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Abstract

The success of deep reinforcement learning (DRL)
lies in its ability to learn a representation that is
well-suited for the exploration and exploitation
task. To understand how the choice of representa-
tion can improve the efficiency of reinforcement
learning (RL), we study representation selection
for a class of low-rank Markov Decision Processes
(MDPs) where the transition kernel can be rep-
resented in a bilinear form. We propose an effi-
cient algorithm, called ReLEX, for representation
learning in both online and offline RL. Specifically,
we show that the online version of ReLEX, called
ReLEX-UCB, always performs no worse than the
state-of-the-art algorithm without representation
selection, and achieves a strictly better constant re-
gret if the representation function class has a "cov-
erage" property over the entire state-action space.
For the offline counterpart, ReLEX-LCB, we show
that the algorithm can find the optimal policy if
the representation class can cover the state-action
space and achieves gap-dependent sample com-
plexity. This is the first result with constant sample
complexity for representation learning in offline
RL.

1 INTRODUCTION

Reinforcement Learning (RL) has achieved impressive re-
sults in game-playing [Mnih et al., 2013], robotics [Kober
et al., 2013], and many other tasks. However, most current
RL tasks are challenging due to large state-action spaces
that make traditional tabular methods intractable. Instead,
function approximation methods can be applied to tackle
this challenge. In this scheme, the state-action pairs are
compressed to provide some compact representations that
leverage the underlying structure in the MDP, and therefore

allow the algorithm to generalize to unseen states.

In modern approaches, deep neural networks are often used
as feature extractors to generate these representations. Since
different feature extractors powered by different pretrained
neural networks can be used, multiple valid representations
are generated to encode the same state-action pair. However,
how to select the best representation for different scenarios
is not well addressed in the literature. Nonetheless, this task
is crucial in many applications such as robotics, where a
robot is usually equipped with different types of sensors
working through different physical phenomena [de Bruin
et al., 2018], like accelerometers, magnetic sensors, or laser
sensors. These sensors estimate the current state of the robot
and provide a representation of the current state as the output.
However, the accuracy and robustness of these sensors vary
in different states. Thus an intelligent system should utilize
the most accurate and robust sensor in different states to
achieve the best performance.

For online reinforcement learning, existing works on repre-
sentation learning [Jiang et al., 2017, Agarwal et al., 2020,
Modi et al., 2021, Uehara et al., 2021, Sun et al., 2019, Du
et al., 2021] often assumed that the transition dynamic can
be represented as a linear function of an unknown repre-
sentation, and they proposed algorithms to learn a single
representation with provable sample complexity guarantees.
They do not consider the possibility of using different repre-
sentations for different scenarios (i.e., state-action pairs). On
the other hand, for offline reinforcement learning, represen-
tation learning is much less studied, with only a few notable
exceptions [Uehara et al., 2021, Zhang et al., 2022]. Never-
theless, neither of these works considers selecting different
representations for different scenarios.

Based on the above motivation, we are interested in the
following research question:

Can selecting a good representation improve sample
efficiency in (online and offline) RL?
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In this paper, we answer the above question affirmatively
for a class of low-rank Markov Decision Processes (MDPs)
named bilinear MDP [Yang and Wang, 2020], where the
transition kernel P(s’|s, a) can be written as a bilinear form
of a known feature map ¢(s, a), unknown matrix M*, and
known feature map 1 (s’). Our goal is to select the best rep-
resentation ¢ (s, a) from a finite representation class ® for
different (s, a) such that the resulting RL algorithm outper-
forms that using a single representation for all state-action
pairs. For both online and offline reinforcement learning,
we propose an algorithm called ReLEX, which can select
the best representation in a representation function class in
different scenarios. The key idea behind the representation
selection is to choose the representation which gives the
smallest optimistic Q-value function'. Our contributions are
summarized as follows:

* In the context of online reinforcement learning, we pro-
pose a novel algorithm named ReLEX-UCB, which cap-
italizes on the benefits of representation selection. Our
results show that ReLEX-UCB performs as well as the
state-of-the-art algorithms that do not select representa-
tions, and attains a strictly superior regret bound when
the representation function class has good coverage for
all state-action pairs under the optimal policy.

