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Abstract

We study reward-free reinforcement learning (RL)
with linear function approximation, where the
agent works in two phases: (1) in the explo-
ration phase, the agent interacts with the envi-
ronment but cannot access the reward; and (2) in
the planning phase, the agent is given a reward
function and is expected to find a near-optimal
policy based on samples collected in the explo-
ration phase. The sample complexities of existing
reward-free algorithms have a polynomial depen-
dence on the planning horizon, which makes them
intractable for long planning horizon RL prob-
lems. In this paper, we propose a new reward-free
algorithm for learning linear mixture Markov de-
cision processes (MDPs), where the transition
probability can be parameterized as a linear com-
bination of known feature mappings. At the
core of our algorithm is uncertainty-weighted
value-targeted regression with exploration-driven
pseudo-reward and a high-order moment esti-
mator for the aleatoric and epistemic uncertain-
ties. When the total reward is bounded by 1, we
show that our algorithm only needs to explore
0] (d26’2) episodes to find an e-optimal policy,
where d is the dimension of the feature mapping.
The sample complexity of our algorithm only has
a polylogarithmic dependence on the planning
horizon and therefore is “horizon-free”. In addi-
tion, we provide an €2 (d25’2) sample complexity
lower bound, which matches the sample complex-
ity of our algorithm up to logarithmic factors, sug-
gesting that our algorithm is optimal.

1. Introduction

In Reinforcement Learning (RL), the agent sequentially
interacts with the environment by executing policies and re-
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ceiving observations, including states and rewards. The goal
of the agent is to maximize the total reward. To achieve this
goal, the agent needs to explore the environment and exploit
the collected information to find the optimal policy. The
exploration has long been considered as a central challenge
for RL, for which the agent needs to strategically visit states
to learn transition dynamics and the value of different states.
RL algorithms are often designed to exploit the transition
and the reward information to achieve efficient exploration.

Unfortunately, in many real-world RL problems, reward
functions are manually designed to incentive the agent to
learn specific tasks, and they may change over time (Achiam
et al., 2017; Tessler et al., 2018; Miryoosefi et al., 2019).
To avoid learning the transition dynamics repeatedly, Jin
et al. (2020a) proposed a new RL paradigm, Reward-free
Exploration, which separates exploration and planning into
two different phases. In the exploration phase, the agent
cannot access the real reward function. It can only learn the
transition dynamics based on the collected episodes. While
in the planning phase, the agent can no longer interact with
the environment but has access to the reward function. The
goal is to find the optimal policy based on the reward func-
tion and previous exploration. A series of work (Jin et al.,
2020a; Kaufmann et al., 2021b; Ménard et al., 2021; Zhang
et al., 2020) have achieved the optimal sample complexity
of O(H?S5%Ae~?), where H is the planning horizon, S is
the number of states, and A is the number of actions.

The sample complexity for learning tabular MDPs shows
that learning becomes intractable when the sizes of the state
and action spaces increase without further structural assump-
tions. Linear function approximation is a classical approach
to deal with this challenge, which approximates the transi-
tion dynamic or the value function by linear functions on
compact feature mappings. To this end, Wang et al. (2020b);
Zanette et al. (2020c) studied reward-free RL in linear MDPs
(Yang & Wang, 2019; Jin et al., 2020b). Zhang et al. (2021a)
studied reward-free exploration for linear mixture MDPs
(Ayoub et al., 2020; Zhou et al., 2021c), where the transition
probability is a linear combination of feature mappings. The
subsequent work Chen et al. (2021) has achieved near op-
timal sample complexity O (H3d(H + d)e~2). However,
this sample complexity depends on the planning horizon,
which will blow up for long planning horizon problems.
Therefore, a natural question arises:
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Can we design horizon-free, minimax optimal reward-free
RL algorithms with linear function approximation?

In this paper, we answer this question affirmatively for linear
mixture MDPs. In detail, our contributions are highlighted
as follows.

* We propose an algorithm for reward-free exploration in
the linear mixture MDP setting. The algorithm guides
the agent to collect samples using a well-designed
exploration-driven pseudo-reward function. With a
novel analysis based on high-order moment estima-
tion that precisely controls the aleatoric and epistemic
uncertainties, our algorithm can achieve an O(d%c~2)
sample complexity. This complexity only has polylog-
arithmic dependence on H.

* We show that any reward-free algorithm needs to ex-
plore at least Q(d?s=2) episodes, to achieve an e-
optimal policy for any reward function, by constructing
a special class of linear mixture MDPs. This lower
bound matches the upper bound of our algorithm up to
logarithmic factors, which indicates that our algorithm
is optimal.

e When rescaling the reward to  satisfy
Zthl rh(sn,an) < H, our algorithm achieves
an O(d?H2=~2) sample complexity. This improves
the sample complexity in the previous work Chen et al.
(2021), which requires the d > H condition to match
the lower bound.

Notation We use the lowercase letter to denote scalars and
lower and uppercase boldface letters to denote vectors and
matrices, respectively. We denote by [n] the set {1,--- ,n},
and by [n] the set {0,--- ,n — 1}. For a vector x and a
positive semi-definite matrix 3, we denote by ||x||> the
vector’s Euclidean norm and define ||z||s = V& T Xx. For
two positive sequences {a,, } and {b,, } withn =1,2,--,
we write a,, = O(b,,) if there exists an absolute constant
C > 0 such that a,, < Cb, holds for all n > 1, write
ap, = Q(by,) if there exists an absolute constant C' > 0 such
that a,, > Cb,, holds for all n > 1, and write a,, = o(b,)
if ay, /b, — 0asn — co. We use O(-) and €(-) to further
hide the polylogarithmic factors.

2. Related Work

RL with Linear Function Approximation In recent
years, a series of works have been devoted to the study
of RL with linear function approximation (Jiang et al., 2017;
Dann et al., 2018; Yang & Wang, 2019; Wang et al., 2019;
Du et al., 2019; Sun et al., 2019; Jin et al., 2020b; Zanette
et al., 2020a;b; Yang & Wang, 2020; Modi et al., 2020; Ay-
oub et al., 2020; Jia et al., 2020; Cai et al., 2020; Weisz et al.,

2021; Zhou et al., 2021d;a; He et al., 2022; Agarwal et al.,
2022). Our work belongs to the linear mixture MDP setting
(Yang & Wang, 2019; Modi et al., 2020; Ayoub et al., 2020;
Jia et al., 2020; Zhou et al., 2021a;d), where the transition
kernel can be parameterized as a linear combination of some
basic transition probability functions. Zhou et al. (2021a)

firstly achieved minimax regret 9] (dH VT ) in linear mix-

ture MDPs by proposing a Bernstein-type concentration
inequality for self-normalized martingales. Another kind of
popular linearly parameterized MDP is linear MDP (Wang
et al., 2019; Du et al., 2019; Yang & Wang, 2020; Jin et al.,
2020b; Zanette et al., 2020a; Wang et al., 2020c; He et al.,
2021), which assumes both transition probability and reward
function are linear functions of known feature mappings on
state-action pairs. Under this setting, Jin et al. (2020b)
firstly proposed statistically and computationally efficient

algorithm LSVI-UCB and achieved O (\/ d3H 3T> regret

bound. Recent works (He et al., 2022) further achieved

nearly minimax optimal regret O(dv H3K) by proposing

computationally efficient algorithm LSVI-UCB++. Its con-

current work (Agarwal et al., 2022) achieves similar result
. H .

under assumption ), 75 (sp, ap) < 1 with regret upper

bound of O(dvHT + dSH?).

Reward-free RL Unlike standard RL settings, exploration
and planning in reward-free RL are separated into two differ-
ent phases. Jin et al. (2020a) achieved O(H®S5?A/e?) sam-
ple complexity in tabular MDPs by executing exploratory
policy visiting states with probability proportional to its
maximum visitation probability under any possible pol-
icy. Subsequent works (Kaufmann et al., 2021b; Ménard
etal., 2021) proposed algorithms RF-UCRL and RF-Express
to gradually improve the result to O (H 39 2A5*2). The
optimal sample complexity bound 6(H 252 Ae=2) was
achieved by algorithm SSTP proposed in Zhang et al. (2020),
which matched the lower bound provided in Jin et al. (2020a)
up to logarithmic factors.

Recent years have witnessed a trend of reward-free explo-
ration in RL with linear function approximation (Wang et al.,
2020b; Zanette et al., 2020c; Zhang et al., 2021a; Chen et al.,
2021; Huang et al., 2022; Wagenmaker et al., 2022). The
near minimax optimal sample complexity of reward-free ex-
ploration in linear mixture MDP was achieved by Chen et al.
(2021) when d > H using the well-designed exploration-
driven pseudo reward function. On the other hand, in the
linear MDP setting, Wang et al. (2020b) proposed the first
efficient algorithm, which only required O(H%d3¢~2) sam-
ple complexity. The subsequent works, Chen et al. (2021)
and Wagenmaker et al. (2022), gave sample complexity of
O(H*d3¢=?) and O(H®d?c~?2), which are the sharpest for
H and d, respectively. Some significant works are summa-
rized in Table 1.
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Setting Algorithm Rewards Scale Time Homo.  Sample Complexity
Jin et al. (2020a) rn(sn,an) € [0,1] X O(H5S?Ac72)
RF-UCRL s o o
(Kaufmann et al., 2021a) Th(sh, an) € [0, 1] x (OISR
Tabular RF-Express ~ 32 4 2
MDP (Ménard et al., 2021) rh(sn, an) € [0,1] x O(H*S%Ae™7)
SSTP H V(G2 A~—2
(Zhang et al., 2020) 2 h=1 Th(Sh,an) <1 4 O(S%4e7?)
Lower bound 202 p—2
(Jin et al., 2020a) (s an) € [0,1] X QUHS Ae™)
Lower bound H 94 9
(Zhang et al., 2020) 2oh=1"h(sh,an) <1 v 5% A=)
Wang et al. (2020b) rh(sn,an) € [0,1] X O (HSd%<~?)
Linear FRANCIS e
MDP (Zanette et al., 2020¢) Th(sh, an) € [0, 1] x O (H*d%™?)
RFLIN e o
(Wagenmaker et al., 2022) rh(sn, an) € [0,1] x 0 (H e )
UCRL-RFE+ = -
(Zhang et al., 2021a) rr(sh,an) € [0, 1] v O (H*d(H + d)e~2)
Linear Chen et al. (2021) rh(sn,an) € [0,1] X O (H3d(H + d)e?)
Mixture Our work (Cor. 5.2) S rn(snyan) <1 v O(d?e=2)
MDP Our work (Cor. 5.4) Y, ri(sn,an) < H v O(H2d%e~2)
Lower bound (Thm. 5.6) Zthl rh(sh,an) <1 v Q (d%72)
Lower bound (Cor. 5.8) rn(sn,an) € [0,1] v Q(H?d?*c72)

