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Abstract

We study the problem of online generalized lin-
ear regression in the stochastic setting, where
the label is generated from a generalized linear
model with possibly unbounded additive noise.
We provide a sharp analysis of the classical follow-
the-regularized-leader (FTRL) algorithm to cope
with the label noise. More specifically, for o-sub-
Gaussian label noise, our analysis provides an
regret upper bound of O(c2dlog T') + o(log T'),
where d is the dimension of the input vector, T’
is the total number of rounds. We also prove a
Q(02dlog(T/d)) lower bound for stochastic on-
line linear regression, which indicates that our
upper bound is nearly optimal. In addition, we ex-
tend our analysis to a more refined Bernstein noise
condition. As an application, we study general-
ized linear bandits with heteroscedastic noise and
propose an algorithm based on FTRL to achieve
the first variance-aware regret bound.

1. Introduction

Online learning (Cesa-Bianchi & Lugosi, 2006) plays a
crucial role in modern data analytics and machine learning,
where a learner progressively interacts with an environment,
interactively updates its prediction utilizing sequential data.
As a fundamental problem in online learning, online linear
regression has been well studied in the adversarial setting
(Littlestone et al., 1991; Azoury & Warmuth, 2001; Bartlett
et al., 2015).

In the classic adversarial setting of online linear regression
with square loss, the adversary initially generates a sequence
of feature vectors {x; };>1 in R? with a sequence of labels
(i.e., responses) {y; }:>1 in R. Ateachround ¢ > 1, x; is re-
vealed to the learner and the learner then makes a prediction
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Yt € Ronx;. Afterward, the adversary reveals y;, penalizes
the learner by the square loss (y; — )2, and enters the next
round. The goal of the learner is to minimize the total loss
of the first 7" rounds, which is measured by the adversarial
regret defined as follows (Bartlett et al., 2015):

Radv

T T
= (G — ) — inf Z ((xt, 1) — ),

t=1

The adversarial regret indicates how far the current predictor
is away from the best linear predictor in hindsight. Since the
labels {y; }+>1 are arbitrarily chosen by the adversary in the
adversarial setting, existing results on regret upper bound
usually require {y;} to be uniformly bounded, i.e., y; €
[-Y,Y] for all ¢ > 1 and sometimes {x;};>1 is assumed
to be known to the learner at the beginning of the learning
process (e.g., Bartlett et al., 2015). For adversarial setting,
it has been shown that the minimax-optimal regret is of
O(dY?log T) (Azoury & Warmuth, 2001), which gives a
complete understanding about the statistical complexity.

It is also interesting to consider a stochastic variant of the
classic online linear regression problem where y; is gen-
erated from an underlying linear model with possibly un-
bounded noise ¢;. Under this setting, the stochastic regret,
which will be formally introduced in Section 3, is defined
more intuitively as the ‘gap’ between the predicted label
and the underlying linear function f,,«(x;) = (x;, u*). It
is worth noting that this stochastic setting is first studied
by Ouhamma et al. (2021), for which they studied o-sub-
Gaussian noise and attained an O(o2d?) high-probability
regret bound. However, whether such a bound is tight or im-
provable remains unknown. Thus, a natural question arises:
what is the optimal regret bound for stochastic online linear
regression?

Beyond the optimality of the existing regret bound, another
concern is whether the analysis for sub-Gaussian noise can
be extended to other types of zero-mean noise. Previous
analyses for online-ridge-regression and forward algorithm
provided by Ouhamma et al. (2021) highly rely on the self-
normalized concentration inequality for vector-valued mar-
tingale (Abbasi-Yadkori et al., 2011, Theorem 1), which is
for sub-Gaussian random variables.
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In this paper, we simultaneously address the aforementioned
questions for stochastic online generalized linear regression,
which admits online linear regression as a special case. We
provide a sharp analysis for FTRL and a nearly matching
lower bound in the stochastic setting.

1.1. Our Contributions

In this paper, we make a first attempt on achieving a nearly
minimax-optimal regret for stochastic online linear regres-
sion by a fine-grained analysis of follow-the-regularized-
leader (FTRL). To show the universality of our analysis,
we consider a slightly larger function class, generalized lin-
ear class, and our main result on online linear regression is
given in the form of a corollary.

Our contributions are summarized as follows:

* We propose a novel analysis on FTRL for online gen-
eralized linear~ regression with stochastic noise, which
provides an O(o%d) + o(log T) regret bound under
o-sub-Gaussian noise, where d is the dimension of fea-
ture vectors, 71 is the number of rounds. Moreover, for
general noise with a variance of o (not necessarily to
be sub-Gaussian), we prove a more fine-grained upper
bound of order O(A?B? + do?) + o(log T'), where A
is the maximum Euclidean norm of feature vectors, B
is the maximum Euclidean norm of p*.

* We provide a matching regret lower bound for online
linear regression, indicating that our analysis of FTRL
is sharp and attains the nearly optimal regret bound in
the stochastic setting. To the best of our knowledge,
this is the first regret lower bound for online (general-
ized) linear regression in the stochastic setting.

e As an application of our tighter result of FTRL for
stochastic online regression, we consider generalized
linear bandits with heteroscedastic noise (e.g., Zhou
et al., 2021; Zhang et al., 2021; Dai et al., 2022). We
propose a novel algorithm MOR-UCB based on FTRL,

which achieves an O(d,, /2 ter) Var €.+ v dT) regret.

This is the first variance-aware regret for generalized
linear bandits.

Notation. We denote by [n] the set {1,...,n}. For a vec-
tor x € R% and matrix 3 € R4 4 positive semi-definite
matrix, we denote by ||x||2 the vector’s Euclidean norm and
define ||x||s; = Vx T Xx. For two positive sequences {a,, }
and {b,} withn = 1,2,..., we write a,, = O(b,,) if there
exists an absolute constant C' > 0 such that a,, < Cb,
holds for all n > 1 and write a,, = Q(b,,) if there exists an
absolute constant C' > 0 such that a,, > Cb,, holds for all
n > 1. O(-) is introduced to further hide the polylogarith-

mic factors. For a random event £, we denote its indicator
by 1(€).

2. Related Work

Online linear regression in adversarial setting. Online
linear regression has long been studied in the setting where
the response variables (or labels) are bounded and chosen
by an adversary (Foster, 1991; Littlestone et al., 1991; Cesa-
Bianchi et al., 1996; Kivinen & Warmuth, 1997; Vovk, 1997,
Bartlett et al., 2015; Malek & Bartlett, 2018). This problem
is initiated by Foster (1991), where binary labels and /4
constrained parameters are considered. Cesa-Bianchi et al.
(1996) proposed a gradient-descent based algorithm, which
gives a regret bound of order O(+/T) when the hidden vec-
tor is ¢5 constrained. Vovk (1997) proposed Aggregating
Algorithm, achieving O(Y2dlog T') regret where Y is the
scale of labels and d is the dimension of the feature vectors.
Bartlett et al. (2015) considered the case where the feature
vectors are known to the learner at the start of the game and
proposed an exact minimax regret for the problem. After-
wards, Malek & Bartlett (2018) generalized the results of
Bartlett et al. (2015) to the cases where the labels and covari-
ates can be chosen adaptively by the environment. Later on,
Gaillard et al. (2019) proposed Forward algorithm, showing
that Foward algorithm without regularization can achieve
optimal asymptotic regret bound uniform over bounded ob-
servations.