* For offline reinforcement learning, we introduce ReLEX-
LCB as a counterpart to ReLEX-UCB for the online set-
ting. We demonstrate that ReLEX-LCB is capable of iden-
tifying the optimal policy with gap-dependent sample
complexity of the offline data. Furthermore, when the
representation function class satisfies certain coverage as-
sumptions under the behavior policy, our algorithm enjoys
a constant sample complexity, which represents a novel
contribution to this line of research.

 To validate the effectiveness of representation selection
and the superiority of our algorithms, we conduct empiri-
cal studies on various MDPs with different representation
functions. Our experimental results demonstrate that both
ReLEX-UCB and ReLEX-LCB outperform any single
representation function in the respective settings, thus
confirming the power of representation selection and the
advantages of our proposed algorithms.

Notation. Scalars and constants are denoted by lower and
upper case letters, respectively. Vectors are denoted by lower
case boldface letters x, and matrices by upper case boldface
letters A.. We denote by [k] the set {1,2,--- |k} for posi-
tive integers k. For two non-negative sequence {a, }, {b. },
a, = O(b,,) means that there exists a positive constant C
such that a,, < Cb,,, and we use (5( -) to hide the log fac-
tor in O(+) except for the episode number k. We denote by
I - |2 the Euclidean norm of vectors and the spectral norm
of matrices and by || - ||¢ the Frobenius norm of a matrix.
We denote the Loewner ordering between two symmetric

'For offline RL, our algorithm chooses the representation
which gives the largest pessimistic Q-value function.

matrices as A = B if A — B > 0. For a vector x € R%, we
denote by x{;) the i-th element of x, for a matrix A € R4x4,
we denote by A;; the i-th diagonal element. For any sym-
metric matrix A € R%*? and vector x € R4, we denote
[Ix)la = vVxT Ax. We define I as the identity matrix. We
denote the image space of a matrix A as Im(A), and a vec-
tor is in the image space x € Im(A) if there exists a vector
y such that x = Ay.

2 RELATED WORKS

In this section, we discuss related works on representation
learning and selection in both online and offline RL. Addi-
tional related works are discussed in Appendix 1.

Learning good representations in reinforcement learning has
a long history. One of the earliest methods for aggregating
different states and generating a compressed representation
for those states is state aggregation [Michael and Jordan,
1995, Dean and Givan, 1997, Ravindran and Barto, 2002,
Abel et al., 2016]. In deep RL, deep neural networks have
been used to learn good representations in different settings
[Diuk et al., 2008, Stooke et al., 2020, Yang et al., 2020].
Several theoretical works [Du et al., 2019, Misra et al., 2020,
Foster et al., 2020] have studied the Block MDP where the
dynamics are governed by a discrete latent state space and
proposed algorithms based on decoding the latent state space
from the observations. Du et al. [2020] showed that having
a good approximate representation for the Q-function, tran-
sition kernel, or optimal Q-function is not sufficient for
efficient learning, and can still have an exponential sample
complexity unless the quality of the approximation is above
a certain threshold. In the linear function approximation set-
ting, several representation learning algorithms have been
proposed. For example, Jiang et al. [2017] proposed a model-
free algorithm called OLIVE, which can learn the correct
representation from a representation function class (in the
realizable setting). Modi et al. [2021] improved the OLIVE
algorithm by proposing the MOFFLE algorithm, which is
computationally efficient. On the other hand, Agarwal et al.
[2020] proposed a model-based algorithm, FLAMBE, which
can find the correct representation from the representation
function class. Uehara et al. [2021] improved FLAMBE by
combining the maximum likelihood estimator and optimistic
estimation (resp. pessimistic estimation) for representation
learning in online RL (resp. offline RL). Some recent works
[Qiu et al., 2022, Zhang et al., 2022] have used contrastive
learning instead of the maximum likelihood estimator in
Agarwal et al. [2020], Uehara et al. [2021] to obtain more
practical algorithms.

