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Abstract

We study linear contextual bandits in the misspec-
ified setting, where the expected reward function
can be approximated by a linear function class
up to a bounded misspecification level ¢ > 0.
We propose an algorithm based on a novel data
selection scheme, which only selects the contex-
tual vectors with large uncertainty for online re-
gression. We show that, when the misspecifi-
cation level ¢ is dominated by O(A/+/d) with
A being the minimal sub-optimality gap and d
being the dimension of the contextual vectors,
our algorithm enjoys the same gap-dependent re-
gret bound O(d?/A) as in the well-specified set-
ting up to logarithmic factors. In addition, we
show that an existing algorithm SupLinUCB (Chu
etal.,2011) can also achieve a gap-dependent con-
stant regret bound without the knowledge of sub-
optimality gap A. Together with a lower bound
adapted from Lattimore et al. (2020), our result
suggests an interplay between misspecification
level and the sub-optimality gap: (1) the linear
contextual bandit model is efficiently learnable
when ¢ < O(A/+/d); and (2) it is not efficiently
learnable when ¢ > Q(A/v/d). Experiments on
both synthetic and real-world datasets corroborate
our theoretical results.

1. Introduction

Linear contextual bandits (Li et al., 2010; Chu et al., 2011;
Abbasi-Yadkori et al., 2011; Agrawal & Goyal, 2013) have
been extensively studied when the reward function can be
represented as a linear function of the contextual vectors.
However, such a well-specified linear model assumption
sometimes does not hold in practice. This motivates the
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study of misspecified linear models. In particular, we only
assume that the reward function can be approximated by
a linear function up to some worst-case error ¢ called mis-
specification level. Existing algorithms for misspecified lin-
ear contextual bandits (Latgmore et al., 2020; Foster et al.,
2020) can only achieve an O(dv'K + (K+v/dlog K ) regret
bound, where K is the total number of rounds and d is the
dimension of the contextual vector. Such a regret, however,
suggests that the performance of these algorithms will de-
generate to be linear in K when K is sufficiently large. The
reason for this performance degeneration is because exist-
ing algorithms, such as OFUL (Abbasi-Yadkori et al., 2011)
and linear Thompson sampling (Agrawal & Goyal, 2013),
utilize all the collected data without selection. This makes
these algorithms vulnerable to “outliers” caused by the mis-
specified model. Meanwhile, the aforementioned results do
not consider the sub-optimality gap in the expected reward
between the best arm and the second best arm. Intuitively
speaking, if the sub-optimality gap is smaller than the mis-
specification level, there is no hope to obtain a sublinear
regret. Therefore, it is sensible to take into account the
sub-optimality gap in the misspecified setting, and pursue a
gap-dependent regret bound.

The same misspecification issue also appears in reinforce-
ment learning with linear function approximation, when a
linear function cannot exactly represent the transition ker-
nel or value function of the underlying MDP. In this case,
Du et al. (2019) provided a negative result showing that
if the misspecification level is larger than a certain thresh-
old, any RL algorithm will suffer from an exponentially
large sample complexity. This result was later revisited
in the stochastic linear bandit setting by Lattimore et al.
(2020), which shows that a large misspecification error will
make the bandit model not efficiently learnable. However,
these results cannot well explain the tremendous success of
deep reinforcement learning on various tasks (Mnih et al.,
2013; Schulman et al., 2015; 2017), where the deep neural
networks are used as function approximators with misspeci-
fication error.

In this paper, we aim to understand the role of model mis-
specification in linear contextual bandits through the lens of
sub-optimality gap. By proposing a new algorithm with data
selection, we can achieve a constant regret bound for such a
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problem. We also shows that the existing algorithm, SupLin-
UCB (Chu et al., 2011) can be also viewed as a boostrapped
version of our proposed algorithm. Our contributions are
highlighted as follows:

* We propose a new algorithm called DS-OFUL (Data Se-
lection OFUL). DS-OFUL only learns from the data with
large uncertainty. We prove an O(d?A~!) constant gap-
dependent regret! bound independent from K when the
misspecification level is small (i.e., ¢ = O(A/v/d)) and
the minimal sub-optimality gap A is known. Our regret
bound even improves upon the gap-dependent regret in
the well-specified setting (Abbasi-Yadkori et al., 2011)
from log(K) to constant regret bound. To the best of
our knowledge, this is the first constant gap-dependant
regret bound for misspecified linear contextual bandits as
well as the well-specified linear bandit without any prior
assumptions.

* We show that an existing algorithm, SupLinUCB (Chu
et al., 2011), can be viewed as a multi-level version of
our proposed algorithm. With a fine-grained analysis, we
are able to show that SupLinUCB can achieve O(d?A~1)
constant regret under the same condition of misspecifica-
tion level without knowing the sub-optimality gap.

* We also prove a gap-dependent lower bound following
the lower bound proof techniques in Du et al. (2019);
Lattimore et al. (2020). This, together with the upper
bound, suggests an interplay between the misspecification
level and the sub-optimality gap: the linear contextual
bandit is efficiently learnable if ¢ < O(A/v/d) while it

is not efficiently learnable if ¢ > Q(A/Vd).

* Finally, we conduct experiments on the linear contextual
bandit with both synthetic and real datasets, and demon-
strate the superior performance of DS-OFUL algorithm
and the effectiveness of SupLinUCB. This corroborates
our theoretical results.

Notation. Scalars and constants are denoted by lower and
upper case letters, respectively. Vectors are denoted by
lower case boldface letters x, and matrices by upper case
boldface letters A. We denote by [k] the set {1,2,--- ,k}
for positive integers k. For two non-negative sequence
{an},{bn}, an = O(b,) means that there exists a positive
constant C' such that a,, < Cb,,, and we use 6() to hide
the log factor in O(-) other than number of rounds 7" or
episode K; a,, = (b,,) means that there exists a positive
constant C such that a,, > Cb,,, and we use ﬁ() to hide the
log factor. For a vector x € R? and a positive semi-definite
matrix A € R?*? we define ||x||3 = x' Ax. For any set
C, we use |C| to denote its cardinality.

'we use notation (5() to hide the log factor other than number

of rounds K

2. Related Work

In this section, we review the related work for misspecified
linear bandits and misspecified reinforcement learning.

Linear Contextual Bandits. There is a large body of lit-
erature on linear contextual bandits. For example, Auer
(2002); Chu et al. (2011); Agrawal & Goyal (2013) studied
linear contextual bandits when the number of arms is finite.
Abbasi-Yadkori et al. (2011) proposed an algorithm called
OFUL to deal with the infinite arm set. All these works
come with an O(v/K) problem-independent regret bound,
and an O(d>A~!log(K)) gap-dependent regret bound is
also given by Abbasi-Yadkori et al. (2011).

Misspecified Linear Bandits. Ghosh et al. (2017) is
probably the first work considering the misspecified lin-
ear bandits, which shows that the OFUL (Abbasi-Yadkori
et al., 2011) algorithm cannot achieve a sublinear regret
in the presence of misspecification. They, therefore, pro-
posed a new algorithm with a hypothesis testing module
for linearity to determine whether to use OFUL (Abbasi-
Yadkori et al., 2011) or the multi-armed UCB algorithm.
Their algorithm enjoys the same performance guarantee
as OFUL in the well-specified setting and can avoid the
linear regret under certain misspecification setting. Latti-
more et al. (2020) proposed a phase-elimination algorithm
for misspecified stochastic linear bandits, which achieves
an O(VdK + (K+/d) regret bound. For contextual lin-
ear bandits, both Lattimore et al. (2020) and Foster et al.
(2020) proved an O(dvV'K + (K+/d) regret bound under
misspecification. Takemura et al. (2021) showed that Su-
pLinUCB can achieve a similar regret bound without the
knowledge of the misspecification level. Van Roy & Dong
(2019) proved a lower bound of sample complexity, which
suggests when ¢v/d > /8log | D], any best arm identifica-
tion algorithm will suffer a £2(27) sample complexity, where
D is the decision set. When the reward is deterministic and
does not contain noise, they provided an algorithm using
O(d) sample complexity to identify a A-optimal arm when
(< A/ V/d. Lattimore et al. (2020) also mentioned that if
¢ Vd < A, there exists a best arm identification algorithm
that only needs to pull O(d) arms to find a A-optimal arm
with the knowledge of (. Note that although the exponential
sample complexity lower bound for best-arm identification
can be translated into a regret lower bound in linear con-
textual bandits, the algorithms for best-arm identification
and the corresponding upper bounds cannot be easily ex-
tended to linear contextual bandits. Besides these works on
misspecification, He et al. (2022) studied the linear contex-
tual bandits with adversarial corruptions, where the reward
for each round can be corrupted arbitrarily. They assumed
that the summation of the corruption up to K rounds is
bounded by C' > 0 and proposed an algorithm achieving
O(dVK + dC) regret bound with the known C'. Since the
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corruption level C' = K ( in the misspecification setting,
their result directly implied an O(dv/K + dK() linear re-
gret, which differs from the optimal guarantee with a extra
O(V/d) factor. Besides these series of work, Camilleri et al.
(2021) also studied the robustness of kernel bandits with
misspecification.

