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Abstract

Modern deep learning models with great expres-
sive power can be trained to overfit the training
data but still generalize well. This phenomenon
is referred to as benign overfitting. Recently, a
few studies have attempted to theoretically un-
derstand benign overfitting in neural networks.
However, these works are either limited to neural
networks with smooth activation functions or to
the neural tangent kernel regime. How and when
benign overfitting can occur in ReLLU neural net-
works remains an open problem. In this work,
we seek to answer this question by establishing
algorithm-dependent risk bounds for learning two-
layer ReLU convolutional neural networks with
label-flipping noise. We show that, under mild
conditions, the neural network trained by gradient
descent can achieve near-zero training loss and
Bayes optimal test risk. Our result also reveals
a sharp transition between benign and harmful
overfitting under different conditions on data dis-
tribution in terms of test risk. Experiments on
synthetic data back up our theory.

1. Introduction

Modern deep learning models have a large number of pa-
rameters, often exceeding the number of training data points.
Despite being over-parameterized and overfitting the train-
ing data, these models can still make accurate predictions
on the unseen test data (Zhang et al., 2017; Neyshabur
et al., 2018b). This phenomenon, often referred to as be-
nign overfitting (Bartlett et al., 2020), has revolutionized
traditional theories of statistical learning and attracted great
attention from the statistics and machine learning communi-
ties (Belkin et al., 2018; 2019; 2020; Hastie et al., 2022).
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There has been a line of work in recent years studying
benign overfitting from the theoretical perspective. Despite
their contributions and insights into the benign overfitting
phenomenon, most of these works focus on linear models
(Belkin et al., 2020; Bartlett et al., 2020; Hastie et al., 2022;
Wu & Xu, 2020; Chatterji & Long, 2021; Zou et al., 2021b;
Cao et al., 2021) or kernel/random features models (Belkin
et al., 2018; Liang & Rakhlin, 2020; Montanari & Zhong,
2022). Adlam & Pennington (2020) and Li et al. (2021)
focused on benign overfitting in neural network models,
yet their results are limited to the neural tangent kernel
(NTK) regime (Jacot et al., 2018), where the neural network
learning is essentially equivalent to kernel regression.

Understanding benign overfitting in neural networks be-
yond the NTK regime is much more challenging because
of the non-convexity of the problem. Recently, Frei et al.
(2022) studied the problem of learning log-concave mixture
data with label-flipping noise, using fully-connected two-
layer neural networks with smoothed leaky ReLU activation.
They proved the risk upper bound under certain regularity
conditions, which matches the lower bound given in Cao
et al. (2021) when the label-flipping noise is zero. Cao et al.
(2022) provided an analysis for learning two-layer convo-
lutional neural networks (CNNs) with polynomial ReLLU
activation function (ReLUY, ¢ > 2). Their analysis also
identifies a condition that controls the phase transition be-
tween benign and harmful overfitting. The analyses in both
Frei et al. (2022) and Cao et al. (2021) highly rely on smooth
activation functions and cannot deal with the most widely
used ReLU activation function. Thus, there remains an open
question:

How and when does benign overfitting occur in ReLU
neural networks?

In this paper, we seek to answer the above question by
establishing risk bounds for learning two-layer CNNs with
ReLU activation function.

1.1. Problem Setup

We consider a similar data distribution that was explored in
Cao et al. (2022). In this particular distribution, the input
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data consists of two types of components: label dependent
signals and label independent noises. This data generation
model takes inspiration from image data, where the inputs
are composed of various patches, and only certain patches
are relevant to the class label of the image. Similar models
have also been investigated in recent works by Li et al.
(2019); Allen-Zhu & Li (2020a;b); Zou et al. (2021a); Shen
& Bubeck (2022).

Definition 1.1. Let u € R? be a fixed vector repre-
senting the signal contained in each data point. Each
data point (x,y) with predictor x = [xMT x@T]T ¢
R2? x(M x(?) € RY and label y € {—1,1} is generated
from a distribution D, which we specify as follows:

1. The true label i is generated as a Rademacher random
variable, i.e. Ply = 1] = Ply = —1] = 1/2. The
observed label y is then generated by flipping y with
probability p where p < 1/2,i.e. Ply=9y] =1 — p and
Ply = —y] = p.

2. A noise vector € is generated from the Gaussian distribu-
tion N'(0,021).

3. One of xV, %3 is randomly selected and then assigned
as i - p, which represents the signal, while the other is
given by &, which represents noises.

Definition 1.1 strictly generalizes the data distribution in
Cao et al. (2022), in the sense that it introduces label-flipping
noise to the true label 7, and relaxes the orthogonal condition
between the signal vector g and the noise vectors & (See
Definition 3.1 in Cao et al. (2022) for a comparison).

Given a training data set S = {(x;,y;)}"; drawn from
some unknown joint distribution D over x X y, we train a
two-layer CNN with ReLU activation by minimizing the
following empirical risk measured by logistic loss

Ls(W) = -y f(Wox), (LD
i=1

where £(z) = log(1 + exp(—z)), and f(W,x) is the two-
layer CNN (See Section 3 for the detailed definition). We
will use gradient descent to minimize the training loss

Ls(W), and we are interested in characterizing the test
error (i.e., true error) defined by

LYH W) i= Py y)op [y # sign (F(W,x))].  (1.2)

1.2. Main Contributions

We prove the following main result, which characterizes
the training loss and test error of the two-layer ReLU CNN

trained by gradient descent.

Theorem 1.2 (Informal). For any ¢ > 0, under certain
regularity conditions, with probability at least 1 — 0, there
exists 0 < t < T such that:

1. The training loss converges to €, i.e., Lg(W®)) < e,
2. If nl||p|l5 > Q(Jéd), we have L' (W®) < p +
exp (= nllully/(Caotd)).

3. Ifn|lplls < O(opd), we have L' (W®) > p+0.1.
The significance of Theorem 1.2 is highlighted as follows:

* The ReLU CNN trained by standard gradient descent on
the logistic loss can interpolate the noisy training data and
achieve near-zero training loss.

* Under the condition on the data distribution and the train-
ing sample size that n||p[|5 > Q(od), the learned CNN
can achieve nearly optimal test error (i.e., Bayes risk p).

* On the flip side, if n||p||3 < O(o,d), the interpolating
CNN model will suffer a test error that is at least a constant
worse than the Bayes risk. This together with the positive
result reveals a sharp phase transition between benign and
harmful overfitting.

Our analysis relies on several new proof techniques that
significantly generalize the signal-noise decomposition tech-
nique (Cao et al., 2022). More specifically, to handle ReLU
activation, we directly use the activation pattern and data
structure to characterize the loss of each training data point
rather than using the smoothness condition. To deal with the
label-flipping noise, we show that the loss of each training
data point decreases at roughly the same rate throughout
training, which ensures signal learning even in the presence
of label noise.

2. Related Work

In this section, we will discuss in detail some of the related
work briefly mentioned before.

Benign overfitting of linear models. One line of research
sought a theoretical understanding of the benign overfitting
phenomenon in linear models. Some of these works fo-
cused on linear regression problems. Belkin et al. (2020)
provided a precise analysis for the shape of the risk curve in
Gaussian and Fourier series models with the least squares
predictor. Hastie et al. (2022); Wu & Xu (2020) studied the
setting where both the dimension and sample size grow but
their ratio is fixed and demonstrated a double descent risk
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curve with respect to this ratio. Bartlett et al. (2020) estab-
lished matching upper and lower risk bounds for the over-
parameterized minimum norm interpolator and showed that
benign overfitting can occur under certain conditions on the
spectrum of the data covariance. Zou et al. (2021b) studied
how well constant stepsize stochastic gradient descent with
iterate averaging or tail averaging generalizes in the over-
parameterized regime. Several other works studied benign
overfitting of maximum margin linear classifiers. Muthuku-
mar et al. (2021) showed that the max-margin predictor and
the least square predict coincide in the overparametrized
regime, and generalize differently when using O-1 loss and
square loss functions. Wang & Thrampoulidis (2021); Cao
et al. (2021) respectively studied Gaussian and sub-Gaussian
mixtures data models without label noise and character-
ized the condition under which benign overfitting can occur.
Chatterji & Long (2021) showed that the maximum margin
algorithm trained on noisy data can achieve nearly optimal
risk with sufficient overparameterization. Shamir (2022)
studied both minimum-norm interpolating predictors for lin-
ear regression and max-margin predictors for classification
and discussed the conditions under which benign overfitting
can or cannot occur.

Benign overfitting of neural networks. A series of recent
works studied benign overfitting of neural networks. Liang
et al. (2020) showed that kernel “ridgeless” regression can
lead to a multiple-descent risk curve for various scaling of
input dimension and sample size. Adlam & Pennington
(2020) provided a precise analysis of generalization under
kernel regression and revealed non-monotonic behavior for
the test error. Li et al. (2021) examined benign overfitting
in random feature models defined as two-layer neural net-
works. Montanari & Zhong (2022) studied two-layer neural
networks in the NTK regime, focusing on its generalization
properties when dimension, sample size, and the number
of neurons are overparametrized and polynomially related.
Chatterji & Long (2022) bounded the excess risk of inter-
polating deep linear networks trained by gradient flow and
showed that randomly initialized deep linear networks can
closely approximate the risk bounds for the minimum norm
interpolator.

3. Preliminaries

In this section, we introduce the notation, two-layer CNN
models, and the gradient descent-based training algorithm.

Notation. We use lower case letters, lower case bold
face letters, and upper case bold face letters to denote
scalars, vectors, and matrices respectively. For a vector

,vq) |, we denote by ||v||2 := (Zd 2)1/2

v = (v, 40

its I norm. For two sequence {a} and {by}, we denote
ar, = O(by,) if |ay| < C|bg| for some absolute constant C,
denote a, = Q(b) if by, = O(ay), and denote a, = O (by)
if a, = O(by) and ay, = Q(by,). We also denote ay, = o(by)
if lim |a, /bx| = 0. Finally, we use O(-) and () to omit
logarithmic terms in the notation.

Two-layer CNNs. We consider a two-layer convolutional
neural network described in the following: its first layer
consists of m positive filters and m negative filters, with
each filter applying to the two patches x(!) and x(?) sep-
arately; its second layer parameters are fixed as +1/m
and —1/m respectively for positive and negative con-
volutional filters. Then the network can be written as
fW.x) = F1(W41,x) — F_1(W_1,x), where the
partial network function of positive and negative filters
Fii(Wy1,x), F_1(W_1,x) are defined as:

m

Fj(W;,x) = %Z[a«wjﬂ.,x(l))) +o((w ., x))]
r=1

= =3[

for j € {£1}. Here o(z) = max{0, z} is the ReLU acti-
vation function, W is the collection of model weights as-
sociated with F; (positive/negative filters), and w; . € R¢
denotes the weight vector for the r-th filter / neuron in
W;. We use W to denote the collection of all model
weights. We note that our CNN model can also be viewed
as a CNN with average global pooling (Lin et al., 2013).
Besides the training loss and test error defined in (1.1) and
(1.2), we also define the true loss (test loss) as Lp(W) :=

]E(x,y)mpé[y . f(W, X)]
Training algorithm. We use gradient descent to optimize

(1.1). The gradient descent update of the filters in the CNN
can be written as

Wi, J ) + (W) €))]

wit) —wl gy,

— w® n /(t)
Wj,’r — % Zﬁl

n
Z ; l j r yz“>) YilYiJ b

3.

Ls(W)

Wj(f,)qﬁi)) - Jyi&i

forall j € {£1} and r € [m], where we introduce a short-
hand notation E;(t) = '[y; - fF(W®, x;)] and assume the
gradient of the ReLU activation function at 0 to be 0/ (0) = 1
without losing generality. We initialize the gradient descent
by Gaussian initialization, where all entries of WO are
sampled from i.i.d. Gaussian distributions A/(0, o3), with
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o2 as the variance.

4. Main Results

In this section, we present our main theoretical results. Our
results are based on the following conditions on the di-
mension d, sample size n, neural network width m, ini-
tialization scale oy, signal norm | ||, noise rate p, and
learning rate 7. In this paper, we consider the learning pe-
riod 0 < t < T*, where T* = n~poly(e~!,d,n,m) is
the maximum admissible iterations. We can deal with any
polynomial maximum admissible iterations 7™ greater than
Qe tmnd 1o, ?).

Condition 4.1. Suppose there exists a sufficiently large
constant C, such that the following hold:

1. Dimension d is sufficiently large: d >

C max{no,, ?|| |3 log(T*), n* log(nm/d)(log(T™))*}.

2. Training sample size n and neural network width satisfy
m > Clog(n/d),n > Clog(m/é).

3. The norm of the signal satisfies || u||3 > C - 02 log(n /).
4. The noise rate p satisfiesp < 1/C.

5. The standard deviation of Gaussian initial-

ization oq is appropriately chosen such that

00 < (C'max {o,d//m, \/log(m/0) - |ll2}) "

6. The learning rate 1  satisfies

(Cmax {02d3/?/(n*m+/log(n/0)),02d/n}) -

n <

The conditions on d,n, m are to ensure that the learning
problem is in a sufficiently over-parameterized setting, and
similar conditions have been made in Chatterji & Long
(2021); Cao et al. (2022); Frei et al. (2022). The condi-
tions on oy and 7 are to ensure that gradient descent can
effectively minimize the training loss. The difference be-
tween Condition 4.1 and Assumption (A1)-(A6) in Frei
et al. (2022) is that our setting assumes a milder condition
of order O(d~3/2) on learning rate 7 rather than O(d~?)
((AS) in Frei et al. (2022)), as well as a milder condi-
tion of order O(d~'n'/2) on initialization o rather than
O(d=5/2m=1/2) ((A6) in Frei et al. (2022)). Another dif-
ference is that Frei et al. (2022) allows neural networks of
arbitrary width m, but our condition requires a mild assump-
tion that m should be no more than an exponential order
of dimension d. We also require another mild condition
that m and n cannot exceed the exponential order of each
other. Besides, in contrast to Cao et al. (2022), our Condi-
tion 4.1 relaxes the dependency of m and d in that, we do

not require any polynomial upper bound of the neural net-
work width m, whereas Condition 4.2 in Cao et al. (2022)
requires that m is upper bounded by a certain fractional
order of d. Another improvement to Cao et al. (2022) is
that we add label-flipping noise p to the problem, but this
is also included in Frei et al. (2022). Detailed comparisons
are shown in Table 1 and Table 2.

