Compared with LEVIS™, from Algorithm 1 Line 6 to Al-
gorithm 1 Line 9, we maintain L groups of weights 7,

| € [L] instead of 2. The I-th group includes the 2! moment
of the value function for each [ € [L] and do the weighted
regression according to each group to obtain different 8, ;.
A central part of our algorithm is the recursive design of the
variance. Intuitively, the variance of a function V is defined
as VV = E[V2] — E[V]2. Since 8, ; is from the regression
of ij and é\t,o is from the regression of V}, it’s natural to
define the variance estimator

V0V = ibva, 0005 — (v, 800) T .

The truncation is used since the optimal value function
should satisfy V* < B by our assumption. Similarly, when
we try to estimate the variance of some high-order terms
of V;, we need to use the regression for some higher-order
terms. We design the estimated variance of the high-order
terms in Algorithm 3 Line 2, which is

VeV (se.ar)
= |:<¢t7l+17§t7l+1>:|[0’B2l+1] - |:<¢t,l,§t,l>:|[207321]-

In this way, the information of high-order terms is trans-
ferred to the estimate of tAhe lower-order terms, which makes
our first-level estimate Otj .0 affected by all the high-order
information and different from its counterpart in Min et al.
(2022). The details are shown in Algorithm 3.

To be consistent with our higher-order moment estimation
technique, we modify the updating criterion, which will be
triggered when any of the determinants of the covariance
matrix is doubled or the time is doubled, shown in Algorithm
1 Line 10. In detail, the updating criterion will be triggered
if there exists any € [L], determinant X, ; is doubled. This
is different from Min et al. (2022), which only considers
Et,O’

5. Main Results

We show the regret guarantee of Algorithm 1 as follows.
Assume cp, is known in prior, then we have the following
guarantees:
Theorem 5.1 (Known c¢pin). Set oy = 1/v/1, v = d= /4,
A =1/B? L =log(5B/cmin)/ log 2. With the assumption
of Cpin > 0, for any 6 > 0, set {Bf} as

t>1

By =12\/dlog (1 + 2/(d)\)) log (128(log(t/d) + 2)t*/5)
+30Vdlog (128(log(t/d) + 2)t*/8) + 1. (5.1)

then with probability at least 1 — (2L + 1)6, the regret of
Algorithm 1 is bounded by

Rg < O(d*B + dBVEK).

Here O hides some logarithmic factors of K, B, 1/ ¢y and
1/6.
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Remark 5.2. If we know B,, then we can set B = B, and
get the regret bound of Regret(K) < O(d?B. + dB, \/I?)
which is nearly optimal when K > d2. That nearly matches
the O(dB.+/K) lower bound proposed by Min et al. (2022).

With the knowledge of T, we can build a variant of Al-
gorithm 1 which does not need know cp;, in prior, by
using the perturbing technique introduced in Tarbouriech
et al. (2021b). Specifically, let p > 0 be some positive
parameter. We run Algorithm 1 with the cost defined as
Cﬁ,i ‘= p + ¢k, where ¢y ; is the received cost. Mean-
while, we set B” := B + T,p. We call the algorithm as
p-LEVISTT. It is easy to see that ¢} , enjoys a uniform
lower bound p instead of cyi,. Thus, based on the regret
over c; ; and B’ for p-LEVIS** derived from Theorem
5.1, we have the following regret bound over ¢, ; and B:

Theorem 5.3 (Known T,). Set p = (T.K)™%, oy = 1//1,

v =d Y4 XN =1/B% L = log(5B/p)/log2. For any

6 > 0, set {Et} . the same as (5.1), then with probability
t

at least 1 — (2L + 1)d, the regret of p-LEVIS™ is bounded
by

Ri < O(d*B + dBVK).

Here O hides some logarithmic factors of K, B, and 1/5.

6. Proof Sketch

In this section, we will provide the proof sketch of our main
results.

6.1. Analysis of DEVI

To analyze DEVI, Min et al. (2022) proved an important fact
that the DEVI process will converge and that the true pa-
rameter 8* will lie in the confidence ellipsoid we construct.
Using this fact, we can get a bound of the error between the
estimated variance and the true variance. Another impor-
tant fact is that with high probability, the output of value
function V; < V*, thus V; < B (optimism). But this result
is not enough for our purpose because we add the variance
of the high-order moment of V;. So we need to bound the
error between the estimation of the variance and the true
variance of the higher moments. To deal with this problem,
we first use the same argument in Min et al. (2022) to prove
the optimism property. For the variance estimation part, we
will do induction on [/ and j. It’s similar to the technique
used in Zhou & Gu (2022). Our result is summarized in the
following lemma.

Lemma 6.1. Set {3, } as (5.1), then with probability at least
1— L6, forallt and j = j(t) > 1 as the index of the value
functions V at step t, and | € [L], DEVI converges in finite
time and the following holds

0< QJ(?) SQ*(’)’ 0" Eé\jJ’

_ 1 1 i
VeV (seea0) = [VVF ] (s1a0)| < B B,

6.2. Regret Decomposition

Following Min et al. (2022), we divide the time steps into
intervals. We will divide a new interval every time the DEVI
condition (Line 10) is triggered. Denoted by M, the total
number of intervals, we decompose the regret based on
intervals. This lemma follows Min et al. (2022).

Lemma 6.2. Under the event of Lemma 6.1, the regret
defined in (3.1) can be decomposed as

Z Cm,h + PV’,” (Sm,ha am,h) - ijm (Sm,h)]

I
M Hp
+ jm, Sm h+1 ]P)‘/jm, (sm,7h7 amyh)]

m=

,_.
>
I

—

I
M H,,

2.2V

m=1h=1

Z V'm (Sinit) + 1

meM(m)

— Vo (Smons1)]

S'rnh

I3

Bounding /; and I>. Roughly speaking, I; is the accu-
mulated Bellman error of the DEVI outputs. Recall from
Line 5 in Algorithm 2 that we add a transition bonus g, for
the sake of convergence, which will cause some bias from
the Bellman operator. We choose the same transition bonus
q; = 1/t; as Min et al. (2022). The result is shown in the
following lemma,

Lemma 6.3. Under the event of Lemma 6.1, we have the
Sfollowing bound for I

I, -2

Hyp,
< S Y [emn PV (s @) = Vi (5mn)]
meMo(M) h=1

Hpn
< Z Z min {B*,4§TH¢VM (Sm,h,am,h)Hf;;é}
meMo(M) h=1 |
> Z i

meMo(M) h=1 tjm

+ (B +1)

Here the term B is the bias brought by the transition bonus
gj. Min et al. (2022) proved that the bound of B, term can
be reduced to bounding the total number of calls to DEVI.
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For the rest of term I; (especially term B1), and term I,
we combine them together as the first term of a sequence so
that we can use some recursive analysis techniques, which
are similar to that in Lattimore & Hutter (2012) and Zhou &
Gu (2022).