3. Preliminaries of Linear Contextual Bandits

We consider a linear contextual bandit problem. In round
k € [K], the agent receives a decision set Dy C RY
and selects an arm x; € D, then observes the reward
r, = r(xx) + ek, where r(-) : R — [0,1] is a deter-
ministic expected reward function and ¢y, is a zero-mean
R-sub-Gaussian random noise. i.e., E[e**|x1.5, 1.1 1] <
exp(A\2R?/2),Vk € [K], A € R.

In this work, we assume that all contextual vector x € Dy,
satisfies ||x||2 < L and the reward function r(-) : R —
[0,1] can be approximated by a linear function r(x) =
x 0" + n(x), where 7(-) : R? + [—(, (] is an unknown
misspecification error function. We further assume ||0* || <
B and for simplicity, we assume B, L > 1. We denote the
optimal reward at round k as r; = maxxep, 7(x) and
the optimal arm xj = argmax,p, 7(x). Our goal is to
minimize the regret defined by Regret(K) := Zle T —
r(Xg).

In this paper, we focus on the minimal sub-optimality gap
condition.

Definition 3.1 (Minimal sub-optimality gap). For each x €
Dy, the sub-optimality gap Ag(x) is defined by Ag(x) :=
r} — r(x) and the minimal sub-optimality gap A is defined
by A := minge[g] xep, {Ak(X) : Ar(x) > 0}.

Then we further assume this minimal sub-optimality gap is
strictly positive, i.e., A > 0.

4. Constant Regret Bound with Known
Sub-Optimality Gap A

4.1. Algorithm

In this subsection, we propose our algorithm, DS-OFUL,
in Algorithm 1. The algorithm runs for K rounds. At each
round, the algorithm first estimates the underlying parameter
6* by solving the following ridge regression problem in
Line 4

. 2
0 = afgmlneZ¢eck,1 (Ti - Xz'Ta) + 013,

where Cj,_1 is the index set of the selected contextual vec-
tors for regression and is initialized as an empty set at the
beginning. After receiving the contextual vectors set Dy, the
algorithm selects an arm from the optimistic estimation pow-
ered by the Upper Confidence Bound (UCB) bonus in Line 6.

In line 8, the algorithm adds the index of current round into
Cy. if the UCB bonus of the chosen arm xj, denoted by
[Ix ||U;1, is greater than the threshold T'. Intuitively speak-
ing, since the UCB bonus reflects the uncertainty of the
model about the given arm x, Line 8 discards the data that
brings little uncertainty (||x||U;1) to the model. Finally, we
denote the total number of selected data in Line 8 by |Cx|.
We will declare the choices of the parameter I', 8 and A in
the next section.

Algorithm 1 Data Selection OFUL (DS-OFUL)
Input: Threshold I, radius /5 and regularizer A
1: Initialize Cp = 0, Ug = AI,0, = 0
2: fork=1,..., K do
30 SetUp=AL+3 0 | XX, .

4: Set Gk = U;l ZiECk,l riX;.
5:  Receive the decision set Dy,.
6:  Select x;, = argmax, cp, {x' O + ﬁ||x||U;1 }.
7:  Receive reward 7y,
8: if ka”U*1 >IT'thenCy = Cp_1 U {k} else C, =
k
Ck—1
9: end for
4.2. Regret Bound

In this subsection, we provide the regret upper bound of
Algorithm 1 and the regret lower bound for learning the
misspecified linear contextual bandit.

Theorem 4.1 (Upper Bound). For any 0 < ¢ < 1, let
A= B2and T = A/(2Vdi) where 1; = (24 +
18R) log((72 + 54R)LBVdA™") + /8R%1log(1/5). Set
B = 1+ 4y/diy + R\/2di3 where 15 = log(3LBI' 1),
t3 = log((1 + 16L?B%T'~2.3)/4). If the misspecification
level is bounded by 2v/d(t; < A, then with probability at
least 1 — 0, the cumulative regret of Algorithm 1 is bounded
by

< 328/2d3 12 1og(1 + 16dT—215) 14

Regret(K) < A

Remark 4.2. Since 3 = O(v/d), Theorem 4.1 suggests an
O(d2A~") constant regret bound independent of the total
number of rounds K when ¢ < O(A/\/d), which improves
the logarithmic regret O(d2A " log K) in Abbasi-Yadkori
et al. (2011) to a constant regret?>. Note that our constant
regret bound relies on the knowledge of the minimal sub-
optimality gap A, while the OFUL algorithm in Abbasi-
Yadkori et al. (2011) does not need prior knowledge about
the minimal sub-optimality gap A.

>When we say constant regret, we ignore the log(1/6) factor
in the regret as we choose J to be a constant.
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Remark 4.3. Our high probability constant regret bound
does not violate the lower bound proved in Hao et al. (2020),
which says that certain diversity condition on the contexts is
necessary to achieve an expected constant regret bound (Pa-
pini et al., 2021). Here we only provide a high-probability
constant regret bound. When extending this high probability
constant regret bound to expected regret bound, we have

E[Regret(K)] < O(d?A~ " log(1/6))(1 — ) + K,

which depends on K. To obtain a sub-linear expected regret,
we can choose 6 = 1/K, which yields a logarithmic regret

O(d?*A~11og(K)) and does not violate the lower bound in
Hao et al. (2020).

Remark 4.4. Notably, Papini et al. (2021) can achieve a
constant expected regret bound under certain diversity con-
dition, which requires the contexts of arms span the whole
R? space. In contrast, our constant regret bound does not
need such an assumption and is a high-probability constant
regret bound.

4.3. Key Proof Techniques

Here we present the key proof techniques for achieving the
constant regret with the knowledge of sub-optimality gap A.
The detailed proof is deferred to Appendix B.

Regret decomposition The total regret over all K rounds
can be decomposed as follows

Regret(K) = Z (ri —r(xx)) + Z (ri = r(xx))-
keCx kgCx
4.1

Finite samples collected in C;, Since we only adding the
contextual arm with large uncertainty (i.e., HXHU;1 >0
into the set Cy,, we can bound the number of samples in Cj,

as Cx = O(dl'~2) which is claimed in the following lemma.

Lemma 4.5. Given 0 < I' < 1, set A\ = B~2. For any
k € [K], |Ck| < 16dT~2 log(3LBT1).

Then the following lemma suggests that a finite regression
set Cy, can lead to a small confidence set with misspecifica-
tion.

Lemma 4.6. Let A\ = B~2. For all § > 0, with probability
at least 1 — 4, for all x € R, k € [K], the prediction error
is bounded by:

Ix (6, — 6| < (1 + RV2du + C\/\Ck\) 1x[lg -1

where ¢ = log((d + |Cx|L?B?)/(dd)) and |Cy| is the total
number of data used in regression at the k-th round.

Comparing the confidence radius O(Rv/d + ¢+/|Cx|) here
with the conventional radius O(Rv/d) in OFUL, one can
find that the misspecification error will affect the radius by
an /|Cx| factor. If we use all the data to do regression,
the confidence radius will be in the order of O(v/K) and
therefore will lead to a O(K+/log K) regret bound (see
Lemma 11 in Abbasi-Yadkori et al. (2011)). This makes
the regret bound vacuous. In contrast, in our algorithm, the
confidence radius is only 1/|Cx| where |Ck| is finite given
Lemma 4.5. As a result, our regret bound will not grow with
K as in OFUL and will be smaller.

Skipped rounds are optimal Given the fact that the se-
lected arm set Cy, is finite, the rest of the proof is simply
showing that the skipped rounds k ¢ Cj, are optimal and
will not incur regret. Since we have ||x||U;1 < T for those
skipped rounds, the sub-optimality is bounded by the fol-
lowing (informal) lemma.

Lemma 4.7. The instantaneous regret for round k ¢ Cy, is
bounded by

Ap(xp) < 2+ 28[xx[ly 1 < O(C+ A + VD),

Setting I' = ©(A/v/d) suggests that the instantaneous re-
gret Ag(xx) < A, which means no instantaneous regret
occurs on round k.

Achieving the constant regret To wrap up, as (4.1) sug-
gests, for rounds k£ € Cg, we can follow the gap-dependent
regret analysis in Abbasi-Yadkori et al. (2011) and obtain
an O(d?log(|Ck|)/A) gap-dependent regret bound, which
is independent of K according to Lemma 4.5. For rounds
k ¢ Cx, Lemma 4.7 guarantees a zero instantaneous regret.
Putting them together yields the claimed constant regret
bound.