Stochastic online linear regression. Recently, Ouhamma
et al. (2021) considered the stochastic setting where the
response variables are unbounded and revealed by the en-
vironment with additional random noise on the true labels.
Ouhamma et al. (2021) discussed the limitations of online
learning algorithms in the adversarial setting and further
advocated for the need of complementary analyses for ex-
isting algorithms under the stochastic unbounded setting.
In their paper, new analyses for online ridge regression
and Forward algorithm are proposed, achieving asymptotic
O(0%d?log T') regret bound.

Learning heteroscedastic bandits. Heteroscedastic noise
has been studied in many settings such as active learning
(Antos et al., 2010), regression (Aitken, 1936; Goldberg
et al., 1997; Chaudhuri et al., 2017; Kersting et al., 2007),
principal component analysis (Hong et al., 2016; 2018) and
Bayesian optimization (Assael et al., 2014). However, only

"We noticed that Ouhamma et al. (2021) also mentioned a way
to acquire a tighter regret bound by applying confident sets with

an O (\/d loglog T + log(l/d)) radius (Tirinzoni et al., 2020),

where the previous O ( dlog(T/ 6)) one proposed by Abbasi-

Yadkori et al. (2011) leads to an O(c%d?). In this way, the T
dependence in their bound can be further improved. However, the
d dependence is still quadratic.
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a few works have considered heteroscedastic noise in ban-
dit settings. Cowan et al. (2015) considered a variant of
multi-armed bandits where the noise at each round is a Gaus-
sian random variable with unknown variance. Kirschner &
Krause (2018) is the first to formally introduce the concept
of stochastic bandits with heteroscedastic noise. In their
model, the variance of the noise at each round ¢ is a function
of the evaluation point x;, p; = p(x:), and they further
assume that the noise is p;-sub-Gaussian. p; can either be
observed at time ¢ or either be estimated from the observa-
tions. Zhou et al. (2021) and Zhou & Gu (2022) considered
linear bandits with heteroscedastic noise and generalized
the heteroscedastic noise setting in Kirschner & Krause
(2018) in the sense that they no longer assume the noise to
be p:-sub-Gaussian, but only requires the variance of noise
to be upper bounded by p? and the variances are arbitrarily
decided by the environment, which is not necessarily a func-
tion of the evaluation point. In the same setting as in Zhou
et al. (2021), Zhang et al. (2021) further considered a strictly
harder setting where the noise has unknown variance. They
proposed an algorithm that can deal with unknown variance
through a computationally inefficient clip technique. Our
work basically considers the noise setting proposed by Zhou
et al. (2021) and further generalizes their setting to bandits
with general function classes. We will consider extending it
to the harder setting as Zhang et al. (2021) as future work.

3. Preliminaries

We will introduce our problem setting and some basic con-
cepts in this section.

3.1. Problem Setup

Stochastic online regression. Let 7" be the number of
rounds. At each round ¢ € [T, the learner observes a
feature vector x; € R which is arbitrarily generated by
the environment with ||x;|]2 < A. The environment also
generates the true label based on underlying function f,-
parameterized by p* with |u*||2 < B and a stochastic
noise ¢, i.e. true label y; := f,- (x¢) + €;. After observing
¢, the learner should output a prediction j; = f,(x¢) € R
where fi; stands for its estimation of p*. y; is subsequently
revealed to the learner at the end of the ¢-th round.

Generalized linear function class. In this work, we as-
sume that f,- belongs to the generalized linear function
class G with known activation function ¢ : R — R such
that

G = {fultr € RY, fou(x) = 6 ((u,x)) for vx € R?} (1)

To make the regression problem tractable, we require the
following assumption on activation function ¢, which is a
common assumption in literature (Filippi et al., 2010)

Assumption 3.1. The activation function ¢(-) is an in-
creasing differentiable function on [—B, B] and there ex-
ists kK, K € Rsuch that 0 < & < ¢/'(z) < K for all
z € [-B, B].

Assunmption on noise. Two types of noise are considered
in this work:

Condition 3.2 (sub-Gaussianity of noise). Suppose the
noise sequence {¢; }¢¢[7) is a sequence of i.i.d. zero-mean
sub-Gaussian random variables:

o?s?
Vi>1,s € R, Elexp(se)] <exp ( 5 > .

Condition 3.3 (Bernstein’s condition). The noise sequence
{€t}1e[m) is a sequence of independent zero-mean random
variables such that

Vvt >1, P(le| <R)=1,E[e}] <o

Remark 3.4. Noise with Bernstein condition naturally im-
plies sub-Gaussianity with a variance parameter K. How-
ever, we want to emphasize that we are more interested in
the separate dependence of R and o defined in Condition 3.3
in the complexity bound we will derive. Simplely regarding
Bernstein condition noise as a sub-Gaussian noise will omit
the refined dependence we want to have.

Loss and regret. Following Jun et al. (2017), we define
the loss function ¢; at each round ¢ € [T] as follows .

X p
l(p) = —x; py, +/O o(z)dz. (2)

For linear case where ¢ is the identical mapping, the loss
function /; is equivalent to the square loss between y; and
i, 1.e. they only differ by a constant:

1
(X;FN - yt)2 - 5%2

N =

X, @
C(p) = =%/ pye + / 2dz =
0

Remark 3.5. Intuitively, our definition of loss functions
{¢;}I_, is a sequence of negative log likelihood when the
distribution of y belongs to the exponential family (Nelder
& Wedderburn, 1972), i.e.

Pyl po = 2) = h(y, =) exp (y—w)

b

where a/(2) = ¢(2).

Aligned with the definition proposed by (Ouhamma et al.,
2021), the stochastic regret is defined as the relative cumu-
lative loss over fy,«:

RU©(T) = Z Le(pe) — Z L (p®). 3)
]

te[T] te[T
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Given number of rounds 7', vector sequence {X; }¢cr.
Fort=1,2,---,T:

* At the beginning of round ¢, learner outputs a pre-
diction ;.

e The adversary reveals y; €
learner.

[-Y,Y] C R to the

* The learner observes y; and incurs loss (y; — 7 )2.

Figure 1. Protocol of adversarial online linear regression

Remark 3.6. Consistent with our stochastic setting, the
stochastic regret is defined in a more natural way, repre-
senting the gap of cumulative loss between the learner and
the underlying function f,,-. In comparison, the adversarial
regret is defined as

Radv
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te[T]
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te[T]

These two definitions of regret are highly similar as what
have discussed in previous work (Ouhamma et al., 2021,
Theorem 3.1). The similarity has been well-studied for the
adversarial bandit and stochastic bandit setting (Lattimore
& Szepesvari, 2020). Actually, the two regrets are closed to
each other in stochastic online linear regression. As shown
later in Section 4, our bound for stochastic regret also leads
to an upper bound for R of the same order.