Based on these conditions, we give our main result in the
following theorem.

Theorem 4.2. For any € > 0, under CoNndition 4.1, with
probability at least 1 — § there exists t = O(n~te tmnd~!

—2 .
o, %) such that.

1. The training loss converges to €, i.e., Lg(W®) < e.

2. When n|\u||3 > Cyoyd, the trained CNN will general-
ize with classification error close to the noise rate p:

LY (W) < p o+ exp ( — nllull3/(Coota)).

3. When n||p||5 < Csopd, the test error LYY (W) >
p+0.1L

Here C1,Cy, C3 are some absolute constants.

Remark 4.3. Theorem 4.2 demonstrates that the training
loss converges to € within 6(n’1671mnd’10p’ 2) iterations.
Moreover, when the training loss converges, the model can
achieve optimal test error if the signal-to-noise ratio is large.
However, if the signal-to-noise ratio is small, the model will
experience a test error that is at least a constant worse
than the Bayes risk. The threshold for this distinction is
determined by the condition n||p||3 = ©(opd). In addition
to the results mentioned in Theorem 4.2, it is important to
emphasize that the second and third bullet points regarding
the test error also hold true for training time t that is greater
than O(n~Ye Ymnd~L072), but smaller than the maximum

P
allowable iterations T* = n~poly(e~t,d,n,m).

Comparison with prior works. Although Theorem 4.2 and
Theorem 3.1 in Frei et al. (2022) both show that the network
achieves arbitrarily small logistic loss, and simultaneously
achieves test error close to the noise rate, our results differ
from Frei et al. (2022) since Frei et al. (2022) considered a
neural network with smoothed leaky ReLU activation, while
we consider the ReLU activation which is not smooth. Be-
sides, to obtain a training error smaller than e, Frei et al.
(2022) needed O(e~2) iterations, whereas our results only
require O (e~ 1) iterations. In contrast to Cao et al. (2022)
which studied a CNN model with ReLU9(gq > 2) activation
function and without label noise, our setting is more prac-
tical as we work with ReL.U activation, take label-flipping
noise into consideration, and also remove the orthogonal
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assumption between the signal patch and the noise patch.
Because of the label-flipping noise, it is more natural to
evaluate generalization performance by comparing the test
error with the Bayes optimal classifier. This is why our The-
orem 4.2 provides test error bounds while Cao et al. (2022)
provided test loss bounds and despite the difference both our
results and theirs present exact phase transition conditions.

5. Overview of Proof Techniques

In this section, we discuss the main challenges in studying
benign overfitting under our setting, and explain some key
techniques we implement in our proofs to overcome these
challenges. Based on these techniques, the proof of our main
Theorem 4.2 will follow naturally. The complete proofs of
all the results are given in the appendix.

5.1. Key Technique 1: Time-invariant Coefficient Ratio

Our first main challenge is dealing with the ReLU activation
function, i.e., 0(z) = max{0, z}. This is one of the most
common and widely used activation functions, but as we ex-
plain below, it is also hard to analyze. The key difficulty in
establishing benign overfitting guarantees is demonstrating
that the neural network can interpolate the data. Frei et al.
(2022) adopted the smoothness-based convergence proof
technique proposed in Frei & Gu (2021). This technique
requires the activation function to be strictly increasing and
smooth, therefore it cannot be applied to the ReLU activa-
tion function. Cao et al. (2022) provides an iterative analysis
of the coefficients in the signal-noise decomposition, which
is given in the following deﬁnition

Definition 5.1. Let W for Jj € {£1}, r € [m] be the
convolution filters of the CNN at the t-th iteration of gradient
descent. Then there exist unique coefficients vj(tr) and pgtl ;
such that

wlt) = w0 1.0

Js ||N|l2

0= A, = 00, p0 =

j’l"Z

Further denote p

7,7,%

P (Pl < 0). Then

w® = wl® 4§,

Jsr ||NH2

+Zp(f2«l~|\ei||2 sz+zpm l&illz? - &

6D

(5.1) is called the signal-noise decomposition of ng

where
the normalization factors || |52, ||€:]|5 * are to ensure that

%(tg (w g?,j,@ p;til R~ (wgtz,éﬁ With Definition 5.1,

I“‘_i_zp]rz ||€’LH2_2 gl

one can reduce the study of the CNN learning process to
a careful assessment of the coefficients vj(-’?, ﬁggﬂ, pgti ;
throughout training. This technique does not rely on the
strictly increasing and smoothness properties of the acti-
vation function and will act as the basis of our analysis.
However, Cao et al. (2022) only characterized the behavior
of the leading neurons by studying max;. ny(fT), max, ﬁgtil
To guarantee that the leading neuron can dominate other
neurons after training, they require neurons with different
initial weights to have different update speeds, which is
guaranteed thanks to the activation function ReLU? with
q > 2. But the ReL.U function is piece-wise linear, and ev-
ery activated neuron has the same learning speed o’ (z) = 1.

Therefore dealing with ReLU requires new techniques.

To overcome this difficulty, we propose a time-invariant co-
efficient ratio analysis which generalizes Cao et al. (2022)’s
technique. The key lemma is presented as follows, which
characterizes the coefficient orders at any time ¢ < 7 and
helps derive the second and third parts of Theorem 4.2 on
the upper and lower bounds of test error.

Proposition 5.2. Under Condition 4.1, the following bounds
hold fort € [0,T%]:

—(t)

gyt —

. p§ 7)_1 is an increasing sequence. Besides, 0 < p;

4log(T*)f0rall] € {£1}, r € [m]and i € [n).

. B§t2=i is a decreasing sequence. Besides,
—4log(T%) < —2max; ;. {|(wi), )], (Wi, &)} —

10n+/log(6n2/6)/d - 41og(T*) < Bﬁli

j € {£1}, r € [m]andi € [n].

< 0 for all

. 'yj(? is a strictly increasing sequence. Besides, %(tz =

O(Iull3/(do2) i, Py, for all j € {1} and r €
[m].

In Definition 5.1, 'y<t) characterizes the progress of learn-

gr
ing the signal vector i, and pgti , characterizes the degree

of noise memorization by the filter. The first and second
bullets in Proposition 5.2 tell us that for any iteration ¢, the

degree of noise memorization 7" Bﬁ-tii are bounded by

3y
a logarithmic order of total epochs 7. In particular when
T = g 'poly(e™ donm). ) o) = O(1). The
third bullet in Proposition 5.2 is the major improvement of
our technique compared to Cao et al. (2022). It shows that
”yj( T) is strictly increasing, indicating that the CNN will learn
the signal p despite label-flipping noise. Besides, the order
of the coefficient ratio ’y( ) S, p§t2 ;) is time-invariant.
When the signal strength |lee]]2 is large compared to the

noise variance \/gap, the neurons tend to learn the signal.
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When ||p||2 is small compared to v/do, the neurons tend to
learn the noises. By the time-invariant coefficient ratio tech-
nique, we can characterize the behavior of all the neurons
during training, which enables us to deal with the ReLLU
activation function.

To prove the third bullet, we need to characterize the activa-

() . .
;> &i)). Observing that the increment

of >, ) . isscaledby 37, o' ((w ;t7)” &;)), for any weight

; ), we consider the set sequence {S( V., where S

defined as {i|y; = J, < j),, &) > 0}. We show that thls is
an increasing set sequence throughout the training, leading
to |S ](t7)| = O(n). This intuitively means that for a given
sample, once a neuron is activated by the noise patch, it
will remain activated throughout training even though the
weights of the neuron are updated by gradient descent. Ap-
plying this finding to (5. 3) and (5. 4) it follows directly that

the mcrement ratio of 7

O([lul3/(o5d))-

tion pattern of o({w

w

) and > pj i Will always remain

5.2. Key Technique 2: Automatic Balance of Coefficient
Updates

Our second main challenge is dealing with label-flipping
noise. Empirical studies found that over-parameterized neu-
ral networks can generalize well when trained on data with
label noise (Belkin et al., 2019; Zhang et al., 2021), which is
in conflict with the long-standing theories of statistical learn-
ing. To fit corrupted data with signal —yu ' and noise &,
the neural network weights must capture the random noise
&, which harms generalization. Even worse, label-flipping
noise may trick the learner into capturing the adversarial
signal —p rather than . Let us investigate the update rule
of the coefficient v; ., 9, , ;. L

() <)

Lemma 5.3. The coefficients v; ;.. p; . ;, p(t) defined in

Definition 5.1 satisfy the followmg iterative equattons

i P ), =0, (5.2)
AW =) - L [ZWM W5 )
Z€S+
D OTALIC )] R ES
1€S_
_ U
Py =P = 0o (W) ) - 8l
Wy =3), G4
) = )0 4 O o (wlh) 6) - 163
B],rz p],rz nm ? Jyro st 2112
Ay = —j), (5.5)

forallr € [m], j € {x1} andi € [n], where S := {i €
[nlly: = yi} and S_ = {i € [n]ly; # Ui}

When there is no label-flipping noise, we can conclude that

S_ = & and the signal coefficient %(tz is strictly increasing

since é;(t) is strictly negative. This key observation plays
an important role in the proof of Cao et al. (2022). Unfortu-
nately, the presence of noisy labels introduces the presence
of a negative term ) ;¢ /(t)a’ ( 5757),, Ui - )). Therefore,
we cannot conclude directly from formula (5.2) whether
"yj(tr) is increasing or not. If the gradient of losses é;(t) for
(noisy) samples i € S_ are particularly large relative to the

gradient of losses E’-(t) for (clean) samples ¢ € S, then in-

deed (5.2) may fail to guarantee an increase of W( T) In order

to show that the neural networks can still learn 31gnals while
interpolating the noisy data S_, we need more advanced
and careful characterization of the learning process.

To overcome the difficulty in dealing with label-flipping
noise, we apply a key technique called automatic balance
of coefficient updates. As indicated in (5.3), if we can show
that the loss gradients ﬁg(t) are essentially ‘balanced’ across
all samples, i.e., El(*)/ﬁgt) < C,Vi,j € [n], then provided
that the fraction of noisy labels is not too large, the effect of
the noisy labels will be countered by clean labels, and one
can eventually show that ’y( ) is increasing. This provides
motivation for our next lemma

Lemma 5.4. Under Condition 4.1, the following bounds
hold for any t € [0, T*]:
Yi - f(W(t)aXl)

—y - fWO x) < Cy,  (5.6)

W0 < ¢, (5.7

forany i, k € [n], where Cy = ©(1) is a positive constant,
Cs = exp(Cy), and £ = 0(y, F(WD), x,)), £ =
(yf (W, x)).

The strategy of bounding 4“) / Z;C(t) is first proposed by Chat-
terji & Long (2021) in studying linear classification and
has later been extended to neural networks with smoothed
leaky ReL.U activation function (Frei et al., 2021; 2022).
The main idea is that according to the property of logit
function ¢'(z) = —1/(1 + exp(z)) that £'(z1)/¢'(z2) =~
exp(z2 — #1), to upper bound the ratio of #; and ¢}, one only
needs to bound the difference between y; f(W(®) x;) and
yrf(W® x;). To further characterize this difference, the
works above utilize the smoothness property, translating the
function difference to the gradient difference V f(W ), x;)
and Vf(W® x;). However, such a smoothness-based
technique cannot be directly applied to ReLU neural net-
works.
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In this paper, we apply signal-noise decomposition and ap-
proximate y; f (W), x;) by > ﬁ;t)r ; with a small approx-
imation error for any ¢ € [n]. Therefore, Lemma 5.4 can be
further simplified into proving the following intermediate
result.

Lemma 5.5. Under Condition 4.1, the following bounds
hold fort € [0,T%]:

() N —(0)

—(t —(t
D Pyiri ™ D Pyprss S K
r=1 r=1

forany i,k € [n], where k = O(1) is a positive constant.

(5.8)

Note that (5.8) is much easier to deal with than (5.6) because
we can directly use the iterative analysis of (5.4), which
leads to the update rule:

__(t+1) | =

N (141) W
Z[pym i YT,k Z[pyw i pyk r, k]

r=1 r=1

n
L (116 g3 - 15116

(5.9)
I1€113),

where Si(t) ={r e [m]: <w1(,?,r,£i> > 0},4 € [n]. Now,
we consider two cases:

 IFY ﬁ;)r i pyk . 18 relatively small, we will

t+1) m —(t+1)
show that Y " | p i,y =2 Py, .k

much for small enough step-size 7.

will not grow too

o If Zr 1 ﬁ;i),r P E:ﬂ 1 ﬁgj ik is relatively large, then
it will cause E(t)/ﬁ(t) to contract because E( )/é(t) can
be approximated by exp(>_" pifk)ﬂ D p(i)T )-
Moreover, since we can prove that ||&;]|3 ~ [ &3
and [SO1/[SO] = ©(1). we have S, 700

r= 1 Yi Tyl
S ﬁ;t:': L will decrease according to (5.9).

Combining the two cases, » . pq(jz)w i pz(/k) .k €an
be upper bounded by a constant, which completes the proof
of Lemma 5.5, and the proof of Lemma 5.4 directly follows.

5.3. Key Technique 3: Algorithm-dependent Test Error
Analysis

By choosing ¢ = 1/(4n), Theorem 4.2 gives that
Ls(W®) < 1/(4n) which further implies that the train-
ing error is 0. On the other hand, we know that the Bayes
optimal test error is at least p due to the presence of the
label-flipping noise. Thus the gap between the test error and
training error is at least p, which prevents us from apply-
ing commonly-used standard uniform convergence-based
bounds (Bartlett et al., 2017; Neyshabur et al., 2018a) or

stability-based bounds (Hardt et al., 2016; Mou et al., 2017;
Chen et al., 2018). In this paper, we will give an algorithm-
dependent test error analysis. First, we can decompose the
test error as follows

P(y # sign(f (W, x)))
=p+(1-2p)P(5f(W",x) <0).

With (5.10), the analysis of test error can be re-
duced to bounding the wrong prediction probability
]P’(g?f(W(t), x) < 0). To achieve this, we need to bound
the coefficient order when the training loss converges to e.

The following result demonstrates that a constant proportion
—(t)

Yi Ty
Lemma 5.6. Under Condition 4.1, there exists Ty =

O(n~'nmo, ?d™") such that p( ) > 9 for all v €

Yi, Tyt =

SO = {r € [m] : (wih, &) > 0} and i € [n],

(5.10)

of p will reach constant order at time 77 < T*.