5. Constant Regret Bound with Unknown
Sub-Optimality Gap A

5.1. Algorithm

Although Algorithm 1 can achieve a constant regret, it re-
quires the knowledge of sub-optimality gap A. To tackle
this problem, we propose a new algorithm that does not
require the knowledge of sub-optimality gap A.

The algorithm is described in Algorithm 2. It inherits the
arm elimination method from SupLinUCB (Chu etal., 2011).
A similar algorithm is also presented for misspecified linear
bandits in Takemura et al. (2021).

Algorithm 2 works as follows. At each round k € [K], the
algorithm maintains [ levels of ridge regression with differ-
ent set C!_,, where the estimation error for the [-th level
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is about 3(1)2~! (we will prove this in the latter analysis).
Then starting from the first level [ = 1 and the received de-
cision set Dy, if there exists an arm in the decision set with
a large uncertainty (i.e., [[x[|yt)-1 > 27"), the algorithm
directly selects that arm (Line 10). According to Lemma 4.5
in the analysis of DS-OFUL, the number of selected con-
texts at each level should be bounded. If the uncertainty
for all arms is smaller than the threshold 27, the algorithm
follows the arm elimination rule, which reduces the decision
set into

DI = {x:x € D}, ri(x}) — rh(x) <3127}
6.1

Then the algorithm enters the next level [ + 1 until it reaches
log(k)-th level as Line 13 suggests. For the level I > log(k),
the algorithm directly selects the arm with highest optimistic
reward on Line 14 and does not add the index k to the
regression set C,lC as on Line 15 since the uncertainty is
small enough.

Algorithm 2 can be viewed as the multi-level version of
Algorithm 1 boosted by the peeling technique. Algorithm 2
does not require the knowledge of the sub-optimality gap
A: if A is known, one can directly jump to a specific
level In = O(log(d/A)), where the prediction error is
bounded by 28(Ix)27'4 = O(A) and is sufficient to
achieve zero-instantaneous regret. However, when the A
is unknown, Algorithm 2 has to do a grid search over
271,272 ...27la ... and waste some of the samples to
learn the first [a — 1 levels. We will revisit and compare the
difference between these two algorithms in the later regret
analysis.

5.2. Regret Bound

This subsection provides the regret upper bound for Algo-
rithm 2.

Theorem 5.1 (Upper Bound). Forany 0 < § < 1,let A =

B~2. For every integer | > 0, set 3(1) = 1 + R+/2d2(l)
where 15(1) = log((d2' + 16L2B28"4(1))/(ds)) and
t(l) = log (3LB2'). If the misspecification level is

bounded by 4Ia¢ (1 + 4\/dL1(ZA)) < A where [ is the

minimal solution to Io > log(85(Ia)/A), then with proba-
bility at least 1 — ¢, the cumulative regret of Algorithm 1 is
bounded by

214d52 (ZA)Ll (ZA)
A

Remark 5.2. Since A(I) = OWdl) and In =
O(log(d/A)), Theorem 5.1 suggests that SupLinUCB
enjoys a constant regret bound O(d2A~1) when ¢ <
O(A/+/d), which is independent of the total number of

Regret(K) <

Algorithm 2 SupLinUCB

Input: Regularization )\, confidence radius 3(-)
1: Initialize C, = 0 for all [ € [[log(K)]]
2: fork=1,2,--- K do
3: SetD} =Dyandl=1

4 repeat

5 Set U%@ =) + ZiECi71 XiXZT

6: Set @, = (U})~! Ziec,g,l riXi

7 Setrt (x) = x" 6L + B(1) 1l 1y

8 Select action x}, = argmax, e pt rt(x)
9 if max, cp1 ||x||(U€€),1 > 27! then
10: Choose x;; = argmax, cpt HXH(UL)_l
11: Update C, = C!_, U {k}

12: Keep Cp = CL_, foralll' #1

13: else if & < 4'd then

14: Choose x;. = xfc

15: Keep C,lcl = C,l;fl foralll’ > 1

16: else

17: Set DL according to (5.1)

18: Increasel =1+ 1

19: end if

20:  until x;, is chosen
21:  Take action x;, and receive reward 7},
22: end for

rounds K. Note that in Algorithm 2, the choices of A and 3;
do not depend on the sub-optimality gaps A and misspecifi-
cation level (.

Remark 5.3. When ( > A/ V/d, it is hard to provide a
gap-dependent regret bound due to the large misspecifi-
cation level ¢. However, a gap-independent regret bound
of O(VdK + vd(K log(K)) is proved in Takemura et al.
(2021), which suggests the performance of SupLinUCB al-
gorithm will not significantly decrease when the condition
on misspecification does not hold.

Remark 5.4. Comparing the constant factors of DS-OFUL
(Algorithm 1) and SupLinUCB (Algorithm 2) on the domi-
nating terms O(3%d/A), one can find that the constant fac-
tors of SupLinUCB is significantly larger than DS-OFUL.
This is because it takes more samples to learn the first [o — 1
levels in SupLinUCB while DS-OFUL directly learns the
Ia-th level. Therefore, despite having the same order of
constant regret bound (in big-O notation), one can expect
that SupLinUCB has a worse performance than DS-OFUL
(when A is known or can be estimated by grid search).

5.3. Key Proof Techniques

Here we provide additional proof techniques besides the
techniques discussed in Section 4.3. First of all, Lem-
mas 4.5 and 4.6, which are built on a single level selected
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by ||x||U;1 > T, can be generalized to the following lem-

mas for all levels [. The detailed proof are deferred to
Appendix D.

Lemma 5.5. Set A = B2, forany k € [K]and [ > 0,
|CL| < 16d4't1 (1), where 1 (1) = log (3LB2').

Lemma 5.6. Set A\ = B~2. For any level [ > 0, for any
d > 0, with probability at least 1 — §, for all k& € [K], the
prediction error is bounded by

xT (6, — 67)| < (1 + Ry/2dis(l) + C\/@) el wt )

for all x such that ||x||2 < L, where t2(l) = log((d +
CLIL*B?)/(dd)).

The following two proof techniques are crucial to prove
constant regret bound of Algorithm 2.

Optimal arm is never eliminated Considering the opti-
mal arm in the eliminated set, which is defined by xic’* =
argmax, p, 7(x). Obviously x,lc’* = xj. The following
(informal) lemma says that the decision set always contains
a nearly optimal action xic’*:

Lemma 5.7 (informal). For any level [ > 0, assume some
good events hold, then there exists ng’* € Di, such that

r(x)—r(xb*) < 2(1-1)¢ (1 +4y/diy (l)) where ¢, (1) =
log (3LB2Z).

Given the result of Lemma 5.7 and the existence of the sub-
optimality gap A, we have xﬁc’* = X, when [ is not too large.
This means that the optimal arm is never eliminated from
the decision set D'.

Sub-optimal arms are all eliminated Intuitively speak-
ing, at level /, the prediction error is bounded by O(5(1) -
2~!) with some additional misspecification term ¢. There-
fore, when we eliminate the arms at level [, the sub-
optimality of the arms in D' is bounded by the following
(informal) lemma:

Lemma 5.8 (informal). For any level [ > 0, for any arm
x € DL, r(xt) — r(x) < 68(1)2~ + 2i¢ (1 + 4\/dL1(l))
where ¢1 (1) = log (3LB2").

Given Lemma 5.8, we know that when [ is sufficiently large
(e.g.,largerthanla), all x € ch enjoys a sub-optimality less
than A. Combining with the existence of sub-optimality gap
A, we know that all of the sub-optimal arms are eliminated
after level [ A.

Regret decomposition Given Lemma 5.5 and Lemma 5.8,
the regret over all K rounds can be decomposed into

K

Regret(K) = Y _ (r(x}) — r(xx))
k=1
=3 > (r(x) —r(xx))

121 kect,

where the last equality is due to the fact that no regret occurs
after [ > [A. For each level [ < [a, the summation of the
instantaneous regret within k& € C%; can be bounded follow-
ing the gap-dependent regret bound of Abbasi-Yadkori et al.
(2011) to obtain a O(d? log |CL|/A) regret bound which
is independent from K. Then taking the summation over
I < la yields the claimed constant regret bound.

6. Lower Bound

Following a similar idea in Lattimore et al. (2020), we prove
a gap-dependent lower bound for misspecified stochastic
linear bandits. Note that stochastic linear bandit can be seen
as a special case of linear contextual bandits with a fixed
decision set Dy, = D across all round k € [K]. Similar re-
sults and proof can be found in Du et al. (2019) for episodic
reinforcement learning.