We define three sequences of quantities, which are

Hm

R= Y Zmin{1,[3}”(}.’)%;(sm,h,am,h)/BQZ|‘>“:;l1},

meMo(M) h=1

Hp
1 1+1
Sl = Z ZVV%n(Sm,h7am,h)/B2 5

meMo(M) h=1
Hm L 1 1
ST S [BVE s ) = VA ()] /B2
meMo (M) h=1
Observe that By < 4BRgy and I = BAg. Therefore,
it suffices to bound Ay + 4R,. Note that if we have the
optimism property (V; < V* < B), which is proved to
occur with high probability in Section 6.1, these quantities
will be less than 7', VI. We can find an relationship of A; +
4R; and A;;1+4R; 1 by using the Bernstein concentration
inequalities. Then, we can get the bound of Ag + 4 Ry; thus
the bound of B; + I5. The detailed proof is in the appendix.

A=

Bounding /5. Min et al. (2022) shows that the bound of E3
is reduced to bounding the number of DEVI calls. Since
in our algorithm, DEVI will also be triggered when the
determinant of the covariance matrix for high-order terms is
doubled, the number of DEVI calls is larger than that in Min
et al. (2022). Fortunately, we prove that the error between
the two numbers of DEVI calls only differs a logarithmic
term, which does not hurt the final regret heavily. It is shown
as the following lemma.

Lemma 6.4. Conditioned on the event of Lemma 6.1,
choose parameter oy = 1/\/t, L = log(5B/cyin)/ log 2.
The total number of calls to DEVI J is bounded by J <
4dLlog (1 4+T/A) +2logT.

7. Conclusions

We study the problem of Shortest Stochastic Path, where the
transition probability is approximated by a linear mixture
model. We propose a novel algorithm and prove its regret
upper bound. Our result nearly matches the lower bound.
The hyperparameters of our algorithm still depends on cpi,
or T,, and we leave the development of a parameter-free
algorithm as that in Tarbouriech et al. (2021b) to future
work.
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A. Notations

Notation Meaning
t,T The number of steps./ The total number of steps.
J The index of the update times of the confidence region.
St, Qg States and actions our algorithm encounters at time £.
Ct The cost obtained with state s; and action a;
I,L The level of value function used in the regression./ The maximum level.
Q;(-,-),Vj(-) The Q-function and value function obtained in the j-th update of the confidence region.
m* The optimal policy.
Q*(-,-),V*(-) The Q-function and value function obtained with the optimal policy.
0 The estimated parameter of the linear mixture SSP model obtained
& by weighted regression at step ¢ with level [.
o The ground-truth parameter of linear mixture SSP.
e The confidence set obtained in the j-th update of the confidence region,
J containing 8* with high probability.
Bt Confidence radius at step ¢.
it, I The covariance matrix of step ¢ and level [.
EA}N The covariance matrix used to construct CAj, equal to f]tj Jio
_ The weights for regression problems
Ll of step ¢t and level [ , defined in Algorithm 3.
i, Y Adjustable hyperparameters in the definition of 7 ;.

Table 2. Important Notations

B. Numerical Simulations

We follow the experiment setup in Min et al. (2022) and perform an experiment to compare our algorithm (LEVIS++) and
the algorithm LEVIS in Min et al. (2022). The details are presented as follows.

The action space A = {—1,1}%"! with |A| = 2971, The state space is (Sinit,g). We choose §, A and B, such that
0+ A =1/B, and § > A. The true model parameter 6* is given by

P S-S
S ld-1"""d-1
The feature mapping is defined as
¢(3mm |51n1[a ) [ a, ]- - 6]T7
(51n11|ga ) a
( |31n1t; ) [aa 5]
#(glg,a) = [04-1,1]"
This is a linear mixture SSP with transition function:
]P)(Smlt‘smltv ) =1-6- <a 0>
P(g|Sini, a) = 5+ (a,0),
P(glg,a) =
(31n1t|g7 )

12
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—— LEVIS
optimal

6 —— random

—— LEVIS++

Regret/K

0 70 140 210 280

VK

Figure 1. The plot shows the average regret (i.e. Rx /K) and compares the implementation results of Algorithm 1 and LEVIS in Min
et al. (2022) on the SSP instance described in Appendix B with A = 1, p = 0 and failing probability 0.01.

As demonstrated in the graph, our algorithm, LEVIS++, achieves consistently smaller regret than LEVIS in Min et al. (2022).
It is worth noting that the expected length for the optimal policy on this synthetic data is relatively small. (There are only two
states and the probability of the optimal policy reaching the goal state from the initial state is 1/B,, where B, is set to be 3.
Thus the expected total length for every episode is approximately 3.) One of our primary contributions is the elimination of
the polynomial dependency on the expected length T, for the optimal policy. As a result, our algorithm is likely to be more
advantageous in numerous real-world applications where the expected length 7). for the optimal policy is even larger.

C. Analysis of Algorithm
C.1. Analysis of DEVI

~ ~ 1 -~ o~
We define some confidence ellipsoids of different levels. For each j € N, let C;; = {0 : HEfj’l(OtM - 9)“2 < B, },

~ ~

I € [L]. Cj = Migr)Cj,1. The next lemma shows that with high probability, 8* lies in the confidence sets we construct.

Lemma C.1. (Restatement of Lemma 6.1) Set {Et} as (5.1), then with probability at least 1 — LJ, for all t and j = j(t) > 1
as the index of the value functions V at step t, and | € [L], DEVI converges in finite time and the following holds

0 Qi) SQ (), 0" €Chuy and |[VeiVE(sear) = [VVE](st,00)| < B2 B

C.2. Regret Decomposition

We prove the decomposition of regret following the structure in Min et al. (2022). First, we define some notations. The
interval is indexed by 1,2, 3, ... and the total number of intervals is denoted by M. For the m-th interval, the length is
denoted by H,,,. We denote by M (M) the set of intervals which are the first interval of their corresponding episodes. The
regret is decomposed as the following lemma shows,

Lemma C.2. (Restatement of Lemma 6.2) Under the event of Lemma 6.1, for the regret defined in (3.1), we have the

13
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following decomposition:

m

M H
Z Z Cm,h + PV',,L (Sm,ha am,h) - V},H(Sm,h)]
=1h=1

I

T

m

[‘/jm (5771,,h+1) - ]P)‘/jm (Sm,h7 am,h)]

+
M=

3
I
_
>
I
-

I

T
3

+
NE

Vi (smn) = Vi Smns)] = D Vi (simi) + 1.
meM (M)

3
I
N
>
I
N

I3

D. Proof of Theorem 5.1 and Theorem 5.3

Denote by M (M) the set of m such that j,,, > 2.