3.2. Comparison between Adversarial Setting and
Stochastic Setting

In this subsection, we discuss existing results on the ad-
versarial regret bounds for online linear regression. The
minimax regret in the adversarial setting is first derived by
Bartlett et al. (2015), in the case where all the feature vectors
are known to the learner at the beginning of the first round.

The protocol of adversarial online regression can be summa-
rized in the following Figure 1.

Exploiting the adversarial nature of the sequential data,
Bartlett et al. (2015) directly solved the following minimax
regret

min max - - - min max R*% (7).
o yr YT

The optimal minimax regret is O (Y 2d log T'), while the opti-
mal strategy for the adversary is to set the label y; according
to the following distribution:

Y w.p. % +x:Py ZtT;ll yrxr ) /(2B) @)
Yt = -
-Y w.p. % —x/Py Zizll YrXr /(QB)

2500 -

2000 A
— Var=1

® 1500 4 Var =4

o

& —— Var =16
1000 4 —— Adversarial

500 A
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Number of Rounds

Figure 2. Regret of FTRL under different labels.

where P, is defined by

TPX
Yl 3 R
‘rt+11+XPXT

It is not hard to see that such a regret bound still holds in the
stochastic setting if we set Y to be sufficiently large since

infema Doy (%o, 1) — ye)® < S0y (%o, ) — ).

A natural question that arises here is whether it is significant
to have a new regret bound for the stochastic setting.

To answer this question, we carry out experiments for follow-
the-regularized-leader (FTRL) with both bounded stochas-
tic label and bounded adversarial label defined in (4).

We conduct this experiment under different types of noise,
including clipped Gaussian noise with standard variance 1,
2, 4 and adversarial noise according to Bartlett et al. (2015).
The stochastic noise is clipped to ensure that all the labels
are in the same bounded interval [—Y, Y]. We plot the regret
of FTRL under different types of labels in Figure 2.

We can see that the regret of FTRL in the stochastic setting is
remarkably smaller than that in the adversarial setting, thus
we can not directly use the regret bound for the adversarial
setting as a valid estimation of the regret in the stochastic
setting. Besides, our experimental results indicate that the
regret of FTRL highly depends on the noise variance, even
though the ranges of labels are the same.

4. Optimal Stochastic Online Generalized
Linear Regression

We provide analyses on follow-the-regularized-leader
(FTRL) in this section. We apply a quadratic regulariza-
tion in FTRL, as shown in Algorithm 1. At each round,
FTRL aims to predict the unknown p* defined in Section
3.1. To achieve this goal, FTRL computes the minimizer of
the regularized cumulative loss over all previously observed
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Algorithm 1 Follow The Regularized Leader (FTRL)
1: Input: G, .
2: Inmitialize: i, < O.
3: fort > 1do
4:  Observe x;.
5:  Output ¥y = fa,(x:).
6:  Observe y;.
7

t
Update fi¢y1  argmin A||p|3 + > €, (p),where
peRrd =1

£ is defined in (2).
8: end for

context x; and label ;. This is slightly different from what
we want to do for the adversarial setting, where the goal of
FTRL is to predict the best predictor over 1" rounds.

4.1. Regret Upper Bound

We first propose the stochastic regret upper bound for FTRL
under the stochastic online regression setting.

Theorem 4.1 (Regret of FTRL). Set A = 4A?K?/k and
assume that the noise ¢; satisfies Condition 3.2 at all rounds
t € [T), then with probability at least 1 — 20, the regret of
Algorithm 1 for the first T rounds is bounded as follows:

4dK? + Tk? n K?A%B?
4dK? K
2 3k

RY(T) < 34k~ " - o%dlog

Directly applying this theorem to online linear regression,
we have the following result.

Corollary 4.2 (Regret of FTRL in stochastic online linear
regression). Suppose that ¢ is the identical mapping. Set
\ = 4A? and assume that Condition 3.2 holds. With proba-
bility at least 1 — 26, the regret of Algorithm 1 for the first
T rounds is bounded as:

RY(T) < O (0*dlogT + A*B?).

Remark 4.3. Corollary 4.2 suggests a regret upper bound
for stochastic online linear regression with square loss. Re-
cent work by Ouhamma et al. (2021) studied this stochas-
tic setting and managed to get rid of the O(A?B2dlogT)
term in classic result for online linear regression consider-
ing adversarial setting. Ouhamma et al. (2021) derived a
high probability regret bound of O(c2d?) after omitting the
o(log(T)?) terms (Theorem 3.3, Ouhamma et al. 2021). Un-
like their result, our result does not suffer from the quadratic
dependence on d. As for the O(A? B?) term in our result,
it is not hard to see that this part of loss is inevitable, since
at the first round, the algorithm has no prior knowledge of
60*. We defer the detailed analysis on the lower bound of
the problem to the next section.

Remark 4.4. 1t is worth noting that there is also a line of
works considering non-stationary online linear regression
with noisy observations where 6* is time-varying and the
goal is to minimize the regret with respect to the best linear
predictor at each round (Besbes et al., 2015; Herbster &
Warmuth, 2001; Zinkevich, 2003; Zhang et al., 2018; Baby
& Wang, 2019; Raj et al., 2020). However, the regret upper
bounds in this harder setting have polynomial dependence
on 7', which cannot be directly compared with our result.

4.2. Experimental Results

In this subsection, we provide experimental evidence sup-
porting that the high-probability regret of FTRL grows lin-
early on the dimension of the feature vectors. We plot
the stochastic regret with respect to the dimension of the
feature vectors in Figure 3. More specifically, we com-
pute the stochastic regret over different numbers of rounds,
i.e., R*°°(1000), R°¢(2000), R™*¢(5000), under different
Gaussian noise with 02 = 1,4, 16. In each trial we sam-
ple p* uniformly from [—1/v/d, 1/+/d]%. At each round,
we sample a feature vector uniformly from the unit sphere
centered at the origin.

In Figure 3, we observe that under a fixed number of rounds,
the value of stochastic regret has a linear dependence on d,
which corroborates our theoretical analysis in Section 4.

4.3. Extension to Bernstein’s Condition

In some real-world scenarios, however, the sub-Gaussianity
condition (Condition 3.2) may be too strong for general
Zero-mean noise.

In this subsection, we consider another assumption that the
variance of ¢, is not larger than o2, which is formally stated
in Condition 3.3. To remove the sub-Gaussianity condition,
we introduce a new parameter R in Condition 3.3, serving
as a large uniform upper bound on the noise {e; };c[77.

Theorem 4.5 (Regret of FTRL). Set A = 4A%K?/k and
assume that the noise €; satisfy Condition 3.3 at all rounds
t € [T), then with probability at least 1 — 20, the regret of
Algorithm 1 for the first T rounds is bounded as follows:

4dK? + Tr? N K?A%B?
4dK? K

) R%log(1/6).

R(T) < 65" - 02dlog

2 5K
+2<+
K

24K?

Remark 4.6. When T is sufficiently large, this bound be-
comes O(o2dlog T) in stochastic online linear regression,
where o is a uniform bound on E[¢?] for ¢ € [T]. Com-
pared with Theorem 4.1, this theorem deals with a wider
class of noise types. We defer the proof of this theorem to
Subsection B.1.
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Figure 3. Dimension-dependence of regret of FTRL.