Table 1. Comparison of episodic reward-free RL algorithms. Column Time Homo. means if the algorithm is time-homogeneous (v') or

not (<), rows with light blue background indicates our results

Horizon-free RL The long planning horizon has long been
viewed as RL’s main challenge. However, a series of works
has shown that RL is no more difficult than contextual ban-
dits by removing the influence of the total reward scale. In
tabular MDPs, the algorithm proposed in Wang et al. (2020a)
firstly achieved polylogarithmic H dependency sample com-
plexity bound O(S®A%*s~2) by carefully reusing samples
and avoid unnecessary sampling. Zhang et al. (2021b)
further proposed an improved algorithm MVP to achieve
near-optimal regret bound O(v/ SAK + S2 A) based on new
Bernstein-type bonus. Similar polylogarithmic [ depen-
dency bounds had been established by Ren et al. (2021) for
linear MDP with anchor points, Tarbouriech et al. (2021)
for the stochastic shortest path. Li et al. (2022) achieved
the surprising H independent sample complexity bound
O((SA)°®)e=5) by building a connection between dis-
counted MDPs and episodic MDPs and a novel perturba-
tion analysis in MDPs. The algorithm proposed by Zhang
et al. (2022) further improved the sample complexity to
O(S? A3~ 2polylog(S, A,e~1)) only depending on state
and action spaces size polynomially by exploiting the power
of stationary policy. Thanks to the linear function approx-
imation, Zhou & Gu (2022) firstly achieve horizon-free
regret bound O(dv/ K + d?) independent of state and ac-

tion spaces size. However, all the above works are lim-
ited to standard RL settings. In the paradigm of reward-
free exploration, the only horizon-free result was achieved
by Zhang et al. (2021a) with sample complexity bound of
O(S?As2), where the polynomial dependency on S and
A is still unacceptable when the states and actions spaces
are large. Our algorithm HF-UCRL-RFE++ establishes the
first horizon-free sample complexity bound independent of
state and action spaces size in reward-free exploration.

3. Preliminaries

We consider an episodic finite horizon Markov Decision
Process (MDP) M = (S, A H, {rp b, IP’), where S is
the countable (and maybe infinite) state space, A is the
action space, H is the length of the episode, 7, : S x A —
[0,1] is the deterministic reward function, and P : S x A —
[0, 1] is the time-homogeneous transition probability.

Based on the current state s € S and the time step h € [H],
a policy 7 chooses the action a € A to be executed by
the agent. Formally, we denote a policy as m = {m, }/_ |,
where 7, : S — A is a function which maps a state s to an
action a. For any (s,a) € S x . Aand h € [H], we define the
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action-value function Q7 (s, a) and value function V;7 () as
follows:

H

Qi(s.0) =E| 3 rlowran)

h'=h

Sp = S,ap = a,

Spr ~ P(-|spr—1,an—1), anr = T (spr) |,
Vir(s) = Q5 (s,ﬂh(s)).

We define the optimal value function V,(-) and optimal
action-value function Q; (-, -) as V;*(-) = sup, V7 (-) and
Qi (-,+) = sup, QF(-,), respectively. For any function
V : 8§ — [0, 1], we introduce the following short-hands to
denote the conditional expectation and variance of V:

[PV] (S7 a) = ES/NP(.‘&Q)V (8/) 5
[VV](s,a) = [PVQ] (s,a) — [PV] (s,a)?

For any (s,a) € S x A and h € [H], the Bellman equation
and Bellman optimality equation can be defined recursively
as

Q7 (s,a) =r(s,a) + [IE”V,ZZFJ (s,a),
Qi (s,a) =r(s,a) + [IP’V,Z‘JrJ (s,a)

In this paper, we make the structural assumption that the
transition dynamic has a linear structure, which has been
considered in prior works as below:

Definition 3.1 (Linear Mixture MDPs, Jia et al. 2020; Ay-
oub et al. 2020; Zhou et al. 2021c). The unknown transi-
tion probability PP is a linear combination of d signed basis
measures ¢;(s'|s, a), i.e., P(s'|s,a) = Z?Zl ¢i(s'|s,a)0;.
Meanwhile, for any V : § — [0,1], ¢ € [d],(s,a) €
S x A, the summation s ¢i(s'|s,a)V(s) can be
calculated efficiently within O time. For simplicity, let
¢ =[¢1.....04) . 0" = [67,....05]7 and ¢y (s,a) =
Yoees @(s's,a)V(s'). Wlo.g., we assume [6*|]z <
B,||pv(s,a)lls < 1forallV : S — [0,1] and (s,a) €
S x A

We further assume that the accumulated reward of an
episode for any trajectory is upper bounded by 1, which
ensures that the only factors affecting the final statistical
complexity are difficulties brought by exploration and long
planning horizon rather than the scale of the total reward.

Assumption 3.2. (Bounded total reward) For any trajectory
{sn,an}L |, we have 0 < ZhH:1 rn(sn,an) < 1.

We denote the set of reward functions satisfying Assumption
3.2by R.

Reward-free RL  In reward-free RL, the real reward func-
tion is accessible only after the agent finishes the interac-
tions with the environment. Specifically, the algorithm can
be separated into two phases: (i) Exploration phase: the
algorithm can’t access the reward function but collect K
episodes of samples by interacting with the environment.
(ii) Planning phase: The algorithm is given reward function
{rp}H_, and is expected to find the optimal policy. (g, d)-
learn and sample complexity of the algorithm is formally
defined as follows.

Definition 3.3. ((e, ¢)-learnability). Given an MDP tran-
sition kernel set P, reward function set R and a initial
state distribution p, we say a reward-free algorithm can
(€, 0)-learn the problem (P, R) with sample complexity
K (g, ), if for any transition kernel P € P, after receiv-
ing K(g,9) episodes in the exploration phase, for any
reward function » € R, the algorithm returns a policy
7 in planning phase, such that with probability at least
1—96, Vi (s1;7) = V7 (s137) < e.

4. Algorithms

In this section, we propose our reward-free exploration al-
gorithm HF-UCRL-RFE++. This algorithm consists of two
phases. In the exploration phase, it builds an estimator 6
for the linear mixture MDP transition kernel parameter 0*
based on the sampled episodes. At a high level, the estima-
tion follows the value-targeted regression (VTR) framework
proposed by Jia et al. (2020). The VTR is basically a ridge
regression with value functions as responses and feature
mappings as predictors. However, value functions have no
estimates since the reward function is not accessible. There-
fore, the value functions and reward functions are replaced
by well-designed exploration-driven pseudo-value functions
and pseudo-reward functions. To achieve a better estimation,
we further apply the high-order moment estimation (HOME)
technique proposed by Zhou & Gu (2022). Then, during the
planning phase, the algorithm uses the estimator 8 acquired
in the exploration phase to find the optimal policy 7 for
the given reward functions. Our algorithm is described in
Algorithm 1.

Exploration-driven Pseudo Value Function As men-
tioned above, in the paradigm of reward-free exploration,
we have to construct the pseudo-reward function to guide
the agent in taking actions in the absence of the real reward
function. As we adopt in this work, the most natural idea
is to construct the pseudo-reward function related to uncer-
tainty, which urges the agent to collect information about the
most uncertain states and actions. Two approaches follow
this idea: one is constructing the pseudo reward function
directly measuring and maximizing the uncertainty of each
stage, and the other is constructing the pseudo reward func-
tion maximizing the overall uncertainty along trajectories.
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Algorithm 1 HF-UCRL-RFE++

Input' Confidence radius {fy }, regularization parameter A\, number of the high-order estimator M

: Phase I: Exploration Phase

2 InltlahzeEMm(—)\I 2117,L%AI b11m<—0 b11m<—0f0rallm€[

— {6]6 e RY).

3: Set01m<—211mb11m,91m<—211mb11mforallm€[M]

4: fork=1,2,--- ,K do

5. Calculate my, O, ) = argmax, gcyy, rer ‘A/k’l(sl; 6,7, r), where ‘7k,1 is defined in (4.2). Denote {XN/k’h(~)}hH=1 =

{‘/}L(a 9k77rka Tk)}thl

Receive initial state s} = s.
forh=1,2,--- ,H do

k(K

Y oFda

Form € M denote (gk,h,m =

Execute af} = ) (sf), receive sy | ~ P (:|s}, af).

¢x7,3,";+1(5§v a), Oknm =

byar | (si»ar)

10: Set {Gk,nm} HOMEAlg,2<{$k homs O St ik m ) Brs 04,7)

11: Set {G,h,m } < HOME,j,. 2<{¢k B Oy Zehms Zk m } By
12: SetEkh_Hm<—Ekhm+¢khm¢khmakhmf0rm€[M]

13: Set Zp httm — Skhm + d)k’hﬁngbk,h,mgk,h,m for m € [M]

14: Set by ht1.m < brhm + ak,h,mv,ff,:;l(s’fﬁl)ﬁ,;i,m for m € [M]
15: Set Bk e lm Bkﬁ’m + $k,h,m‘7}§:+1(5£+1)8;;i,m for m € [M]
16:  end for

17: Z:k—s-lm — Ek H+1 ms Z:k—f—lm <~ zk H+1 m

18:  Set 21<+1 Lm — 2 VA, m7bk+1 1,m < by, JHA1,mo 9k+1 m = 2k+1 1 mbk+1 Lm-

190 Set Spi11m Sk H4+1ms Dt 1m — bk H41,m» 0k+1 m = Ekil 1, mbk+1,1,m
20:  Update the confidence set Uy, to U1 by adding constraints (4.5), (4. 6)

21: end for

22: Phase II: Planning Phase

23: Receive reward function r.

24: 7, = argmax, Vi(; 0,7, 7).
25: Return policy 7.

Zhang et al. (2021d) took the first approach, constructing
the pseudo-reward function in the form of

; }
= \/Vesg%h] v (s, )l

and the pseudo-value function to be the argument of the
maxima for the above uncertainty measure. Under this
construction, the suboptimality in the planning phase can
be bounded by the accumulation of uncertainty. This ap-
proach is straightforward but has the following two draw-
backs. Firstly, without the truncation for accumulation of
uncertainty, the upper bound of overall suboptimality in the
planning phase will be in the scale of O(H ), which is mean-
ingless since the value function lies in the interval of [0, 1]
under our assumption. Second, since VTR utilizes value
functions’ variance information for @ estimation, it requires
a Bellman-equation-type equality between two consecutive
stages h and h + 1. However, the first approach does not sat-
isfy this requirement, preventing us from acquiring a more
accurate estimate.