We first deal with the term I;. Without too much confusion, term I; can be seen as the accumulated Bellman error of the
DEVI outputs. We first divide 17 into two terms, the main term caused by the estimation error of vector 8* and the second
term caused by the transition bonus ¢ = 1/t;, which is shown in the following lemma:

Lemma D.1. Under the event of Lemma 6.1, we have the following inequality,
Hp,

Z Z ‘Cm,h + PV’,,L (Sm,h; am7h) - ijm (sm,h)‘

meMo(M) h=1

H H
mo R mq
< 3 Stun{maabrler, ool ) S ¥
meMo(M) h=1 meMo(M) h=1 I™
Furthermore, we have
H,, H,, 1
|| <2+ Z Zmin {B*74BTH¢V,-m (Sm,haam,h)Hf;;é} + (B« +1) Z Z s
meMo(M) h=1 meMo(M) h=1 ™
For simplicity, we define the two terms in the lemma D.1 as B; and Bs, where we have
Z Z Cm,h T PV; m (Sm hs Qm, h) ‘/}m, (Sm,h,ﬂ
mGMo(]W h 1
< ¥ me{B*AﬁTHqsv ($mns @)1 | + (D.1)
meMo(M) h=1 meMo(M)h=1 ™
B Ba
and we will bound them separately, To bound the Bs term, we have the following lemmas.
Lemma D.2. Conditioned on the event in Lemma 6.1, if we choose parameter oy to be oy = 1/+/t, then the total

number of calls to DEVI algorithm is bounded by J < 4dLlog (1 4+ T/\) + 2log T. Furthermore, we have |My| < J <
4dLlog (1 4+ T/A) +2logT.

Lemma D.3. Using the same condition in Lemma D.2 and the definition of t; . in algorithm I, we have an upper bound of
Bs term as follows,

H.
" B, +1
By= ) > t_+ < 5(B, +1)|2dLlog(1 + T/A) +log T |.
meMo(M)h=1 Im

14
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Proof of Lemma D.3. By rewriting the summation using the index j, using Lemma D.2, we have

< (B:+1)(J+1)

< 5(B, +1)|2dLlog(1 4+ T/A) +log T .

O
We then bound the term I3, which follows the proof of Lemma D.4 in Min et al. (2022).
Lemma D.4. Assuming the event in Lemma 6.1 holds, then we have the following inequality:
M Hp,
T
SN Wi mn) = Vi Smasd)] = > Vi, (i) +1 < 2+ 4dB, Llog (1 + X) 2B, logT.
m=1h=1 meM(m)
For each level [ € [L], we define the following sequences:
Ho l
; 2 2
Ry= ) ) min {1’ BTH‘ZSVJ%Q ($m,n, Gm,n)/ B Hi;; } (D.2)
meMo(M) h=1
H”L l 1+1
Si= > D VVZ (Smnramn)/B* . (D.3)
meMo(M) h=1
H?‘n L l l
A= Y Y (BVE (s amn) = Vi (smns1)) /B2 (D.4)

meMo(M) h=1

Our goal is to construct the relationship between these sequences, and the following lemma deals with the sequence R;.

Lemma D.S. For the sequence Ry, the following inequality holds,

H,, Hp,
Ry < 2du + 2Bry2de + 2V diBr Z Z ozf(mh) + Z Z ot

meMo(M) h=1 meMo(M) h=1

where 1 = log(1 + T//d\a2.). Next, we calculate the term of the sum of the variance in Lemma D.5.

Lemma D.6. Using the variance oy, and confidence bonus E, ; defined in Algorithm 3, and under the event of Lemma 6.1,
the following inequality holds,

H,, H,, H,,
SN <2 Y ST Ea+ S Y VVE (S ama) /B2

meMgy h=1 meMgy h=1 meMgy h=1

Note that

B = win {12585 /B, |+ win {1512, s /57 )
~ o~ 1 2~ j~_1 1
< min {1, VBB /57 |+ min {1, 2B o/ 57,

where the last inequality holds due to Lemma H.6 and the fact det(itvl) <2 det(gjyl).

Thus, according to the definition of R, we get the following inequality,

H

> Y Ei<2Ri+Rip, (D.5)
meMgy h=1
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Combining the results in Lemma D.5, Lemma D.6, and (D.5), we have

Ry < 2du + 2Br~2du + 2V diBr > Z a2, p +Si+ AR + 2Ry (D.6)
meMo(M) h=1

In the argument above, we have connected the sequence { R;} with the sequence {S;}, and the next two lemmas can connect
the bound of Sy with the bound of A;.

Lemma D.7. [f we define Cyy to be the sum of the cost of all steps, i.e. Cpy = 2%;1 Zf;"l c(s¢, at). Then we have

141 2l+1

2
S < A1 + ‘Mo‘ + ?CM + ?(4BR0 + BQ),

where By is the bias from the transition bonus and is defined in (D.1).
Lemma D.8. Let {S;, Al}le[L] be defined in (D.3) and (D.4). Then we have P (Ep.g) > 1 — Ld, where

Eps = {vz e (L], |4)] < /28 + g}.
and ¢ = 4log (21og(T log(1/8)) +1)/9).

Proof of Theorem 5.1. Under the high-probability event £p g, combining (D.6) with the result in Lemma D.7 , we have the
following inequalities for the sequence A; and R,

+

2!
|Al|§2\/ [|Al+1|+|/\/lo|+ CM+ 7 (4BRo+ B2) | ¢+,

Ry <2du+ 25T72dL

— 2l+1
+ 2VduBry | Aryr + “5(4BRo+ By + Cap) + 4R + 2R

+2VdiBr > Z Gy T 1Mol

meMo(M) h=1

where we use the fact that va + b < \/a + v/b when a,b>0.
Our goal is to bound |Ag| + 4Ro. Using the fact that \/a + Vb < 1/2(a + b), we have

|Ay| + 4Ry < 8du + 8Bry2de + ¢

-~ 9l+1
+ 8VduBr\| Aip1 + =5 (4BRo + By + Cr) + 4Ry + 2R14

H'VYL
+ 8\/@57‘ Z Z a?(m,h) + [Mo

meMo(M) h=1

2l+1

2l+1
2\/2 [Al+1| + |[Mo| + ?CM + ?(4BR0 + B2):|C

< 8dL+8§T’deL+C+8\/aB\T Z Zat(m n |Mo|

meMo(M) h=1

BQ“!‘C]M)-

+ 2 max{8BVdr, 2«/2{}\/Al| + 4R, + |Ajf1| + 4Ry + 211 (|A0| +4Ro + =

Set a; = A; + 4R, to Lemma H.4. Noting that a; = A; + 4R; < 5T and |Ag| + 4Ry + % > Cy/B > eoinT/ B,
our choice of L = log (5B/c¢min)/ log 2 can satisfy the condition of Lemma H.4. Thus, we can get an upper bound for