The main idea in proving this lemma is that é;(t) remain
©(1) before time T}, and the dynamics of the coefficients in
(5.4) can be greatly simplified by replacing the K;(t) factors
by their constant lower bounds. After time 73, by the mono-
tonicity and order of coefficients in Proposition 5.2, we
can describe the orders of the coefficients in the following
lemma.

Lemma 5.7. Under Condition 4.1, the following coefficient
orders hold fort € [Th,T*]:

* i ﬁgtiz =Q(n) =
andr € [m).

n —(t t
* i Pyl Vi =
and r,r" € [m)].
* max; ,; |B§-ti ;| = max {O(\/log(mn/6) - 590, Vd),
O(y/1og(n/5)log(T*) - n/V/d)}.
) =) (¢ )
By applying the scale of v; ., p; 7., P;
5.7 and Gaussian concentration of L1pschitz function, we
can directly get the test error upper bound (the second part of
Theorem 4.2) using a similar idea as the proofs of Theorem
1 in Chatterji & Long (2021) and Lemma 3 in Frei et al.
(2022). To prove the test error lower bound (the third part
of Theorem 4.2), we first lower bound wrong prediction

O(nlog(T*)) for any j € {£1}

O(SNR™?) for any j,j' € {1}

; given in Lemma

probability term P(7f(W®),x) < 0) by
(t)
05]?(‘2]0 JT, ‘>C(5mjax{z%r}>
event 2

where all the randomness is on the left-hand side, which
can be treated as a function of Gaussian random vector &.
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Next, we give our key lemma, which can be proved by lever-

()

aging decomposition of w, . and scale of decomposition

coefficients given in Lemma 5.7.

Lemma 5.8. For t € [I1,T*], denote g(§) =

. ) . .
2 Jo((w; . &), There exists a fixed vector v with
[Iv|l2 < 0.060, such that

y o “
j’gi:l}[g(] §+v)—g(i'§)] = 4Cs max, { ZT:%}
. (5.11)

forall ¢ € R<.

Based on Lemma 5.8, by the pigeonhole principle, there
must exist one among &, § + v, —§, —& + v that belongs
to €, thatis, QU (—Q) U (2 — v) U (—Q — v) = R By
union bound, it follows that

PQ)+P(—Q)+P(Q—v)+P(—Q—v)>1. (5.12)
Since the noise & follows symmetric distribution, we have
that P(Q2) = P(—2). We can use some techniques based on
the total variation (TV) distance to show that

[P(Q) — P(Q —v)|,|P(—Q) —P(—Q — v)| <0.03.
(5.13)
By (5.12) and (5.13), we have proved that P(2) > 0.22. By
plugging P(2) > 0.22 into (5.10), we complete the proof
of test error lower bound.

6. Experiments

In this section, we present simulations of synthetic data to
back up our theoretical analysis in the previous section. The
code for our experiments can be found on Github '.

Synthetic-data experiments. Here we generate synthetic
data exactly following Definition 1.1. Specifically, we set
training data size n = 20 and label-flipping noise to 0.1.
Since the learning problem is rotation-invariant, without loss
of generality, we set gt = |||z - [1,0,...,0]T. We then
generate the noise vector £ from the Gaussian distribution
N (0, 021) with fixed standard deviation o, = 1.

We train a two-layer CNN model defined in Section 3 with
ReLU activation function. The number of filters is set as
m = 10. We use the default initialization method in Py-
Torch to initialize the CNN parameters and train the CNN
with full-batch gradient descent with a learning rate of 0.1
for 100 iterations. We consider different dimensions d rang-
ing from 100 to 1100, and different signal strengths ||4||2
ranging from 1 to 11. Based on our results, for any dimen-

'https://github.com/uclaml/Benign_ReLU_CNN

sion d and signal strength p setting we consider, our training
setup can guarantee a training loss smaller than 0.01. Af-
ter training, we estimate the test error for each case using
1000 test data points. The results are given as a heatmap on
parameters d and || /|2 in Figure 1.
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Figure 1. a) is a heatmap of test error on synthetic data under
different dimensions d and signal strengths g. High test errors are
marked in blue, and low test errors are marked in yellow. b) is a
cutoff value heatmap that sets the values smaller than 0.2 to be 0
(yellow) and the values greater than 0.2 to be 1 (blue).

For the specific case ||pt]|2 = 5 and d = 100, we plot the
training loss, test loss, and test error throughout training
in Figure 2. As we can see from the figure, the test error
reaches the Bayesian optimal error of 0.1, while the training
loss converges to zero.

In Section 5, we directly used the activation pattern and data
structure to characterize the loss of each sample, and proved
thaty; - f(W® x;) — g - F(W®, x) < Cyfort < T
and any ¢, k € [n] in Lemma 5.7. To demonstrate this, we
conduct another experiment for the case ||p||2 = 5, d =
100 and plot max y; - f(W®), x;) and miny; - f(W® x;)
(margin) for each iteration. As we can see from Figure 3,
the difference between them never grows too large during
training (bounded by 6).
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—— Training Loss
~——— Test Error
—— Test Loss
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Iterations

Figure 2. Training loss, test loss and test error throughout 100
iterations with ||pt||2 = 5 and d = 100.
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Figure 3. max y; - f(W®  x;) and min y; - f(W®, x;) (margin)
throughout 100 iterations with ||pt]|2 = 5 and d = 100.

7. Conclusion and Future Work

This paper studies benign overfitting in two-layer ReLU
CNNs with label-flipping noise. We generalize the signal-
noise decomposition technique first proposed by Cao et al.
(2022) and propose three key techniques: time-invariant co-
efficient ratio, automatic balance of coefficient updates and
algorithm-dependent test error analysis. With the help of
these techniques, we prove the convergence of training loss,
give exact conditions under which the CNN achieves test
error close to the noise rate, and reveal a sharp phase tran-
sition between benign and harmful overfitting. Our results
theoretically demonstrate how and when benign overfitting
can happen in ReLU neural networks. An important future
work direction is to generalize our analysis to deep ReLU
neural networks in learning other data models.
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A. Comparison of Conditions Made by Related Works

In this section, we present the difference between Condition 4.1 and the conditions on parameters made by two related
works (Frei et al., 2022; Cao et al., 2022) in the following two tables (Tables 1 and 2).

Frei et al. (2022) n > Clog(1/6)
Number of samples Ours n> Clog(m3)
. Frei et al. (2022) -
Neural network width Ours m> Clog(n/9)
. . Frei et al. (2022) d > max{n| ul3,n?log(n/d)}
Dimension Ours d> Cmax{no, *[ul3og(T"), nZ log(nm/8)(log(T"))*}
. Frei et al. (2022) (]2 > C -log(n/o)
Norm of the signal Ours W= C. J}Q) Tog(1/3)
. Frei et al. (2022) p<1/C
Noise rate Ours p<1/C
. =T
Learning rate Frei et al. (2022) n < (Cmax{1, H/\/m}d*) _
Ours n < (Cmax {o2d/n,o2d>/?/(n*m - \/log(n/d)) })
e . Frei et al. (2022) oo < n/vVmd
Initialization variance T
Ours 0o < (Cmax {o,d/\/n,\/log(m/é) - [|pull2})

Table 1. Comparison of conditions with Frei et al. (2022). H is the smoothness of leaky ReLU activation under the setting of Frei et al.
(2022). In our paper, o, is the noise scale that can be treated as a constant.

Cao et al. (2022) n = Q(polylog(d))
Number of samples Ours nS Clog(m/5)
. Cao et al. (2022) m = Q(polylog(d))
Neural network width Ours m > Clog(n/o)
Dimensi Cao et al. (2022) d = Q(m?V#/(a=2)]pAvIa=2)/(a=2))
fmension Ours d> Cmax{no, *[ul31og(T7), n? log(nm/8)(log(T"))*}
. Cao et al. (2022) 5
Norm of the signal Ours RS C- UZQ) Tog(1n/3)
. Cao et al. (2022) p=20
Noise rate Ours p<1/C
> : —2 _—2-1
Learning rate Cao et al. (2022) 7 72O(m1n2{|\3;/¢2H2 ,;jp d—'} _
Ours n < (Cm;}(( {Ugﬁjd/ﬁ’/?pdg) 1{(71 m- /1og(n/(i))}) :
< —2/(q— —11/(@=2)V1]y . i - -
o . Caoetal. (2022) | 70 = O(m™>0 n , ) mm{f””\/a)_l’ leell ™
Initialization variance oo > O(nd=Y?) - min{(o,V/d) "L, |pll5 '}
Ours oo < (Cmax {o,d/\/n, \/log(m/9) - ||;L||2})_1

Table 2. Comparison of conditions with Cao et al. (2022). g is the order of polynomial ReL.U activation function under the setting of Cao
et al. (2022).

B. Preliminary Lemmas

In this section, we present some pivotal lemmas that illustrate some important properties of the data and neural network
parameters at their random initialization.

We first give some concentration lemmas regarding the data set S. Let S = {i|y; = y;} and S_ = {i|y; # ¥:} denote
index sets corresponding to data points with true and flipped labels, respectively. We first have the following lemma.

Lemma B.1. Given § > 0, with probability at least 1 — 6,

1S+ = (1 =p)n| < glog(§)7||57|—pn|§ glog(%)
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Proof of Lemma B.1. Since |S1| = >" | 1[y; = vi], |S—| = Y1, 1[U;i # i), according to Hoeffding’s inequality, we
have for arbitrary ¢ > 0 that

2 2
P(lIS+1 ~ EIS, ] > 1) < 2exp (2 ), B((15-| ~ EIIS_ ]| > 1) < 2exp (2 ).

By the data distribution D defined in Definition 1.1, we have E[S] = (1 —p)n, E[S_] = pn. Setting t = 1/(n/2) log(4/9)
and taking a union bound, it follows that with probability at least 1 — 4,

4
pn| < n log (7)7
2 0

which completes the proof. O

181~ (1= pyn| < \/ T 10g ().

Next, let S; = {i|y; = 1} and S_; = {i|y; = —1}. We have the following lemmas characterizing their sizes.
Lemma B.2. Suppose that § > 0 and n > 8log(4/6). Then with probability at least 1 — §,

|Sl|7 |S,1| € [TL/4, 371/4]

Proof of Lemma B.2. According the data distribution D defined in Definition 1.1, for (x,y) ~ D, we have

Ply=1)=PH=1)xPly=y)+ Py =—-1) xPly = —y)

N = N =

1
1— Z
(1=p)+5p

?

and hence P(y = —1) = 1/2 as well. Since |Si| = >0, L[y; = 1], [S—1] = >0, L[y, = —1], we have E[|S;]] =
E[|S_1|] = n/2. By Hoeffding’s inequality, for arbitrary ¢ > 0 the following holds:

2

2t
P(||S1| — E[[Si]]| > t) < 2exp ( _ 7)7
2t?
P(||S-1| — E[Sf]| = £) < 2exp (- =)
Setting t = y/(n/2)log(4/6) and taking a union bound, it follows that with probability at least 1 — ¢,

i3] < 2 (2. -1 3] < s ().

Therefore, as long as n > 8log(4/4), we have y/nlog(4/6)/2 < n/4 and hence 3n/4 > |S1],|S-1| > n/4.

Lemma B.3. For|Sy N.Sy| and |S_ N Sy| wherey € {£1}, it holds with probability at least 1 — §(6 > 0) that

7o (),

Proof. Since |Sy N Sy| = >0 1y = vi = yl,
inequality, we have

(1—p)n‘

|5+ NSyl — 5

IN

log (5) Vy e {£1}.

yl = > 1Y # vi,yi = yl, according to Hoeffding’s

2

2t
B([1S5 1Sy B[S+ N 5,[]| > ¢) < 2exp (= =), vy € {1},

13
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2t2
P(||S_ N S,| —E[|S_NS,[]| >t) < 2exp ( -

n

),Vye{il}.

According to the definition of D in Definition 1.1, we have E[|S; NS, |] = (1 — p)n/2, E[|S_ NSy |] = pn/2. It follows

with probability at least 1 — § that
(1—p)n n 8 n n 8
— 7 I < — — — < — —
‘|s+msy| . ‘_ ,/21og(5), s-ns,|-& ‘ < 1/2log(5>,Vy€{i1},

which completes the proof. O

The following lemma estimates the norms of the noise vectors &;, ¢ € [n], and gives an upper bound of their inner products
with each other and with the signal vector pt.

Lemma B.4. Suppose that § > 0 and d = Q(log(6n/3)). Then with probability at least 1 — 9,

opd/2 < ||&il3 < 307d/2,
(&, €)| < 207 - \/dlog(6n?/d),
(& )| < [|pll20p - \/210g(6n/0)

foralli,i’ € [n].
Proof of Lemma B.4. By Bernstein’s inequality, with probability at least 1 — §/(3n) we have
€113 — opd| = O(a, - /dlog(6n/5)).
Therefore, if we set appropriately d = Q(log(6n/4)), we get
opd/2 < ||&ill3 < 307d/2.

Moreover, clearly (&;, £&;) has mean zero. For any 4,4 with ¢ # ¢/, by Bernstein’s inequality, with probability at least
1 —6/(3n?) we have

(&, &)| < 202 - \/dlog(6n2/0).
Finally, note that (&;, pt) ~ N(0, ||/ /30 5) By Gaussian tail bounds, with probability at least 1 — §/3n we have

(&, )| < [lpll20p - /210g(6n/9).

Applying a union bound completes the proof. O

Now turning to network initialization, the following lemma studies the inner product between a randomly initialized CNN
convolutional filter wfr) (j € {£1} and r € [m]) and the signal/noise vectors in the training data. The calculations
characterize how the neural network at initialization randomly captures signal and noise information.

Lemma B.5. Suppose that d = Q(log(mn/4)), m = Q(log(1/9)). Then with probability at least 1 — 6,

o3d/2 < w3 < 303d/2,

()| < v/2To(12m/5) - ol a2
0 ¢ ~000,Vd

[(wj. &) < 2¢/log(12mn /3) - o0y Vd

forallr € [m), j € {£1} and i € [n]. Moreover,
oollulla/2 < max j - (wii), ) < \/2log(12m/8) - ool

14
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ooopVd/4 < m?x]j . <WJ(»O7?,£i> < 2y/log(12mn/9) - ogo,Vd
re(m !

forall j € {£1} andi € [n].