All the aforementioned works focus on learning the "cor-
rect" representation, which can well approximate the under-
lying transition kernel. In contrast, we pursue a different
objective, which is to select a good representation adaptively
for different state-action pairs from a class of correct repre-
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sentations, which can potentially lead to better performance.
To achieve this objective, Papini et al. [2021b] proposed an
algorithm, LEADER, which leverages good representations
in linear contextual bandits. Independent of our work, Pa-
pini et al. [2021a] extended the representation selection in
linear contextual bandits to linear MDPs [Jin et al., 2020].
The differences between their work and ours are as follows.
First, they considered the linear MDP setting, which yields
a linear dependence on the size of the representation class
(i.e., |®]) in their regret, while we studied a special linear
MDP called bilinear MDP [Yang and Wang, 2020], which
enjoys a logarithmic dependency on |®| (i.e., log(|®])) in
our regret. Second, we also consider representation learning
in offline RL, which, to our knowledge, has not been consid-
ered before in the literature. Compared to previous results
on representation learning in offline RL [Zhang et al., 2022,
Uehara et al., 2021], we provide the first gap-dependent
sample complexity

3 PRELIMINARIES

We consider time-inhomogeneous episodic
Markov Decision Processes (MDP), denoted by
M(S, A H, {rp H  {Pr}_)). Here, S is the state
space, A is the finite action space, H is the length of each
episode, rp, : S x A — [0,1] is the reward function at
step h, and Py, (s'|s, a) denotes the probability for state s
to transition to state s’ with action a at step h. We further
assume that the initial state s; is randomly sampled from a
distribution .

Given the MDP, we consider a deterministic policy 7 =
{mn | as a sequence of functions where 7, : S — A
maps a state s to an action a. For each state-action pair
(s,a) € S x A at time-step h, given the policy 7, we denote
the Q-function and value function as follows:

H

> rwe(sn e (sw) |

h'’=h+1
Vir (s) = Qp (s, mn(s)),

where s;, = s,a; = a and for all b’ € [h, H|, the dis-
tribution of sp,/1 is given by Py (sp/|s, a). Both Q7 (s, a)
and V;"(s) are bounded in [0, H] by definition. We further
define the optimal value function as V" (s) := sup, V;"(s)
and the optimal Q-function as Q" (s, a) := sup, Q7 (s, a).

Qr(s,a) =rp(s,a) + E

The optimal policy is denoted by W,Ss) = argmax_ V;7(s),
and we assume the optimal policy function 7* is unique.

For simplicity, we define [P, V](s,a) = Egp, (s/5,a)V (5")
for any function V' : S — R. With this notation, we have

the following Bellman equation, as well as the Bellman
optimality equation:

QZ(&G') = Th(s’a) + [Pthﬂ+1](8, a)?

Qn(s,a) =rp(s,a) + [PV 1](s,a), (3.1)

where V77, | and Vi, | are set to be zero for any state s and
policy 7.

We will focus on learning the structure of the MDP in an
online manner. The algorithm is designed to run for K
episodes, where for each episode k € [K], the first step is to
determine a policy 7% = {7 }L | based on the knowledge
collected from the environment. The agent then follows the
policy and the dynamics of the MDP. Specifically, at each
step h € [H], the agent observes the state sﬁf , selects an
action afl using the policy 77,’2, transitions to the next state
55 41 generated by the MDP, and receives the reward r,’j 11

We define the cumulative regret for the first K episodes
as Regret(K) = Zszl Vi (sh) — Vfrk (s¥), where Vi*(s%)
is the optimal value of the initial state in episode k and
Vl’flc (s¥) is the value of the initial state in episode & under
the policy 7*.

The aim of this paper is to establish a problem-dependent
regret bound. To achieve this goal, we require the assump-
tion of a strictly positive minimal sub-optimality gap [Sim-
chowitz and Jamieson, 2019, Yang et al., 2021, He et al.,
2021]. This assumption ensures that the difference between
the value of the optimal policy and the value of any other
policy is not too small, which is essential for proving the
regret bound.

Assumption 3.1. We have gap_; > 0, where

gap}n(s7 a) = Vh*(s) - QZ(& a)?
gap,, = inf {gap,(s,a) : gapy,(s,a) #0}. (3.2)

We consider the bilinear MDPs in Yang and Wang [2020],
where the probability transition kernel is a bi-linear function
of the feature vectors.