16
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Ap + 4Ry, which is

2
Ay + 4Ry < 22 (2 max {SBT\/ﬁ 2@})

Hp,
+6(8du+8Bro2de+ C+8VABr, | S > a2+ M)

mEMo(M) h=1

12V 2B ) Ao+ 4+ B

Using the fact that z < ay/z +b = 2 < 2a2 + 2b, we can further bound Ay + 4R, with

Ag+ 4Ry < 216(max{8§T\/a7 2@})2

+12 (8dL + 8Bry2du + ¢ + 8VduBr Z Z ozt(m n t |./\/l0|)

meMo(M) h=1

+8v2 (2max{8,8T\F 2v/2¢ })ﬂ/M (D.7)

Finally, by the decomposition of regret, we the regret is upper bounded by R(M) < Iy + I+ I3, where I; < 24+4BRg+ B>
due to Lemma D.1 and the definition of Ro, I» = B A by the definition of A, Iy < 2+4dB, L log (1 n T/)\) +2B,log T

by Lemma D.4. Combining all of these results, we have
T
R(M) < B(Aq +4Ro) + By + 4dB, Llog (1 + X> +2B,logT + 5. D.8)

And by the initial definition of R(M ), we have
Cy = R(M) + KV*(Sinit)
< B(Ag + 4Ry) + By + 4dB.Llog (1 + %) + 2B, logT + 5 + KV*(sinit)
< By +4dB, Llog (1+ %) + 2B, log T+ 5 + KV* (smi)
+ 216 B( max{8BrVdi, 2/2(})

+12B(8de+ 8B72de + C + 8VdiBr, | > Z a2, + [Mol)

meMyg (M h 1

+8V2B (2 maX{SB\T\/Cﬁ, 2@}) \/E

+8v2B (2 max{8BrVdi, 2/2C})/ (%M
< KV*(sini) + O(dBB21) + O(VBBrVdir/Chr),

where the first inequality holds due to (D.8), the second inequality holds due to (D.7), the last inequality holds due to
Lemmas D.2 and D.3 with the choice of parameter, a; = 1/t> and v = d~'/%. Using the fact that z < ay/z + b + 2z =
z < %aQ + b4+ z+avVb+ a? + z, we have,

R(M) =Cy — Kv*(sinit)
< O(MBBE) + O(BBrV) «\/ KV () + O(d1BP2)
< O(duBBZ) + O(VdiBBrVK). (D.9)

17
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Here O hides some logarithmic factors of T, K, B, 1/¢min and 1/4. In addition, we have

emin] < Cpr = R(M) + KV™* (Sinit)
< O(dtBB2) + OV dBBrVE) + KV* (sinit).-

Therefore, we can get an upper bound of 7", which is

~ (d’B+dBVK + KB
<o ( +dBVEK + ) .
Cmin
Here O hides some logarithmic factors of K, B, 1 /¢y, and 1/§. Putting the upper bound of 7" into (D.9), we finish the
proof of Theorem 5.1. O

Proof of Theorem 5.3. The optimal policy will not change after we add the perturbation to the cost function. For every
step, the perturbed cost function is p larger than the original one, thus for the optimal value function after the perturbation,
we have V' = V* + pT%. In addition, B + pT} can be an upper bound of the perturbed value function of optimal policy
V*. Furthermore, the perturbed cost function has a lower bound p. Therefore, we can use the algorithm and results for the
perturbed cost function and the regret can be written in the following form,

K I
Ric =Y i~ KV (sim)
=1 i—1
K I
< Z Z i — KV, (sinie) + pTL K,
k=1 1=1

where we use the inequality ¢(+,-) < ¢?(+, ). Then using Theorem 5.1 with ¢, = p, and the upper bound of the optimal
value function B, = B + pT, we have the inequality below,

Ry < O(d(B + pT.)B3 + Vd(B + pT.) BrVE) + pT. K
= O(dBB2 + VdBBrVK).

Here we use the choice of parameter p = (T, K )*1 and the O hides some logarithmic term of T, K, B, 1/6. O

E. Proof of Lemma 6.1

We first prove an upper bound of the error between the variance estimator and the true variance.

Lemma E.1. Foranyt, j = j(t) as the index of the value functions V at step t, and | € [L], let V}, ét,l, o, f]t,l be defined
in Algorithms 1 and 3. We have the following inequality,
J

21/2 (0* — éﬂl) H2 Hi_l/z(ﬁvfl (st,at)

75l 4,1

Vt,leQL (s¢,a) — [val] (s, at)

. o+l || a1/2 « 2 a—1/2
<m1n{B , Ej,l+1 0" — 011 , Ej7l+1d)‘/v]2l+l (st,at)

+ min {32”1,232’

S

Proof of Lemma E.1. We first substitute the definition of variance estimator (Line 2 of Algorithm 3) into the left-hand side,
and the error between the variance estimator and the true variance can be bounded by

if the inequality |V;(s)| < B holds for all state s € S.

|90V ) (51,00 = [V (s, 0)|

= ‘ K(ﬁ‘/jzlﬂ (Staat)aé\t,l+1>} - <¢ijl+1 (St,at) ,0*>

[0,B2']

18
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2

+ <¢ijl (Stvat)70*>2 - K('bvfl (st,a¢) 7§t¢l>}

(0,B%]

[<¢ijl+1 (St; at) ) 5t,l+1 >]

sy~ (i oo )

[0,B
J

i ‘<¢’Vfl (50, a1) ’6*>2 = [(dvz Gorar) ’ét’lﬂ?o,ml] ’
I

where the inequality holds due to the triangle inequality. To bound the term /;, we have

Il S ‘<¢V_2l+1 (St,at),é\t’“_l >
J

szl/li-l (0* Ht l+1) H sz l+1¢vgl+l (St, (It)

)
2

The first inequality holds because both terms are in [0, B 2”1} , which implied by the assumption of |V;(s)| < B . The
second inequality holds due to Cauchy-Schwarz inequality. Furthermore, the facts that |V;(s)| < B and both terms in I; lie

S

in [0, B2l+1] suggest that [; < B2, Combining these two upper bounds, we have

S1/2 n S—1/2
G+l (0* — 0t11+1> H2 sz,l'f‘l(ﬁvjzl+l (St, (lt)

. 141
I; < min {B2 ,
To bound the term I5, we have

I, = ’<¢Vj2l (Staat)70*> - [<¢ijl (St;at) ;é\t,l>]