Proof of Lemma B.5. First of all, the initial weights wl® ~ N (0, 0oI). By Bernstein’s inequality, with probability at least

2,7
1—6/(6m) we have

w212 — 63d| = O(0? - /dlog(12m/3)).

Therefore, if we set appropriately d = Q(log(mn/d)), we have with probability at least 1 — ¢/3, for all j € {+1} and
r € [m],

o3d/2 < ||w)|3 < 303d/2.

Next, it is clear that for each r € [m], j - <w§-02, ) is a Gaussian random variable with mean zero and variance o3 || p/|3.

Therefore, by Gaussian tail bound and union bound, with probability at least 1 — 6/6, for all j € {£1} and r € [m],

. 0 0

3w < [(wi) )] < V/2log(12m/5) - ool -
Moreover, P(oo||p]|2/2 > 7 - <w§02, w)) is an absolute constant, and therefore with the condition m = Q(log(1/4)), we
have

P(ool|psl|2/2 < max j - (w'), ) = 1 = P(oo]|ull2/2 > max j - (w'), )
re(m] relm

n]
. 0 2m
= 1= P(oo|lull/2 > 5 (w)i). )
>1-5/6,
hence with probabili - - (w0 :
probability at least 1 — 0/3, we have oo || p[|2/2 < max,epm) j - (W; 7, p) < /2log(12m/4) - oo | pe][2-

Finally, under the results of Lemma B.4, we have 0,v/d/v/2 < ||&;]|2 < 1/3/2 - 0,V/d for all i € [n]. Therefore, we can
get the result for <w§?27 &) with probability at least 1 — §/3, following the same proof outline as j - (wfr), ). O

Next, we denote SZ-(O) as {r € [m] : (wg,??r,éi) > 0} and S](tr) as{i € [n]:y; =7, (wj(-fl,éi) >0}, € {£1},r € [m]. We
give a lower bound of |SZ.(0) | and |S J(OT)| in the following two lemmas.

Lemma B.6. Suppose that § > 0 and m > 501og(2n/§). Then with probability at least 1 — §,

15| > 0.4m, Vi € [n].

Proof of Lemma B.6. Note that |Si(0)| = 3 AW, &) > 0] and P((wi )y, &) > 0) = 1/2, then by Hoeffding’s

r=1

inequality, with probability at least 1 — §/n, we have

5711 [log(2n/3)
m 20— 2m

Therefore, as long as m > 50log(2n/d), by applying union bound, with probability at least 1 — §, we have

|SZ-(O)\ > 0.4m, Vi € [n].

15
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Lemma B.7. Suppose that § > 0 and n > 32log(4m/§). Then with probability at least 1 — §,

|SJ(OT)| >n/8,Vj e {£1},r € [m].

Proof of Lemma B.7. Note that [S\%)] = S0 1[y; = j] 1[(w\%, &) > 0] and P(y; = j, (w'"), &) > 0) = 1/4, then by
Hoeffding’s inequality, with probablhty atleast 1 — §/2m, we have

log(4m/4) .

[15391/m —1/4] <\ ==

Therefore, as long as n > 321og(4m/J), by applying union bound, we have with probability at least 1 — §,

151 > n/8, vj € {£1},7 € [m].

C. Signal-noise Decomposition Coefficient Analysis

In this section, we establish a series of results on the signal-noise decomposition. These results are based on the conclusions
in Appendix B, which hold with high probability. Denote by &prelim the event that all the results in Appendix B hold (for a
given §, we see P(é'prelim) > 1 — 76 by a union bound). For simplicity and clarity, we state all the results in this and the
following sections conditional on Epyelim-

C.1. Iterative Expression for Decomposition Coefficients

We begin by analyzing the coefficients in the signal-noise decomposition in Definition 5.1. The first lemma presents an
iterative expression for the coefficients.

Lemma C.1. (Restatement of Lemma 5.3) The coefficients ’y( T), pﬁ i P t) deﬁned in Definition 5.1 satisfy the following

iterative equatlons

7;2aﬁ§21’p(0) =0,

=g,
=70 [Zﬂ Wi Giw) = S0 00 (WG )| - Il
’L€S+ €S _
. 1 _ n .
Pl = Efi,i—%-é;‘”-a'« 52, £) - 1€i13 - 1(y: = j),
@+ _ ) T g .
Bj,r’z‘ _Bj’”ﬂ_nm él U(< j'r7 >) ||£l||2 ]l(yl .])a

forallr € [m], j € {1} and i € [n).

Proof of Lemma C.1. First, we iterate the gradient descent update rule (3.1) ¢ times and get

t n
1 0 Ui s ‘
Wi = e 2 2 ot ) ik
s=0 i=1
t n
n s oo
T nm 224( X U/(<W§,2,yili>) S YiYiJ e
s=0 i=1

(®

According to the definition of 7; ;. and p(t)

Js58?

0 ~ (¢ _
Wi = wO gDl >0l €
=1

16
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Note that &; and p are linearly independent with probability 1, under which condition we have the unique representation

t n
77 S S ~
o =m0 o () Gum)) - el - T
s=0 i=1
t
® __ " /(s) (s) N2 . s
pj,r,i——nmga- o’ (wy) &) - I&il13 - G-

Recall 54 = {ily; = v}, S— = {i|y; # Ui}, we can further write

t
U s n I
p =L ZZ@’” o' ((wi s Gum)) - Il + =0 S 0 o ((wi Gapn)) - w3 €y

s=0ieS5 s=01€S5_
Now with the notation ﬁﬁ = p; 2 i ]l(pyz ;> 0), p(t) L= pgti i ]l(p; 2,1 < 0) and the fact E ) <0, we get
. t
—(t /(s .
Pt = g S 7 L 60) 6 1 = ) €2
. t
o=~ o (W) &) NGl - L = ). (€3)
s=0
Writing out the iterative versions of (C.1), (C.2) and (C.3) completes the proof. O]

C.2. Scale of Decomposition Coefficients

The rest of this section will be dedicated to the proof of the following Proposition C.2, which shows that the coefficients in
the signal-noise decomposition will stay within a reasonable range for a considerable amount of time. Consider the training
period 0 < ¢t < T*, where T* = n~poly(e~!,d,n,m), as defined in Theorem 4.2, is the maximum admissible iteration.
Now denote

a :=4log(T™), (C.4)
B = 2max{|(wii), )], | &)1}, (k)
SNR := ||pl|2/(0pVd). (C.6)

By Lemma B.5, /3 can be bounded by 40 - max{+/log(12mn/s) - o,v/d, \/log(12m/4) - ||p||2}. Then, by Condition 4.1,

by choosing a large constant C, it is straightforward to verify the following inequality:

max {5, SNR\/eQI()gC(lGn/é)na, 5\/log(6;2/5) } < 1—12 (C.7)
Proposition C.2. (Partial restatement of Proposition 5.2) Under Condition 4.1, for 0 < t < T*, we have that
e 27,p§021 =0 (€8)
0<5), <a (C9)
03 0, > 510y B0 5 g, (€.10)

and there exists a positive constant C’' such that

0 <) < 0Fa, (C.11)
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forallr € [m), j € {£1} and i € [n], where 7 := n - SNR?. Besides, 'y( ) is non-decreasing for 0 < t < T*.

We will use induction to prove Proposition C.2. We first introduce several technical lemmas (Lemmas C.3, C.4 and C.5) that
will be used for the inductive proof of Proposition C.2.

Lemma C.3. Under Condition 4.1, suppose (C.9), (C.10) and (C.11) hold at iteration t. Then, for allr € [m], j € {£1}
and i € [n),

32log(6n/0)

(Wl = w2 ) = 5 7{0)] < SNRy [ =22 2 o na, (C.12)
log(6n2/6 .
[(wit) —wi) &) — ") | <5 %nam#yi, (C.13)

log(6n2/d .
[(w Et) W(OT)’ i) *ﬁz!_ W no, j = y. (C.14)

Proof of Lemma C.3. First, for any time ¢ > 0, we have from the signal-noise decomposition (5.1) that

t 0 t
(wit) —wi) m) =5yl + ZW\@HQ (&, 1 +me,||€z||2 (&, 1)

According to Lemma B.4, we have

n

% (& +ng||sy||2 i, p)

n

Z §t3wfu|a/u2 (€, o |+Z|p;> gtz - 1€ )]

i'=1

]Tz’
8log(6n/0)
SNR\/7/<ZIP§%|+ZPW,>
< SNR 32 log((16n/5) na,

where the first inequality is by triangle inequality, the second inequality is by Lemma B.4, the equality is by the definition of
SNR = ||p||2/(0V/d), and the last inequality is by (C.9), (C.10). It follows that

32log(6n/d
|<W§'t3 g(or)yll) j'%(-t,z\ <SNR 3210g(6n/9) )na
’ ' d
Second, for j # y; and any t > 0, we have p5 Z , = 0,and so
n n
t - _(t -
(wit) —wil) &) = (&) + Y Py llEnlla® - (6 &) + Z P i llz? - (i, &0)
i'=1 i'=
=l i (1, €:) +Z¢jp§t31 l€rlly® - (&, &) +§pw||& N2? - (&w &),

Now we look at

G el (&) + D7 o0 Enlls? - (€ &) + > B €177 - (&o s €0)

3,74’

i £ i #£i

18
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< pllellz® - s &1+ D100 L+ 75 DlIEa Nz - (€, €6
il i
_ log(6n2/6) _
< vy llally opy/210g(6n/8) + 4y | === (DR + D 10l |

i i i i

_1 /2log(6n/6 log(6n2/d =
— SNR™! %vﬁ? +4 % PRI I
il i i Fi

2 2
< SNR 8C7 log(6n/0) log(6n/9) no + 44/ 710g(6n /%) na
d d
/ 2
<5 7log(6;z /9) nao,

where the first inequality is by triangle inequality and 'y](t,) > 0; the second inequality is by Lemma B.4; the equality

is by the definition of SNR = ||p||2/0,V/d; the second last inequality is by (C.10) and (C.11); the last inequality is by
SNR < 1/v8C"2. Tt follows that for j # y;

(t) (0) : log(6n2/4)
|<Wj,r -w; &) — B§21| <5 B ona
Similarly, for y; = j, we have that B;tli — 0 and
t 0 . ¢ _ 4 B )
(w8 w6 = GOl )+ 3 € 5 €+ D 0 €3 (€

ir=1 ’

/=1
=\ A (&) + DB Sl (€ &) + D o0 llEnllZ? - (€, &),

J,m,8’
i'#i i i

and also

\j el &)+ 3B g 172 (€ &)+ P lEnllZ? - (€0 &)

g,r,i’
by i’ #i
_1 [2log(6n/4) log(6n2/4) =
< SNR 1 ﬁ75t2 +4 —a Z |p§f7)’,i’| + Z ‘B;?,ﬂ'
i’ i i/ #£i

2 2

< SNR /8C 10g(6n/5)na+4 flog(6n /d)na

d d
2

< o [O,,

where the second last inequality is by (C.9), (C.11); the last inequality is by SNR < 1/+/8C"2. Tt follows that for j = y;

log(6n2/6
o - i g — 2 < 5 EEL

which completes the proof. O

Lemma C.4. Under Condition 4.1, suppose (C.9), (C.10) and (C.11) hold at iteration t. Then, for all j # y;, j € {+1}
and i € [n], F;(W",x;) < 0.5,
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Proof of Lemma C.4. According to Lemma C.3, we have

m

FW x0) = = S lo((wl, ss)) + o (w1, €0)
r=1

32log(6n/9) lo 6n2 S R
§5ma><{l< O G, (w') €3, SNR\/T/ log(6n2/0) . ’O,w}
2
§5max{6,SNR 32log 6”/5 log( 6n log(6n2/0) . . }

< 0.5,

where the first inequality is by (C.12), (C.13) and (C.14); the second inequality is due to the definition of j; the third
inequality is by (C.7). O

Lemma C.5. Under Condition 4.1, suppose (C.9), (C.10) and (C.11) hold at iteration t. Then, it holds that

(w®) &) > —0.25,
(wit) &) <o((wl), &) < (wil) &) +0.25,

foranyi € [n].

Proof of Lemma C.5. According to (C.14) in Lemma C.3, we have

_ log(4n2/5
< 3(/?,7’76 > < (0)r>£’b> + pg(/f)rl —on %a
log(4n?
> gy 084%/9) |
d
> 0.25,

where the second inequality is due to p( ; > 0, the third inequality is due to 8 < 1/8 and 5n+/log(4n2/d)/d - o < 1/8.

For the second inequality, LHS holds naturally since z < o(z). For RHS, if <Wyi77«, &) <0, then
(< yl,r7£1>>: S < y r7£1>+025

If (wyr, &) > 0, then
0(<W$),m€i>) = <Wz(;t7)r’€z> < (W?S?T,£Z> + 0.25.
O

Next we present an important Lemma C.7, which ensures the logits é;(t) for different ¢ € [n] are balanced. As we will see

later, this guarantees the coefficients 7](? are monotone with respect to ¢ despite label-flipping noise, which is essential for

the proof of Proposition C.2. In preparation, we first present a supplementary lemma.

Lemma C.6. Let g(z) = /(z) = —1/(1 4 exp(z)), then for all zo — ¢ > z1 > —1 where ¢ > 0 we have that

exp(c) _ g(=1)

4 9(22)

< exp(c).

Proof of Lemma C.6. On one hand, we have

1+ exp(22)

< 1 ) =
T op(ar) = max{1,exp(ze — 21)} = exp(c),

20



Benign Overfitting in Two-layer ReLLU Convolutional Neural Networks

while on the other hand, we have

1+exp(z2)  exp(—=z1) +exp(z2 — 21) < exp(—z1) + exp(c) - exp(1) + exp(c) - exp(c)
1+ exp(z1) exp(—z1) +1 ~ exp(—z)+1 T exp()+1 T 4

Lemma C.7. Under Condition 4.1, suppose (C.9), (C.10) and (C.11) hold for any iteration t' < t. Then, the following
conditions hold for any iteration t' < t:

1LY, [p;t )M ﬁ;k)r w| < K foralli,k € [n].