7% (s, a) = min

To address the above issues, we follow the design of pseudo
value function proposed in Chen et al. (2021). In particular,
we are constructing the pseudo-reward function aiming to
maximize the overall uncertainty along trajectories. We
view the uncertainty of states and actions as a function of
(pseudo) reward function r, policy 7, and transition kernel
parameter 8 defined as follows

U n(s,a;0,7,7) =min {1,

4.1

6||¢V}L(~;0,ﬂ',7‘)(sﬂ a) Hi_l },

k,0

where V},(+; 0,7, ) is the the value function of policy 7
for linear mixture MDP with transition kernel parameter 0
and the reward function r, and the overall uncertainty along
the trajectory is the truncated sum of each step uncertainty
defined as

Vk,h(s; 0, 7,r) = min {1,uk7h(s, 7(s); 0,7, 1)

+ ¢‘T/k,h+1(-;9,7r,r)(87 77(5))0* }
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However, the definition of Vj ,(s; 0, m,7) involves % ,
which is unknown to the agent. Hence, we construct the
optimistic estimation of Vj, ,(s; 6,7, 1) as Vi n(s;0,m,7)
defined as

Vin(s;0,7,r) = min {1,uk n(5,7(5):0,7,7)
+28(b7, 1 (0.7 (57 )||Aj; 42)

.
+ ¢‘7’€»h+1(‘;0,71',r) (s, 71'(5))9}

Notable, the definitions of wy ; and ‘7th involve the co-

variance matrices f]k,o and flk,o, which are computed
at the end of the preceding episode at Line 17 of Al-
gorithm 1. In the following content, when there is no
confusion, we may write Vi 5(-) = Vin(;0k, 75, 75),
U, h () = Up,n(:,; Ok, T, 7). In order to collect more
information, the agent is expected to transit through the
trajectory with the largest uncertainty V}, 5. It is notable that

‘71@, n is a function of (pseudo) reward function r, policy 7,
and transition kernel parameter 0. Thus, at the beginning
of each episode, we set 1, T, and 0, to be arguments of
the maxima, as presented in Line 5 in Algorithm 1. Through
this process, we acquire the pseudo value function 7, which
is essential for reward-free exploration. Afterward, the algo-
rithm collects samples along trajectories induced by policy
7, and improves the estimation of 6y, in Line 6 to Line 21.
In this stage, Algorithm 1 encounters two series of functions
in the form of Bellman equations; one is the sum of pseudo
rewards 7, Vi n(-) = Vi(-; Ok, Tk, %), which we refer as
pseudo value function, and one is the uncertainty along the
trajectory, V4 5. These two series of functions are both eli-
gible for refined VTR and thus help estimate 6, as we will
explain in the following.

High-order Moment Estimation The key technique used
in our algorithm consists of two series of high-order estima-
tions for the transition kernel parameter 6. The algorithm
for high-order moment estimation is stated in Algorithm 2.
In the exploration phase, the agent learns the environment
with the help of two series of value functions V}, j, and V, j,.
They serve to characterize different aspects of the model,
one for pseudo values and one for trajectory uncertainty.
And thus, they rely on different estimations of transition
kernel parameter 8. Two independent series of higher-order
moment estimations are necessary for achieving accurate
estimation. In the Algorithm 1, both estimations of 8 are
the solutions to the weighted regression problem in the fol-
lowing form:

argmin ()\||0||§
0

k-1 H

T ZZ Jyh»

j=1h=1

4.3)
) 9.
7‘/j7h(5§1+1)) /U?,h,o),

where the regression weight 7 5, o is set as Equation (4.4).

7t o < max {42 |rnolls:

VioVen] (sh,ak) + Bxpoa® ). 44)

0j,h,0 can be considered as an combination of aleatoric un-
certainty and epistemic uncertainty (Kendall & Gal, 2017;
Mai et al., 2022). The first term v ||y 1, m||):_1 in (4.4)

is the epistemic uncertainty caused by limited avallable data.
And the second term in Equation (4.4) is supposed to be
the aleatoric uncertainty Vi, oV}, 1,41 characterizing the in-
herent non-determinism of the transition kernel, which is
irreducible. Here the Vy, ,,, Vi, 1,41 is the variance of V, 5,11
to 2 defined as [PV;2) [1](sk, af) — [PV, 1)(sk, af)2.
Then, [Vk70Vk7h+1] (sh, ah) is further replaced with its esti-
mate [V}, 0 Vi nt1] (sf, af) plus its error bound Ey, 5, o since
real variance [V}, o Vi n41] (s), af) is unknown to the agent.
Because [Vi,0Vint1](sf,af) is a quadratic function of
the real transition kernel parameter 6%, its estimate can be
achieved as

[VioVioht1] (shar) = Kd)k’h’l? 0k,1>} [0.1]

_ [<$k,h,0’0k’0>}[20,1] ’

where 0, ; is again the solution to the weighted regres-
sion problem similar to (4.4) with predictors ¢y 1 =
bve, . (sh an), responses Vi2, . (sy,;) and weight
,n,1- Following the above idea, the value of weight 7, 5, 1
further relies on 8y, 2, which is the solution to a weighted
regression problem involving another weight 7, 5, 2. The al-
gorithm carried out this process recursively until oy », ar—1,
where its second term is replaced by the trivial upper bound
of aleatoric uncertainty.

Applying HOME to the reward-free setting brings additional
difficulties in controlling the error of our estimate for the
model, as the error introduced by using the pseudo reward
function instead of the real reward function and the error
introduced by estimating the true transition kernel must be
controlled separately. To address this problem, we carefully
estimate variables indicating different kinds of error into
two series of HOME in Line 10 and Line 11. Since the
separation of variables deeply exploits the inner structure of
the problem, the two series of HOME can be merged in the
end to achieve a unified control for both kinds of error.

Previous work Chen et al. (2021) implemented the weighted
value regression in a more crude way. The weights are
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Algorithm 2 High-order moment estimator (HOME)

Input: Features {d)k,h,m}mem’

radius B, o, 7y
1: form=0,...,M —2do

Set [V V21| (5 08) < [@F pms1Okme1]

3 Set Bigm < |26k [ Skl |

»

[0,1]

AN

end for

o

Output: {G%,nm},,cm7

vector estimators {0y}, - St

[0,1
+ |Bellbrnmills

. Set Ei,h,]ﬂ—l < max {72 ||¢k,h7M—1||z:;; . ) 1 a2}

, confidence

——, covariance matrix {Ek,h,m, Ek,m}
me([M]

2

[l

[0,1]

midj0,1)

St 0 < max {22 [ @rnmllss o [Tem V| (s5:08) + Bunm, 2

constructed only on aleatoric uncertainty, totally ignoring
epistemic uncertainty. In addition, they use the same instead
of different transition kernel parameters to calculate differ-
ent order moments of the value function and stop target
value regression at second order moment, which increased
avoidable error. As a result, Chen et al. (2021) can only
replace factor Hd with factor H + d when trying to improve
the dependency on d in the upper bound. In contrast, our
work further improves factor H + d to factor H through
the well-designed target value regression, as we can see in
Corollary 5.4.

High Confidence Set At the end of each episode, we
add the following constraints into U, to update the high
confidence set in Line 20 of Algorithm 1.

H@—ak,m < Bk, m € [M],

(4.5)

k,m

|0-0um|, <B.meD, @6
km

High confidence set Uy ensures that the estimate 6y, lies in
a neighborhood of real transition kernel parameter 6*. Here
the algorithm adds 2M inequalities to constraints in each
episode. These inequalities guarantee that estimations of
the variance of V}, , and V4 5, up to M-th order are near the
real values.

Planning Phase After finishing the exploration, the agent
enters the planning phase and receives the real reward func-
tion. Depending on optimal Bellman equations, the agent
is able to obtain the optimal policy backward from state H
to state 1 by dynamic programming based on real reward
function r and transition kernel parameter estimate 0. And
then, the algorithm outputs the optimal policy.

Computational Complexity of HF-UCRL-RFE++ Sim-
ilar with Chen et al. (2021), we assume that the opti-
mization over 8, w, and r in Line 5 of Algorithm 1

can be accomplished with an oracle which is obvious
to be called for K times. At each episode k£ and each
stage h, HF-UCRL-RFE++ computes {¢x ;m}

me[M]’
{¢k,h,m}mem, {a'k,h,m}mem, {Ek,h,m}mem, and
updates {Ekﬁ’m}mem, {Ekvh’m}mGM' The com-
putation of {d’k»h’m}mem and {d’kahxm}mem require
O(OM) times. According to Algorithm 2, calculat-
ing {8k7h’m}ﬂl€m and {Gk,h,m}mem require O(Md?)
time since the computation of the inner-product an inver-
sion of matrix and a vector needs O(d?). The updates
of {ik-ﬁvm}mem and {ik»hvm}7rLEW further require
O(Md?) time. Lastly, determining the optimal policy dur-
ing the planning phase takes O(H (S Ad + O)) time. There-
fore, the total time complexity of HF-UCRL-RFE++ is
O(KH(OM + Md?) + HSAd).

5. Main Results
5.1. Upper Bounds

We first provide the suboptimality upper bound of our algo-
rithm HF-UCRL-RFE++.

Theorem 5.1. For Algorithm 1, set M =
log(TKH)/log(2), « = H™'/2, v = d=Y4 X\ = d/B?,
{Br}r>1 as

B = 12y/dnT + 307 /7 + VAB,

and denote 3 = Bg, where = log(1 + kH/(a?d)\))
and 7 = log(32(log(v*/a) 4+ 1)k*>H?/§). Then, for any
0 < § < 1, we have with probability at least 1 — 4, after
collecting K episodes of samples, algorithm 1 returns a
policy 7, satisfying the following sub-optimality bound,

~ [ d? d
* M — N 0* AT.’ = e R .
Vit(s1;7) — Vi(s1; 0%, 7, 1) = O <K + \/I?)
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L= (64 (ma)

Figure 1. The transition kernel of the hard-to-learn linear mixture
MDPs.

The next corollary specifies the sample complexity of our
algorithm.

Corollary 5.2. Under the same conditions as in Theo-
rem 5.1, Algorithm 1 has sample complexity of m(e,d) =
O(d2c~2) to output an s-optimal policy in the planning
phase. The exact expression of sample complexity is de-
layed to Appendix in Lemma A.11.

Remark 5.3. To the best of our knowledge, Corollary 5.2
provides the first horizon-free sample complexity upper
bound independent of state space size S and action space
size A for reward-free exploration. This result shows
that long-horizon planning does not add extra difficulty to
reward-free exploration.

Corollary 5.4. When rescaling the assumption
fo:l rn(sn,an) < 1 to Zthl rn(sn,an) < H, un-
der the same conditions as in Theorem 5.1, Algorithm 1 has
sample complexity of m(e,§) = O(H?d?*c~?) to output an
e-optimal policy in the planning phase.