Theorem 6.1 (Lower Bound). Given the dimension d
and the number of arms |D|, for any A < 1 and ¢ >
3A+/8log(|D])/(d — 1), there exists a set of stochastic lin-
ear bandit problems ® with minimal sub-optimality gap
A and misspecification error level ¢, such that for any al-
gorithm that has a sublinear expected regret bound for all
0 € 0O, ie, E[Regrety(K)] < CK* with C > 0 and
0 < a <1, wehave

* When K < O(|D|), the expected regret is lower bounded
by Eg-.unit.(@)[Regrety (K)] > KA.

* When K > Q(|D]), the expected regret is lower bounded
by supgee E[Regrety (K)] > Q(|D|log(K)A™).

Remark 6.2. Theorem 6.1 shows two regimes under the
case ¢ > Q(A/Vd). In the first regime K < O(|D|)
where the decision set is large (e.g., |D| = d'%), any al-
gorithm will suffer from a linear regret O(AK), which
suggests that the regime cannot be efficiently learnable.
In the second regime K > €(|D|), Theorem 6.1 sug-
gests an Q(|D|A ! log(K)) regret lower bound, which is
matched by the multi-armed bandit algorithm with an upper
bound O(|D|A~ log(K)) (Lattimore & Szepesvari, 2020).
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Therefore, in this easier regime, linear function approxima-
tion cannot provide any performance improvement and one
can simply adopt the multi-armed bandit algorithm to learn
the bandit model.

Remark 6.3. Theorems 4.1 and 6.1 provide a holistic pic-
ture about the role of misspecification in linear contex-
tual bandits. Here we focus on the more difficult regime
K < |D|. In the regime K < |D|, when ¢ < O(A/V4d),
Theorem 4.1 suggests that the bandit problem is efficiently
learnable, and our algorithm DS-OFUL can achieve a con-
stant regret, which improves upon the logarithmic regret
bound in the well-specified setting (Abbasi-Yadkori et al.,
2011). On the other hand, when ¢ > Q(A/+/d), Theo-
rem 6.1 provides a linear regret lower bound suggesting that
the bandit model can not be efficiently learned.

7. Experiments

To verify the performance improvement by data selection
using the UCB bonus in Algorithm 1 and the effectiveness
of the parameter-free algorithm Algorithm 2, we conduct
experiments for bandit tasks on both synthetic and real-
world datasets, which we will describe in detail below.

7.1. Synthetic Dataset

The synthetic dataset is composed as follows: we setd = 16
and generate parameter 8* ~ AN(0,I;) and contextual
vectors {x;}Y; ~ N(0,1,;) where N = 100. The gen-
erated parameter and vectors are later normalized to be
[[6*]|2 = ||xi]l2 = 1. The reward function is calculated by
r; = (0*,x;)+n; where n; ~ Unif{—(, (}. The contextual
vectors and reward function is fixed after generated. The
random noise on the receiving rewards €, are sampled from
the standard normal distribution.

We set the misspecification level ( = 0.02 and verified that
the sub-optimality gap over the N contextual vectors A ~
0.18. We do a grid search for § = {1, 3,10}, A = {1, 3, 10}
3 and report the cumulative regret of Algorithm 1 with dif-
ferent parameter I' = {0, 0.02,0.05,0.08,0.18} over 8 in-
dependent trials with total rounds K = 10000. It is obvious
that when I' = 0, our algorithm degrades to the standard
OFUL algorithm (Abbasi-Yadkori et al., 2011) which uses
data from all rounds into regression.

Besides the OFUL algorithm, we also compare with the
algorithm (LSW) in Equation (6) of Lattimore et al. (2020)
and the RLB in Ghosh et al. (2017) in Figure 1 and Table 1.
For Lattimore et al. (2020), the estimated reward is up-
dated by r(x) = X O+ Bx||y 1 +2 oy XU xS,
However, since the time complexity of the LSW al-

By “grid search”, we tune the parameter (8,)\) =
(1,1),(1,3),---,(10,3), (10, 10) and see their results.

2500
— =0(0OFUL) —— '=0.18
— [=0.02 —— Lattimore et al.
20004 — =0.05 Robust Linear Bandit
" — =0.08 —— SupLinUCB
9
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2
®
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€
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O
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Figure 1. Cumulative regret comparison of DS-OFUL (with dif-
ference choices of I'), SupLinUCB, Lattimore et al. (2020) and
Robust Linear Bandit Ghosh et al. (2017) over 10000 rounds. Re-
sults are averaged over 8 replicates.

gorithm is O(K2) due to the hardness of calculating
€ Zle Ix " U, 'x; ! incrementally w.r.t. k. In our setting
it takes more than 7 hours for 10000 rounds.

For the RLB algorithm in Ghosh et al. (2017), we did the
hypothesis test for £ = 10 rounds and then decided whether
to use OFUL or multi-armed UCB. The results show that
both LSW and RLB achieve a worse regret than OFUL since
in our setting ( is relatively small.

The result is shown in Figure 1 and the average cumula-
tive regret on the last round is reported in Table 1 with
its variance over 8 trials. We can see that by setting
I' ~ A/vd =~ 0.18/1/16 ~ 0.05, Algorithm 1 can achieve
less cumulative regret compared with OFUL (I' = 0). The
algorithm with a proper choice of I' also convergences to
zero instantaneous regret faster than OFUL. It is also evi-
dent that a too large I" = 0.18 ~ A will cause the algorithm
to fail to learn the contextual vectors and induce a linear
regret. Also, our algorithm shows that using a larger I" can
significantly boost the speed of the algorithm by reducing
the number of regressions needed in the algorithm.

Besides the performance improvement achieved by Algo-
rithm 1, the experiments also demonstrates the effectiveness
of Algorithm 2. As Table 1 suggests, SupLinUCB achieves
a zero cumulative regret over the last 1000 steps. However,
as discussed in Remark 5.4, the total regret of SupLinUCB
is much higher than the DS-OFUL and OFUL since it takes
more samples to learn the first [ — 1 levels which is not
used by DS-OFUL. This constant larger sample complexity
could also be verified by a longer elapsed time for executing
the SubLinUCB comparing to DS-OFUL.

7.2. Real-world Dataset

To demonstrate that the proposed algorithm can be eas-
ily applied to modern machine learning tasks, we carried
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Table 1. Averaged cumulative regret and elapsed time of DS-OFUL over 8 runs. The bold face value indicates the best (low regret or low

elapsed time) for all the algorithm configurations

Algorithm Configuration, (I')

‘ Regret (mean=std.) ‘ Regret in last 1k steps ‘ Elapsed Time(sec)

OFUL (Abbasi-Yadkori et al., 2011), " = 0 405.4 + 76.5 4.94 15.06
DS-OFUL (Algorithm 1), ' = 0.02 326.5 + 68.0 0.0 8.59
DS-OFUL (Algorithm 1), I' = 0.05 235.75 £40.3 0.0 6.30
DS-OFUL (Algorithm 1), I' = 0.08 411.6 + 566.7 22.44 5.97
DS-OFUL (Algorithm 1), I' = 0.13 1789.5 + 1918.8 173.67 5.56

Eq. (6) in Lattimore et al. (2020) 433.36 + 64 1.79 > 7 hrs.
Robust Linear Bandit (Ghosh et al., 2017) 831.5 + 880.4 42.58 12.85
SupLinUCB (Algorithm 2) 747.9 £+ 329.5 0.0 31.86
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4= 2500 25000
e s
g a
o 2000 20000 37
o
g o
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© 1500 15000 @
2 )
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500 _ 5000 5
—— =0.05 o
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# of rounds 1e6

Figure 2. Cumulative regret of DS-OFUL on the Asirra dataset
over 1M rounds with different I" under misspecification level { =
0.01. Results are averaged over 8 runs. The cumulative regret of
DS-OFUL (as well as OFUL) can be read from the y-axis on the
left. The cumulative regret of SupLinUCB algorithm can be read
from the y-axis on the right.

out experiments on the Asirra dataset (Elson et al., 2007).
The task of agent is to distinguish the image of cats from
the image of dogs. At each round k, the agent receives
the feature vector ¢, € R®2 of a cat image and an-
other feature vector ¢, € R®'? of a dog image. Both
feature vectors are generated using ResNet-18 (He et al.,
2016) pretrained on ImageNet (Deng et al., 2009). We nor-
malize ||¢1kll2 = ||@2,kll2 = 1. The agent is required
to select the cat from these two vectors. It receives re-
ward r; = 1 if it selects the correct feature vector, and re-
ceives 7, = 0 otherwise. It is trivial that the sub-optimality
gap of this task is A = 1. To better demonstrate the in-
fluence of misspecification on the performance of the al-
gorithm, we only select the data with |, 8* — r;| < ¢
with r; = 1 if it is a cat and r; = 0 otherwise. 6* is
a pretrained parameter on the whole dataset using linear
regression 0* = argming Zivzl((ﬁje — 7;)2, which the
agent does not know. For hyper-parameter tuning, we select
8 =1{0.1,0.3,1} and A = {1, 3,10} by doing a grid search

4 and repeat the experiments for 8 times over 1M rounds
for each parameter configuration. As shown in Figure 2,
when ¢ = 0.01, setting I' = 0.05 ~ A/+/d will eventually
have a better performance comapred with OFUL algorithm
(setting I' = 0). On the other hand, the SupLinUCB al-
gorithm (Algorithm 2) will suffer from a much higher, but
constant regret bound, which is well aligned with our the-
oretical result especially Remark 5.4. We skip the Robust
Linear Bandit (Ghosh et al., 2017) algorithm since it is for
stochastic linear bandit with fixed contextual features for
each arm while here the contextual features are sampled and
not fixed. The LSW (Equation (6) in Lattimore et al. (2020)
is skipped due to the infeasible executing time.