[0,B2']
o )+ (0.0
<2B? ’<¢szl (st,at),0" — 6t.l>’

005520

[0,B%']

<2B? |8

9 )
where the first inequality holds because |V (s)| < B and thus both terms in the second absolute value are bounded by B?,

and the second inequality holds by Cauchy-Schwarz inequality. Furthermore, both terms in I5 lie in [0, B2 ]. Combining
these two upper bounds, we have

I, < min {BT“ 2B |3

100 o5tz ]}

Thus, we finish the proof of Lemma E.1 by combining the bounds of terms I; and /5. O

Proof of Lemma 6.1. Special case: ¢t = 1

When ¢ = 1, we have the index of interval j = 1. In this interval, Vj is generated from our initialization instead of the

DEVI process. For each | € [L — 1], let x;; = 6;’11(;5‘/21, Nt = 6;)11 [Vfl(sﬂ_l) - (q&vgz,O*ﬂ =0,V e [L]. p* = 6%,

Yig = <u*,Xt,z> + e Ly = NI+ Z:/:l Xt',thT/,l, by, = Zztt’:l Xy Yy and py g = Z;llbtyl. Then the following
inequalities hold,

E[1:1|Gr1] = =0, [Ixel <770 1< 1/(wB?),E[n?)|Gia] =0.  (E.D)

Using Theorem H.1 with (E.1), we can get ||t — p*[l5, | < VA || ||, with probability at least 1 — &/2. After taking an
union bound over all level € [L], 8* € C; holds with probability at least 1 — L& /2.
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At the end of step ¢ = 1, the step number ¢ will be doubled and DEVI will be triggered and output V;. We next show that
conditioned on the high-probability event {6* € Cl 0}, the output of DEVI will satisfy V4 < V* (optimism).

We prove this by induction. First, the initialization Q(O) and V® are equal to 0, thus we have Q < @Q* and V() < V* For
the induction hypothesis, suppose Q) < Q* and V() < V* for some i, we want to show QU1 < Q* and VU+D) < V=,
To prove this, by the iteration principle of Q(*), we have

Q(i+1)(., ) _ c(', ) + (1 _ q) - min <0,(]5V<7:>(.7 )>

06617008

<c(, )+ (1—q) -PVO(,) (E2)

where the first inequality is because we are taking a minimum on a set containing 6%, the second inequality is by the Bellman
equation and the last inequality is by our induction hypothesis.

Initial Step: We then go on to the next interval. From now on, the value function will be the output of DEVI. When
the interval number j = 1 and ¢ € [t; + 1,t5] and we suppose the high-probability event {6* € C;} occurs, we have
i <V*<B.

Foreachl € [L — 1], letx;; = &, qbVQL Nl = 0y '1{6* € C IOCJIH}[ 2 (5,41) — <¢)sz 6%)] for I € [L — 1].

=0 > Yt 1 = <M th> + N1 Ly = )\I-th/ 1 X, lxt’l’
followmg inequalities hold,

Zt’ 1 Xt 1Yt 1 and Mt = Ztl btl Then the

7

_ i _ 1
E[n:1|Gea] = 0,|neal <6, B> <1/ay, ||xeull2 <0, - B <1/,

_ l
< eyl B <1/9% (E.3)

We also have
E[U?,l’gt,l} = 6;’12 1 {0* € CA” UCAj,Hl} [VVJ»QL] (8¢, az)
<6;21{0" €8y UG 0] ([Vt,lvm (50, 02)

+ min {BQL 2B%|[|s

o w50 -3,01)

N —@MHQD
<0y ([Vf lV ](3t7at) + BZZHEt,l)

<1, (E.4)

+ min {BQL

) Ej.12+1¢v,2’+1 (st; 1)
’ J

where the first equation holds by the definition of 7, ;, the second inequality holds by Lemma E.1, and the third inequality

holds by the definition of our confidence ellipsoid C i 5j7l+1 and I, ;. The last inequality holds due to the definition of
~—2
Oy -

L—-1

Forl = L — 1, let X¢, -1 = 5’;;_1(]5V2L71, N,L—1 = 5’;;_1[%2 (St+1) — <¢V2L—1,0*>}, u* = 6%, Yt,L—1 =
J J

<H* Tyn-1) + Mp-1. Lep—1 = AL+ Zﬁ/zl Xt',Lflxg,L,p b1 = Zi/ﬂ X¢,L—1Y¢,—1 and pyp_1 =
Zt_ 1_1b¢,2—1. Then the following inequalities hold,

L—1
E[neo-1]Ge-1] =0, |ne,o—1| < 1/, ||@e - 1H<5tL BT <1y,
[ne, -1 min{1, [Ixez-1llz-1 3 < 1/9% (E.5)

And we can get directly by the definition of &; ;1 and the fact that 0 < V;(s) < B,
E [7]152,; |gt,l] <1 (E.6)
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Using Theorem H.1 with conditions (E.3) and (E.4) for [ € [L — 1] and (E.5) and (E.6) for Il = L, choose € = 1/72. With
probability at least 1 — 6/(t2(t2 + 1))

s = 17l , < B+ VA5, (E.7)

where

Bt 212\/d log (1 + t/(d)\oz?)) log (256(log(~2/ay) + 1)t4/6)
+ 2 tog (236008027 /) + 1)¢/3)

Here we use the fact that 4t%t5(to + 1) < 32t* for t € [t + 1, o], since Vt € [t1 + 1,t2],t2 < 2t,t5 + 1 < 4t holds due to
our criteria of doubling the number of steps.

We take a union bound over all level | € [L], and then we have the result that, with probability at least 1 — (Ld)/(t2(t2 + 1)),
(E.7) holds for all level [ simultaneously.

Induction step: Suppose that, with probability at least 1 — ¢', inequality (E.7) holds for all ¢ € [1,¢;_4] and all I. For
t € [tj—1 + 1,t;], we can define pt;; and Z,; in the same way as the initial step. We claim that with probability of at least
1—0"— (Ld)/(t;(t; + 1)), inequality (E.7) holds for all ¢ € [1,¢,] and all [ simultaneously. Note that in the previous step,
the only condition we use is the optimism V; < V* < B,. Using the same argument in (E.2), we can see that assuming the
event of the true parameter 8* € C} ¢ holds, the output V; will satisfy V; < V*, thus V; < V* < B. Then we can follow
the proof in the initial step and see (E.7) holds for t € [t;_; 4+ 1,¢;] and | € [L] simultaneously with probability at least
1 — (L0)/(t;(t; +1)). By taking a union bound, we make an induction from ¢ € [1,¢;_1] tot € [1,¢;].