Remark 5.5. The assumption Zthl rh(sh, an) < H cov-
ers the vanilla assumption 7, (sp, ap) € [0,1]. Therefore,
compared with Chen et al. (2021), our analysis does not
require the d > H assumption and achieves the same sam-
ple complexity bound up to logarithmic factors except for
the trivial O(H) difference between time-homogeneous
and time-inhomogeneous models with a milder assumption.
This improvement can be attributed to the refined value
target regression technique, high-order moment estimation
(HOME), adopted in our approach. We provide a detailed
analysis of this improvement in the “High-order Moment
Estimation” part in the Section 4.

5.2. Lower Bounds

The following results provide lower bounds of the sam-
ple complexity and suggest that our algorithm is mini-
max optimal. We will consider the hard-to-learn linear

mixture MDPs constructed in Zhou & Gu (2022). The
state space is S = {x1, 2,3} and the action space is
A = {a} = {-1,1}971. The reward function satisfies
r(z1,) = r(z2,-) = 0, and r(z3,-) = 7. The transition
probability is defined to be P(z5 | 21,a) = 1—(6+(u, a))
and P(zs3 | z1,a) = 6 + (u,a), where § = 1/6 and
e {—A A with A = \/6/K/(4V/2).

Theorem 5.6. Suppose B > 1. Then for any algorithm
ALG e solving reward-free linear mixture MDP problems
satisfying assumption 3.2, there exist a linear mixture MDP
M such that ALG .. needs to collect at least Q (d%e~2)
episodes of samples to output an -optimal policy with prob-
ability at least 1 — §. This lower bound matches the sample
complexity upper bound provided in Corollary 5.2, which
shows our upper bound is optimal.

Remark 5.7. The lower bound is similar to the lower bound
provided in Chen et al. (2021). The first difference is that
we rescale the non-zero reward in hard-to-learn cases from
1to % in order to satisfy Assumption 3.2. The second dif-
ference is that we consider the time-homogeneous model
instead of the time-inhomogeneous one in theirs. By these
changes, our lower bound for reward-free exploration pro-
vided in Theorem 5.6 removes the unnecessary polynomial
dependency on episode length H introduced by the scale of
total reward.

Corollary 5.8. Under the same conditions as Theorem 5.6
except replacing Ethl rh(sn,an) < 1with r, € [0, 1], for
any algorithm ALGf,.. solving reward-free linear mixture
MDP problems satisfying assumption 3.2, there exist a lin-
ear mixture MDP M such that ALG gy needs to collect at
least Q) (H?d?¢~?2) episodes to output an e-optimal policy
with probability at least 1 — §. This means our upper bound
is optimal.

6. Proof Sketch of Theorem 5.1

We provide the proof sketch of Theorem 5.1 along with
several key lemmas in big-O notation. The detail of these
lemmas is restated in Appendix A. The following lemmas
are conditioned on some good events.

Firstly, Lemma 6.1 controls the suboptimality gap between
optimal value functions and our estimated value function in
the planning phase with the uncertainty along trajectories.

Lemma 6.1. For any reward function  in the planning
phase, the suboptimality gap of the outputted policy 7, can
be bounded as

Vi (s137) — Vi (81;0%, 7, 7) < 4‘7;(71 (s1)- 6.1)

Then, the next lemma shows that the uncertainty along tra-
jectories decreases with respect to episodes. This lemma is
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intuitively right since the uncertainty should decrease with
more information collected.

Lemma 6.2. For uncertainty along trajectories, we have

K
N 1 .
Via(s1;0k, Tk, TK) < K(;_lvk,l(31§9k77rkark))-

The last lemma upper bounds the sum of the uncertainty
along trajectories.

Lemma 6.3. For any 0 < § < 1, with probability at least
1 —4M§4, we have

K
Z‘/}k,l(suaka%kark) = O(dVK + d?). 6.2)
k=1

Equipped with the above lemmas, we are ready to prove
Theorem 5.1.

Proof of Theorem 5.1. The suboptimality of the policy out-
put in the planning phase can be bounded by the uncertainty
along trajectories in the last episode of the exploration phase
as the following equation according to Lemma 6.1.

Vit(s1;r) — Va(s1; 0%, 7, 1) < 4V 1 (s1) (6.3)
Since Lemma 6.2 indicates that the uncertainty is decreasing
with the episodes, the uncertainty of the last episode can be
further upper bounded by the sum of uncertainty in each
episode by substituting (6.1) in Lemma 6.1 into the above
inequality:

K
~ 4 ~
Vi'(s137) — Vi(s1;0", 70, 1) < i kgl Vii(s1). (6.4)

At last, the sum of value functions can be upper bounded
according to Lemma 6.3. Thus, plugging (6.2) into the (6.4)
as follows concludes our proof.

* . ~ ~ (d? d
Vi (s1;7) — Vi(s1;0%,7,7) = O (K—&—\/E)

7. Conclusion

We study model-based reward-free exploration for learn-
ing the linear mixture MDPs. Our algorithm is guaranteed
to have horizon-free sample complexity in the exploration
phase to find a near-optimal policy in the planning phase for
any given reward function. To our knowledge, these are the
first horizon-free result for reward-free RL with function

approximation. We also give a sample complexity lower
bound for reward-free exploration in linear mixture MDPs
under our assumptions. The sample complexity upper bound
of our algorithm matches the lower bound up to logarithmic
factors.
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A. Omitted Proof in Section 6

In this section, we provide detailed proof for Theorem 5.1. For k € [K], h € [H], let F}, ;, be the o-algebra generated by
the random variables representing the state-action pairs up to and including those that appear stage h of episode k. That is,

Fi,n is generated by

A.1. Notations

11 1.1 11
e A S
sy,ar o Spy @yt Sy,ap
k K k k
st,ai .-+ sp,ap.

To establish clarity and facilitate understanding, we provide the Table 2 that outlines the notations which will be utilized

throughout the proof.

Notation Meaning
Sh,Qp States and actions introduced by a general policy 7 (not specified).
sﬁ, afl States and actions introduced in the episode k by the policy 7.

ugh(s,a;0,m,71)

0/(7’ Tk
"% = {Tk,n Y he[m)

The uncertainty of states and actions, defined in Equation (4.1).

The transition kernel parameter, the exploration policy, and the pseudo
reward function obtained via the optimization oracle in

Line 5 of Algorithm 1.

The value function of policy 7 in the linear mixture MDP

Vi(s;0,m,r . .. .
n(s:0,m,7) with transition kernel parameter 8 and reward function r.
Vien(s; 0,m,7) The uncertainty along the trajectory, defined in Equation (4.2)
‘N/k,h(s) The pseudo value function, equal to V},(s; Ok, 7, rx)
6 The estimated transition kernel parameter obtained
k,m by value regression targeting V,f’:.
~ The estimated transition kernel parameter obtained
ekﬂ«n b 1 . . ‘72771
y value regression targeting V"), .
o The ground-truth transition kernel parameter.
Uy, The confidence set containing 6* with high probability.
B, (6 = BK) The radius of confidence set U4},.
2k homs 2k h,m The covariance matrix for V,f;: and V]f::, respectively.
ik,m, ik,m Equal to ik,l’HH,m and §k71,H+1,m, respectively.

Ok .h,m> Ok,h,m

¢k,h,m» d)k,h,m

The weights for regression problems targeting ‘7132 and ‘A/,f;:
respectively, defined in Equation (4.4).

k ok k ok :
Equal to qb;,év;:“ (sy,a;) and ¢‘7;3,7;'+1 (sy,ay), respectively.

T The policy obtained in the planning phase.
Table 2. Important Notations
A.2. Proof of Lemma 6.1
Lemma A.1. Forall 0 < § < 1, suppose [ is set as in Theorem 5.1, the following event happens with probability at least
1—-2M6
H@c.m 0%, <B (A1)
' Xkm
H@m —0"||. <8 (A.2)
3k,m
16k — 07l <28 (A3)
k,0

12
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16 — 6|15, | < 26k (A4)

In the following, we define the event that Lemma A.1 holds to be £4 1. And the following lemmas are conditioned on €4 1
by default. We define function W), for certain sequence { R}, } recursively as

Wi, ({Rp}) = min{1, R, + Wyt ({Bn})}-

In addition we denote the trajectory of first & steps as trajy := (s1,a1, -+ , Sh—1, an—1, S ), and the trajectory sampled
from (7, P) conditioned on traj; as traj ~ (m, P)|trady,.

Lemma A.2. For any policy 7 and reward function € R, we have
Vi(s1;0r,m,1) = Vi(51;0",7,7) = Beraso(np)eras, V1({(Px — P)Viy1(sn; 0k, 7m,7)}) (A.5)

Lemma A.3. For any policy 7 and reward function » € R, we have
Etrajw(w,P)|traj1WI ({uk,h(5h7 7"-(Sh); Ok, m, ’I“)}) < VKJ (51; Ok, 7K, TK) :

Proof of Lemma 6.1. The proof follows the proof of Lemma 15 in Zhang et al. (2020). Firstly,

‘/]_*(S]_;T) - ‘/1(51;0*7%’HT)
= (Vl*(Sl;T) - V1(51;0K7;T\r,7")) + (Vl(sl;aKv%’rvr) - ‘/vl(sl;e*vﬁrﬂn))
< (Vif(s1;m) = Vi(s1; 0k, i) + (Vi(s1; Ok, Ty 1) — Vi(s15 0%, 700, 1), (A.6)

where 7" is the optimal policy for (6, ), and 7, is the optimal policy for (8, ). Then for any policy 7 € II,
[Vi(s1:0k,m,7) — Vi(s1;0", m,7)|
= ‘]Etrajw(w,]P’)\trajl Wl ({(PK - P)Vthl (Sh, ap; 0K7 T, T)}’)‘
= [Ecrasmimp)eras, W1 ({(Ox — 0)v, ., (01, (Shoan) }) |

< Beearetrmyiran W ({105 = 6715, [8vicsconmn(onoan)lg })

1
k,0
< EtrajN(W,P)\trath ({25 |}¢Vhr+l(';6K7ﬂ'7T)(sh7 ah)”f};t})
= 2E¢ rain(r,P)eras, W1 ({un(sn, an; Ok, m,7)})
< 2‘7K,1(81;9K,7TK,7“K)~ (A7)

The first equality holds due to Lemma A.2, the second inequality holds due to Cauchy-Schwartz inequality, the third
inequality holds due to Lemma A.1, and the last inequality holds due to Lemma A.3. Plugging (A.7) into (A.7), we obtain

Vit (s1;7) — Vi(s1;0%, 7, 1) < QXA/KJ(sl; O, 7Kk, TK)+ 2‘71(,1(31; Ok, TK,TK)

= 4Vi 1 (513 0K, i, TE )