As a sensitivity analysis, we also set ¢ = {0.5,0.1,0.05}
to test the impact of misspecification on the performance
of algorithm choices of I'. More experiment configurations
and results are deferred to Appendix A.

8. Conclusion and Future Work

We study the misspecified linear contextual bandit from a
gap-dependent perceptive. We propose an algorithm and
show that if the misspecification level ¢ < O(A//d), the
proposed algorithm, DS-ODUL, can achieve the same gap-
dependent regret bound as in the well-specified case. Along
with Lattimore et al. (2020); Du et al. (2019), we provide a
complete picture on the interplay between misspecification
and sub-optimality gap, in which A/+/d plays an important
role on the phase transition of ¢ to decide if the bandit model
can be efficiently learned.

Besides the aforementioned constant regret result, DS-
OFUL algorithm requires the knowledge of sub-optimality
ap A. We prove that the SupLinUCB algorithm (Chu et al.,
2011) can be viewed as a multi-level version of our algo-
rithm and can also achieve a constant regret with our fine-
grained analysis without the knowledge of A. Experiments

“By “grid search”, we tune the parameter (3,)\) =
(0.1,1),(0.1,3),--- ,(1,3),(1,10) and see their results.
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are conducted to demonstrate the performance of the DS-
OFUL algorithm and verify the effectiveness of SupLinUCB
algorithm.

The promising result suggests a few interesting directions
for future research. For example, it would be interesting to
incorporate the Lipschitz continuity or smoothness proper-
ties of the reward function to derive fine-grained results.
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A. Experiment Details and Additional Results
A.1. Experiment Configuration

The experiment on synthetic dataset is conducted on

Google Colab with a 2-core Intel® Xeon® CPU @

2.20GHz. The experiment on the real-world Asirra Table 2. The number of remaining data samples after data processing
dataset (Elson et al., 2007) is conducted on an AWS p2-  With expected misspecification level

xlarge instance. ¢ #of cats  # of dogs
oo (without preprocessing) 12500 12500
A.2. Data Preprocessing for the Asirra Dataset 0.5 (linear separable) 10316 10511
To demonstrate how our algorithm can deal with differ- 0.1 3182 3248
ent levels of misspecification, we do data preprocessing 0.05 2408 2442
before feeding the data into the agent. As described in 0.01 1886 1905

Section 7.2, the remaining data with expected misspeci-
fication level ¢ are shown in Table 2. It can be verified
that even with the smallest misspecification level, there
are still more than 10% of the data is selected.

A.3. Additional Result on the Asirra Dataset

As a sensitivity analysis, we change the misspecification level in the preprocessing part in the Asirra dataset. The result is
shown in Figure 3. This result suggests that when the misspecification is small enough, setting ' = A/ V/d can deliver a
reasonable result and SupLinUCB Chu et al. (2011) can achieve a constant regret bound when ¢ < 0.1. It is aligned with the
parameter setting in our Theorem 4.1 and the result in our Theorem 5.1. Meanwhile, we found that when ¢ = 0.5, which
means it is strictly larger than the threshold A /v/d, the algorithm cannot achieve a similar performance with of ¢ < 0.1,
regardless of the setting of parameter I'. This also verifies the theoretical understanding of how a large misspecification level
will harm the performance of the algorithm.

12000

r=o0(ofFuL) —  |fsso0 70001 —— =0 (OFUL) 35000
r=0.05 — =0.05
r=0.10 00009 —— =0.10
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Figure 3. The performance of DS-OFUL under different misspecification levels (. Results are averaged over 8 runs, with standard errors
shown as shaded areas.

B. Detailed Proof of Theorem 4.1

In this section, we provide detailed proof for Theorem 4.1. First, we present a technical lemma to bound the total number of
data used in the online linear regression in Algorithm 1.

Lemma B.1 (Restatement of Lemma 4.5). Given 0 < I' < 1, set A\ = B~2 For any k € [K], |Ck] <
16dT2log(3LBT1).

Lemma B.1 suggests that up to 5(dI"2) contextual vectors have a UCB bonus greater than I'. A similar result is also
provided in He et al. (2021b), suggesting an (5(F*2) Uniform-PAC sample complexity. Lemma B.1 also suggests that the
numbers of data points added into the regression set C is finite. Thus, the impact of the noise and the misspecification on the
linear regression estimator can be well-controlled.
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For a linear regression with up to |Cy| data points, the next lemma controls the prediction error under misspecification.

Lemma B.2 (Formal statement of Lemma 4.6). Let A = B~2. For all § > 0, with probability at least 1 — &, for all
x € R4 k € [K], the prediction error is bounded by:

T Ok = )] < (1+ RV2de + CV/[C]) Xl
where ¢ = log((d + |C,|L?B?)/(dd)) and |Ck| is the total number of data used in regression at the k-th round.

Lemma B.2 provides a similar confidence bound as the well-specified linear contextual bandits algorithms like OFUL (Abbasi-
Yadkori et al., 2011). Comparing the confidence radius here O(R\/ﬁ + ¢+/|Cr—1]) with the conventional radius in OFUL

(5(R\/¢§), one can find that there is an additional term (+/|Ci| that is caused by the misspecification. If we directly use

all data to do the regression, the resulting confidence radius will be in the order of (5(\/? ) and therefore will lead to a
O(K+/log K) regret bound (see Lemma 11 in Abbasi-Yadkori et al. (2011)). This makes the regret bound vacuous. In our
algorithm, however, the confidence radius is only 1/|Cj,| where |Cy| is bounded by Lemma B.1. As a result, our regret bound
will not be vacuous (i.e., superlinear in K).

When the misspecification level is well bounded by ¢ = o (A/+/d), the following corollary is a direct result of Lemmas B.2
by replacing the term |Cy| with its upper bound provided in Lemma B.1.

Corollary B.3. Suppose 2v/dCi; < A, let A\ = B 2and0 < T' < 1. Let § = 1 + 2AT ' /i5/11 + R\/2di3 where
t2 = log(3LBT 1), 13 = log((1 + 16 L2 B2I'~215) /§), then with probability at least 1 — &, for all x € R% k € [K], the
estimation error for all k € [K] is bounded by: [x " (8 — 6*)| < B||x]|;-1-

k

Proof. By Lemma B.1, replacing |Cy| with its upper bound yields
T (85— 67)] < (1 + 4V /i3 + Ry/2dig) [y < Bl
where the second inequality is due to the condition 2v/d¢ < A /1. O

Next we introduce an auxiliary lemma controlling the instantaneous regret bound using the UCB bonus and the misspecifica-
tion level.

Lemma B.4 (Formal statement of Lemma 4.7). Suppose Corollary B.3 holds, for all & € [K], the instantaneous regret at
round k is bounded by

Ap(xk) = 1 = r(xi) < 2C+ 26(xk[ly -

The next technical lemma from He et al. (2021a) bounds the summation of a subset of the bonuses.

Lemma B.5 (Lemma 6.6, He et al. 2021a). For any subset G = {c;, -, ¢;} € Ck, we have

Y lIxellf 0 < 2dlog(1 + G2/ ).
keg

The next auxiliary lemma is used to control the dominating terms.

Lemma B.6. Let 1; = (24 + 18R)log((72 + 54R)LBVdAA~') + \/8R%log(1/8), T = A/(2Vdu1), 12 =
log(3LBT 1), 15 = log((1 + 16L?B?T'"%15)/d), we have ¢; > 2+ 4,/15 + R/2t3.

Equipped with these lemmas, we can start the proof of Theorem 4.1.

Proof of Theorem 4.1. First, note that by setting I' = A /(2v/dw; ), the confidence radius 3 becomes 1 + 4v/diy + R+/2d1s.
Then our proof starts by assuming that Corollary B.3 holds with probability at least 1 — §. We decompose the index set [K]
into two subsets. The first set is the set of not selected data [K] \ Cx, and the second set is the set of selected data Cx. We
will bound the cumulative regret within these two sets separately.