2. yi - fOW®) x) — . - F(WE) x) < C) forall i, k € [n),

3. é;(t/)/ﬁgt/) < Cy = exp(Ch) forall i,k € [n].

4. Si(o) C Si(t/), where Sft/) ={re[m]: (wi(fb)r, ) > 0}, and hence |Si(t/)| > 0.4m forall i € [n].

5. S(O) c S where S( )= {ien]:y=j,(w ) i) > 0}, and hence |Sj(t;)| >n/8forall j € {£1},r € [m].

j"" j’l”

Here we take k. and C1 as 3.25 and 5 respectively.

Proof of Lemma C.7. We prove this lemma by induction. When ¢’ = 0, the fourth and fifth conditions hold naturally, so
we only need to verify the first three hypotheses. Since according to (C.8) we have ﬁ§0) . = 0 for any j, r, 7, it follows that

S [pg??r i p;Z)T k] = 0 forall 4, k € [n], and so the first condition holds for ¢ = 0. For the second condition, we have
for any i, k € [n]

yi - FWO, ;) — yi - FWO xz)
= F, (W, x;) = F_y, (W %) + Py, (WD)

Yi —yi? v X Xi) =

< F (WO x,) + F_y (WY x;)

—Yk’

Fyk (W(O) Xi )

Yk 7

:—Z )+ ({0 6] 10 Do k) + o 69)

32551/3@1,

where the first inequality is by the fact that F (W;O), x;) > 0 foralli € [n],j € [m], the second inequality is by the
definition of g in (C.5), while the third inequality follows from (C.7). Finally, using the second condition, the third condition
follows by
g{(o)
g < P (v SWx0) =y f(W. ) < exp(Ch),
k

according to Lemma C.6.

Now suppose there exists t < t such that these five conditions hold for any 0 < t' < t — 1. We aim to prove that these
conditions also hold for ¢ = ¢.

We first show that, for any 0 < ¢/ < t, y; - (W) x;) =y - (W) x;.) can be approximated by 3™, [py )M ﬁ;tk )r i)

21
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with a small constant approximation error. We begin by writing out
yi - FW x0) — i (W, )
=y Y i FBW x)—ye Y i F(W x)

je{£1} je{£1}

:F—yk(w(—ty)k’ k) — yl(W(t) Xi)JFFyq,(Wz(;ti,)in) (WZ(th)7 k)
1 m R ,
:F_yk(W(_ty)k, k) — F_yl(W(_ty{ ')+EZ[ (<w§i)7,yl 1) + o ((wit) &))]
r=1
1 m , R
7EZ[J(<wg(;i,)rvyk’ﬂ>)+g(< &) (C.15)
r=1
/ 1 m R R

= F, (W) x) = P (W) x, %Z Wi G ) — (Wi G - a)]

Iy

Iz

£ ol(wl ) )~ o((wll), €0)

r=1

I3

where all the equalities are due to the network definition. Next we estimate [, I and I3 one by one. For |I;|, we have the
following upper bound according to Lemma C.4:

L] < 1Py (WU i)l + 1Py (W) )| = Foy (W) ) + Fo (W) i) <1 (C16)
For |I3|, we have the following upper bound:
1 & 1 &
1l < {1 S w) D ot}

r=1 r=1
§3max{|< O G- i w2, i )] 241 SNRy 2B o

~ 32log(6n /6

< 3max {ﬁ, C'~Ja, SNR (yg((in/)noz}

<0.25,

where the second inequality is due to (C.12); the second inequality is due to the definition of 8 and (C.11); the last inequality
is due to Condition 4.1 and (C.7).

For I3, we have the following upper bound

1 m
I3 = E Z 'E/t)r? ’L (( yk r?&k))]

Z yk 7’6 < yk7)7-7€k>:| + 025

I /\

(C.18)

" log(6n?/4) "

{pyﬂ ; pyk w10 o+ 0.25}

1 o) (t)
mz pyl,rz pyk7k} +O5’

|/\
s»zM

| /\

22
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where the first inequality is due to a((wg(fi/}, &) < <w7(f ) i) + 0.25 and U(<W:(yi/?r, &) > <W7(Ji/?r, &) according to
Lemma C.5; the second inequality is due to (C.14) in Lemma C.3; the last inequality is due to 54/log(6n2/d)/dna < 1/8
according to Condition 4.1. Similarly, we have the following lower bound

I3 = o (Wil &) = o({wii ) &)

3=
NE

3
Il
_

v
3=
Ms

[< y7 ra€z> < Yk s ra£k>] —0.25

1
Il
-

ST (C.19)
log(6n
|:pét1 P 10 e~ 0.25}

¥
3=
Ms

%
Il
_

(B i = Py ] = 05,

vV
3=
i1

where the first inequality is due to o((wl(fi:),«7 &) > (Wg(fl }, ;) and 0(<w§,i,)r, &) < (Wf,i,)r, &k) + 0.25 according to
Lemma C.5; the second inequality is due to (C.14) in Lemma C.3; the last inequality is due to 54/log(6n2/§)/dna < 1/8
according to Condition 4.1. Now, by plugging (C.16)-(C.18) into (C.15), we get

, 1 &
v FOWx0) =y (W 30) < D]+ 1Bl + I < — 37 [y )5 = By ] + 175
r=1
, lﬂ’l N
yi FOW50) =y SOW 30) = —| L = Bl + I > — >[5 =70 0] = 175,
r=1

which is equivalent to

: 1
t (")
Yi - f(W( ) ) Yk - f(W( ) Xk E 2_; py“T i pyk T, k] < L.75. (C.20)

With this, we see that when the first condition holds for ¢/, the second condition immediately follows for ¢’.

Next, we prove the first condition holds for ¢’ = . We first write an iterative update rule for > | [ﬁg) ﬁék) »x)- Recall
that from Lemma 5.3 that

—(t+1 (¢ n t t .
P = = =0 o (wil€)) - 1y = D&

forall j € {£1},7 € [m],i € [n],t € [0,T*]. Also recall the definition of SZ-(t) ={rem]: (wz(,?r,é'i) > 0}, it follows
that

- t+1 _(t+1 < t _(t U t t t t
D [Pyt = i) = D P = Pl sl = - (1827167 - 1&l15 — 157167 - 1€11),
r=1 r=1

foralli,k € [n]and 0 < ¢ < T™*. Now we consider two separate cases: » .-, [ﬁ(?_l,)—ﬁ(?_l)] <09xand )" [p (-1 _

~ Yirrsi o Pyp,r.k Py;,ri
_(t-1)
Pye vk > 0-95.

For when )" | [p'E/tL,'rlz) — ﬁgtk_rlm < 0.9%, we have

o1 Pg)m ﬁ;m] =
r=1

Ms

(- U 1) (- 1) -
el (il AR 1 R E A TA T )

py1 Y3 kT K

r=1

1) (-1 n i— -1
T e i I S Il Gt VA P P

r=1
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m

i-1) (-1 n
SZ pi(;“m)*/);”?e] +E'H&‘H%

<09« + 0.1k

:Kx,

where the first inequality is due to 4(?—1) < 0; the second inequality is due to |Si(t~_1)| < mand 762(;_1) < 1; the third
inequality is due to the assumption in this case and 7 < C~! - no,,?d~" from Condition 4.1.

(t-1) _(t—1)

On the other hand, for when > [py“T i~ Py ik

| > 0.9x, we have from the (C.20) that

7 z 1 O (- i
. =1 o) . f(WED IR ARSI
yi - FOWETD x) — i - (W Xpe) = — Y " [Py, i = Pyr k) — 175
=t (C.21)

where the second inequality is due to x = 3.25. Thus, according to Lemma C.6, we have

g/(thl)

[j(t N < < exp (yk f(W(t 1 VXE) — Yi - f(W(?_l),xi)) < exp(—0.36k).

Since we have \Si(t*l)| < m and |S,(ct71)| > 0.4m according to the fourth condition, it follows that

’S(?fl) ‘f /(T—1)

2

" < 2.5exp(—0.36x) < 0.8.
’ ‘f (t-1)

According to Lemma B.4, under event &;clim, We have

613 — d- 02| = O(o2 - /dTog(6n/8)), Vi € [

Note that d = Q(log(6n/d)) from Condition 4.1, it follows that

S TRIEE) - gl < 1S4 - .

Then we have
m

D [P = Pl < D2 ]~ 2 i) <
r=1

r=1

which completes the proof of the first hypothesis at iteration ¢’ = t. Next, by applying the approximation in (C.20), we are
ready to verify the second hypothesis at iteration ¢. In fact, we have

—~ 1 m
v FOW D) =y (WO x0) < = ST [0 =) ] +175 < O
r=1

where the first inequality is by (C.20); the last inequality is by induction hypothesis and taking « as 3.25 and C as 5. And
the third hypothesis directly follows by noting that

E’(;)
S = o (e FOWD ) — i WD %)) < expl(C) = Co.
k
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To verify the fourth hypothesis, according to the gradient descent rule, we have

< yl,ra£l>:< @(f;,r17 l nm th Y U g(/i,rl)7yz I’L>)<§Z’N7€z>
w(t= 1 E £
- Zf (D €0)) - (€, &)
= (wii D &) - Zﬂif‘”v« F0 God) - (s &)
—%-é“” o' (w0 &) 163 — L ST o (WY 6)) - (6, 6
/#1
-1 (t-1) 2 n (t—1) i—1
=(w z(h,r),&> L ||§i||2—%.;gi, o' ((w z(/m)’&'>)'<£i"€i>
14 1 1

Is

n = (t-1) o (w1 7 ~
- i s Yi’ N M Si)
v > 4 o' ((wWy, s Gir ) - (G s &)

/=1

Ig

for any r € Si(tw_l), where the last equality is by <wg(j:,rl), ;) > 0. Then we respectively estimate Iy, I'5, [s. For Iy,

according to Lemma B.4, we have
—1, > |1V 62d)2.

For I, we have following upper bound

151 < 1Y) o (w0, €0)) - (0, €5)]

i £

<SSV (g 0]
i'£i

< ST Y] - 202 - \/dlog(6n2/3)
i

< ol 202 - \/dlog(6n2]5),

where the first inequality is due to triangle inequality; the second inequality is due to o/ (z) € {0, 1}; the third inequality is
due to Lemma B.4; the last inequality is due to the third hypothesis at iteration ¢ — 1.

For I, we have following upper bound

6] < Zw“ V1o (WD Gum) - (@ s €0)]

/=1

< Zw“ V1 @, €3)]
/=1

< ST V1 - 2oy y/210g(61/9)
/=1

< ol V] ullaop /2 T0g(6n/5),

where the first inequality is by triangle inequality; the second inequality is due to o/(z) € {0,1}; the third inequal—
ity is by Lemma B.4; the last inequality is due to the third hypothesis at iteration t—1. Since d > max{32C%n
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log(6n°/6),4Con|| |0, \/21og(6n/0)}, we have —I4 > max{|I5|/2,|Is|/2} and hence —I; > |I5| 4 |Is]. It follows
that -
<Wg(;i,r7£2> > <Wg(,/t1,_rl)7£1> >0,

for any r € Si(?_l). Therefore, Si(o) C Si(tN_l) - Si(t). And it directly follows by Lemma B.6 that |Si(t~)| > 0.4m, Vi € [n],
which implies that the fourth hypothesis holds for ¢ = ¢. For the fifth hypothesis, similar to the proof of the fourth
hypothesis, we also have

) t—1 n t—1 1
<W§‘2’ i) = <W§‘fr &) - o ‘gz('t ollgl13 - Zé(t Vo Wg(,f V&) (o &)
i £

nm Ze“ Vo (WD o) - Gems )

for any ¢ € Sj(-if where the equality holds due to ( (t 2 ,E,) > 0 and y; = j. By applying the same technique used in
the proof of the fourth hypothesis, it follows that

(wih &) > (wl &) >0,

for any i € S Y Thus, we have S(O - S(t D¢ S . And it directly follows by Lemma B.7 that |Sj(22| > n/8, which
implies that the fourth hypothesis holds for t’ =t Therefore, the five hypotheses hold for ¢’ = t, which completes the
induction.

O
Now we are ready to prove Proposition C.2.
Proof of Proposition C.2. Our proof is based on induction. The results are obvious at ¢ = 0 as all the coefficients are zero.

Suppose that there exists 7' < T such that the results in Proposition C.2 hold for all time 0 < ¢ < 7" — 1. We aim to prove
that they also hold for ¢ = T'. Note that according to Lemma C.7, we also have for any 0 < ¢ < T — 1 that

DDy o P;?Tk] < kforall i,k € [n].

1 py,,"‘l
2. yi - (WO x;) —yp - FIWH %) < C forall i, k € [n],
3. E;(t)/égt) < Cy = exp(Cy) for all 4,k € [n].

4. SZ-(O) - Si(t) for all i € [n], where Si(t) ={rem]: <wy“r,£z) > 0}, and hence |S )| > 0.4m, for all ¢ € [n].

W

. Sj(?,? C S](tz , where Sj(tz ={ie€n|:y =74 (w jw!;}) > 0}, and hence |S(t2| >n/8forall j € {£1},r € [m].

We first prove that (C.10) holds for t = T, i.e., Bﬁi > —8 — 10/log(6n2/8)/d - no for t = T and any r € [m],
j € {£1} and ¢ € [n]. Notice that B§'t7)“i = 0 for j = y;, therefore we only need to consider the case that j # y;. When

BE-T;II) < —0.58 — 54/log(6n2/4)/d - na, by (C.14) in Lemma C.3 we have that

log (612 /8
(w; (T 1)7&)_ ]Tml)—l—< jr,€i>—|—5 %na<0,
and thus
A = o0 LT g (w0 8 > 0) - 1w = —))lIEl3
nm
(F-1)
7,70
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2 10RO,

where the last inequality is by induction hypothesis. When Bj(,i’tl) > —0.58 — 54/log(6n2/0)/d - na, we have

(T) _ )(T-1) . N (71 (T-1) ¢ Ay = — )€ |2
Bj,r,i Bj,r,i +nm ‘€'L ]]'(<WJ,T 7£Z> 20) ]l(y’b .7)H£Z||2

2 3no2d
> —0.58 — 54/ log(6r2/9) ., _ 1%
d 2nm
1 2
055 — 10, /Mm
1 2
—B — 104/ 7og(6§ /9) na,

where the first equality is by 4”*1) € (=1,0) and [|&;|3 < (3/2)07d by Lemma B.4; the second inequality is due to
5/log(6n?/8)/d - na > 3no2d/2nm by the condition for 7 in Condition 4.1.

v

v

Next we prove (C.9) holds for ¢t = T. Consider
169 :

1+ exply: - [F (W, x,) — o (WY, x,)]}
exp{—yi - [F41 (W], %) = FLi (WY )]}
exp{_Fyi (Wy(j:)v Xi) + O5}a

(C.22)

AN VAN

where the last inequality is by F); (Wét), x;) < 0.5 for j # y; according to Lemma C.4. Now recall the iterative update rule
of —(t) .
Pjr.i:

U .
) =0 = e O (w8 2 0) - 1 = )&l3.