4.4. Proof Outline of Theorem 4.1

We provide the proof sketch for Theorem 4.1 here. We
introduce the following concepts before presenting our re-
sults and analyses. First, we define the cumulative loss as
follows:

t

Lo(p) =Y Le(p) + A|pell3- %)

T=1

For simplicity, we denote the Hessian matrix of £; by H;
foreacht > 1, 1i.e.,

t
He,(p) =2) -1+ ) ¢'(x]p) x,x]. (6)

T=1

Hy(p) =
We also construct the following sequence {H, };¢ [

t
H =2\-T+r> x.x/|. (7)

T=1

By the convexity of ¢, it is easy to show that {H, }c[x)
is a lower bound of {H;(-)};e(s) since for all ¢ € [T7,
ﬂt j Ht()

4.4.1. REGRET DECOMPOSITION

We first point out the key place which prevents Ouhamma
et al. (2021) obtaining a tight regret bound. In the previous
analysis of online learning algorithms in stochastic setting
(Ouhamma et al., 2021), the regret is bounded through the
summation of instantaneous regret

i 1) = bi(p Z ||Ht -

t=1 t=1

~

Wl Il

where G; = )\ + ZT 1 XrX, is the sample covariance
matrix. Applying a similar conﬁdence ellipsoid as pro-
posed in Abbasi-Yadkori et al. (2011), ||ty — p*| @, is uni-
formly bounded by O(c2d). By Matrix Potential Lemma

(Abbasi-Yadkori et al., 2011), Zthl ||x1t||é,1 is bounded

by O(dlogT). Thus, a quadratic dependence of d is in-
evitable in their regret upper bound.

To circumvent this issue, we prove the following lemma,
which decomposes the cumulative regret into three terms.

Lemma 4.7 (Regret decomposition). For eacht € [T}, let
L4 be the cumulative loss function defined in (5) and H; be
the corresponding Hessian matrix as shown in (6). There
exists a sequence {pu; }1cr) in R? such that the stochastic
regret of Algorithm 1 can be decomposed as follows:

T
1
stoc 2 2 2
R™(T) < \B +§Zet|\xt||Ht_1(“;)

T
1 T, %\ 2 2

+ 5; Xt :U’t (xt 12 )) HXtHHtfl(N;)'

Intuitively speaking, Zt L€ ||xtH Ly Tepresents

the part of regret caused by the random noise,

while 37, (60¢/ i) = 60T 1)) [ ., repre-
sents the gap between the estimator i, and the hidden vector
p*. We bound these two terms separately as follows.

4.4.2. BOUNDING THE ESTIMATION ERROR

To derive a high-probability upper bound for the term
T -~ * 2 .

S (60 i) — 60T 1) Il o, in Lemma

47, we start by considering the connection between

(o(x{ [1:) — ¢(x/ p*)) and the cumulative regression re-

gret.

Lemma 4.8 (Connection between squared estimation error
and regret). Consider an arbitrary online learner interac-
tively trained with stochastic data for T rounds as described
in Section 3. If Condition 3.2 is true for the noise at all
the rounds t € [T, then the following inequality holds with
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probability at least 1 — §:

¢ T(5 "NE 4 stoc 16 2
Z [Xt (Bt — p )] < ER (T) + 27 log(1/6).

t=1

4.4.3. BOUNDING THE WEIGHTED SUM OF SQUARED
NOISE

According to Lemma 4.7, it remains to bound the
term Zle €2||x¢ Hil_l(“,), which can be regarded as the
t t

weighted sum of squared sub-Gaussian random variables.

In our analysis, we first show that €7 ||x¢[|?; is a sub-

)
exponential random variable and apply a tail bound on the
total summation. The result is presented in the following

lemma.

Lemma 4.9. Suppose that the sequence of noise {¢; }+c|r)
satisfies Condition 3.2. For each t € [T, let H, be the
matrix defined in (7). With probability at least 1 — 6,

T

d\ + TrA?
E €?||Xt||2ﬂt—1 < 34k~ - o?dlog %
t=1
A2
+ 2407 - ~ log(1/9).

Putting all things together From Lemma 4.7, 4.8, 4.9, we
conclude by a union bound that, with probability at least
1— 24,

Rstoc(T) < O(Iiil -0'2d10g T) + O(IOg T)

5. Lower Bound

In this section, we present a lower bound of the stochastic
regret for stochastic online linear regression, which indicates
the FTRL algorithm is already tight and optimal.

Theorem 5.1 (Lower bound for stochastic online linear re-
gression). Consider the case where k = K = 1 in Assump-
tion 3.1. Then the problem degrades to stochastic online
linear regression where the stochastic regret can be defined
as follows:

T

T
RO(T) = 3 (i) = S ()

t=1

Suppose that the noise sequence {¢;}.c|) is a sequence
of i.i.d. Gaussian random variables, i.e., ¢ ~ N (0702)
forallt € [T). When T is sufficiently large, for any on-
line regression algorithm, there exists p* € R® and a se-
quence of feature vectors {Xi }e[r) such that E[R*(T)] >
Q(o?dlog (T'/d) + B maxiery [|x¢|2)-

We notice that Mourtada (2022) provided a lower bound for
expected excess risk in a random-design linear prediction

problem, which can be seen as an offline version of the
considered problem in our work. However, in online linear
regression, we have to prove the existence of a 8* which
makes their result hold for every round ¢ € [T7].

The proof of Theorem 5.1 involves the application of
Pinsker’s inequality, which is stated in Lemma D.8.

Proof of Theorem 5.1. For p € R%, ||u||2 < B, we denote
by P, the measure on y1,- - ,¥yr,y1,- - ,yr generated by
the interaction between the algorithm and the environment.

We suppose that the sequence of feature vectors are fixed
and consists of unit vectors. Let 7; := {t € [T]|x; = e;}
for each i € [d], and ¢; ; be the j-th element in 7;.

*

Assume that p* is uniformly sampled
[~B/\/d, B/+/d)* at the beginning of the first round.

We show that for all i € [d], E[(7:, , — (x¢,,,n*))?] >
Q (";) for all sufficiently large j. Consider any pair of
pt, p? € [-B/Vd, B/Vd|% such that p} = p? forall k €

[d]\{i} and |p} — p2| € [ﬁ ﬁ} . By Lemma
D.8, for any event A in the filtration generated by the labels
before round ¢

from

5

1
’Pill (A) — PH2 (A)‘ < iKL (Pul HPH2)

1 ()] - %/ p2)”

—\[2 Z 202

t=1

IN

1
5

Thus, for any event A, P, (A) + P,2(A) > 7/8. Let
A={G,, > (1 + p?)/2}. We have

Ell'l [(@\t” - <Xt7‘,,j,llll>)2] -+ ]Euz [(ﬂt77 — <Xti,j’ll’2>)2:|
=Eu [(B1 — T0;)?] + Bz [ — B2,,)°]

_ > Q(o?/j) (8)
256(j — 1) = J

For any ‘segment’ S = {u € [-B/Vd,B/Vd)%|u; €

> (P (4) + Pz (A)

(a,a—&—ﬁ),uk = ¢ for k # i}, we denote
IJ’S(U) = (Cla"' ;0 + U, Gy, 7Cd)T~

We have

E;J.GS [(gh, - <Xt7,,j7l‘l’>)2:|

4/j=1 [t R
= T B [, (s ()]

> Q(0*/3),
where the last inequality holds due to (8).