12
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First, for those non-selected data k ¢ Cy, i.e. ||Xx||;-1 < I', combining Lemma B.4 with Corollary B.3 yields
k

A V2i3RA AN /1n
+ +
\/&1 L1 L1

where (1, t2, t3 are the same as Theorem 4.1, and the equality is dueto ' = A/ (2\/EL1). ‘When misspecification condition
20/d¢ < A/t holds, (B.1) suggests that

rp—r(xg) <2C+2T =2+

7 (B.1)

9N ANz VIRA
+ + .

Vidu u 1
Lemma B.6 suggests that when ¢1 = (24 + 18R) log((72 + 54R) LBVdA ™) + \/8R%log(1/8) 11 > 2+ 4/12 + R\/2t3,

(B.2) yields that the instantaneous regret 7, — r(xx) < A at round k. By Definition 3.1, the instantaneous regret is zero for
all k ¢ Cg, indicating the non-selected data incur zero instantaneous regret.

Ty —r(xg) < (B.2)

In addition, Lemma B.4 suggests that the instantaneous regret for those k& € Cx is bounded by

> ri—re) < Y (281l +2)

keCk keCk
<28V[Ckl [ D kIl -+ +2ICx IS
keCx
< 8AT'\/dug\/2dlog(1 + 16dT—215) + 32¢dT 21,
< 168/ 2d3 15 log(1 + 16dT 21911 /A + 64V d3 1105/ A
< 32B+/2d3151og(1 4 16dT—215)11 /A, (B.3)

where the second inequality follows the Cauchy-Schwarz inequality, the third one yields from Lemma B.5 while the fourth
utilizes the fact that ' = A/(2v/de;) and ¢ < A/(2V/de1). The last one is due to the fact that the second term in the fourth
inequality is dominated by the first one.

To warp up, the cumulative regret can be decomposed by

Regret(K) Z (r — r(x)) + Z (= r(xx)) < 0+ 328\/2d315 log(Al + 16dF—2L2)L1)

kch kECK

where the first two zeros are given by the fact that for k ¢ Cx, we have rj — r(x;) = 0. the regret bound for k € G is given
by (B.3). O
C. Proof of Technical Lemmas in Appendix B

C.1. Proof of Lemma B.1

To prove this lemma, we introduce the well-known elliptical potential lemma (Abbasi-Yadkori et al., 2011)

Lemma C.1 (Lemma 11, Abbasi-Yadkori et al. 2011). Let {¢; le be a sequence in R, define U; = A\I + Z§'=1 oy qb;»r,
then

I
| A+ TL?
Zlnln{lv H(ﬁz‘lf.];_ll} < 2dlog </\d) .
=1

The following auxiliary lemma and its corollary are useful

Lemma C.2 (Lemma A.2, Shalev-Shwartz & Ben-David 2014). Leta > 1 and b > 0. Then = > 4alog(2a) + 2b yields
z > alog(x) +b.

Lemma C.2 can easily indicate the following lemma.

13
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Lemma C.3. Leta > 1. Then x > 4log(2a) + a~! yields x > log(1 + ax).

Proof. Lety =1+ ax,z = (y — 1)/a. Then z > 41og(2a) + a~* is equivalent with y > 4alog(2a) + 2. By Lemma C.2,
this implies y > alog(y) + 1 which is exactly = > log(1 + ax). O

Equipped with these technical lemmas, we can start our proof.

Proof of Lemma B.1. Since the cardinality of set Cj, is monotonically increasing w.r.t. k, we fix & to be K in the proof

and only provide the bound of C . For all selected data k € Cg, we have ||¢y| ;-1 > I'. Therefore, when I' < 1, the
k

summation of the bonuses over data k € Cg is lower bounded by

3 min{l, Hqskn%;l} > |Cx| min{1, %} = |Cx |T2. C.1)

keCk

On the other hand, Lemma C.1 implies

()\d+|CKL2>

Z min{l, ||q5k||%;1} < 2dlog d

keCk

(C.2)

Combining (C.2) and (C.1), the total number of the selected data points |Cx| is bounded by

2
FQ\CK| < 2dlog ()‘d+|CK|L> .

Ad

This result can be re-organized as

I?|Ck| 2L% T%|Ck |
< — . .
9 _log(l—i—FQ)\ 5d ) (C3)

Let A = B2 and since 2L2B? > 2 > I'?, by Lemma C.3, if

2 22 232 2
I lCx| > 4log <4LFB )+1 > 4log <4L B >+ L

2d 2 2 20212’
then (C.3) will not hold. Thus the necessary condition for (C.3) to hold is

I2|Cx| 417 B? 2LB 2L Bes 3LB
¥ < 4log e +1=8log - + log(e) = 8log T < 8log - |

By basic calculus we get the claimed bound for |Cx | and complete the proof. O

C.2. Proof of Lemma B.2

The proof follows the standard technique for linear bandits, we first introduce the self-normalized bound for vector-valued
martingales from Abbasi-Yadkori et al. (2011).

Lemma C.4 (Theorem 1, Abbasi-Yadkori et al. 2011). Let {F;}72, be a filtration. Let {e;}72, be a real-valued stochastic
process such that &, is J;-measurable and ¢; is conditionally R-sub-Gaussian for some R > 0. Let {¢; }$°, be an R%-valued
stochastic process such that ¢ is F;_1 measurable and ||¢||2 < L for all ¢. For any ¢ > 0, define Uy = A\I + 22:1 LDk
Then for any ¢ > 0, with probability at least 1 — 6, forall ¢ > 0

2

t

det(T,)
> ducn <2R?log | Y=t ).
! - V/det(Uo)o
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Lemma C.5 (Lemma 8, Zanette et al. 2020). Let {a;}%_; be any sequence of vectors in R? and {b;}%_; be any sequence of
scalars such that |b;| < ¢. For any A > 0:
2

< n¢%

1

n
g a;b;
i=1

[Z?:1 aia;r+)\1]7

The next lemma is to bound the perturbation of the misspecification

Lemma C.6. Let {n;}; be any sequence of scalars such that || < ¢ for any k& € [K]. For any index subset C C [K],
define U = \I + Zkec xkxg, then for any x € R<, we have

x Ut Z Xi Mk
keC

< ¢ViClxllg-s-

Proof. By Cauchy-Schwartz inequality we have

xTUTY sk < xllo-r || D xkm < ¢VICllxl[u-1,
kec kec U-1
where the second inequality dues to lemma C.5. O

The next lemma is the Determinant-Trace inequality.

Lemma C.7. Suppose sequence {x;}X_, C R? and for any k € [K], ||xx|l2 < L. For any index subset C C [K], define
U =M+ Y, o xix, for some A > 0, then det(U) < (A + |C|L?/d)".

Proof. The proof of this lemma is almost the same as Lemma 10 in Abbasi-Yadkori et al. (2011) by replacing the index set
[K] with any subset C. We refer the readers to Abbasi-Yadkori et al. (2011) for details. O

Equipped with these lemmas, we can start our proof.

Proof of Lemma B.2. For any k € [K], considering the data samples k&’ € Cj,_ used for regression at round k. Following
the update rule of Uy, and 6y, yields

Uk(Gk — 0*) = UkUlzl( Z Xk/’l"k/> — <)\I + Z Xk’xz/>0*

k'eCr_1 k'eCr_1
= E X' TEr — AO* — E Xk/XE,O*
k'€Cr—1 k'€Cr—1
=—-\0" + E xp (i — % 0%)
k'€Cr—1
=—-\0" + E X/ Ex + E X/ Mk’ 5
k'€Cr_1 k'€Cr_1

. —1
where the first equation is due to the fact that Uy, = X[+ Y, ., xxx) and 8 = U ' Yo, o Xprpr. The last
equation follows the fact that r4/ is generated from 7, = 7(xx/) + e = X,,0* + 1(X)) + €1/, where we denote 7(xy) as
1y for the model misspecification error and €y is the random noise. Therefore, consider any contextual vector x € RY, we
have

|XT(0k —-0%)| = ’XTUglUk(ek —-07)
SATUSO |+ [xTU D e |+ XU D drw,
—/_ql k'€Cr—1 k'€Ck-1
q2 93
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where the inequality is due to the triangle inequality. Lemma C.6 yields g3 < (+/|Ck—1][|%|/{;-1. From the fact that
k
x"Ay| < |/x[|a]ly]la. we can bound term g; by

Q1 < ”X”U;lHe*”U;l < )‘_1/2B”X”U;1~ (C4)

where the last inequality is due to the fact that U;l =< A7 Term g5 is also bounded as

E Xk €/

k'€Cr—1

K
Z 1 [k}/ S Ck—l] X'k’

k'=1

) (C5)
U, !