G i T m g

Let t; . ; be the last time ¢ < T™ that ﬁi’? < 0.5a. Then by iterating the update rule fromt =¢; ., tot =T — 1, we get

3

(T —(tj,mi n tjri by 1
P = Pyii) = nm S (WD &) > 0) - 1y = 5)|€l3

I7

N ) () = 2
= D0 (w6 2 0) - 1y = )&

tjwn1',<t<f

(C.23)

Iy
We first bound I; as follows:
[I7] < (n/nm) - [|&]13 < (n/nm) - 3o7d/2 < 1 < 0.250,

where the first inequality is by Z;(t’ i) e (—1,0); the second inequality is by Lemma B.4; the third inequality is by
n < C~'-n/(o%d) from Condition 4.1; the last inequality is by our choice of ov = 4log(T™*) and T* > e.
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Second, we bound Ig. Fort;,.; <t < T and y; = j, we can lower bound the inner product (w ( ,), 1) as follows

log(6n?/5
(060 2 (w2, &)+ 730, — oy E0 D
C24
> 058+ 050~ 5 EEQ?ZQna (€29

> 0.25a,

where the first inequality is by (C.13) in Lemma C.3; the second inequality is by ﬁgtll > 0.5« and ( W, €l> > —0.503
due to the definition of ¢;,; and §; the last inequality is by § < 1/8 < 0.1a and 5+/log(6n?/d)/d - na < 0.2 by
d > C - n?log(nm/d)(log T*)? from Condition 4.1. Thus, plugging the lower bounds of <w(-t) &) into I gives

7,77

|IS| S Z %'exp(_ (< jr’€l>)+0'5)'0/(< jr7£1>) (y _.])”EIHQ

tj)7-yi<t<'1~—'

(T —tj,7 — 1 302d
< T’( 27 ) . exp(_025a) . Jp

nm

2nT* 302d
< . —1 T*)) - p
< 2T exp(— log(T")) - =

2n 30 d

= . <1<0.25q,
nm 2
where the first inequality is by (C.22); the second inequality is by (C.24); the third inequality is by o = 4 log(7T™*); the fourth
inequality is by < C~'n?*m/log(n/8)o, 2d=3/* < nm/(302d) based on the conditions for 1) and d in Condition 4.1;
the last inequality is by log(7™) > 1 and o = 4log(T™). Plugging the bound of I7, I into (C.23) completes the proof for p.

Next, we prove (C.11) holds for ¢t = T'. Recall the iterative update rule of 7](-?, we have

n Ui T-1 T-1 (T-1
'Yj( r) /yj(}r B % . [ Z 4( )J/(<Wj,r 7y1 ’ Z E/( ) / JT )’yl >) ) HN”%
€S, €S

We first prove that the coefficients 'y( T) > W(T Y and hence 7( T) > 7( ) = 0 for any j € {£1},r € [m]. Recall the

definition of Sy = {ily; = i}, S— = {z\yl 7£ Ui}, S1 = {z\yl =1} and S_1 = {ily; = —1}. We will consider the

following two cases separately: ( 57; . @) > 0and (w 57; 2 w) <0.If (w (?; D, @) > 0, then
g/(fq) 10 (T=1) ~ /(T— D, ' T 1) ~
- Z i g (<Wj,r y Yi - Z E yl : /"’>)
€S, i€S_
:_ZEI(T D15, - (w! (Tl ZéTl)ﬂ - w! (T D ) > 0)
€S, i€S_
DI EED D
ieS+ﬂS1 i€S_NS_1

> |Se 8| min \W D8-S |- omax 1),

where the second equality is due to ég(T_l) <0.If <Wl§-,:,;_1), @) < 0, then with a similar reasoning we have
T-1 T-1) ~ T-1 T-1
=3 AT W Gy + 3 AT (W G )
i€S4 i€s_
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== 2 TG ) =0+ 3 TG w2 0)
€S+ i€S_
- Z |€;(T71)|_ Z |€;(T71)|
i€SLNS_ i€S_NS;
>18p NSl _min (677|520 8] max 160V,
+NS- i€S_NS,

According to Lemma B.3 and the third statement from Lemma C.7 that K;(Tfl) / K;C(Tfl) < C9,Vi, k € [n], under event
Eprelim» We have

S+ N Sy - minges, s, 6] Sy 0S| (L=p)n—/2n10g(8/3)
15_ N1 S_1| - maxjes_ns_, [TV CelS-NSa] = Co- (pn+ /2nlog(8/9))
1S4 NS minges, s, [0 L 185084] (A =p)n—/2nlog(8/9)
|S- N S| - maxies_ns, (67D C25-NS11 T Co- (pn+ /2nlog(8/9))

Aslongasp < 1/[2(1+ Cs)] and n > 8(Cq + 1)?log(8/6), we have

|S+ N S1| - minses, ns, |€/(T71)| IS+ N S_1| - minjes, ns_, |£ (T~ 1)|
1S_ 1 S_y| - maxies_ns_, [TD] T 1SC N 81| maxies_ns, |67V
And it follows for both cases <w§-’7;71), wp) > 0and (wgfl), @) < 0 that
/D > ,(T-D), (C.25)
and hence
T 0
7]( D> %(-,r) =0

For the other part of (C.11), we prove a strengthened hypothesis that there exists a i* € [n] with y;« = j such that for
1 <t < T* we have that

Y By ie < C'nllpll3/o3d,
and ¢* can be taken as any sample from set S and C' can be taken as 2C5.
Recall the update rule of fy ) and p(t) we have

T T—1 n T—1 T—1) ~ T—1 T-1) ~
1P = >W[Zé;‘ (w5 2 0) = S 6T AW G ) > 0)| - w3,
i€S+ 1€S_

A =500 LT (W T g > 0) - 1y = )63

7,ry nm

According to the fifth statement of Lemma C.7, for any * € Sj(-g,) it holds that j = y;+ and <w§t2, &;+) > 0 for any
0<t< T-1. Thus, we have

(T (T-1 n T-1 —(T—1 T-1)
p;,r?i* = p;,r,i*) - 7m /( ) HSZ || j rz*) 7m El( 2d/2
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(T)

For the update rule of Vi We have
Z E/(T 1)]1 (T 1) i Z E/(T 1)]1 (T 1) i Z N(T— 1)| ||§
€S €S i=1

< Con- 1TV w3,

where the first inequality is due to triangle inequality; the second inequality is due to the third statement of Lemma C.7
where C' is a positive constant. Then, we have

(T) (T-1) P T=1)) e
i < max 'YJ{ 702” Vi* |- [lpell3 _
—(T) ZT-07 T

2
Py i i opd/2

ST-1)"  o2d o2d
i+

(T-1) 2 2
M{%r 2@nub}<2@mmm

where the last inequality is by % ” 1)/p] it ) < C'y = C'nl|p||3/02d and C” can be taken as 2C5, which completes the
induction. O

By then, we have already proved Proposition C.2. Then, according to Lemma C.7, next proposition directly follows.

Proposition C.8. Under Condition 4.1, for 0 < t < T*, we have that

1> [pl(fl)m p;tk)Tk] < kforallik € [n].

2. yi - FOWW,x;) =y - f(WW,x) < C) forall i, k € [n],

3. 00 10D < €y = exp(Cy) for all i, k € [n).

4. Si(o) C Si(t), where Si(t) ={re[m]: <W7(Jt)r,€2> > 0}, and hence \Si(t)\ > 0.4m for all i € [n].

5. S’(O C S] 7, where Sj(tr) ={i €[n]:y;=j,(w, T,&} > 0}, and hence \ \ >n/8forall j € {£1},r € [m).

Here k and C can be taken as 3.25 and 5 respectively.

D. Decoupling with a Two-Stage Analysis

We utilize a two-stage analysis to decouple the complicated relations between the coefficients WJ( 2, p§ 3 ; and p(t) Intuitively,

the initial neural network weights are small enough so that the neural network at initialization has constant level cross entropy
loss derivatives on all the training data: Zi(o) =y - F(W© x;)] = ©(1) for all i € [n]. Motivated by this, we can
consider the first stage of the training process where 6/(0) = ©(1), in which case we can show significant scale differences
among fy]( 7) , p§t7) , and p(t) Based on the result in the first stage, we then proceed to the second stage of the training process
where the loss derlvatlves are no longer at a constant level and show that the training loss can be optimized to be arbitrarily
small and meanwhile, the scale differences shown in the first 1earn1ng stage remain the same throughout the training process.
Recall that we denote o = 4log(7™), 8 = 2max; ;. {|(w;, T,u)\ [(w; T,&)\} and SNR, = ||p|2/(c,V/d). We remind
the readers that the proofs in this section are based on the results in Section C, which hold with high probability.

D.1. First Stage

Lemma D.1. If we denote
n-SNR? =7,

then there exist

T = anflnmo];Qd*l,Tg = C’47771nm0p*2d71

where C3 = ©(1) is a large constant and Cy = ©(1) is a small constant, such that
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. ﬁgj;l*) > 2 forany r* € S( ) = ={reml: <w§??r,£i> >0}, 5 € {£1}andi € [n) withy; = j.
* max; , vj(tr) =0®)forall0 <t <T.
* max;, |p( | = max{O(y/log(mn/d) - coo,V/d), O(n+/log(n/8) log(T*)/Vd)} forall 0 < t < T;.

* min; , vj(fr) = Q) forallt > Ts.

* max; , pg T,lz =0(Q) foralli € [n].

Proof of Lemma D.1. By Proposition C.2, we have that B§'t7)"i >—0—10n WC& forall j € {£1},r € [m],i € [n]
and 0 < t < T™*. According to Lemma B.5, for 5 we have
0 0
8 = 2max{|(wiZ), w)l, [(w), &)}
< 2max{+/2log(12m/3) - oo || |2, 2+/log(12mn/8) - oo,V d}
= O(y/log(mn/3) - 5oo,V/d)

where the last equality is by the first condition of Condition 4.1. Since B;ti ; < 0, we have that

max |p () | = max — (t)
7,70 *JT" 7,70 *J’ )

2
log(4;”t /9,

= max {O( log(mn/d) - Uoop\/g),O(\/log(n/é) log(T™) n/\/&)}

<p+10

Next, for the growth of w;fr), we have following upper bound

D =4 - L [Ze’“)' Wi G m) = > 600 (W), 5 >>]-|u|§
i€St i€S_
n
_ A1) n /(t) ) ~ 2
—’Yj,r—%';@ o' (W B m) 2
(t) 2

n
<A+ a3,

where the inequality is by |¢’| < 1. Note that 7](02 = 0 and recursively use the inequality ¢ times we have

t nt
Y < 3. (D.1)

Since n - SNR? = nl|p||3/02d = 7, we have
T, = Con~ 'y 2" = Can~ 'l

And it follows that
t
) < ||u||2 < L3 < oA,

forall 0 <t <Tj.
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For p( ) recall from (5.4) that

3,700

_(t+1) _ (1)
p] % 7,70

D (Wi €))Ly = 5) &3,

o
nm
According to Proposition C.8, for any r* € Si(o) ={r € [m]: <wy“r,£z) > 0}, we have <Wz(/i)77‘*’£i> > 0 for all
0 <t <T™ and hence

St () n /(t) 2
Pyirei = Pysrei nm Ay 1€:113-
Note that ﬁgj?r* . = 0 and recursively use the equation ¢ times, we have

t—1
—(t n s
R LA 1]
s=0

For each 4, denote by T(i) the last time in the period [0, 7} ] satisfying that max; , | pﬁl\ < 2. Thenfor0 < t < T(i),
max]1{|pjm| IpY) |} = O(1) and max; . yj(tz = O(1). Therefore, we know that F_;(W® x;), F,{(W® x;) =

g,

O(1). Thus there exists a positive constant C' such that 74(1‘/) >Cfor0<t¢t<T, fi). Then we have

2
p(t) > C'I?O'pdt
R 2nm

()

Therefore, .. ; will reach 2 within

T = anflnmcr;Qdfl

iterations for any r* € Si(o), where C3 can be taken as 4/C.

Next, we will discuss the lower bound of the growth of 'y( ) For ﬁy)”l, we have
2
) _ o) _ ) ® ) O Uit
Pjri _pj,r,i_nm.gi U(<er7 1>)]1( )||€lH2<pjrz+ H€1||2— ]r7,+ omnm ’

where the first inequality is by —¢; € (0,1) and ¢’ € {0, 1}; the second inequality is by Lemma B.4. According to (D.1)
and ﬁg T)l = 0, it follows that

o 3nopdt )

Piri S oo Vi S ||u||2 (D.2)

Therefore, max; ;. ; ﬁgtzz will be smaller than 1 and %(tz smaller than @(n||u||§/012,d) = O(n-SNR?) = ©(7) = O(1)
within

To = Cyn~ 1nmap 2q-1

iterations, where C4 can be taken as 2/3. Therefore, we know that F_; (W®) x;), F\ 1 (W® x;) = O(1) in [0, T3]. Thus
there exists a positive constant C' such that 74(:&) >(Cfor0<t<Ts5.

Recall that we denote {i € [n]|y; = y} as S,,. For the growth of ’y(t) if ( 52, u) > 0, we have

t+1 t Ui t t t t
= - nm-[ze;“a' (Wit B ) = D 60 (il B )| - sl

i€SL €S-
t n t
S 1D SR LD S R >
’i€S+ﬁSl 1€S_NS_1
n
>+ L (0184 N S| — 5= NS l) - Ilsli3.

nm
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And if (w ](tT), p) < 0, we have

t+1 t n t t
Ve N D DA SR N

i€5L NS, i€S_NS;

>4 4 777n (1S4 N S_1| = [S— N Sy) - [laell-

According to Lemma B.3, under event &;clim, We have

S+ 05| S nSaf (I —p)n—/2nlog(8/)

IS_NS_1|” 1S-NSi T pn+/2nlog(8/8)

1S4 184,185 N S1] > (1= p)n — v/2nTog(8/9).