From the arbitrariness of {cx} in S and the uniform
distribution of p*, we have the following conclusion
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for a ‘slice’ in the cube [~B/Vd, B/v/d]* For B =
{u € [-B/Vd,B/Vd)|p; € (a,a + %m) }

Eues (@, — (., m))%] = Q(0/5).

It is then straightforward to conclude that
E [, — (xe,, 1)?] > Q(c%/j) when j is suffi

ciently large so that ﬁ/jfl is sufficiently small.

If we generate {x;} such that 7; = |T'/d] for all i € [d],
then we have

>E | @ — (xe1)?] = Q0 log(T/d).

Trivially,

> S B[, - 1)’ = Y E[(0)?) = (B).

i€[d] i€[d]

Applying Lemma 4.8, we can further conclude that
E[R¢(T)] > Q(o?dlog (T'/d)+B) when T is sufficiently
large.

O

6. Application to Heteroscedastic Bandits

In the last section, it is shown that FTRL achieves nearly op-
timal regret faced with sequential data with zero-mean noise.
Particularly, in subsection 4.3, we show that FTRL is capa-
ble of dealing with noise such that 0% = max; (] Var[e,].
However, it only utilizes the max variance information,
which is not satisfactory if we want to see the trend of
the change of the variance w.r.t. rounds. Thus, it is natural
to ask whether we can design an algorithm for the general-
ized linear bandits, whose statistical complexity depends on
the variance adaptively, says, depends on the total variance
Y., Var|e;]. For linear bandits setting, such a goal has been
achieved in Zhou et al. (2021); Zhang et al. (2021).

6.1. Problem Setup

We consider a heteroscedastic variant of the classic stochas-
tic bandit problem with generalized linear reward functions.
Ateachround ¢t € [T] (T € N), the agent observes a deci-
sion set D; C R? which is chosen by the environment. The
agent then selects an action a; € D, and observes reward 7
together with a corresponding variance upper bound o7. We
assume that 7, = f*(a;) + ¢; where f* = fg- € G defined
in (1) is the underlying real-valued reward function and ¢, is
a random noise. We make the following assumption on ;.

Assumption 6.1 (Heteroscedastic noise). The noise se-
quence {¢; }4¢[r) is a sequence of independent zero-mean
random variables such that

vt>1, P(le| <R)=1E][e] <o}
The goal of the agent is to minimize the following cumula-
tive regret:

Regret(T) := Y0, [f*(a)) — f*(a)], (9

where the optimal action aj at round ¢ € [T] is defined as
aj 1= argmax,cp, [*(a).

6.2. The Proposed Algorithm

Existing approach. To tackle the heteroscedastic bandit
problem, for the case where the F is the linear function
class (i.e., f(a) = (8%, a) for some 6* € RY), a weighted
linear regression framework (Kirschner & Krause, 2018;
Zhou et al., 2021) has been proposed. Generally speaking,
at each round ¢ € [T'], weighted linear regression constructs
a confidence set C; based on the empirical risk minimization
(ERM) for all previous observed actions as and rewards 7
as follows:

0, « argmin A0]3 + 3= ¢ wa((0,a) = 7)%, (10)
OcRd

Ci {0 € Rd’ 22:1 ws ({0, as) — (01, a5))* < ﬁt}»

where w; is the weight, and 3;, A are some parameters to
be specified. w; is selected in the order of the inverse
of the variance o2 at round s to let the variance of the
rescaled reward ,/w,rs upper bounded by 1. Therefore,
after the weighting step, one can regard the heteroscedastic
bandit problem as a homoscedastic bandits problem and
apply existing theoretical results to it. To deal with the
general function case, a direct attempt is to replace the (6, a)
appearing in above construction rules with f(a). However,
such an approach requires that F is close under the linear
mapping, which does not hold for general function class F.

We propose our algorithm MOR-UCB as displayed in Algo-
rithm 2. At the core of our design is the idea of partitioning
the observed data into several layers and ‘packing’ data
with similar variance upper bounds into the same layer as
shown in line 7-8 of Algorithm 2. Specifically, for any two
data belonging to the same layer, their variance will be at
most one time larger than the other. Next in line 9, our
algorithm implements FTRL to estimate f* according to the
data points in ¥, ;. Then in line 5, the agent makes use of
L confidence sets simultaneously to select an action based
on the optimism-in-the-face-of-uncertainty (OFU) principle
over all L number of levels.

Remark 6.2. Prior to our work, Takemura et al. (2021) also
adopts a multi-layer structure to solve misspecified con-
textual linear bandits. In the aforementioned paper, the
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Algorithm 2 Multi-layer Online Regression-UCB
1: Input: T\, R, > 0.
2: Initialize: Set L + [log, R/7]
and Cy ) < F, ¥y« @ foralll € [L].
3: fort=1---T do
4:  Observes D;.

5:  Choose a; %argmaxmm(b( la—i—ﬁtl”aHz )
acD, le[L]

6:  Observe stochastic reward r; and o2.
Find [; such that 215 > max (7, o;) > 2"5.
8:  Update Uy yq, < ¥y, U{t}
and Uy < Uy foralll € [L]\{l;}.
9:  Compute §t+1,l «— argmin \|0|3+ >
6cRd TEVit1,1
for all [ € [L], where £, is defined following (2):

=

0(6)

T

a_ 6
(;(8) :=—al0r, —|—/ @(z)dz.
0

10:  Compute Xy < 2AI+ >
lell].
11: end for

T
rev,,,, ara; forall

designed algorithm is a modified version of SupLinUCB
algorithm (Chu et al., 2011). From the algorithm design
perspective, SupLinUCB algorithm groups the selected con-
texts into different levels based on their uncertainty, while
our algorithm groups the contexts based on the variances of
their corresponding rewards. The difference in the algorithm
design is due to the different goals: SupLinUCB algorithm
aims to reduce the dependence on dimension from d to v/d
for the finite arm case, while our algorithm aims to reduce

\/ Yter 0t
Although the high-level structures of these two algorithms
are similar, they are fundamentally different algorithms.

the dependence on the variance from R+v/T to

6.3. Theoretical Results

We provide the theoretical guarantee of MOR here.

Theorem 6.3 (Cumulative regret for generalized linear ban-
dits). Suppose that ||6*||2 < 1 and for all a € Ute[T] Dy,
llalla < 1. Set A = 4K? /K and

2
B =16 210ﬁ1/2\/d10g (M_H”A> log (41215

2d\
+ 4R - kY2 log(4t2L/5) + 21/2/kK

in Algorithm 2. With probability at least 1 — 6, the regret of
Algorithm 2 in the first T' rounds satisfies that:

Regret(T) <O | = +(R+ K)K -~ 'VdT

Remark 6.4. In the case of heteroscedastic linear ban-
dits (Zhou et al., 2021) where K = K = 1, the regret

is bounded by O (d\/zt 0P+ (R+1)V dT), which

matches with the result in Zhou & Gu (2022) by an
O((R + 1)V/dT) lower-order term. Applying a more fine-
grained concentration bound (e.g., Zhou & Gu, 2022) may
further remove this term, which we leave for future work.