A.3. Proof of Lemma 6.2

Proof of Lemma 6.2. The proof follows the proof of Lemma 14 in Chen et al. (2021). Firstly, we prove that ‘A/k}l (s;0,m,71)
is non-increasing w.r.t. k for any fixed 8,7, r by induction in h. Suppose for any k1 < ko, Vi, pt1(s;0,m,1) >
Vies,ht1(s; 0,7, 1) for any s. By definition,

V;Qh(s; 0,7, r) = min {Luk’h(& a;0,m,r)+ 28 H(b\Afk,Hl(-;G,ﬂ,r)(&W(S)) 1
T
+ ¢‘71c,h+1(';9,ﬂ'77‘) (Sv 7(8))9

13
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uk,h(sa a; 0, T, T) = 5 H¢Vh(~;9,7r,r)(sa a) Hgfl
k,0

Since Xy, 0 X X, 0 and Xy, o = Xy, 0, we have
Uy n(8,a;0,m,1) > up, n(s,a;0,m,7)

A—1
Ek,()

H¢‘7k1,h+1('§977777“) (s,7(s)) Hf:;z = H¢‘7k2,h+l('§977717") (s,7(s))

T T
¢\7k1,h+1(';977r77‘)(8’ 7'(‘(8))0 = ¢‘7k2,h+1('§9777,7")<s’ W(S))H

Thus Vi, 1(s;0,m,7) > Vi, n(s;0,m,r) for any k1 < ko. Furthermore, since Uy, C Uy, , and Oy, 7y, 71, are argmax over
Uy, we have

Vi 1(515Oky s Thy s Thy ) = Vi 10515 Ok s Tho s ko) = Vieo,1(513 Oy Ty, Tk
It follows that Vj, 1 (s%; O, 7k, 7% ) is non-increasing w.r.t. k. Thus,

K
KVia(s1:0k,mk,m) < > Viea(s15 0k, 7k, 1)
k=1

A.4. Proof of Lemma 6.3

Lemma A.4. Conditioned on the event &, let Vk,h, ‘/}k7h, fl;wm fl;wn, $k,h,m, $,€7h7m be defined in Algorithm 1, for any

k € [K], h € [H], m € [M], we have

Vien(sF) = wn(sf, af) — PVir1(sh, af) < 4min {17 B Hak,h,o o } (A.8)
k,0

vk,h(sﬁ) — rn(sh,af) — ka,thl < 2min {175 Hﬁgk,h,oHi—l } (A9)
k,0

In order to prove Lemma 6.3, we introduce the following quantities used in Zhou & Gu (2022) as

=
T

Ry =YY" I} min {1,ﬂ||$k,h,m||§_1 } ,¥m € [M] (A.10)
k=1h=1 kom

B K H _ .

R, =ZZI,{min{1,B||¢k,h,m||§l },Vme[ ] (A.11)
k=1h=1 kym

R K H N R .

Ap = ZZL’: HPVk,h—&-l} (sh-ak) = Vilhia (SZH)} ,Vm € [M] (A.12)
k=1h=1

B K H N B .

Ao =323 08 [PV ] (shah) = Vs (shn) | vm e T (A.13)
k=1h=1

. K H R L

Sm=_> I {Vvﬁh#l} (sh»ai) ,¥m € [M] (A.14)
k=1h=1

" K H _ L

Sm=)_ > I {V‘/f«,m} (s, ah),vm € [M] (A.15)
k=1h=1

ko v &2 S-1/2 &2 S—1/2
If =14 Vm e [M],det ( %, ) /det (Ek,h,m) < 4and det (3, ) /det (zk,h,m) <4 (A.16)

(1-15), (A.17)

i
M=

~
Il

1

14
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Lemma A.5. Let y, a, be defined in Algorithm 2, {R,n}, s {Bm}eiamps {5m b omeam {Sm }mepan be defined in
(A.10), (A.11), (A.14), (A.15). Then for m € [M — 1], we have

R,, < min {KH Ade + 4B+ du + 2ﬂ\/@\/ S + ARy + 2R + KHa2} (A.18)
R,, < min {KH, 4du + 4B~y du + 25\/d7\/ S + 4Ry + 2Ry + KHa2} , (A.19)

where ¢ = log(1 + K H/(d\a?)). For }AEM_l and Ry;_1, we have the trivial bound }AEM_l <KHand Ry, < KH.

Lemma A.6. Let {Rm}mem’ {Rm}mem’ {Sm}mem’ {Sm}mem’ {Am}mem’ {Am}mem’ G be defined as
(A.10), (A.11), (A.14), (A.15), (A.12), (A.13), (A.17). Then, conditioned on the event &, for m € [M — 1], we have

5, < ‘Emﬂl +G+ 27+ (R + 4R ) (A.20)
S < ‘Emﬂﬂ +G ot (K " 21%0) (A21)

Lemma A.7. Let {§m}mem, {§m}mem, {Em}mem, {ﬁm}mem be defined as (A.14), (A.15), (A.12), (A.13). Then
we have P(E4.7) > 1 — 2M 4, with €4 7 be defined as,

Eqn = {Vm e [M], 'Em < min{ 28, +C, KH} and ‘Zx,n’ < min{ 25, +C, KH}} , (A22)

where ( = 4log(4log(KH)/J).
Lemma A.8. Let (¢ be defined in (A.17). Then we have
G < Md, (A.23)
where « = log (1 + KH/ (d\a?)).
Lemma A.9. (Restatement of Lemma 6.3) For any 0 < § < 1, with probability at least 1 — 40§, we have

K

~ k.
E Vk,1(8170k;ﬂ—]€7rk)
k=1

< 896 max {643%de, 2¢} + 24¢ + 240de + 2408~*de + 1208devV' M + 24+/(Mde + Mde
n (64 max {8@\@, \/2¢} n 1206\/dLHa2> VE

where ¢ = log(1 + K H/(d\a?)), ¢ = 4log(4log(K H)/6).

Proof of Lemma A.9. All the following proofs are conditioned on £4.1 N £4 7, which happens with probability at least
1 — 4M§. Firstly, we have

i [If'f [‘Aﬁc,h(slﬁ) - ‘7k,h+1(5’;§+1)] + (-1 [Vk,h(si‘,i) - ‘7k,h+1(5§+1)H

H

H
[Z Thug n(sy,af) + > If [Vh,k(sﬁ) — ukn(sh,ay) — PVina (sh, GZ)}
h=1 h=1

K H
33— 1) [Vinsh) = Vi (55|

k=1h=1

H
+> If {]P)Vk,h-i-l(sﬁv ay) — Vk,h+1(8§‘;+1)}
h=1

15
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K H K H
<IN Hukw(sp,ap)+> > Ik {Vm(é’i) — ukn(sh,ap) — PVinsa(sh, aﬁ)}
k=1

k=1h=1 h=1
I Iy
K H K N
+Y > I [PVk na1(sh, af) = Vi k(5h+1)] + (1= 15,) Vin (s5,),
k=1h=1 k=1
I3 Iy

where hy, is the smallest index such that ,’fk = 0. Following the definition of uy, 5,

K H
ZZ h mm{l 5”¢kho”21} = Ry.
k=1 h= 5.0

By Lemma A .4,
K H
, < I 1 H L V—4R
= ];: hmln{ B ¢k,h,022} 0
By definitions,
I3 = Ay,
K
L<> (1-If) =G
k=1
Thus,
K
Z 1(sF) < Ry 4+ 4Ry + Ay + G (A.24)

Substituting (A.20) in Lemma A.6 into (A.18) in Lemma A.5, we have

Ry < 4du + 4872du + 25\@\/’%“‘ + G+ 2mtl (Eo + 4J§O) 4Ry + 2Rpst + KHa?

< 25\/@\/‘%“’ 4 om+1 (1?30 + 4}%) AR + 2R + Ad + 4872d + 268V AN G + KHa2,  (A25)

IC

where the second inequality holds due to va + b < v/a+ Vb. Substituting (A.20) in Lemma A.6 into (A.22) in Lemma A.7,
we have

‘Am‘ < ﬁ\/’ﬁmﬂ‘ + G+ 2mH (Eo + 4J§o) +¢
< Ji\/ |+ 271 (B + 4R0) + VG +¢ (A26)

Substituting (A.21) in Lemma A.6 into (A.19) in Lemma A.5, we have

Ry < Adu + 4872du + 25\@\/’,&%1‘ 4G4 2mtl (K " 2}~€0) ARy + 2R + K Ha?

< 25\@\/ ‘Kmﬂ‘ 4 om+1 (K + 2}?0) ARy + 2R + Ade + 487%de + 28Vd/ G + KHa?  (A27)

IC
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Substituting (A.21) in Lemma A.6 into (A.22) in Lemma A.7, we have

’ﬁm‘ < \/i\/’ﬁmﬂ‘ + G + 2m+1 (K n 21?0) +¢

< \/i\/’ﬁmﬂ‘ + 2mt1 (K+2Ro) +20G +¢ (A.28)

Thus, calculating (A.27) + (A.28) + 4x(A.25) + (A.26) and using /a + N Ve+ Vd < 2v/a+ b+ ¢+ d, we have
R + ‘Zm‘ +4R,, + ’Em‘

<51+ 220G +2¢ + Qmax{w\/@, \/i} \/2 ‘Emﬂl 4 2. gm+l (Eo + 41%0)

ARy, + 2Ry +2 ‘&,,H’ +2: 250 (K 4280 ) + 4R + 2811
<51, + 4+24/2¢G + 2¢ + 4max {Sﬁ\@, \/24“} \/(Em + ‘Am‘ FAR, + ‘EmD

T (fzmH T ‘/Tmﬂ’ + 4Ry + ’EmHD 19.9m+1 <K+}§O T ‘Eo‘ T 4Ry + ‘EO’).

Then by Lemma D.3 with a,, = Em + ‘ﬁm
can be bounded as

+41§m+’2m‘ < 7K H and M = log(TK H)/log 2, Ry + ’Zo‘ +4§0+’20‘
Ry + ‘go‘ + 4R, + ‘go‘
< 2216 max{643%de, 2C} + 301, + 121/CG + 12¢
+ 32 max {85\@, \/i} \/K + Ro + ’Eo‘ 4Ry + ’20‘
< 352 max {644%d1, 2} + 301, + 12,/CG + 12 + 32 max {8&@, \/i} VE
+ 32 max {Sﬁ\/cﬁ, \/2} \/Eo + ‘ZO‘ +4]§o + ‘EO‘.