As long as p < C'//6 and n > 72C~21og(8/4), it follows that

S NSy [S¢ NS
[S-NS_1]” |S- NSy
|S+051|,|S+QS,1| 2”/4

>2/C,

Therefore, we have

1) 5 @, On n, On 2 o (D)

’VJT‘ —,yj,r—’— 29m |S+ﬁS 1| ||IJ’||2 >ryjr 8m ||IJ‘||2) 1f< j?’"l'l'> O
t+1 t Cn t Cn . t

) =) L[S NSl 2 0+ Sl i (wl) ) <.

Note that %(0) = 0, it follows that

O Cllullzm‘ (o) o CCanllp|3

. = .SNR?) = O(9).
7],7“— 8m 7T — 8Ugd C—)(n S R‘) 9(7)

Note that we have proved (C.25) in Lemma C.2 that 'y](? is increasing for 0 < ¢t < T, thus we have

ih = 0@3)
for 75 <t < T*. And it follows directly from (D.2) that

3no, 24T, 3C
T e B A OO N

_]’I"Z — 1575

Conm 2

which completes the proof.

D.2. Second Stage

By the signal-noise decomposition, at the end of the first stage, we have

T 0 Th) T
wiit = w4y +Z P! +pr1)

P 2 H&M Ham

D4

D.5)

(D.6)

for j € [£1] and r € [m]. By the results we get in the first stage, we know that at the beginning of this stage, we have the

following property holds:
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. ﬁ;j;l*) > 2 for any r* € S(O) ={rem]: <w$?r,£i> > 0},j € {£1}andi € [n] withy; = j.
* max;,; |B§7;12\ = max{O(y/log(mn/s) - ogo,Vd), 0 (n\/log(n/s) log(T*)/Vd)}.
« ) = ©(F) forany j € {£1}, 7 € [m)].

where 7 = n - SNR?. Now we choose W* as follows

n

wi, = wi) 4 5log(2/e)| DG = i) - ”55]
i=1 ¢

Lemma D.2. Under the same conditions as Theorem 4.2, we have that |[W ™) — W*||p < 6(m1/2n1/2051d71/2).

Proof of Lemma D.2. We have

[W = W < [ W) = WO 4 [W = WO

n

2 : —(T1) | §i E (T1)
p T/L :
i g3 T A B ||§z|\2

=1

s0<\ﬁ>mam< M)zt +o(vm ) max

2
+0(m'*n'*log(1/€)o, td™ 1/2)
=O(m 1/2A||u||2 ) +O(m'*n! 26 d=1?) + O(m'/*n?/? log(1/e)a, 1d~/?)
= O(m'?n-SNR -0 'd™"/2) + O(m"/*n'/?log(1/€)o, 'd1/?)
O( 1/2,1/2 o 1d—1/2)

where the first inequality is by triangle inequality, the second inequality and the first equality are by our decomposition of
W (), W* and Lemma B.4; the second equality is by n - SNR? = ©(7) and SNR = ||| /o,d'/?; the third equality is by
n'/2.SNR = O(1). =
Lemma D.3. Under the same conditions as Theorem 4.2, we have that

Y (VW x;), W*) > log(2/e)

forallTy <t <T*.

Proof of Lemma D.3. Recall that f(W(®) = (1/m) i d lo(Wiryi - ) + o((wyr, &))], thus we have

yi(VS(WY, x;), W)

f*Z (t7)7y2 )< 7]W ZU (t1)”’ Z yzgi’jW;’r>

LS S . eslon/o <a=ya>'<ﬁ§.’,ﬁ§>
jor i'=1 o

) ~ o <N7§z’>

+ — ZZ ]rayz w))5log(2/€) 1(j = yu) - €13

g,r =1 o

1
+— Z (w550 T o) + 3 0 (w0, €60 i w3

7,r

Z%Z "((w ]r?£Z>)510g 2/€) _7220 ﬂ,& )5log(2/€) - [(&ir, &)

ol MG
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m Z Z ((w''), G,p))5 log(2/e) - [, &)l

i 1€ 113
Za %yz NO( log(m/é)-UoHqu)—%Z "((w ”,EJ) (v/log(mn/s) - oo,V d)
> % ¥ a'<<w§-,2,§i>>5log<2/e>—%Zo'« wil), €))5108(2/)0 (ny/108(1/0) V)
——Za Etz,yl ))5log(2/€)O(n+/log(n/d) - SNR - d~ 1/2) (D.7)
Ill
772 (W) ) 1og(m/5).aoHuH2)—%Z "(w, €))0(y/log(mn/9) - 5o,V d),
T2 T4

where the first inequality is by Lemma B.5 and the last inequality is by Lemma B.4. Next, we will bound the inner-product
terms in (D.7) respectively. For I1o, I11, I12, I14, note that o’ € {0, 1} we have that

|I10] < log(2/€)O(n+/log(n/d) /\f) 11| < log(2/€)O(n+/log(n/d) - SNR - d~ 1/2)

(D.8)
12| < O(\/log(m/) - 59|l ll2), [T1al < O(y/log(mn/s) - 090, Vd).

For j = y; andr € SZ-(O), according to Lemma C.3, we have

(wit) &) > (W) &) + 7], — 5n wa
>2_ - 5n WQ
>1

where the first inequality is by Lemma C.3; the last inequality is by 5 < 0.5 and 574/ % < 0.5. Therefore, for Ig,
according to the fourth statement of Proposition C.8, we have

1
Iy > —|5{"[5log(2/e) > 2log(2/e). (D.9)
By plugging (D.8) and (D.9) into (D.7) and according to triangle inequality we have
yi(V WD %), W*) > Io — |Tio| — |T11] — [T12| — |T14] > log(2/e),

which completes the proof. O

Lemma D.4. Under Condition 4.1, for 0 <t < T, the following result holds.

IVLs(W®)||% < O(max{|ull3, opd}) Ls (W)

Proof of Lemma D.4. We first prove that

IVF (WO, x:) | = O(max{]|pll2, 0 Vd}). (D.10)
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Without loss of generality, we suppose that 7j; = 1 and x; = [ ", &;]. Then we have that
ZU wi' )l + = Z (Wi €&

Jr

IVF (WD %)

I A

wi i)+ o' ((w r,£z>)£l]

I /\

< 4max{|\u\\za2apf}7

where the first and second inequalities are by triangle inequality, the third inequality is by Lemma B.4 and ¢’ < 1. Now we
can upper bound the gradient norm ||V Lg(W®) || as follows,

2
IVLs(WO)]7 < [ Zf’ FOWO . x) [V AW, »lJ
= [nZOmax{”Hllw opd}) — € (yif (W xi>)}

1 n
< O(max{ 3, o)) - >~ (i (W, x,))
1=1

< O(max{]|p[3,05d}) Ls (W),

where the first inequality is by triangle inequality, the second inequality is by (D.10), the third inequality is by Cauchy-
Schwartz inequality and the last inequality is due to the property of the cross entropy loss —¢' < £. [

Lemma D.5. Under the same conditions as Theorem 4.2, we have that

W — W[5 — [WED — WH[[F > nLs (W)

forallTy <t <T*

Proof of Lemma D.5. We have

WO — W2 — [[WED — w2,
=2(VLs(WD), WO — W) — n?|[VLs(WD)|3,

21) .
= I O (WO, x0) = (VAW Y, x0), W] = [V Ls (W)

%

2 n
SOl WO, x) — log(2/0)] = n|[VLs (W)
i=1

2n -
> 2 (i f (WY, %) — /2] = [VLs(WO)][7
> nLs(W) =7,
where the first inequality is by Lemma D.3; the second inequality is due to the convexity of the cross entropy function; the

last inequality is due to Lemma D 4. O

Lemma D.6. Under the same conditions as Theorem 4.2, for all Ty < t < T%, we have max;,; |p§”
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max {O(y/log(mn/6) - o9o,Vd), O (ny\/log(n/d)log(T*)/V/d) }. Besides,

1 W™ — W=7

— N1 +
t—T1+IS;1 5 )< nt-Ti+1)

forall Ty <t < T*. Therefore, we can find an iterate with training loss smaller than 2¢ within T = T} + U\W(Tl) —

W*”%/(??E)J =T1 + O(n~'e 'mnd~'0; ) iterations.

Proof of Lemma D.6. Notethatmaxjm|p( \—max{O(\/log(mn/é) -o90pV/d), O(ny/log(n/8) log(T*)/v/d) } can

be proved in the same way as Lemma D.1, we eliminate the proof details here. For any ¢ € [T}, T}, by taking a summation
of the inequality in Lemma D.5 and dividing (¢ — 77 + 1) on both sides, we obtain that

t
1 , W T — W2,
——— Y Lg(W) <
t7T1+1ZT: s(WH) s =T T
s=T1

forall T} <t < T'. According to the definition of 7', we have

1
_— Lg W) < 2.
T — T1+].Z )_6

Then there exists iteration 77 < ¢ < T such that the training loss is smaller than e. O

Besides, we have the following lemma about the order of ﬁ(t) )

.ri» Y, Tatio when training loss is smaller than e. And this
lemma will help us prove the theorem about test error.

Lemma D.7. Under the same conditions as Theorem 4.2, we have
Z P /75 = O(SNR72) (D.11)

forallj,j' € {£1}, r,r’ € [m]and Ty <t < T™

Proof of Lemma D.7. We will prove this lemma by using induction. We first verify that (D.11) holds for ¢ = 77. By Lemma

D.1, we have %( )~ =0(7) =O(n-SNR?) and 37", ﬁgj;lz = O(n), and (D.11) follows directly. Now suppose that there

exists T € [Ty, T*] such that Dy Pj,m'/%'f,w = ©(SNR?) forall t € [T}, T — 1]. Then for ﬁgtlz, according to Lemma
C.1, we have

—(t+1 —(t n t t .
A = 0o (wil €)1y = D&

t+1 t ~ t ~
A R DAL O AP ) B DA )] B

€S, ieS_
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It follows that

_(T—1 n T-1 T-1
me S A= 2 A L 3 AT (w6l

11y =7 iy =j iy =j
N~ 1 /(F-1)
Piri ) = DA 1A (D.12)
=1 iesffl)
"Gy moid 5
I e
P m ES(T 1)
where the last equality is by the definition of S( ) as {i en]:y =7 <w§fﬁ71), &;) > 0}; the last inequality is by
Lemma B.4 and the fifth statement of Proposmon C 8. And
T T— W(T—1 ~
W0 <Al = LS T (T G ) -l
;€S+ (D.13)
Jr m Z€S+
According to the third statement of Proposition C.8, we have max;cg, |€;(T71)| < Comin, €S |€/(T 1)| Then by
combining (D.12) and (D.13), we have
n  —(T) n  —(T—-1) 9
‘ S o2d
w > min Z’{p It b # =O(SNR?). (D.14)
(7) (T-1) " 16Cs||p]l3
Pyj r’ ’Vj’,r’
On the other hand, according to (D.12) and by Lemma B.4, we have
9770 d Fi_
pr i < Zﬂg PR max |77V, (D.15)

&m (T—1)
1€SM

where the inequality is by |SJ(-,T;71)| <'|S;| < 3n/4. And by arguing in a similar way as (D.3), (D.4), (D.5) and (D.6), we
can obtain that as long as ¢ < Co/6 and n > 72C; 2 log(8/6), it holds that

T-1 T-1) ~ T—1 T-1) ~
ST (w0 ) =2 3 10T (w0 G )

i€S+ 1€S_
and hence
(T) _ (T-1) n (T—1) (T-1) ~ (T—1) (T—1) ~ 2
7] r! *Vj/,r’ - % ! |:EZS gz g (< j’ r 7y1 >) - EZS gi a (< j r’ ayl >) ! HH’HQ
K2 + 7 —
(T-1) n (T—1) 4 (T 1) ~
29 g 20 B () el
1ES 4
Then we have
(T) > (T—1) g/(T 1) 2 5 (T—-1) el . zz(fﬂ) i (T—1) >0
ry] T’ —ry] T’ Z || —’Y_j’,r’ + 87m ieglqus i , 1 <W] r ,IJ,> > U,
™ ie5ns, R
H 2 (D.16)
( T) (T-1) n /(T—1) 2 5 (T 1, NMIKl3 . H(T-1) . (T-1)
Vi 2 Vi = g Y4 Nl =50 0 + o2 S 168111;%_14 i (w7 ) <0,
i€S+0871
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where the second inequality is by Lemma B.3. According to the fourth statement of Proposition C.8, we have

max €S<T 1 |£/(T 1)| < Comingegs, ns, Kl( Y and max, .z |£;(T_1)| < Cominges, ns_, E;(T_l). Then by com-
bining (D.15) and (D.16), we have :
n (T) n 7(’1:_1) 2
9C50zd
z:(lfﬁjm < max{zz (1TPJ17;7 , 2 g } = O(SNR™?). (D.17)
N RO T
By (D.14) and (D.17), we have
n  —(T)
Zﬂ}f“" = O(SNR™),
’Yj/,,r./
which completes the induction.
O
Actually, the result in Lemma D.7 also holds for 0 < ¢ < T, that is,
Lemma D.8. Under the same conditions as Theorem 4.2, we have
> Pyl vy = O(SNR™) (D.18)

forallj,j" € {£1}, r,r’ € [m]and 0 <t < T*.

The proof argument is nearly the same as Lemma D.7, and we only need to use Lemma D.7 in later arguments, so we
eliminate the proof details here.

E. Test Error Analysis
E.1. Test Error Upper Bound

Next, we give an upper bound for the test error at iteration ¢ defined in Theorem 4.2 when the training loss converges to e.
First of all, notice that 77 <t < T™ by Lemma D.6, we can summarize previous results into the following:

e > 1ﬁ§f,) Wl (t)T, = O(SNR~2) (from Lemma D.7),
o« >, ﬁgtl .= Q(n) = O(nlog(T*)) = O(n) (from Proposition C.2 and Lemma D.1)

s max; . |g§tlz| = max {O(y/log(mn/$) - ooo,Vd), O(y/log(n/8)log(T*) - n/v/d) } (from Lemma D.6).