7. Conclusion and Future Work

In this paper, we study the problem of stochastic online gen-
eralized linear regression and provide a novel analysis for
FTRL, attaining an O (02dlog T') + o(log T') upper bound.
In addition, we prove the first lower bound for online linear
regression in the stochastic setting, indicating that our regret
bound is minimax-optimal.

As an application, we further considered heteroscedastic
generalized linear bandit problem. Applying parallel FTRL
learners, we design a UCB-based algorithm MOR-UCB,
which achieves a tighter instance-dependent regret bound
in bandit setting. We believe that our analysis can also be
applied to obtain variance-dependent regret bounds in MDP
setting (Zhao et al., 2023; Zhou et al., 2023; 2022).

Although a near-optimal regret for stochastic online linear
regression is achieved in this paper, the regret of stochastic
online regression of general loss functions is still understud-
ied, which we leave for future work.
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A. Proofs from Section 4
A.1. Proof of Theorem 4.1

Lemma A.1 (Regret decomposition). For each t € [T, let L be the cumulative loss function defined in (5) and H; be the
corresponding Hessian matrix as shown in (6). There exists a sequence {t; }1c[r) in R? such that the stochastic regret of
Algorithm 1 can be decomposed as follows:

T

stoc w2 1

RY(T) < AB” + 5 Z (e, ) = 00/ 1)) %31 ) + 5 D %300 -
t=1

Proof. From the updating rule of Algorithm 1,

T T
RYT) =Y i) = Y be(p”)
=1 =1
T =1 ¢ T T
= Z Ce(pe) + Zgr(ﬁt) - Zfr(ﬁtﬂ) + th(ﬁtJrl) Z&(u*)
t=1 =1 T=1 t=1 t=1
T T T
= Z [Et(ﬁt) - £t(ﬁt+1) - ¢(I~‘t) + ¢(Nt+1 + th Ht+1) th(li*)
=1 =1 =1
T
=3 [Lelfie) — Lo(fiesr)] + Lo (firgr) — L") + M3 = M|z 13
=1
T
S Merl3 4+ [Lo(fe) — Lo(fes)] (11
=1

where the third equality holds due to the definition of £ in (5),
Applying Taylor expansion, we have

N N oLy .. . . N . RN N
Li(fhe) — Lo(Miq1) = <8I;(Ht),ﬂt - Mt+1> — (Be1 — Ae) " He()) (Besr — Bie)

= (($(x{ Fie) — ye) Xe, fir — Fes1) — (e — Be) " He(pth) (Bers — fie) (12)
for some p} € R, [|uj]l2 < B.
Substituting (12) into (11),

Rstoc < ABQ +

M

~ ~ ~ ~ T ~ ~
[ O(x/ 1he) — ye) X, e — fher1) — (o1 — ) He(ph) (e — Nt)}

IN

>

v

(V]

+
= =
="

~ 2
(‘é(XtTHt) - yt) thllf{;l(ué)

t=1

IN

>

&

()

+
N =
(]~

(qf)(X:ﬁt) (th"' )) ”XtHH (u/)"— Z HXtH?_I:l(”;)'

t=1

O

Lemma A.2 (Connection between squared estimation error and regret). Consider an arbitrary online learner interactively
trained with stochastic data for T rounds as described in Section 3. If Condition 3.2 is true for the noise at all the rounds
t € [T), then the following inequality holds with probability at least 1 — 0:

a 4 stoc 16 2
> [ (e — 1)) < SRT) + - 07 log(1/6).

t=1

12



Optimal Online Generalized Linear Regression with Stochastic Noise

Proof. We start by considering the definition of stochastic regret and making use of the property of our aforementioned loss
function:

gl
g\
—

RYT) = > ulfie) —

T
_ZXI( yt‘f'Z/
t=1 xtl’l‘

Xt /J't

T
~ 30X (- m yﬂrZ/ W)+ k(e —x] ) d

t/J*

vV

T
== X! (- et+Z x/ (- u)]” (13)
t=1

where the first equality follows from the definition of regret (3), the second equality follows from the definition of loss
function (2), the inequality holds due to Assumption 3.1.

Rearranging (13), it follows that

T
~ 2
Z [x;r (n — u*)}2 RS“’C )+ - Zet . —u)]. (14)

t=1 t=1

Since f1; is (X1.¢, Y1.¢+—1)-measurable, we can apply Lemma D.3 to show that

T T
Zet- [x{ (fir — p*)] < | 2021log(1/0) Z ]2 (15)
t=1 t=1

with probability at least 1 — 4.

Substituting (15) into (14), we obtain the following high-probability bound for squared estimation error:

A

d > 2 2 T 2
>/ (- ph)]” < ERS“’C(T) + =4[ 207 log(1/0) ; B

t=1

4 stoc 16 2
< ERt (T)—&—?wf log(1/4),

where the last inequality follows from Lemma D.2. [

Lemma A.3. Suppose that the sequence of noise {¢; }+c|r) satisfies Condition 3.2. For eacht € [T}, let H, be the matrix
defined in (7). With probability at least 1 — 0,

T

dX + TrA? A2
S lxillE o < 3457 - o*dlog % +240% - - 1og(1/0).
t=1

Proof. We first prove that the random variable ef is sub-exponential conditioning on X1.¢, Y1:t—1-

Let v; = E[e?]. Considering the moment generating function of €2, we have for all s € R,

Elexp(s(e; —vy))] = 1+ sE[e] — ve] + i %E [ B vt)i]
i

13
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For sub-Gaussian noise ¢;, we have
Eflel') = [ P(al 2 o)t
0
= 7‘/ 2" (|e| > z)dx
0

o] .132
§2r/ xr_lexp< 5 2)dac
0

= 97/2 ~rar/ x2 b exp(—xz)dx
0
=22 po" T (r/2).

Hence, we have

which implies that €Z — v; is ((4\/502)2 7402)-sub-exponential.
By the composition property of sub-exponential random variables, we have

T
> e ||XtHH , ~SE <32J4Z||xt|4 1,407 max||xt||H )

t=1 t=1

By Lemma D.6, the following concentration bound holds with probability at least 1 — 4:
T

T
Yo ellxellgr = B [ef] Ixelz
t=1

t=1

< max < 8- +/log(1/6) - o

Z”XtHH ., 802 max||xt\| L -log(1/6) » . (16)

Applying Lemma D.5 and the definition of H, we further have

T T

2A2%d d\ + KT A? A?
D ellxillg = 3B [ Il < 802\/ 2o (T ) og(1/8) + 802 - 108(1/0)
t=1

with probability at least 1 — 4.