@2 < - = x|

-1
U,

I

where the second equation uses the indicator function to rewrite the summation over subset C;,_;. Denoting yy =
1 [k € Cr—1] x4, noticing that ||yx||2 < ||x|l2 < L and

K K
U, = E XpXp, = E 1k € Cp1]xpx) = E YiY
k'€Cr—_1 k'=1 k'=1

by Lemma C.4, I; can be further bounded by

det(Uy) ( det(Uyg) ) <det(Uk))
I <, |2R?2log | Y—————= | < Ry/2log | ———% | = Ry/2log | ——2 |, (C.6)
' & <~ /det(Up)s &\ det(Uy)s 8\ s
where the second inequality follows the fact that det(Uy) > det(Ug) = A% Notice that Uy, = A\ + ),
Lemma C.7 suggests that det(Uy) < (X + |Cr—1|L?/d)?, plugging this into (C.6), we obtain

(A +|Cr—1|L2/d)? AN+ |Cp—1|L?
< < ).
IlR\/210g< g < Ry /2dlog Y

Plugging the bound of I; into (C.5) and combining with (C.4) and Lemma C.6 together, replacing |Cy_1| with its upper
bound |Cr | we have with probability at least 1 — §, for all k € [K],x € R4,

T
€Cr_1 Xk/Xk/.

" d\ + |Ck | L2 _
xT(0, — 07)| < (R\/ satog () e <\/|cK|> 9l
Letting A = B~2 we get the claimed results. O

C.3. Proof of Lemma B.4

Proof. According to the definition of expected reward function r(x), we have for all k& € [K], suppose the condition in
Lemma B.2 holds, then

ri— e =n(x;) —n(xk) + (x3) 07— x[ 6"
<2+ (x5) 0F —x] 0*
=20+ (x) " O + (xi) " (6" — 6)) — x[ Oy + X (1 — 67)
<20+ (%) " Ok + BlIxilly — % Ok + Blxilly
< 20+ O+ Blxellyr — x5 Ok + Bllxilly
< 2¢ + 2B|Ixk[ly-,

where the first inequality utilize the fact that |n(x)| < ¢ for all x € Dy, the second inequality follows from Corollary B.3, the
third inequality is due to the fact that x;, = argmax,p, x' 65+ ||x||U;1, which is executed in Line 6 of Algorithm 1. [
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C.4. Proof of Lemma B.6

Proof. Firstitis clear to see that \/2t3 = \/2log(1 + 16L2B2T' ~2) + 2log(1/0). Using the fact that v/a + b < v/a+V/b,
it can be further bounded by

V25 < \/2log(1 + 16L2 BT 215) + /2 1og(1/0).

Assuming L > 1,B > 1,T' = A/(2V/di;) < 1yields LBT ! > 1, then by basic calculus one can verify that

2+ 4y/13 < 6log(3LBI 1),  \/2log(1 + 16L2B2T'—21,) < 3log(3LBT 1),
therefore we have that

2+ 4./t + RV2u3 < (6 + 3R) log(3LBI ) + /21log(1/8)R
= (6 + 3R) log(6LBVdAA ™ 11) + \/21log(1/6)R,

where the last equality is from the fact that ' = A/ (2\/&1). Lemma C.2 suggests that the necessary condition for

(6LBVAA™ )1y > (6LBVAA™)(6 4 3R) log(6LBVAA™ 1) + (6LBVAA™Y)\/210og(1/0)R (C.7)

T a b

is that

(6LBVAA™)1; > 4(6LBVAA™Y)(6 + 3R) log(2(6LBVAA™Y)(6 + 3R))

+ 2(6LBVdA~)\/210g(1/6)R,

which suggests that setting
11 = (24 4 18R) log((72 + 54R)LBVdAA™') 4+ \/8R?log(1/6)
implies the fact that ¢; > 2 + 4,/12 + R+v/2¢3 O]

D. Detailed Proof of Theorem 5.1

The first lemma shows that the contexts selected to I-th level are bounded independent from K

Lemma D.1 (Restatement of Lemma 5.5). Set A\ = B2, Forany k € [K] and [ > 0, |CL| < 16d4';(I) where
(1) = log (3LB2Y).

Proof. The proof is similar to the proof of Lemma B.1 by repalcing I' = 27, O

The next lemma provides a fluctuation control as well as the concentration in the ridge regression

Lemma D.2 (Restatement of Lemma 5.6). Set A = B~2. For any level [ > 0, for any § > 0, with probability at least 1 — &,
for all k& € [K], the estimation error is bounded by

|x" (6, —6)] < (1 + Ry/2d15(1) + C\/|c,l€|> x| w1
for all x such that ||x||2 < L, where t2(1) = log((d + |CL|L2B?)/(dJ5)).
Proof. The proof is similar to the proof of Lemma B.2 O

Combining Lemma D.1 and Lemma D.2, we have the following corollary.
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Corollary D.3. Set A = B~2. For any § > 0, with probability at least 1 — 4, for all round k € [K] and any level [ > 0, the
prediction error is bounded by

X7 (6} - 6")] < (ﬂ(l) +4¢2' dum) Il g1,

for all x such that ||x||s < L, where B(I) = 1 4+ R+/2dus(1), t2(1) = log((d2! + 16L2B2811(1))/(dd)), and 11(1) =
log (3LB2 )

Proof. The proof is simply by plugging the result in Lemma D.1 into Lemma D.2 and replacing the § with § /2. By the
union bound over I € NT and the fact that ;2 6 /2 = § yields the claimed result. O

Now, we are about to control D!, which means here we only consider the case where || x| (Uly-1 < 2~ for all x € D} and
assuming the high-probability event in prev10us subsection always holds. The following lemma suggests that the decision
set always keeps a nearly optimal action X k . Let G be the event that the high probability statement in Corollary D.3 holds.

Lemma D.4 (Formal statement of Lemma 5.7). For any level [ > 0, assume event Gy holds, then there exists xé* e DL,
r(xt) — r(xb") < 20— 1)¢ (1 n 4\/dL1(1)) where 1, (1) = log (3LB2!).

Proof. We would prove the statement by induction. Since D}, = Dy, we have x} € Dj and thus the induction basis holds
according to r(x}) — (xﬁe*) = 0. Now we assume the statement holds for level [, that is, there exists xk € D! such that

Xi*eDl,r(x)—r(xk)<2(l—1 (1+4x/db1 )
I—1,%

If Xfé* DIFL, then the desired statement directly holds by choosing xﬁ; =x, . Otherwise xé’* is eliminated by some
action xﬁjl * € DL that L (xLTH*) > 7L (xb*) + 28(1)27". Moreover, from the definition of estimator rk (), we have

I+1,% I+1,% I+1,x pl I+1,%
AOET) =G < Gk (T = 0) 450 [ ®.1)
and
rl) = ) < ¢ = (kL 0k - 07) — B [ . (D2)
k k)= ko k (Ui)-1
Combining (D.1) and (D.2) and the fact that 7% (x4™*) > rL (x4*) + 35(1)2 gives that
1% I+1,% I+1,% L,x pl * I+1,% 1%
) =05 < =302 20+ (T = 0= 07) =80 [ 80 |

<3827 +20+2- 27 (ﬂ(l) +4¢2! dLl(Z)) B2
<2 (1 + 4\/dL1(1)> :

where the second inequality is suggested by Corollary D.3 and ||XH(U§c -1 < 27! for all x € D!. The desired statement can
then be reached using the induction hypothesis. O

Then, the following lemma suggests that the performance of the actions in the decision set is guaranteed.

Lemma D.5 (Formal statement of Lemma 5.8). For any level [ > 0, assume event Gk holds, then for any action x € D,

r(x;) —r(x) < 68(1)271 + 2I¢ (1 + 4\/dL1(l)) where ¢1 (1) = log (3LB2").