By the fact that x < ay/z + b = x < 2a% + 2b, (A.29) implies that

(A.29)

Eo + ’Avo‘ +4]§0 + ‘A\O‘
< 896 max {644%d1, 2C} + 601, + 241/CG + 24¢ + 64 max {85\@, Ji} VK. (A.30)

Finally, plugging (A.30) into (A.24) and bounding G with Lemma A.8, we have

K A~
> Vealsh)
k=1
< éo + ’;{0‘ +4§0 + ‘A\o‘ +G
< 896 max {64821, 2} + 24C + 64 max {85\@, \/zg} VK
+ 60 <4dL 1 484%du + 2BV di/ Mdi + KHaQ) 4 24\/CMdi + Mds

< 896 max {645%de, 2¢ } + 24¢ + 240de + 2408~ de + 1208duvV' M + 241/CMdu + Md.
i (64 max {Sﬁ\/@, \/2c} + 12OBVdLHa2) VK

(A31)
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A.5. Proof of Main Results
Lemma A.10. (Restatement of Theorem 5.1) For Algorithm 1, set M = log(7TK H)/log(2), {8k }r>1 as

B =12+/dlog(1 + kH/(a2d)))log(32(log(v2/a) + 1)k2H?2/4)
+ 301og(32(log(v?/a) + 1)k2H?/8) /4% + VAB,

and denote 3 = S, then for any 0 < §’ < 1, we have with probability at least 1 — §’, where ¢’ = 4M 4, after collecting K
trajectories, algorithm 1 returns a policy satisfying the following sub-optimality bound,

Vi (s157m) — Vi(s1; 0%, 7y, 1)
4 2 2
<— (2752 max {6432, 2¢} + 24C + 240ds + 240872 + 1206dL\/M)

+ \% (64max {88vdi, /2C} + 1208Vl

where © = log(1 + KH/(d\a?)), ¢ = 4log(4log(K H)/6). Moreover, setting o« = H~/2 = d~'/*, and A = d/B?,
we have the horizon-free suboptimality bound

~(d> d
*(s157) — 0" 7)) =0 —+—— | . A32
Vi (s137) — Vi(s1; 0%, 7, 7) O(K + \/E) (A32)

Proof of Theorem A.10. The following proof is conditioned on £ 4.1 NE 4.7, which holds with probability at least 1 —4M ¢ =
1 —¢’. We have

Vi (s1;7) — Vi(s1; 0%, 7, 1)

< 4V (s1; 0k, 7k, TK)

IN

PR
Ve > Viea(s1; 0k, 7, )
k=1

IA

4
e (896 max {643%de, 2} + 24¢ + 240de + 2408+ de + 1208deV/ M + 24+/(Mde + MdL)

L (64max {85\@, \/2} + 1205@) 7

VK
where the first inequality holds due to Lemma 6.1, the second inequality holds due to Lemma 6.2, and the third equality
holds due to Lemma A.9. O

Given the regret bound provided in Lemma A.10, we can prove the following sample complexity upper bound.

Lemma A.11. (Restatement of Corollary 5.2) Under the same conditions as in Theorem A.10, Algorithm 1 has sample
complexity of

1 2
mie, §') :?S <64 max {8/5\@, \/24} n 120ﬁ\/dLHa2)
+ S (2752 max {643%de, 2} + 24¢ + 240de + 2408+°de + 1206dm/M) (A.33)

Moreover, setting « = H~ /2, v = d~'/*, and A\ = d/B?, we have the horizon-free sample complexity bound

m(e,8') =0 (f) .

€
Proof of Lemma A.11. (A.33) is derived directly from Lemma A.10 by setting the suboptimality to € and solving the K. [
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Lemma A.12 (Restatement of Corollary 5.4). When rescaling the assumption Zle rr(sp,ap) < 1to Zle rr(sp,ap) <
H, under the same conditions as Lemma A.10, Algorithm 1 has sample complexity of

m(e,d’) :1(11;-12 (64 max {8,8\/@, \/i} + 1208V dLHOé2>2

H
+ 8? (2752 max {643%de, 2} + 24¢ + 240de + 2408+°de + 120ﬂdm/M) (A.34)

Moreover, setting « = H /2,y = d~'/4, and A\ = d/B?, we have the horizon-free sample complexity bound

H2d2>

2

m(e,8') = O (

Proof of Lemma A.12. (A.34) is a direct result of Lemma A.11. Let ), (sp, an) = rp(sn, ar)/H, then Zle 5, (Sh,an) <
1. Thus the sample complexity of achieving an ¢/ H-optimal policy for reward -, with probability 1 — ¢” is

m(e.d") = (6amax {88, /3 + 1208V diTTe?)

82
8H
+ — (2752 max {643%de, 2} + 24¢ + 240de + 2408v*de + 1206db\/M) ) (A.35)

Since (s, an) = Hr}(sn, an), for the same policy, the suboptimality for rewards r, is H times the suboptimality for
rewards 7. Thus, the ¢/ H-optimal policy for 77, is a e-optimal policy for 7,. Therefore, the sample complexity of achieving
an e-optimal policy for reward rj, with probability 1 — ¢’ is m(e, ¢’). O
B. Proof of Lemmas in Appendix A

B.1. Proof of Lemma A.1

Lemma B.1. (Theorem 4.3 in Zhou & Gu (2022)) Let {Gy.},- , be a filtration, and {xx, 7% },~, be a stochastic process

such that x;, € R? is G,-measurable and 7, € R is G;41-measurable. Let L,o,\,e > 0,u* € R% For k > 1, let
yr = (u*,xx) + 1 and suppose that 7, X, also satisfy

E[m | Gi) =0,E [n; | Gr] <0, |m| < R, [|Jxklly < L (B.1)

Fork > 1,letZ; = \I + Zle x;x; by = Zle YiXi, g = Z;lbk, and

Br =12+/02dlog (1 + kL2/(d)))log (32(log(R/¢) + 1)k2/4)
+241og (32(log(R/e) + 1)k2/5) max {|m| min {1, |\xi||Z:1}} +6log (32(log(R/e) + 1)k*/d)e.  (B.2)

ma
1<i<k
Then, for any 0 < § < 1, we have with probability at least 1 — § that,

K
Z X7

i=1

Vi >1, < B Nk — 1z, < Br+ VA,

—1
Zk

Lemma B.2. Let XN/k,h, IA/k’h, f]k,m, f]k,m, gk}m, ék’m, %k,h,m, ¢?k’h’m be defined in Algorithm 1, for any k& € [K],
h € [H], m € [M]. We have

VU2 (shoah) = TU20 sk ab)|

0k,m+1 -6

A —1

kymA41

< min {1, H(ﬁk’h,erl

ik,m-u}
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—|—min{ , . }7 (B.3)
Xrm

VU2 (shoak) = TV (shoa)|

< min{ H¢k h m+1H —1

k,m+1

A—1

(ék,m e

and

O — 0"

Ek m+1}
. } . (B.4)
Zk,m

Proof of Lemma B.2. The proof follows the proof of Lemma C.1 in (Zhou et al., 2021b). We first prove (B.3), and the proof
of (B.4) is similar. We have

+H11I1{1 2 Hd)k h mH

lekmfa*

Ve nViehia)(sf, ak) = [VienVingal(s5, af)|
= [[{Pr et 1, Okms )] j0.1] — (Phhmsr, 07
+ (Phn: 0°))2 = [(Dhhm: Ok 1|
< |Ubrms 1, Okmi1)]01) — (Prhmt1, 0%)]

Iy
+ 1 ({(Pkm 0°0)2 = (Drm: Ok Py 1| (B.5)

I

where the inequality holds due to triangle inequality. We have I; < 1 since both terms in I; lie in the interval [0, 1].
Furthermore,

L < U@k hms1, Ok mi1)] = (Phnmsr, 0]
= |[<¢k,h,m+17 0k,m+1 - 0*>|

<Nbrnmiily [Bemis =0l
,m+1 »m

where the first inequality holds due to (¢ . m+1(sF, a¥),8%) € [0, 1], the second inequality holds due to Cauchy-Schwarz
inequality. Thus, we obtain

Iy <min{l [[@pnmrllgr [10kmer — 07 (B.6)

Ek m—+41

k,m41

For I, we have

I, = ‘(<$k,h,m(32>a2)79*>) - [<$k,h,m7§k,m>][0,1]‘ : ’ ¢k: hom (sF,af),0%)) + [(cgk,h,m,ak,mﬂ[o,l]
< 2|( @k nm (55 08),0)) = Bt Orm)

< 2ldnm(sh ai)l g1 10rm = O7llg,
,m s

where the first inequality holds due to that both (@ .m (s, ak), 8%) and (g h.m, é\km}][o’” lie in the interval [0, 1], and
the second inequality holds due to Cauchy-Schwarz inequality. Since I belongs to the interval [0, 1], we have

Ir < min{1, 2] rnm(sh, af)l g1 [0km —67ll5 3 (B.7)
k,m s

Substituting (B.6) and (B.7) into (B.5), we obtain (B.3). The proof of B.4 is nearly identical to the proof of (B.5). The only
difference is to replace qg with 5, 6 with 5, S with . O
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Proof of Lemma A.1. The proof follows Lemma C.2 in Zhou & Gu (2022). Symbols we used here may have small intuitively
understandable modification compared to Algorithm 2 since we have to distinguish between Algorithm 2 applied to Vj

and IA/k n- We first prove that Equation (A.1) holds with high probability. By definitions,

~2 2|2 T o2 E k o 2
Ok,h,m — Max {7 Hd’k,h,m ) [Vk,mvk,thl} (shsap) + Eg,hm, }

i—l

k,h,m

Olehym = max{7 Hdm,h,Mﬂ - 1« }
k,h,M—1

We define Cy, 1, as
5k,m = {9 N ||9 — é\k,mHgkm S Bk}
For each m, let

~—1 o
Xh,hym = Of o @h,h,ms

Nk,hym = a'\k_}L,m 1{9* € é\k,m N é\k7m+1}[‘?k2,z+1(5§+1) - <$7€7h7m7 0*>]7

o ~oM—1 ~
M M—1= g par—1 Vit — (Dkna—1,0%)],
Gr.h = Fiohs
l,l_,* — 0*
We have
Ene,hm|Grn]l =0,  ||Xkhml2 < ‘A’;;}L,m <1l/a, |Mepml <1l/a
Since 1{6* € é\k,m N é\k’m+1} is Gy, ,-measurable, then we can bound the variance for m € [M] as follows:

B0} ol Grn] = Gt 1407 € Chon N Chomst IV 41](55 af)

<Gt MO € Crim NCrmsr} [ VVZ 1 (sh,af)

ik,m+l}
f:kﬂn } ‘|
Z:k,rnﬁ»l

YVZh41 (ks af) + min {Lﬁk |Benm]

.
Ek,NL

where the first inequality holds due to Lemma B.2, the second inequality holds due to the definition of the indicator function,
and the third inequality holds due to the definition of Ekji’m. For m = M — 1, we have E[nz hom|Gk.n] < 1 directly by the