Finally, we use induction to see that with probability at least

1 3 Lo =1 JL(51 L <1-1Léd
"Xy LB ) s

j=1 " j=1

(E.7) holds for all ¢ and [ € [L] simultaneously.
We define & = Uy { [|pe — Kilg, , < B+ VA |||, }, and we have shown that £ holds with probability of at least

1 — Lj. Conditioned on the event &, recalling our definition of CAjyl = {0 : ||§A)Zl(§t7l = 9)”2 < Btj } we have the
following results.

Fort = 1,1 € [L], the definition of pq ; is just the same as §1J and f]tﬁl = Z;; when j = 1 and ¢t = 1. Thus, we
have 0* € Cy,,Vl € [L]. Then we consider the term with the highest order. For all j and [ = L — 1, we directly have
ti;, -1 = 605 1. Thus, we have " € C; 1, 1. Forall jand [ € [L — 1], we have the following induction argument,

0 €CiiNCiiy1=1{0"€CiunCiip1t=1= iy =0,1,Z1, =% = 0" €Cjir
By induction on [ and j, conditioned on event £, we have
0" €Ciiy 0<Qi() Q) (E.8)
and according to Lemma E.1 and the definition of the confidence ellipsoid of @’l, we have

‘ Wt,lVfl}(Su at) - [VVJ?Z] (St7at>‘ < BzHlEt,l-

F. Proof of Lemma D.1
Proof of Lemma D.1. According to the DEVI algorithm, the output () can be denoted by some iteration of Q™). i.e.

Q. () = Q(-,-) for some iteration n € N
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Vi, () = ggﬁQ(( a)=V"().

Through the design of the DEVI algorithm,

Q(n)(sm,ha am,h) = Cm,h ( Q) oc B< ¢V(" 1) (sm hs Gm h)>
=cmp+(1—q)-(0 mh7¢V(n 0 (Sm.hs Gmyn))
—C7rzh+ —q)- < mh7¢v<n) Sm,h; Am, h)>
(1 =) (Omps [Py -1 — Py | (Smuhs Gmyn))
1
>th+ Q) < mh7¢V(n) Sm,hy Om, h)>_(1_Q)t_77 (Fl)
JIm

where 0,, j, = argmineecj 0B <0, Gy -1 (Sm.h, amyh)>. The last inequality is because of the terminal condition of our
DEVI algorithm. '

With a similar argument,

1
Q(n)(sm,ha am,h) < Cm,h + (1 - Q)<0m,ha ¢V(l) (Sm,hv am,h)> =+ (1 - Q)r (F.2)
Im

According to inequality (F.1) , we have

Cm7h + IPV.Tn (Sm7h7 &mah) - Q]m (Sm7h7 am7h)

< e+ PV (Smns @ n) = [emn + (1= @) - (O by, (S, @) — (1= q)tjlm]
<07 = O Dy, (Sms mn)) + ¢ Oy BV;, (Smasps @) + 1tj_ :

< (0" = O by, (St amt)) + B*Zl_q

<0 = Oy by, (S amn)) + BZ: 1,

where the second inequality holds due to the definition PV}, (Sm.h,Gm,n) = <9*, ov,. (Sm,h, amyh)> and the result
V;,. < V* < B, proved in Lemma 6.1 and the third inequality holds because of our choice of parameter g in Algorithm 1.

We also bound the negative part, so we can get an upper bound of its absolute value, which is

- [Cm,h + ]P)V]m (Sm,hy am,h) - Qjm (Sm,h» am,h)}

< —Cmh — PV, (Smhs @) + [Cmon + (L= @) - (Omns dv, (Smhs Gmyn) ) + (1 — Q)jl]
< (O — 0% Dv, (Smns@mn)) — @ (Omns dv, (Smns@mp)) + 1tj a

<A{Omn— 0", bv, (Smpsamn)) + B*Jtrjl_q

< (Omn — 0 v, (Smopsamn)) + BZ;L 1’

where the first inequality holds because of (F.2), the second inequality is due to the definition PV}, (Sm.p,@m,n) =
< ¢V, . (Sm,hs am7h)> and V; < V* < B, by Lemma 6.1 and the third inequality holds because of our choice of
parameter ¢ in algorithm 1. Thus we can the upper bound of the absolute value:

B, +1
tj,.

|Cm,h + PV'm (Sm,ha am,h) - Qjm (Sm,m am,h)| < |<0m,h ) ¢V (Sm,ha am,h)>| + (F.3)

Im
m
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To bound the first item of the right-hand side of (F.3), we have

‘<9m,h o 9*7 ¢ij (Sm,h7am,h)>‘ < (| 9* — é\jm ’it,ﬂ + ||9m,h - é\jm ’it,(}) ||¢ij (Sm,ha @m,h)Hi;é
S 2(“0* - é\jm ijm,o + HGWL,}I - é\jm |§jm,0) ||¢ij (Sm’}“aﬂrn’h)Hit_,é
< 4Br||bv,,, (smns am) 5.1

The first inequality uses the triangle inequality. The second inequality uses our partition of intervals. Since the condition
is not triggered, we have det(3;) < 2det(X;, o). The third inequality holds because the high-probability event in 6.1
shows 8,, j, lies in C;,, o and Lemma 6.1.

Meanwhile, due to the fact that 0 < V; < B,,

‘<0m,h - 0*7 ¢V;m (Sm,,hyam,h)>‘ < B*

Combining these two upper bounds, we have
’<9m,,h - 0*, ¢ij (Sm,ha am,h)>’ < min {8*7 4[/-3\T||¢VJm (Sm,ha am,h) ||§{—é } (F4)

Combining all of these, we can finish the proof of lemma D.1, which is

Hy

Z Z [Cnb,h + PV‘m (877L,h7 am,h) - ‘/jm (Sm,h)]

meMo(M) h=1

) > ) > < B, +1
< Z ‘<9m,h -0 7¢ij (57,L7;L,a7,L7h)>‘ + 2 : -
Im

meMo(M) h=1 meMo(M) h=1
Hy, R Ho p o
< > S win{Bo4Br|ov,, Gnmann)ls f DD T
mEMo (M) h=1 ’ meMo(M)h=1 Im™
where the first inequality is from (F.3) and the second is from (F.4). O]

G. Proof of Other Technical Lemmas

Proof of Lemma 6.2. The regret can be written as

+
=
3

[‘/jm (S’m,h) - ‘/}m (S'rn,h-i-l)] - Z ij(sinit) +1
meM(m)

M H,,
R(M) < Z Z Cm,h — Z V’m(sinit) +1
m=1h=1 meM (M)
M H,, M H,,
= Z Cm,h + Z Z [V}m (37n,h+1) - ‘/jm (Sm,hﬂ
m=1h=1 m=1h=1
M

g

=

S
—
>
Il
—

[Cmah + PV‘WL (vah’ amvh) - ‘/jnL (vah):l

3
I

+

M= Il

[‘/jm (Sm,h-i-l) - ijm (Sm,ha am,h)]

3
I
—
>
Il
—
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M an
+ Vi (Smn) = Vi Smns1)] = Y Vi (simid) + 1
m=1 h:l meM (M)
where the inequality holds due to the optimism of V;, ,i.e V;, (s) < V*(s),Vs € S under the event of Lemma 6.1. O

Proof of Lemma D.2. We divide the calls to DEVI into two parts J; and .J5, where J7 is the total number of times that the
determinant is doubled and .J5 is the total number of times that the time step is doubled. We divide J; into J; = lL:_Ol J1,0,
where J; ; is the total number of times that the determinant of moment order [ is doubled. For VI € [L], we then give the
bound of Jy ;.