Since ¢; is o-sub-Gaussian, its variance is no larger than o2, which indicates that

T T T T
Sl < (zezuxtn;fl S e[ xtng,) 0?3 Il
t=1 o t=1 o t=1 o t=1 o

2A2 TA2 A2
<80 ,{-1/2\/ o (d* - ) log(1/6) + 802 - - log(1/9)

dX A
d\ + TrA?
2. 2dk " log
o Kk~ log P\
d\ 4 TrA> A2
< 34k~ - o2dlog % + 2402 5 los(1/9)

14
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with probability at least 1 — 4.
O

Proof of Theorem 4.1. Based on Lemma 4.8 and Lemma 4.9, the following two inequalities hold simultaneously with
probability at least 1 — 24 for all § € (0, 1):

T
- * 2 4 stoc 16

> [ (= )" < RO + -0 log(1/9), a7
t=1

T

X\ + TrA A2
ZG%”XtHQH;I < 34k 1. o%dlog % + 2402 - Tlog(l/é). (18)
t=1

In the remaining proof, we assume that (17) and (18) hold.

From Lemma 4.7, we have

T
S 1
RtOC( < AB2 + = Z Xt llft (X;rp, )) ”Xt”H —|— 526 HXtHiI:l(H%)
A2K2 & 2, 1y
) T~ N 2 2
<A\B? + N ; [x/ (e — p*)]" + 3 ;et”XtHH;l(M)
2A2K? 8A’K?
< AB? + TR“(’C(T) + o”log(1/6)
X\ + TrA? A?
F1767 1 - o2dlog % +120% - - log(1/0) (19)

where the first inequality is given by Lemma 4.8 directly, the second inequality follows from the Lipschitz property of the
activation function in Assumption 3.1, the third inequality holds due to (17), (18) and the fact that H, < H, (A}

Substituting A = 4A2K? /k into (19), we have

4dK? + Tk? n 4K2A232
4dK? K

o 1o 2 3k
R¥(T) < 5R““(T) + < + K2> o?log(1/0) + 171 - 0*dlog

4dK? + Tx? n K?A?B? ) 2
4dK? K

<34k . o%dlog + ?{2) o?log(1/6),

which completes the proof. O

Theorem A.4 (Theorem 3.1, Ouhamma et al. 2021). In stochastic online linear regression (k. = K = 1) in Assumption 3.1
with Condition 3.2, we have with probability at least 1 — 9,

R (T) — R¥(T) < O(0*dlog T) + o(log T).

B. Proofs from Section 4.3
B.1. Proof of Theorem 4.5

Lemma B.1 (Connection between squared estimation error and regret). Consider an arbitrary online learner interactively
trained with stochastic data for T rounds as described in Section 3. If Condition 3.3 is true for the noise at all the rounds
t € [T), then the following inequality holds with probability at least 1 — 0:

d 16
> = } < R”‘"(T)—i—?-RQlog(l/é).

t=1

15
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Lemma B.2. Suppose that the sequence of noise {¢; },c |7 satisfies Condition 3.3. For eacht € [T}, let H, be the matrix
defined in (7). With probability at least 1 — 0,

T
d\+TrA? 5 R2A?
2 2 -1, 2
E € l1xt|lg-2 <6k - 0°dlog +-- log(1/9).
— H, dA 3 A

Proof. We prove this lemma by bounding 3°,_, E[¢?]||x; 17,1 and S (¢ —E[) [x¢[|7, -+ separately.
e =t

For the first term, we have

T T
d\ + TrA?
2 2 214 (12 -1, 2
E E[et]thHE;l < E o ||XtHE;1 <2k7 -o%dlog Y : (20)

t=1 t=1

For the second term 3°;_, (7 — E[e?]) ||Xt||2ﬂfl’ it holds that
E (& - Ele)) Ix:J%- ] =0,
T

v [ - ) ety ] < Bl

t=1
A?
< R2027 ; th||2ﬂgl

d\ + TrA?
<2 A1 R262 A2dlog DT HAT
dA
2 E 2 2 < R2 . iz
(6 ~ Bled]) Il | < B2 5
Applying Lemma D.1, with probability at least 1 — 6,
T
o d\ 4+ Tk A2 2 R2AZ
tz:; |€tHH 1 < 2RUA\/ A 1dlongog(1/6)+ 3 ) log(1/4)
d\+TrkA? 5 R2A?
<40’k ! dlog i + = log(1/6).
S4or7 - dlog —— 3 log(1/9) 21)
Combining (20) with (21), we can show that with probability at least 1 — 6,
T
_ d\+TrkA? 5 RZ2A?
;ef||xt|\2H:1 <6r"-0?dlog N + 3 ) log(1/96).

O

Proof of Theorem 4.5. Based on Lemma B.1 and Lemma B.2, the following two inequalities hold simultaneously with
probability at least 1 — 24 for all § € (0, 1 ):

T
~ 12 4 oc 16
S [ (e~ 1)]* < SROT) + - R log(1/0), 22)
t=1
T
_ d\+TrA? 5 R2A?
> eilxillgg s <667 oPdlog =+ o - ——log(1/d). (23)

t=1
In the remaining proof, we assume that (17) and (18) hold.

16
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From Lemma 4.7, we have

T

stoc * 1

RY(T) < AB* + 5 Z (] i) — pl3) 1)) el +§ZEHXtIIH )
t=1

AR & T(s w12, L ¢ 2 2
A Z_; bee e — a4 5;6t||XtHH:1<u;>

242 K? SA?K?
< AB% + " T RS(T) + v R%log(1/6)

d\+TrkA%2 5 R2A2
o 4. log(1 24
o T Ty les(1/9) (24)

< \B? +

+ 3k o%dlog

where the first inequality is given by Lemma 4.8 directly, the second inequality follows from the Lipschitz property of the
activation function in Assumption 3.1, the third inequality holds due to (22), (18) and the fact that H, < H," 1 (py).

Substituting A = 442K ?/k into (19), we have

1 2 oK 4dK? + Tk? K?A%p?
Rstoc Ty < = stoc T = 21 1/8 -1 2d1
( )7273 ( )—i—( +24K2>R 0g(1/0) + 3k~ - o-dlog gz T "
4dK? + Tk? K2A%2B? 2 5K
< 6r-l. 52 Zz 2
<6k -o“dlog 12 2( +24K2)R log(1/4),
which completes the proof. O

Theorem B.3 (Confidence ellipsoid for ridge regression estimator). Set A = 4A?K? /k and assume that the noise ¢, satisfy
Condition 3.3 at all rounds t € [T, then with probability at least 1 — §, for all t € [T, it holds that

2 A?
lpe — p*llg, < 80\/d10g (d)\;;i;ﬁ) log (4t2/5) + 4Rlog(4t*/§) + V2AB.

Remark B.4. This theorem elucidates how to construct a confidence ellipsoid with predictions given by FTRL. Similar
variance-aware confidence sets have been shown by Zhou et al. (2021); Zhang et al. (2021) in linear regression, while
Theorem B.3 is applicable to generalized linear function class. Later in section 6, we will show how to make use of this
theorem in bandit setting.

Proof. According to Algorithm 1, g1, 1 is the minimizer of Al|p||3 + 20, £, ().