0k,m+1 - 0*

Do hym+1

A—1

k,m+1

+ min {1,

-1
Zk,nL

+ min {1, 2|[rnm

’ék,m — 6

~—2
S Ok hom

+ min {1, 261 [ Brm

Sla

definition of G} ,, .. For any m € [M], we have

[t | 2L, X mllg ot 3 <G lldknmllsa <1/

1,m 1,

where the first inequality follows from the definition of 7y 5, ,, and X 5 m, and the second inequality follows from the
definition of G, j, . Let

Yeohom = (", Xa hom) + M hymes
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k H
b = AL+ 30 S XX = Shstms
1 h=1

i=
k H

= E § Xi,hymYi,h,m;,
=1

h:l

Then, by Lemma B.1, for each m € [M], with probability at least 1 — J, Vk € [K + 1],

lptr—1,m — 0%y <12+/dlog(1 + kH/(a2d))) log(32(log(y?/a) + 1)k2H?/5)

+ 301log(32(log(v?/a) + 1)k?H?/8) /v* + VAB
= B

Define the event that (B.8) happens for all k£ and m as &. Conditioned on &, , the following properties hold:

(B.8)

» For k = 1, m € [M], by the definition of él,m and il,m, we have [|0* — él,mﬂi ={|0*||x1 < VAB = f31, which
1,m

implies
0" €Cpm
* For k € [K] and m = M — 1, we directly have pj pr—1 = §k+17M_1, which implies
0" € é\k+1,M71~
* For k € [K] and m € [M — 1], we have

-~ - ~—17r2™ k n ~
0" € Cy,m N Chymt1 = Yrhym =0 Vk,h+1(5h+1) = Pkm = Opr1,m = 0% € Crp1m-

(B.9)

(B.10)

(B.11)

Therefore, by induction based on initial conditions (B.9) and (B.10), induction rule (B.11), we have for & € [K] and
m € [M], * € Cy . Taking the union bound gives that (A.1) happens with probability at least 1 — Md. We can
use the nearly identical argument to prove that (A.2) holds with probability at least 1 — M. The only difference is

to replace & with &, ¢ with @, V with V, V with V, £ with 3, & with X,  with 6. By taking the union bound, we

obtain that with probability at least 1 — 2M d, Equations (A.1) (A.2) both hold.
For (A.3) and (A.4), we have

16 — 0*||§ < Hek - é\km@ < 2By,

& +H§k7m_0* &
b

k,0 k.0

166~ 6, . < |66 = O]y +[Orm -7, <26

k.0

k.0

B.2. Proof of Lemma A.2

Proof of Lemma A.2. We prove this inequality by induction. Suppose

Vi1 (8n415 0, 7, 7)=Viy1(Spy1; 0%, m,7)
= Etraj~(7r,ﬂ”)|trajh+1 Wh+1({(PK - P)Vthl(S}u Qp; 0K7 T, ’I")}),

which is true for h = H. Then, we have

Vh(Sh; BK,T(',’I") - Vh(Sh; 6*,7'(',7")
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= min {1,rh,(sh,ah) + PrVit1(sh,an; 0, m,1) — (rh(sh,ah) + PVit1(sh, ap; 0*,7r,7“))}
= min {1,]P’KVh+1(sh,ah; O, m,1) — PVip1(sh, an; 0%, 71',7“)}
= min{1, (Px — P)Viy1(sh,an; Ok, m,7) + P(Vhy1(sh, an; Ok, 7,1) — Vig1(sh, an; 0, m,7))}
= min{1, (Px — P)Vii1(sh, apn; Ok, 7, 1)
+ EoppinB(fsnian) Brrasm(r B cradn s Wht1({(Px — P) Va1 (sn; 0k, m,7)}) }
=Etraim(np)eras, Min{l, (Px —P) Vg1 (sn,an; 0k, 1) + Whp1 ({(Px — P)Vis1(sh, an; Ok, m,7) 1)}
= Eirajn(mp)jtras, Wa{(Px — P)Viy1(sn, an; Ok, m,7)}).
The first equality holds due to that V,(sp; Ok, m,7) and V,(sp; 0%, 7, ) both belong to [0, 1], the third equality holds

due to (B.12), and the forth equality holds due to that E¢ ..y (x p)|cras, = ES,LHN]p(.|sh7ah)IEtrajN(mp)‘trajhﬂ. Thus, by
induction, we obtain the desired result (A.5). O]

B.3. Proof of Lemma A.3
Proof of Lemma A.3. We first prove (B.13) by induction.

~

Eeraim(rp)eras, W1 {ur n(sn, m(sn); 0k, m,7)}) < Vi1 (8150k,7,7) (B.13)
Suppose
Etrajn(mp)eraips Whtt ({ur,n(sn, m(sn); 0k, m,7)}) < Vi na1 (515 0, m,7), (B.14)
which is true for h = H. Then,
Vich (0505, 7,7) = Ecpasmrp) eeas, Wa({ure n(shs m(an); O, m,1)})

> min {QUK,h(ShﬂT(Sh); Ok, m,7)+28 H¢‘7K,,L+1(.;.9K7,r7,«)(8h7W(Sh)) &

5.,

1
Vi ht1 (05,7,

) (Sh7 7T'(Sh)) Ok — EtrajN(‘n',IP’)\trathh({uK,h(Sh’ ﬂ(sh); Or,m, T))}}

> min {O,UKVh(sh,w(sh); Or,m,r)+ 20 "¢Vx,h,+1(~;ﬂx,w,r)(sh’W(Sh)) -

XK,0

T

Vrensr (05 (5ho T(80))0k = urcn (s, m(sn); Orc, 7,7)

- ]Esh+1NJP’(-|sh,7r(sh))Etraj~(7r,lP’)\trathrlWh+1({uK,h(3ha F(Sh); BKa T, T))}

+ ¢l (sh,m(sn))0k

Vi, ht1 (50K ,m,1)

> min {07 273 “¢‘7K,h+1('§9K77T77‘)(8h’W(Sh)) S

K,0

—Es, i ~B(Jsnm(sn)) VE h1 (St Ok, T, 7)

> mln{O 25H¢VK e (5 gKﬂ.r)(Shv (Sh)) 2

K,0

> min

F 0T n T 05— 07}
}

0,2 Hd)\A/K,Hl(-;GK,mr)(Sh’W(Sh))Hg —2f H¢‘7K,}L+1(';9K77Tﬂ“)(8h’ﬂ-(sh))H*

K,0 XK,0

where the first inequality holds due to the definition of ‘A/K h» the second inequality holds due to the definition of W, (-)
and Ec .5 (x P)|tras, = Esh+1NP("Sh777(5}1))Etraj’\‘(ﬂ'y]}»)ltrajh+1’ the third inequality holds due to B.14, the fifth inequality
holds due to Lemma A.1. Thus, by induction, B.13 holds. Thanks to the optimism of IA/KJ (s1;0K,7K, 7K ), We have

Vii(s1;0k,m,1) < Vi 1(s1;0K, Tk, TK),

which concludes the proof. O
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B.4. Proof of Lemma A.4

Proof of Lemma A.4. For the equation (A.8), we have

— PV (55, af)

)
< win { 1,25 [ una(shab) |+ + BLo(shoab)on — BL(ehab)e
k,0
= min {125 | na(shah) |« + BLotshoab)O0 - 0]
k,0
- n ko k T ko k
< m1n{1,25 Pr.n,0(55, ap) gt + H‘bk,h,o(shaah) 5 165 _Hik,o}
S mln{1;46 (Zk,h,o(sllzaaﬁ) ;\1}
o
S4min{1,5 ’¢k,h,o(sﬁ,aﬁ) le}
k,0

where the first inequality holds due to that each term lies in the interval [0, 1], the second inequality holds due to Cauchy-
Schwartz inequality, and the third inequality holds due to lemma A.1. For the equation (A.9), we have

Vk h(S PVk h+1 (SZ, aﬁ)
¢k,h,o(3§» aﬁ)@}

1 ¢k ho(shy ai) Ok — 9)}

- l0c— ol }
E

\ 1
EKO

where the first inequality holds due to that each term lies in the interval [0, 1], the second inequality holds due to the
Cauchy-Schwartz inequality, and the third inequality holds due to Lemma A.1. O

— Tk h(Shvah)

< min«1 ¢kh0 (s, a0, —

)
{
{
<o 1

min

Shvah)‘

< min {1 23 H(ﬁk h, O(Shvah)

-1
k,0

< 2min {1 Jé] H¢k hO(Shaah)HE

B.5. Proof of Lemma A.5

Lemma B.3 (Lemma B.1, Zhou & Gu (2022)). Let {0y, Bk}kZI be a sequence of non-negative numbers, o,y >
0, {Xk}p>1 C R and ||xy ||, < L. Let {Z})>, and {51}, -, be recursively defined as follows: Z; = AI

Vk > 1,0, = max{ak,a,’y ||X;€||i{21} y i1 = Zy, +xkx;/6,€.
k

Let . = log (1 4+ KL?/ (dAa?)). Then we have

2
O'k+04 .

K
Y min {1,5k ||x,€||Z;1} < 2+ 2 max B3y + 2V/du

k=1

Proof of Lemma A.5. The proof is nearly identical to the proof of Lemma C.5 in Zhou & Gu (2022). The only difference is
to replace ik,m with ik,m (or ik,m): ik,h,m with f:k,h,m (or still ik,h,m)s d)k,h,m with qgk,h’m (or %k,h,m). O
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B.6. Proof of Lemma A.6

Proof of Lemma A.6. The proof follows the proof of Lemma 25 in Zhang et al. (2021¢) and Lemma C.6 in Zhou & Gu
(2022). We have,

~

Sm

2m+1

1t [[p7ns] Ghook) — ([P72R] (hoeh))']

Mm

M 11>
=1

K H
I HPVSZL} (s’,ﬁ,ah) sz?ffl (SZH)} + Z Zlf [‘71621:“ (52)

E
I

1h

(P72 )] 30 31 (23 o)~ 725 ()
<Am+1+ZZ[h[ P2 (sh) - ([]P’VMH] sk ak )] thk V2 (s ) s (B.15)

k=1h=1

I
—
=
I
—
>
Il
-

where hy, is the largest index satisfying [ ,’j = 1. For the second term, we have

S [v o) ([p2a) ()]

] =

< ; ; I V2m+1 (Sh) ([ka h+1} (32,&%))27”4.1}
_ g}il (Vk n (s5) — {[pvk h+1} (sﬁ,aﬁ)) ﬁ) (Vk n () + {]P)Vk h+1} (sﬁ,aﬁ)y)

I,If max {ﬁk,h (SZ) - [P‘/}k,h—s—l} (Sﬁa afi) 70}

1 i)

< gm+1 (Eo n 4}%) , (B.16)