Additionally, recalling the definition 3 = n - SNR?, from the first two conclusions, we have fy( ) @( ) for all j,r. Also

note that from the third conclusion, since oo,v'd = O(f/\f = o(1) and /log(n/5) log(T*) - n/v/d = O(1) from
Condition 4.1, we have max; , ; \gg.tz ;/ =0(1) and so > |B§ il = (Z:‘ 1 ﬁz(/ )7 ;)» hence we can ignore the sum of p
whenever it appears together with the sum of . We are now ready to analyze the test error in the following theorem.

Theorem E.1 (Second part of Theorem 4.2). Under the same conditions as Theorem 4.2, then there exists a large constant
Cy such that when n||p||3 > Cioyd, for time t defined in Lemma D.6, we have the test error

Pryyon(y # sign(F(W®, x))) < p+ exp ( _ nun;*/(cga;fd)),

where Co = O(1).
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Proof. For the sake of convenience, we use (x,y,y) ~ D to denote the following: data point (x, y) follows distribution D
defined in Definition 1.1, and 7 is its true label. We can write out the test error as

HD(x,y)ND (y # Slgn(f(w(t)a X)))
= P(x,y)ND (yf(w(t)v X) < 0)

= Py (uf (W, x) <0,y #7) +P(xgy)~D(yf( W® x) <0,y =7) (E.1)
=7 Pxgy~p (yf W( ) ,X) > 0) ) - Plx,g,y)~D (yf(W( ) ,X) < 0)
< p + ]P)(x,y,y ~D (yf( ) 0)

where in the second equation we used the definition of D in Definition 1.1. It therefore suffices to provide an upper bound
for P(x 5)~D (jjf(W(t), x) < O). To achieve this, we write x = (yu, £), and get

T W, x) Zyg (Wi ) + o ((wl) €)]

=%Z[ (w0, 5)) + (Wi €] = — Slo(w ) + 0w )] (E2)

T T

Now consider first the expressions (wgtz, yp) for j = £7. Recall from (5.1) the signal-noise decomposition of wﬁtz

t 0 t t —
wi) = wi gl u+zp§}l~usin2 mzpm l&illz? - &,

hence the inner product with j = 7 can be bounded as

n

(Wil G = (Wi Gu) +w>+zpw 1€ill2™ - (€ T) + D 0 - 1€l - (& Tm)

=1
>4\ /21og(12m/5) - a0 )2

- 'Y
210g(61/9) - 7y a2 - (73d/2) 1[Zp§tlz+2|pw} (E3)
i=1 =

=) — 0(/log(m/8)ov | ull2) — ©(V10og(n/5) - (o) [l 1a]l2) - O(SNR™2) - 4"
= [1 - 0(\/log(n/3) - 0/ I ull2) |74} — ©(v/log(m/8) (o,d) v/ )
G(Vgr)

where the inequality is by Lemma B.4 and Lemma B.5; the second equality is obtained by plugging in the coefficient orders
we summarized at the start of the section; the third equality is by the condition o9 < C~!(o,d)~*y/n in Condition 4.1

and SNR = ||p||2/0,V/d; for the fourth equality, notice that fy](tr) = Q(7F), also \/log(n/d) - o,/ ||pll2 < 1/v/C and
Viog(m/8)(oyd)~ v/l ull2/7 = \/log(m/8)oy/ (v/nllp]|2) < \/log(m/8)/n-1/(y/Clog(n/d)) < 1/(C/log(n/d))

holds by [|u[|3 > C - 02 log(n/d) and n > C'log(m/§) in Condition 4.1, so for sufficiently large constant C the equality
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holds. Moreover, we can deduce in a similar manner that

(wi gy = (W gy — 41 +Zp<f;,,i-||a||2 (&, 1) +Zp [1&l5 > - & Tm)

—g,7yi

IN

—y2 |+ \/21og(8m/5) - ool
+V/21og(6n/3) - oyl - (02/2)" [Z @ Z}

= -0(" ) <o,

-y,

(E.4)

where the second equality holds based on similar analyses as in (E.3).

Denote g(&€) as >, O’(<W(_t)A £€)). According to Theorem 5.2.2 in Vershynin (2018), we know that for any = > 0 it holds

g,
that
2

cx
P(9(¢) ~Eg(€) = ) < exp ( — —— ). ()
Up||g||Lip
where c is a constant. To calculate the Lipschitz norm, we have
9&) — g€ =D o((w' &)= a((w!) ¢ |
r=1 r=1

NE

o((w &) —o((w &)

‘3
Il
_

(W' & —€)]

1

.3
Il

<

Ms

W L, - 1€ = €2

1

i
I

where the first inequality is by triangle inequality; the second inequality is by the property of ReLU; the last inequality is by
Cauchy-Schwartz inequality. Therefore, we have

lgllip < Z [Eaew (E.6)

and since <W(j)ﬂ,r’€> N(o, w' % |302). we can get

[

- -y |2 Op Op (t)
&)=Y Eo((w') ¢) Z y = 25wl
r=1 Y 27T r=1 Y

Next we seek to upper bound the 2-norm of w( ) . First, we tackle the noise section in the decomposition, namely:
n 2
® —2
Z Pjri” 1&ll2~ - &
i=1 2

n . 2 B . B B
=S TA0 e 2 DT A A g 7 €Iz - (€ Ei)
=1

1<ii<iz<n

n 2
<4027y o0 2 S ol Al (160, 4d72) - (202/dlog(6n2/6))
=1

1<iy <ia<n
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2
=40, %d" 12 ]H +32o’ 2473/2/log(6n2/5) [(ZVJJ”) Zp]t) }

=1
2
(0,%d7" ijm +6(0,%d73/? (leﬁzl)
=1
< [O(oy 2~ n™") + By %d ) (Z|p§ +Z|pm)
2
<O(o,2d ') ( Zpﬁfl,z-)

=1

where for the first inequality we used Lemma B.4; for the second inequality we used the definition of p, p; for the second to

last equation we plugged in coefficient orders. We can thus upper bound the norm of wﬂ

t —
Sl &)
=1

t _ 1 43— — t
< wSlla +40) - lullyt + O (o, a0 2) Zﬂﬁiz

=1

= O(0; 120" 1/?) Zp(t) (E.7)

7,78

as:

t 0 t _
1w 2l2 < w1 + 7 [l

where the first inequality is due to the triangle inequality, and the equality is due to the following comparisons:

t —
A pllz
O(op td=1/2p=1/2) . 370 ﬁgf,) .

= O(0pd"*n*/?| || 'SNR?) = ©(a, 1d ™2 /2 || u|l2) = O(1)

based on the coefficient order Y-, P 2 i/ ’Yj(t,z O(SNR™?), the definition SNR = ||pt||2/(c,,v/d), and the condition for
d in Condition 4.1; and also

w
| H2 —5 = O(ouvd) O O(opo,dn~1?) = O(1)
G(U;Idil/zn‘ 1/2) : anl pj T @(J;1d71/2n71/2) : Z;ﬂ 1 p] [’

based on Lemma B.5, the coefficient order " = = Q(n), and the condition for o in Condition 4.1. With this and

=1 p_] %
(E.3), we give an analysis of the following the key component,
zro« wi) ) O(%, 1)
T 2 ST = O(d/ 20} 29NR?) = O(n' 2 |ull3/02d %) (ES)
H 7yrH2 (d_/n_/) Zrzpfyrz

By (E.8) and n|p||3 > C1opd where C1 is a sufficiently large constant, it directly follows that

S o((wi) g anwﬁt;rupo. (E.9)

r

Now using the method in (E.5) with the results above, we plug (E.4) into (E.2) and then (E.1), to obtain

P, 3.~ (5F (WY, x) < 0) SP(x@be(Z (W), €) >Z Wi ) )
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:P(x7ﬂ7y)~D<g( >Z -’yﬂ ZH _y, >
(3, o((wl )~ <o—p/m> S I, \!2)2
=T (S v L)

[ ) |

< exp(c/2m) exp ( - 0-50( 2 07-7(L< Hi(f)r, gmH) )2)
rll2

where the second inequality is by (E.9) and plugging (E.6) into (E.5), the third inequality is due to the fact that (s — ¢)?
s2/2 —t2,Vs,t > 0.

(E.10)

And we can get from (E.8) and (E.10) that

< zro<< ffmu» ) )

H -, ’I‘H2

Px,5,4)~D (ﬂf(W(t),x) < 0) < exp(c/2m) exp ( —0.5¢

~ exp (g B nllul\%)
2 Copd
n\lull%)
< —_
<exp ( 2Coid
_ nl\u\l%)
= e ( Cootd)’

where C' = O(1); the last inequality holds if we choose C; > ¢C/m; the last equality holds if we choose Cs as 2C.

E.2. Test Error Lower Bound

In this section, we will give the lower bound of the test error at iteration ¢ defined in Theorem 4.2 when the training loss
converges to €, which, together with Theorem 4.2, shows a sharp phase transition. First, we give the proof of key Lemma 5.8.

Proof of Lemma 5.8. Without loss of generality, let max { o ’Y1 o Z y(tl ,} => %’? Denote v.=X->" 1(y; =
1)&;, where A = Cr||p||3/(do}) and C7 is a sufficiently large constant. Then we only need to prove that

9(&+v) = g(&) + g(—&+v) — g(—€) > 4Cs > ") (E.11)

I

Since ReLU is a convex activation function, we have that

o((wi'), € +v)) — o((wi) &) > o’ ((wi"), &) (Wi}, v) (E.12)
o((wi'), —€ +v)) — o((wi'), =€) = o’ (Wi}, —€) (Wi}, v). (E.13)
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Adding (E.12) and (E.13) we have that almost surely for all £

o((wil € +v)) —o((wi), &) + o((wl"), —& +v)) — a((wi'), —€))
> (wi'),v)

(E.14)
[ Z p1 ri — 2ny/log(12mn/9) - ooopVd — 5nPan/log(6n2/6)/d|,
yi=1
where the last inequality is by (C.14) and Lemma B.5. Since ReLU is a Liptchitz, we also have that
oW 6+ v) o (W], €) +o (W', —€+v) —a((w!} ., )
<
2/(w''] . V)| (E.15)

< 2)\{ Z B(—t)l,r,i + 2n+/log(12mn /8) - ooo,Vd + 5n2a\/log(6n2/5)/d} ,

yi=1

where the last inequality is by (C.13) and Lemma B.5. Therefore, by plugging (E.14) and (E.15) into left hand side I in
(E.11), we have that

9(€+v) —g(&) +9(=€+v) —g(=¢)
= )‘{Z Z pgtz'z — 6nmy/log(12mn/d) - 0oo,Vd — 15mn>a 10g(6n2/5)/d]

roy;=1

>02) -3 S 8,

r o y;=1
> \/2- ©O(SNR 2 ny(“

where the second inequality is by Lemma D.1 and Condition 4.1; the third inequality is by Lemma D.7. Finally, it is worth
noting that the norm

4
n|lp
[Vlz = [IA-> Ay = D&l = ®< LCL'Q) < 0.060,,
[ p

where the last inequality is by condition n| |3 < Csopd with sufficiently large C in Theorem 4.2, which completes the
proof. O

Then we present an important Lemma, which bounds the Total Variation (TV) distance between two Gaussian with the same
covariance matrix.

Lemma E.2 (Proposition 2.1 in Devroye et al. (2018)). The TV distance between N'(0,0714) and N (v, 0214) is smaller
than ||v||2/20p.

Finally, we can prove the third part of Theorem 4.2: given Lemma E.2 and Lemma 5.8.

Theorem E.3 (Third part of Theorem 4.2). Suppose that n||p||3 < Csdos, then we have that L3, ' (W®) > p 4 0.1,
where C3 is an sufficiently large absolute constant.

Proof. For the sake of convenience, we use (x,%,y) ~ D to denote the following: data point (x, y) follows distribution D
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defined in Definition 1.1, and 7 is its true label. By (E.1), we have

]P)(x,y)w'D (y 7é Slgn(f(w(t)v X)))
=1 Plagayn (TF (WY, %) 2 0) + (1= p) - P gyon (5.F (WP, x) < 0) (E.16)
= p+ (1= 2p) - P gy~ (5F (W, x) <0).

Therefore, it suffices to provide a lower bound for Px 5)p (gf(w(t)’ x) < 0). To achieve this, we have
Px,g,y)~D (gf(W(t),x) < 0)

~Pgun( Soltw ) - X oliwl).e) NN Zo«w“gr,w»)

T s

S ol €) - Y a(iw,. >>|zcﬁmax{zv£t2,zv<fim})

T T

(E.17)

Z O5]P)(X,:U,y)ND <

> O’(<W§tﬂ)n, DI U((W(f)u, ))| is too large we can always pick

a corresponding ¥ given £ to make a wrong prediction. Let g(§) = >, a((wgt}, ) —=>, 0(<w(f)1’r, )). Denote the set

Q_{’|g |>06maX{Z’ylr,Z'y }}

By plugging the definition of €2 into (E.17), we have

where Cg is a constant, the inequality holds since if

P~ (0f (W, x) < 0) > 0.5P(Q) (E.18)

Next, we will give a lower bound of P((2). By Lemma 5.8, we have that -, [g(j€ + v) — g(j§)] > 4Cs max; { Yo vj(tr)}

Therefore, by pigeon’s hole principle, there must exist one of the &, € + v, —&, —& + v belongs €2. So we have proved that
QU-QUQ —{v}U—-Q— {v} = R% Therefore at least one of P(Q), P(—Q),P(Q — {v}),P(Q — {v}),P(-Q — {v})
is greater than 0.25. Notice that P(—) = P(2) and

IP(Q) — P(Q = V)| = [Pean0,021,) (€ € Q) = Pean(v,o21,) (€ € Q)
< TVN(0,0214), N (v, 0214))

< vl
- 20,
<0.03,

where the first inequality is by the definition of Total variation (TV) distance, the second inequality is by Lemma E.2.

Therefore we have proved that P(€2) > 0.22, and plugging this into (E.16) and (E.18), we get

P(x.y)~p (y # sign(f (W), x)))
=p+(1=2p)  Pixgyon (5 (WP, x) <0)
>p+(0.5-p) P(Q)
> 0.78p +0.11
>p+0.1,

where the last inequality is by p < 1/C from Condition 4.1 and by choosing C' > 22 a sufficiently large constant, which
completes the proof. O
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