Taking the derivative, we have

0=2Mirp1+ Y (=yr X+ 0(x] 1) - %)

TE[t]
=241 + Z (—yr + o(x] %)) - % + Z (] firy1) — (] p¥)) - x
TEt] TE[t]

Rearranging the equality,

D (S0 Begr) = $0) 1)) % +2X (1 — ) = D erxe — 20 -

TE[t] T€E(t]

_ O] Ber1)—o(x] p)
For short, we let k7 ;41 = T X

. By Assumption 3.1, K, 41 € [k, K].

17
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Thus, we have

20 -1+ Z /<;T’t+1x7x;r (g1 — () = Z Xy — 22 - p*
relt] -t ll7El H!

IN

Soexdl A+ V2R

TEt] H !

Since 2\ - I + ETGM Kr,t+1XTXI > H,, with probability at least 1 — ¢, for all ¢ > 1, it holds that

[ He41 — l‘*”g;l < Z €rXr +V2)- (JTa P
TE[t] H;!

2 A?
<8c- 5_1/2\/d10g (W) log (4t2/8) + 4 - kY2 Rlog(4t?/8) + V2\B,

where the second inequality holds due to Theorem 4.1 in Zhou et al. (2021). O

C. Proofs from Section 6

Lemma C.1 (Variance-aware confidence ellipsoid for generalized linear bandits). Suppose that ||0* |2 < 1 and for all

ac Ute[T] Dy, ||lallz < 1. Set A = 4K?/k in Algorithm 2. With probability at least 1 — §, it holds for all t € [T that
~ 2d\ + trkA?
10:0 — 60%||x,, <1627 - nl/Z\/dlog <2+d;) log (4t2L/6) + 4R - k™12 log(4t?L/6) 4+ 2/2/k - K
Proof. This lemma can be proved by a direct application of Theorem B.3 and a union bound over L layers. O

Theorem C.2 (Cumulative regret for generalized linear bandits). Suppose that ||0* |2 < 1 and for all a € J;cir De,
llallz < 1. Set A = 4K? /K and

2
Bii=16-27- n1/2\/d log (W) log (4t2L/8) + 4R - k™% log(4t>L/8) +2/2/k - K (25)

in Algorithm 2. With probability at least 1 — 6, the regret of Algorithm 2 at the first T rounds satisfies that:

Regret(T) < O
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Proof. Based on the definition of regret (9),

M’ﬂ

Regret(T) =

o0 ar) =0 (07" a)

~
Il
—

[M]=

o (H:Tltat + B, ||atH2;}t) —¢ ((0*)T at)

~
Il
-

2K B, - ||at||2;l11

Zﬁm > s

HM’%

le[L] teVrii,
<2 3 rayflerd | X win {1/l |
le[L] teVry1, '
2d\ + Tr A2
<4K )4 cyld-k11 _— 2
< lg{;}ﬂm\/ T+1,1 \/ K Og( SdN >, (26)

where the first inequality holds due to Lemma C.1, the second inequality follows from Assumption 3.1, the fourth inequality
is obtained by applying Cauchy-Schwarz inequality, the last inequality follows from Lemma D.4.

Substituting (25) into (26), we obtain

2dA T A?
Regret(T)SéLK\/d-nllog( o )Z’/M}T"‘“ ( 2G5k V2Vd+ R-vV2 4 KQ/A)

le[L)
2
<4K\F\/dnll (M”T“A> S Y O(o? wld+ Rk + K?/k)
le[L]te¥r i1,
< — K)K -x~"dT 2
O|—-d Zat +(R+ d 27)
O

D. Auxiliary Lemmas

Lemma D.1 (Freedman 1975). Let M,v > 0 be fixed constants. Let {x;}!_, be a stochastic process, {G;}; be a filtration
so that for all i € [n], x; is G;-measurable, while most surely E[z;|G;_1] = 0, (22|G;) < v. Then,
for any 6 > 0, with probability 1 — 6,

n
i=1

zn:xi < y/2vlog(1/6) +2/3 - Mlog(1/9).

Lemma D.2. Suppose a,b > 0. If 2> < a + b - x, then 2% < 2b% + 2a.

Proof. By solving the root of quadratic polynomial ¢(z) := 22 — b - & — a, we obtain max{z1, 22} = (b + Vb2 + 4a)/2.
Hence, we have z < (b + v/b? + 4a)/2 provided that ¢(z) < 0. Then we further have

2? < i(b—I—M)

1
<7 2 (0% +b* + 4a) < 2b* + 2a. (28)

O
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Lemma D.3 (Hoeffding’s inequality). Let {x;}}_; be a stochastic process, {G;}; be a filtration so that for all i € [n], x;
is G;-measurable, while E[z;|G;_1] = 0 and x;|G;_1 is a 0;-sub-Gaussian random variable. Then, for any t > 0, with
probability at least 1 — ¢, it holds that

i T < |2 i o?log(1/6).
=1 i=1

Lemma D.4 (Lemma 11, Abbasi-Yadkori et al. 2011). For any A > 0 and sequence {x;}1_, C R fort € {0,1,--- , T},
define Zy = NI+ S°'_, x;x; . Then, provided that ||x;||s < M for all t € [T, we have

d\+TM?

T
in{1 2 1< 2dl
;;;nnn{ ,HXA\t_l}__ o8 —

Lemma D.5. For any \ > 0 and sequence {x;}_, C R fort € {0,1,---, T}, define Z; = \I + 22:1 x;x; . Then,
provided that ||x||2 < M forall t € [T, we have

T
d\+ TM?
2
2 el < 2d10g =53

Proof. Applying matrix inversion lemma,

T T _ _
2 Ny T (gt X Z
Z el 7 = th 2y Tr—1 Xt
t=1 ! t=1 L+x; 2, 1%
ol

= 72
2T+ Tl

T
<3 min{1, a3 )
t=1

d\ + TM?
SN

where the first equality follows from matrix inversion lemma, the second inequality holds by Lemma D.4. O

< 2dlo

Lemma D.6 (Concentration bound for sub-exponential random variables). Let X be a sub-exponential random variable
such that X ~ SE(0?, a). Then we have

exp (—B?/(20?)), 0<B<o?/a

P(X - E[X] > p8) < {exp(_g/za), t>o0%/a

Lemma D.7 (Confidence Ellipsoid, Theorem 2, Abbasi-Yadkori et al. 2011). Let {Gi}32, be a filtration, and {xj, i }re>1
be a stochastic process such that X, € R? is G,-measurable and Nk € Ris Gg1-measurable. Let Lo, A\, e > 0, p* € Re.
Fork > 1, let yr, = (u*,xx) + 1 and suppose that ny, X also satisfy

E[nr|Gk] = 0, nx|Gr ~ subG(R), [|xx|l2 < L. (29)

Fork > 1, letZ;, = \I + Zle x;x;, by, = Zle YiXs, P = Z,;lbk, and

By = R\/dlog <%>

Then, for any 0 < § < 1, we have with probability at least 1 — ¢ that,

k * *
Zi:lxiniHZ;1 < Bis NIk — 1|z < Br + VA" 2.

VE>1, |
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Lemma D.8 (Pinsker & Feinstein 1964). If P and Q) are two probability distributions on a measurable space (X,X), then
for any measurable event A € X, it holds that

1 1 dP
IP(A) - Q| <[ KL(PIQ) = | LB, (mng).
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