IA

[N}

3

+
ok
M= I

IA
[\)
&
£
[~

I}]f {uk h (sf,ah) + 4 min {1 153 “¢k7h,0

k

Il
—
>
I

where the first inequality holds due to using EX? > (EX)? recursively, the first equality holds due to the fact 22"~
2" = (z—y) [T (22" — 4"), the second inequality holds due to Vj,;, belongs to the interval [0, 1], the third
inequality holds due to Lemma A4, and the last inequality holds due to u (s, af) = Blldv, . (65,meme) (SFs aF) ||§ =
k,0
m+1 . m+1
S0 If hye < H, we have I} Vthk+1 (sﬁkﬂ) <1=1-1IF andif hg = H, I} V,fhkﬂ (sikﬂ) =0=
1-1 ’If[, which both give

K
m+1
E Ihk k2hk+1 Shk+1 § 1_IH B.17)
k=1

Substituting Equations (B.15), (B.16),(B.17) into (B.15), we can get (A.20). For Equation (A.15), similarly, we have

K H
S < A + D3 I {vﬁ’;“ (sk) — ([ka h+1} sk ak ) } +thk V2 (sh ) s (B.18)
k=1 h=1
+1 K
thk Vihen (sho) <Y (L-If) = G. (B.19)
k=1
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And we have

S [T o) - ([PPEa) )]

k=1h=1
< g+l Z Z 1 max { Vi (s5) = [PV | (sh,ak) .0}
k=1h=1
K H
< 2m+1 Z ZIS |:T‘k h(S;C,,Sh) + min {1 25 H(ﬁk h 0’ zki)H
k=1h=1
< gmtl (K n 2}%0) (B.20)
where the first inequality holds similar to the derivation of (B.16), second inequality follows Lemma A.4, and the third
inequality holds due to Zthl Ten (s, af) < 1. Plugging Equations (B.19) (B.20) into B.18, we obtain A.21 O
B.7. Proof of Lemma A.7

Proof of Lemma A.7. The proof follows the proof of Lemma 25 in Zhang et al. (2021¢) and Lemma C.7 in Zhou & Gu
(2022). We use Lemma D.2 for A,,, and A,,, for each m. To avoid confusion, we write €, in Lemma D.2 as €', §’.

Let zpp = IF Hpvk hﬂ} (sk,al) — V§2’+1(5§+1)}, n=KH, ¢ = \/log(1/0), and & = §/(41og(KH)). Thus,

E [Zk n|Fk,n] = 0 and E [Sﬂk)h|}—k7h} = If [VV,EZH_ (s¥,ak). Therefore, for each m € [M], with probability at least
1 — 4, we have

K H
|A\m| - ZCZ Z I}]j {V‘/}k2,7hn+1} (827 aﬁ) + C

k=1h=1

an

Similarly, let zj,, = IF prf,g’;jﬂ} (sk,ak) — v,g;jﬂ(shﬂ)}, n=KH, ¢ = /log(1/8), and &' = 6/(4log(K H)).
With probability at least 1 — J, we have

K H K H
Al = D0 aen| < (| 20D D IE {VVICQ,ZH} (st ap) + ¢
k=1h=1 k=1h=1
Taking union bound over m € ﬁ completes the proof. O

B.8. Proof of Lemma A.8
L —1/2 “1/2 L —1/2
Proof of Lemma A.8. By the fact that det ( 3, ,, | < det (zkﬂ,m) and det | 2,1

< det (i;lffm) , we have
&2 1/2 —1/2
(1—1I5) =1« 3Im € [M],det Xem /det (2 > 4 or det Ekm /det (2 kHom) >4
. L —1/2 L —1/2 L —1/2 L —1/2
= Jm € [M], det (Ekm ) / det (Ek+17m> > 4 or det (Ek,m ) / det <2k+17m) >4 (B.21)
Let ﬁm and 25m denote the indices & such that

D= {ke[K]: det (f:kﬂ,m) / det (f:km) > 16

D= {k e [K]: det (§k+1,m) / det (fzk,m) > 16

N~
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Then we have

M-1 M-1 M-l M—1
G| U Puu U Du| <Y [P+ X 1D
m=0 m=0 m=0 m=0
For each m, we have
2 ‘Dm’ < Z log 16 < Z log (det (2k+1,m) / det <2k7,,L)) < Zlog (det <2k+17m> / det (2167,,,,))
k€D, k€D k=1

A bR d Y
Furthermore, since det ( X g 41,0, | < (tr (Lg41,m ) /d) and tr (Xgyq, <tr (M) +
- ) ( '77L> ( ( 77l) ) ( 7”)
Dk H¢k,h.mH2 /alz,h,m <d\+ KH/a?
3 log <det (2k+1,m) / det (2k,m)) = log (det (EKHM) / det (zl,m))
k=1
< d(log (A + KH/(do?)) —log(\))
Therefore \ﬁm\ is upper bounded by
1Dl < d/21og(1 + K H/(dA\a?)).

And same for \15m |. Taking summation gives the upper bound of G.

C. Proof of Lower Bound

Reward-free exploration is more difficult than non-reward-free MDP by definitions since we can easily solve non-reward-free
MDP by ignoring its reward and executing reward-free exploration. Thus, we will start with acquiring lower bounds under
non-reward-free MDP settings and then obtain sample complexity lower bounds of reward-free exploration. The proof

follows ideas of Zhou & Gu (2022) and Chen et al. (2021).

As noted in Section 5.2, we will consider the hard-to-learn linear mixture MDPs constructed in Zhou & Gu (2022). The state
space S = {x1, 2,73} and the action space A = {a} = {—1,1}9~1. The reward function satisfies r(x1,-) = r(z2,") = 0,
and r(x3,-) = . The transition probability satisfies P(z2 | 1,a) =1 — (6 + (p,a)) and P(z3 | z1,a) = 6 + (p, a),

where § = 1/6 and p € {—A, A}?~! with A = \/§/K'/(4v/2). The transition kernel is formulated as

(a(]‘ié)?*ﬁa—r)—r, 5:x1,s':x2;
T

o(s' s.a)={ (e ) s=1.8 =y
(Ol’ OT) y s € {$2,$3} , s = s;
0, otherwise.
T

6= (1/o,pn"/B) .

The following lemma from Zhou & Gu (2022) lower bounds the regret for linear mixture MDP.

Lemma C.1. (Theorem 5.4 in Zhou & Gu (2022)) Let B > 1. Then for any algorithm, when K’

max {3d?, (d — 1)/(192(B — 1))}, there exists a B-bounded linear mixture MDP satisfying Assumptions 3.2 such that its

expected regret E[Regret(K”)] is lower bounded by (d\/ K’/(16\/§)).

Given Lemma C.1, we will use the regret lower bound of non-reward-free linear mixture MDPs to derive the sample

coomplexity lower bound.

27



Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs

Lemma C.2. Suppose B > 1. Then for any algorithm ALG o, Free SOlVing non-reward-free linear mixture MDP problems

satisfying assumption 3.2, there exist a linear mixture M such that ALG oy, pree Needs to collect at least CEZ episodes to
output an e-policy with probability at least 1 — §. Here C' is an absolute constant.

Proof of Lemma C.2. For any algorithm ALG yon pree, We construct an algorithm ALGy,, ... €Xecuting totally Ky = cK
episodes, where c is a constant integer larger than 1. The first K episodes of ALG'y ., e, are the same as ALG Non Free, and
the rest episodes keep executing the policy at the end of episode K. By Lemma C.1, we have

Ki ,

dv/ K
SCE[V(s1:0% 1) — V(si:0%mpr) > CVEL
— 16v/3

(C.1)

for some constant ¢’. In addition, based on the construction of the hard-to-learn MDPs, where K - K 1, the per-episode
regret is upper bounded by

d

E[V(s1;0%, 7%, 1) — V(s1; 0", mp,7)] < YWe b (C.2)
Thus, calculating (C.1) - (K; — K)x (C.2), and choosingc = max {5/c’, 2}, we have
i E[V(s1;0%, 7%, 1) = V(s1;0", 7, 7)] > 1016\\//7;0
k=K+1
Since the policies in episode K + 1 to episode K are same to mx, we have
E[V(s1;0*, 7%, r) — V(s1;0%, 7k, 7)] > L
16v/3cKe
Suppose the ALGnon Free return return a e-optimal policy with probability 1 — §. Then,
d d
Um0t 0 R Tovacke
Setting § < min{1,1/(4c)}, by solving the inequality, we have K > C;‘f for some constant C'. O

Since reward-free MDP is more difficult than non-reward-free MDP, Lemma C.2 directly indicates Theorem 5.6.

Proof of Theorem 5.6. We will prove the theorem by contradiction. Assume all reward-free linear mixture MDPs can be
solved with sample complexity of o(g—;). Then, for any non-reward-free MDP M, there exists an algorithm ALG’ (&, §)
learning its reward-free counterpart M’ with sample complexity of o(g—z). We define ALG solving M as follows: it collects
K episodes of data and outputs the policy in the same way as ALG’ by ignoring the rewards. Then ALG can also (g, d)
learning M with sample complexity of o(g—z), which contradicts Theorem C.2. O

Corollary 5.8 can be viewed as an direct result of Theorem 5.6.

Proof of Corollary 5.8. The hard-to-learn case we consider here is basically same as we consider in Theorem 5.6, except
replacing reward function with r(z1,-) = r(x2,-) = 0, and r(x3,-) = 1. Since the reward here is H times the reward
in Theorem 5.6, the suboptimality is also H times. Therefore, ¢/ H-optimal policy in Theorem 5.6 is a e-optimal policy
here.2Azccording to Theorem 5.6, the sample complexity required to achieve such a policy with probability at least 1 — ¢ is
Q( H=d )

£2

O
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D. Auxiliary Lemmas

Lemma D.1. Suppose A,B € R%*? are two positive definite matrices satisfying A > B, then for any z € RY,
lz]la < [x[B+/det(A)/ det(B)

Lemma D.2 (Lemma 11, Zhang et al. 2021d). Let M > 0 be a constant. Let {z;},"_, be a stochastic process, G; =
o (1,...,x;) be the o-algebra of z1, ..., x;. Suppose E [z; | Gi—1] = 0, |z;] < M and E [2? | G;_1] < oo almost surely.
Then, for any J,¢ > 0, we have

P <2,|2log(1/6) zn:E (22 | Gi—1] + 24/log(1/d)e + 2M log(1/6)

i=1

>
i=1
>1-2(log (M?n/e?) +1) ¢ (D.1)

Lemma D.3. (Lemma 12 in Zhang et al. (2021¢)) Let A1, A2, Ay > 0, A3 > 1 and k = max {log, A1, 1}. Letay, ..., a,
be non-negative real numbers such that a; < min {/\1, Ao \/ai + ajp1 + 23 + /\4} forany 1 < i < k. Let a,41 = A1
Then we have a1 < 22)\5 + 64 + 4A0v/2)3.
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