Definition 3.2 (Bilinear MDPs, Yang and Wang 2020). For
each state-action-state triple (s, a, s’) € S x A x S, vectors
@(s,a) € RY, 4p(s') € R are known as the feature vectors.
There exists an unknown matrix Mj € R4’ for all h €
[H] such that Py, (s'|s,a) = ¢ (s,a)Mj4p(s"). We denote
Ky =Y .cs ¥(s)t " (s) which is assumed to be invertible.
Let @ = (¢(s1),9(s2), - ,¥(s15)) " € RISI*? be the
matrix of all ¢ features. We assume that for all h € [H],
[M; % < Cmd, for all (s,a) € S x A, ||¢(s,a)||3 <
Cypd, and for all v € RIS, ¥ Tv|y, < Cy|v]e and
||\IIK17,1||2C>O < Cy, where Cnp, Cg, Gy, and Cy, are all
positive constants.

In this work, we focus on the bilinear MDP, which is a
specific case of the low-rank MDP or linear MDP. In the
low-rank MDP framework [Yang and Wang, 2019, Jin
et al., 2020], the transition kernel is assumed to be a bi-
linear function of the state-action feature vector and an un-
known measure 6}, (s") of dimension d, i.e., Py (s'|s,a) =
(¢(s,a),0,(s")). In our approach, we model 0 (s") as a
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product of an unknown matrix M and a feature vector
1(s’). In contrast, in the linear MDP, the reward function is
assumed to be a linear function of the state-action feature
vector ¢ (s, a), whereas we assume it is known to simplify
the presentation. As noted by Yang and Wang [2020], we
can replace this assumption with a linear function of the
representation ¢(s, a) and add an optimistic reward func-
tion estimation step similar to LinUCB [Chu et al., 2011]
without significantly altering the analysis.

Given the linear function representation of the MDP, we aim
to learn a good representation ¢(s,a) for different state-
action pairs in the representation function class @, in both
online and offline settings. To this end, we introduce the
definition of an admissible representation function class.

Definition 3.3 (Admissible Function Class). A representa-
tion function class ® is admissible if every ¢ € ® satisfies
Definition 3.2 with a different dimension d, a different
parameter M . a different constant C, and the same con-
text ¥ (s’). In other words, for any representation function
¢ € @, the same transition kernel can be represented as

Pp(s']s,a) = @7 (s,a)Mj, 42p(s").

Remark 3.4. Definition 3.3 suggests that the same transi-
tion kernel can be represented in different ways, which is
quite common in practice. For example, one can always rep-
resent a bilinear MDP with finite state and action spaces by
a tabular MDP, which can be further represented by another
bilinear MDP with dg, = |S| x |.A|. However, different rep-
resentations ¢ may have different learning complexities. For
instance, the linear representations with a lower dimension
dg are easier to learn than the tabular representation with
dg = |S| x |A|. Thus, our goal is to select a good repre-
sentation from the admissible function class for different
state-action pairs.

Remark 3.5. In the rest of our paper, we assume that the
functions ¢ € @ is given to the algorithm. In real-world
applications, however, such a function class can be chosen
as hand-crafted features or pre-trained neural networks.

Remark 3.6. Although one can also consider learning the
representation function tuple (¢, 1) € ® x ¥ simultane-
ously, there is no difference compared with assuming the
1) function is fixed and known in terms of the algorithm
and the analysis. This is because the -function is a linear
function of ¢ (see (4.2)), and the confidence radius of the
estimated @Q-function only depends on ¢ (see (4.3)). There-
fore, we only select the representation of ¢ instead of both
¢ and 1) without loss of generality.

4 REPRESENTATION SELECTION FOR
ONLINE RL

4.1 RELEX-UCB ALGORITHM

We present the Representation seLection for EXploration
and EXploitation with upper confidence bound (ReLEX-
UCB) algorithm for selecting a good representation from
a finite representation function class ® for different state-
action pairs. The algorithm, shown in Algorithm 1, main-
tains a different model parameter estimate for each individ-
ual representation ¢ € ®. Under Definition 3.2, we have
the following property for each representation ¢:

[Prp() K (5,0) = 37 Pa(s'ls, a)w T (5K,

s'eS
=3 ¢ (s, )M y3(s) T (s)K !
s'eS
=¢ ' (s,a)Mj, 4, 4.1)

where the last equality uses the fact that K, =
> yes¥(s)¥ T (s). Equation (4.1) suggests that we can
build Mh e the estimate of M* , as the solution to the
ridge regresswn problem analytlcally, given the sampled
triples {sj,, a3, s}, }5_} in Line 6 of Algorithm 1.