Proof. Let xg* € ch be the optimal action given in Lemma D.4. According to the elimination process, for any action
x € D!, it holds that rf (x) > 7l (xé*) — 383(1)2~". Moreover, from the definition of estimator r (-), we have

(%) = (%) < ¢+ (x, 0 = 0%) + B0 Ix iy
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and

Combining the above three inequalities give

Pyt = (%) < 38027 420+ 27+ (x = X7, 0, — 07) = B() <

(ul)
<3827 +2¢+2-27" (3(1) + 4(2%/@1(1)) + A2~
<68(1)27 +2¢ (1 + 4\/dL1(l)) :

where the second inequality is suggested by Corollary D.3 and ||XH(U§C -1 < 27! for all x € D!. The desired statement can
then be reached by combining Lemma D.4. O

Proof of Theorem 5.1. Consider the case that event Gx holds. Let [o be the smallest integer solution to In >
log(83(Ia)A~1). Note this relation ensures 43(Ia)27'4 < A/2. In case that the misspecification level is bounded

by 2la( (1 +4/dn (ZA)) < A/2, it holds that 65(1a)2"'> + 2IaC (1 + 4\/dL1(lA)) < A. According to Lemma D.5,
it satisfies that

rxi) = r(x) < 68(1a)27" + 20a¢ (14+4/dn (1) )

for any x € fo. According to the process of arm elimination, we have ch C fo for any [ > Ia. Thus, it holds that
r(x}) —r(x) < A forany x € D}, 1 > Ia. Note that according to the definition of A, we have 7(x}) — r(x) > A for all
x € DL that r(x}) # r(x). These two statements together restrict r(x}) = 7(x) for any x € D! on every [ > [, that is,
any action that remains in the decision sets on higher levels are optimal. Let I/ }( be the set of index k that action xy, is
chosen from layer [. We have U} | < |CL| + 4'd. Thus, we could decompose the total regret by

Ian—1
Regret(K) = > Y (r(xp) —r(x) = Y > (r(x}) - r(x))
1>1 keul, =1 keut

Ian—1

< S (Chl + ) (68027 +20¢ (1+4/dn (D)) )
=1
Ian—1

< 3 16d4%4 (1) - (65(1)2‘l +21¢ (1 +4¢W)))
=1

Ia—1 Ia—1

<96d Y B2 (1) +32d¢ > 144 (D) (1 + 4\/dL1(l))
=1 =1

< 96dB(1n)2" 11 (1) + 32dIa4' 11 (1n)C (1 + 4\/db1(lA)>
< 1536d5°(Ia)u (1a)/A + 8192dB%(Ia )1 (Ia) /A
< 21dB% (1) (In)/ A

where the second equality is given by Lemma D.5, the second inequality is given by Lemma D.1, the third last inequality
holds since 3(-) and ¢ (-) are monotone increase and the second inequality since 2/471 < 83(Ia — 1)A~ < 8B(Ia)A!

and 2/a¢ (1 + 4\/dL1(lA)) < AJ2.

E. Proof of Theorem 6.1

To begin with, we introduce the lemma providing a sparse vector set in R%.
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Lemma E.1 (Lemma 3.1, Lattimore et al. 2020). For any ¢ > 0 and d < [|D|] such that d > [8log(|D|)e 2], there exists a
vector set D C R? such that ||x|y = 1 forallx € Dand | (x,y)| < e forall x,y € D and x # y.

Next, we present the Bretagnolle—Huber inequality providing the lower bound to distinguish a system.

Lemma E.2 (Bretagnolle-Huber inequality). Let P and @) be probability measures on the same measurable space (2, F),
let A € F be an arbitary event. Then

PA) + QUA%) > J exp(~KL(P, Q).

For stochastic linear bandit problem with finite arm, we can denote T;(k) as the number of rounds the algorithm visit the
i-th arm over total k rounds. Then We have the KL-divergence decomposition lemma.

Lemma E.3 (Lemma 15.1, Lattimore & Szepesvari (2020)). Letv = (Py,--- , P,) be the reward distributions associated
with one n-armed bandit and let v/ = (Pj,--- , P)) be another n-armed bandit. Fix some algorithm 7 and let P, =
P,.,P,, =P,/ , be the probability measures on the canonical bandit model induced by the k-round interconnection of 7
and v (respectively, 7 and /). Then KL(P,,P,/) = > | E,[T;(n)KL(P;, /)

Proof of Theorem 6.1. The proof starts from inheriting the idea from Lattimore et al. (2020). Given dimension d and the
number of arms |D|, setting ¢ = /81log(|D])/(d — 1), we can provide the contextual vector set D such that

8log(|D
Il =1 vx e D, |y | < S8 vy epox 4y,
For simplicity, we index the decision set as x1, - - - , X|p|. Given the minimal sub-optimality gap A, we provide the parameter

set O as follows:
© = {0, ;) = Ax; + 2Ax;,%;, %, € D,i # j} | J{0: = Ax;, x; € D}.

It can be verified that © contains two kinds of €. The first one 6; ;) is a mixture of two different contexts x;, x; with
different strength A and 2A. The second one is 8; which only contains features from one context x;. We can further verify
that the size of |®| = |D|? and ||| < v/5A for @ € ©. For different parameter 6, the reward function is sampled from a
Gaussian distribution A (rg(x), 1), where the expected reward function is defined as

2Aif x = x; .
) Aifx = x;
To,,,(X) = Aifx=x;  ,7,(X) =

. 0 otherwise
0 otherwise

We can verify that the minimal sub-optimality of all these bandit problem is A. For different parameter 8 and input x, by
utilizing the sparsity of the set D (i.e. |x "y| < € if x # y), we can verify the misspecification level as

[2A — QAX}—X - Ax/ x| < Acifx = X,
7o, (%) — Hg’j)x| = |A- QAX]-TX — Ax/ x| < 2Acifx = x;
|0 — 2AXJ-TX — Ax/ x| < 3A¢ otherwise

A — Ax[ x| =0ifx =x;
|0 — Ax] x| < Ac otherwise.

76, (x) — 67 (x)| = {

Therefore we have verified that the misspecification level is bounded by { = 3Ae.

The provided bandit structure is hard for any linear algorithm to learn since any algorithm cannot get any information
before it encounters non-zero expected rewards, even regardless of the noise of the rewards. We following the same method
in Lattimore & Szepesvdri (2020). If the algorithm choose arm 4 at the first round, there would be |D| parameters (i.e.
0;,0(;,.) receiving a non-zero expected reward. On the second round if the algorithm choose a different arm j, there would
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be |D| parameters (i.e. 6, 0 .- receiving a non-zero expected reward. Therefore the average time of receiving zero
expected reward should be

|D |D|-1
DIy (- DD —i+1) = D> 3 (D] - )
i=1 i=0
|D|—1 |D|—1

=Dy i Y
=0 =0

— |D|2 (|D (Il;\ -1) |D|(IP| - 2(2|p| _ 1))

_pl-1/, 2D
2 3D|

DI -1
> )
-6

where the third equation is from the fact that > ;i = n(n+1)/2and >\, i* = n(n+1)(2n+ 1) /6. The last inequality
is from the fact that 2|D| — 1)/(3|D|) < 2/3. Therefore, even without of the random noise, any algorithm is expected to
receive min{ K, (|D| — 1)/6} uninformative data with expected reward to be zero. Therefore any algorithm will receive a
Amin{K, (|D| — 1)/6} regret considers the suboptimality as A.

Next, we consider the effect of random noise. For any algorithm running on this parameter set ®, we find two parameter 8;
and 6; ; where j # i. Define the event as A = {T;(k) > k/2} and A° = {T};(k) < k/2}. By Lemma E.2 and Lemma E.3,

k k 1
Po, (Tjoc) > 2) T Po, (Tj(m < 2) >~ exp(~KL(Po, P, )
1
Z §exp ( EED]Egi [Tn(k)]KL (Pg(i,j),n,Pgwn)> . (El)

Noticing the minimal sub-optimality gap is A. Also the j-th arm is the sub-optimal arm for parameter 6;. Therefore, once
T;(k) > k/2, the algorithm will at least suffer from Ak/2 regret for parameter 6;. Also, since the j-th arm is the optimal
arm for bandit 8, ;). If T (k) < k/2, the algorithm will also at least suffer from Ak/2 regret for 6; ;). Denoting Re (k) as
the expected cumulative regret over k rounds, that is to say

Re, (k) > %Pgi (T;(k) > k/2) Re, (k) > %Pgi (T;(k) < k/2). (E.2)

On the other hand since the bandit using 8; and 6; only differ in the j-th arm. Since standard Gaussian noise is adapted,
KL(Po, n,Po; ;,,n) = A% 1[n = j]/2. Combining this with (E.2), (E.1) suggests that

2
Ro, (k) + Ro, () = 55 exp (-5 o, 13011

which suggests that

. log(Ak) —log2 — log(Re, (k) + Re, (k)

Eo, [T, (k)] A ,

(E.3)

For any algorithm seeking to get a sublinear expected regret bound of Rg (k) < Ck® with C' > 0,0 < a < 1forall 8 € O,
(E.3) becomes

log(Ak) —log2 — log(2Ck*)  log(Ak) — log(4C) — alog k
Eo. |T; > = .
91[ J(k)]— 22/2 22/2

(E4)
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Since that the regret on 8; can be decomposed by

D]
Ro, (k) =A > T,(k), (E.5)

n=1,n#1
combining (E.5) with (E.4) yields

D=1

Ro, (k) > 2 X max {log(Ak) — log(4C) — alog k, 0} ,

where the max operator is trivially taken for Rg (k) > 0.
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