=], -
2

T
Y i + Z 6.t_,l2¢v?l (St, (lt) d)V?l (St, Clt)T
=1 J J

T
§A+Z‘

t=1

2

2
5;11 ¢V.2l (st,at) )
J

T
<At
g

=\+1T7,

where the first inequality is by the triangle inequality and the second inequality holds by 0 < V;(s) < B, Vj, under the
event of Lemma 6.1 and the definition of &; /. Following the inequality that det A < || A||%, where A is any n x n matrix,

we have det (ZNJTJ) < ()\ + T2)d. Furthermore, we have
(A +T2)% > 2700 det (Bg) = 27 - A4

From the above inequality, we conclude that

T2 T
Ji,1 < 2dlog (1 + A) < 4dlog (1 + A) .

Note that this bound does not depend on [, so we take a summation over all [ € [L] and get the bound of J; as

T
Jl S 4dL10g (1 + )\) .

To bound Jo, note that t; = 1 and thus 272 < T, which immediately gives Jy < logy T' < 2logT'. Altogether we conclude
that

T
J=J+ Js <4dLlog (1 + )\> + 2logT.
Thus, we complete the proof of Lemma D.2. O

Proof of Lemma D.4. We first consider the first term on the left-hand side. After rearranging the summation, we can find
that the following equation holds,

M Hp,

S5 Wi Sman) = Vi, (Smonsn)]

m=1h=1
M

Vi (5m1) = Vi, (Sm,H,+1)
m=1

,_.

M-—1
Z Jmt1 3m+1,1> Vi (sm,Hm+1)) + Z (ij (Sm,l) - ij+1 (Sm+1’1))
m=1
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+ VjM (SMJ) - VjM (SJW-,HM-‘rl) .

Using the telescope argument to the second term in the above equation, we have the following inequality,

SN Wi Smn) = Vi, (Smnga)]

= (Vimir Sma1,1) = Vi (Sm,,41)) + Vi (51,1) = Vi (sar1)

m=1
+ ‘/j]\/f (51\471) - VjM (SM,HM-"-l)
M-—1
= (Vimsr 8ma1,1) = Vi, (S, 41)) + Via (51.1) = Vi (SM,Hp41)
m=1
M—1
< (Vimsr (8ma1,1) = Vi, (Smom41)) + Vi, (51,1),
m=1

where the last inequality holds because V/;(+) is non-negative for all j € N from the design of DEVI algorithm.

We now consider the term Vj, ., (Sm+1,1) — Vj,, (Sm,m,,+1)- Note that by the interval decomposition, interval m ends if
and only if the updating criterion of the DEVI algorithm is met or the goal state is reached. In addition, if interval m ends
because the goal state is reached, then we have

Vimir Smt1,1) = Vi Sm,H+1) = Vipyr (Sinie) = Vi (9) = Vi (Sinit) -

If it ends because the updating criterion of the DEVI algorithm is triggered, then the value function is updated by DEVI
and j,, # jm+1. In such case, we simply apply the trivial upper bound Vj .\ (8m+1,1) = Vi, (Sm,m,,41) < max; ||V
According to Lemma D.2, this happens at most J < 4dLlog (1 + T/A) 4+ 2log T times. Therefore, we can further bound

the term ZZ\J . ( Jm+1 (Sm+171) - ‘/jm, (SmaHm,"Fl)) as

Z Z j Sm h ‘/}'m (Sm,thl))

m=1h=1

M-—1
T
< Y Vi ) 1 0m+ 1€ MODY + i, (s1.0) + (4L log (14 5 ) + 2108 - max V5.
J

m=1

T
< Z Vi, (8init ) + Vo (Sinit ) + 4d B, L1log (1 + )\) + 2B, logT
meM (M)
T
< > Vi, (smi)+1+4dB, log (1 + A) + 2B, logT,

meM(M)

where the second inequality holds due to || V|| . < B, under the event of Lemma 6.1, and the last inequality holds because
of our initialization ||V5|| ., < 1. Thus, we complete the proof of Lemma D.4. O

Proof of Lemma D.5. For any level , applying Lemma H.2 with x; = ¢,z (¢, ay)/B? 0% = ( [\_ft,ﬂ/ﬁ_l] (s, a¢) /B2 +
J

Et,l), a? = af and y"? = 42, where 7y are parameters used to construct the weights 7 ; in Algorithm 3, 3; = Sr is

defined in (5.1), we have the following results,

R= Y S {1 By (i) /B 5 )

meMo(M) h=1

< 2d.+ QB\TVQCZL + 2@3} Z Z Xmony T Z Z O't I

meMo(M) h=1 meMqo(M) h=1

Thus, we complete the proof of Lemma D.5. O

25



Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic Shortest Path

Proof of Lemma D.6. Use the definition of variance oy ;, we have the following inequality,

H,, H,
Z Zo—il: Z ZEtl+ Z th Smh7amh)/B2l+1

meMg h=1 meEMop h=1 meMp h=1
H,, Hp,
ol ol+1
=2 > D But 3 D VVi(Smamn)/B
meMo h=1 mEMU h=1

2l+1 2l+1 2[
+B72 Y Z VeV (Smhs ) = B2 Eey = VYV (S i)
meMgy h=1

Hp, Hm
<2 3 S B+ > S VA (smnamn) /B

meMg h=1 meMg h=1

where the last inequality holds since Zme/\/lg ZhH;"’l ([Vtngfl](sm,h, Am,h) — BZHlEt,l — VVJQWI (Sm,hs am7h)) < 0 under

the event of Lemma 6.1. O

Proof of Lemma D.7. According the definition of S; and the convexity of square function z2, we can rearrange the summa-
tion in Ej into three terms and obtain the following inequality,

o 1+1 i+1 ! "2
Si= 3 Y [PV st/ B = (BVE s/’
meMo h=1 -
Hpp, St ol +1 ol+1
¢ 3 B [ /B — 00 o8]
meMo h=1 -
Hy 1 141 I+1 141
+
=5 S o BV
meMo h=1 *
z+1 1+1 2!+
+ Z Z|: 2 Smh /32 — (P‘Gm(sm,haam,h)/‘B) :|
nLEMUh 1
T S e v ]
meMo h=1

Recalling the definition of A, the first term is simply equal to A; ;. For the third term, we can use the telescope argument
and get

141 1+1 141 I+1
> Z[ VA ) /B2 = VA (o) /B < IMol.

meMgy h=1

For the second term, we can inductively degrade the exponents of the value function. Combining the bound of these three
terms, we have the following inequality

Hn I+1 I+1 I+1
Sy =A111 + Z Z [anf (Sm,h)/B2 " (]P’ij (Sm,h+1)/B>2 ]

meMgo h=1

gl+1 1+1 41 +1
+ > [ (sm.t1,2)/ B = V2 (300) /B }
meMy

<A Mol S 5 [V /B + OV (main)/B)

meMgy h=1
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: [Vﬁi<sm,h>/32’ ~ (ijm(sm,hH)/B)Zz]

m. l
S A+ Mol +2 Y Y [ 2 (smn)/B% — (BV},, ($m,ns amn)/B)” }

meMgo h=1

H,,
<A+ Mol 12 3 S [vj,,xsm,h)/B - HDV»,L<sm7h,am,h>/B],
meMgy h=1

where we use the fact V; (s) < B,Vj > 1 under the event of Lemma 6.1. Note that the sum is just similar to the term [; in
Lemma 6.2 when we first decompose the regret. So we have the following inequality,

H7n
Sy < Apy1 + M| +2'71/B Z ZC(Sm,haam,h)

meMg h=1

<Cm

H,,
+ 2l+1 Z Z |:‘/3m (Sm,h)/B - PV‘W (Sm,ha am,h)/B - C(Sm,ha am,h)/B

meMgpy h=1
-1I,/B
2l+1 2l+1
<A+ |Mo| + ?CM + ?(Bl + B2)
9l+1 9l+1
< Appr + Mo + ?CM + ?(4330 + Ba),
where we use Lemma D.1 and the observation B; < 4BRj. O]

Proof of Lemma D.8. We follow the proof of Lemma 25 in Zhang et al. (2021a). We use Lemma H.3 for each fixed level
[ Letzy,, = [[IP’V}%:L] (Sm,hs @m,.h) — Vﬁi (Sm.,h+1) ] /B2L, then we have E [z, 1, | Gnn] = 0 and E [xfnﬁ‘gmyh} -
{VVJ%” (Sm,hs @m,h) / B2 Therefore, for each level I € [L], with probability at least 1 — §, we have

H,, .,
A= Z Z«I’m,h 2¢ Z ZVVJQT: (Sm,haam,h) /BQJ-H e

meMo(M) h=1 meMo(M) h=1
= V205 +¢,

where ¢ = 4log (2log(T'log(1/d)) + 1)/6). Taking a union bound over [ € [L], we complete the proof of Lemma D.8. [

IN

H. Auxiliary Lemmas

Theorem H.1 (Theorem 4.3 in Zhou & Gu 2022). Let {Qk };’;1 be a filtration, and {Xy, 1. } k>1 be a stochastic process

such that x;, € R is Gy-measurable and 1y, € R is Gy.1-measurable. Let L o, X\, e > 0,pu* € R%. For k > 1, let
yr = (W*, Xk) + . and suppose that ny,, X, also satisfy

E[nk‘ gk] =0,E [7713 ‘ gk] < 027 |77k| <R, ||Xk||2 <L.

Fork > 1, letZ; = NI + E X x; by = Zle YiXi, b = Z;lbk, and

Br =12y/02dlog (1 + kL?/(d))) log (32(log(R/€) + 1)k2 /)
+ 24 log (32(log(R/€) + 1)k*/6) ax, {|772| min {1 ||Xz|| -1 }} + 61log (32(log(R/e) + 1)k?/6) e.
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Then, for any 0 < § < 1, we have with probability at least 1 — § that,

k
Z XM

i=1

VE>1, < B, ke — 1" Iz, < B+ V¥l -

-1
Zk

Lemma H.2 (Lemma B.1 in Zhou & Gu 2022). Let {0y, ﬂt}t21 be a sequence of non-negative numbers, o, > 0 decreasing,
v > 0,{x¢}>; C R% and ||x,||, < L. Let {Z4} >, and {51}, be recursively defined as follows: Zy = A1

_ 1/2 _
Vvt > 1,5, = max {Ut,ag,y' ”XtHZ/t‘l} i1 =72y +XtX;r/O’t2.

Let v =log (1+TL?/ (dA/R)). Then we have

T
Zmin{l,ﬂt th”z;l} < 2di+ 2mtaxﬁt’y'2dL i 2@\/2&2 (02 + al?).
=1 t

Lemma H.3 (Lemma 11 in Zhang et al. 2021b). Let M > 0 be a constant. Let {x;};_, be a stochastic process,
G, = o (x1,...,x;) be the o-algebra of x1, . .., x;. Suppose E[z; | G;—1] = 0,|x;| < M and E ’xﬂ gH] < 00 almost
surely. Then, for any §,¢ > 0, we have

n

<2, |2log(1/6) ZE [22 | Gi—1] + 2+/log(1/8)e + 2M log(1/4)

i=1

D i
i=1
>1-2(log (Mzn/ez) +1) 6.

P

Lemma H.4. Let A\, Mo, A3, Ay > 0 and £ > max {logy(A\1/X3),1}. Let ay,...,a, be non-negative real numbers
such that a; < min{/\l,/\g\/ai +ajp1 + 20\ + )\4} forany 1 < i < k. Let axt1 = A1. Then we have a1 <
22X3 + 64 + 4225

Proof of Lemma H.4. Define a new sequence b; = a;/A3. Using Lemma H.5 with sequence {b;} and parameters
A1/As, A2/ A3, 1, Ay /A3, we finish the proof of Lemma H.4. O

Lemma H.5 (Lemma 12 in Zhang et al. 2021a). Let A1, A2, Ay > 0, A3 > 1 and k = max {logy A1,1}. Let aq, ..., a, be
non-negative real numbers such that a; < min {)\1, Ao \/ai + a;pq + 2 g + )\4} forany 1l < i < k. Let a1 = A1.
Then we have a; < 22)\3 + 64 + 4X0/2)3.

Lemma H.6 (Lemma 12 in Abbasi-Yadkori et al. 2011). Suppose A, B € R¥*? are two positive definite matrices satisfying

A = B, then for any x € R% ||x||a < ||x|B - 1/det(A)/ det(B).
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