Remark 4.1. The computation of K, requires only one
pass of the state space since it does not depend on the
round k or the representation ¢. Thus, it is not compu-
tationally expensive and would not be a bottleneck in the al-
gorithm’s computational complexity. Additionally, when the
state space is infinite, K, can be efficiently approximated
using Monte Carlo integration techniques, as demonstrated
in prior works such as Zhou et al. [2021] and Yang and
Wang [2020].

With the estimate Mﬁ 4» Algorithm 1 recursively esti-
mates the Q-function starting from Q¥ +1 = 0. The Q-
function at step h can be deduced as Qﬁﬁq&(s, a) =r(s,a) +
[PLViF, 1](s,a), where V/¥ | is the estimate of the value
function at step h + 1. Using the Bellman equation (3.1),
we can further write Q} ,(s,a) as

QF o(s,a) =r(s,a) + Z ®'(s,a)M}, ¢1/’(5/)th+1(5/)-
s’eS
(4.2)

To construct an optimistic estimation of the Q-function,
we follow the approach proposed by Yang and Wang
[2020] and add an optimism bonus term to the right-
hand side of (4.2). The optimism bonus is defined as
CyH\/Br,sllP(s,a)||( Uf )~1, where Cy, and B ¢ are
user-defined hyperparameters and U’“ is the covariance
matrix calculated in Line 7. This results in the following
optimistic estimation of the Q)-function:

Qﬁ,zﬁ(sva) = T(Sv a) + Z ¢T(Sa a)MfL,¢¢(SI)Vl{€+1(S/)
s'eS

+CwH\//Bk;,¢)||¢(s7a)||(U;<l:7¢)—l. (4.3)
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By following the standard analysis for optimistic estima-
tion [Abbasi-Yadkori et al., 2011], it can be shown that
QZ7¢(5, a) is an upper confidence bound for sz (s,a) for
each representation ¢ € &, according to (4.3). In other
words, Q} (s,a) > Qj(s,a). In Line 10, the algorithm
selects the representation with the smallest optimistic es-
timation, which should be considered as the tightest opti-
mistic estimation given the current covariance matrix UZ, e
Alternatively, this step can be interpreted as selecting the rep-
resentation with the minimal uncertainty, which is measured
by ||| (Uf )1 This approach is intuitive and ensures that
the algorithm chooses the representation that provides the
best possible estimate of the value function for the current
state-action pair.

As aresult, Line 10 selects different representations ¢ for
different state-action pairs implicitly by minimizing the
optimistic Q-function, which results in a tighter optimistic
estimation of the (J-function. The algorithm then executes
the greedy policy and obtains the optimistic value function
defined in Line 11.

Our algorithm offers a distinct advantage over Yang and
Wang [2020] in that it enables the selection of different
representations for different state-action pairs. This is in
contrast to representation learning, which seeks a universal
representation that works well for all state-action pairs. For
instance, our algorithm can adaptively choose a representa-
tion that yields accurate value function estimates for certain
state-action pairs, even if its performance is suboptimal for
others. By doing so, our algorithm outperforms Yang and
Wang [2020] which relies on a single representation for all
state-action pairs. This demonstrates the benefits of repre-
sentation selection in online RL.

4.2 CONSTANT REGRET BOUNDS

We present the regret bound for ReLEX-UCB, which
demonstrates the advantage of representation selection in a
rigorous way. To do so, we require the following assump-
tion:

Assumption 4.2. Suppose that the representation function
class ® is admissible. For any (s,a,h) € S x A x [H],
there exists a representation ¢p € @ such that ¢(s,a) €
Im(Aj,4), where

Ang =Ea . [¢(sn, 7 (s0)" (sn, 75 (sn))]

with d.« representing the state visitation distribution in-
duced by the optimal policy 7*. We also denote o0}, 4
as the minimal non-zero eigenvalue of Ay, 4 and oy =

minhE[H] Oh,p-

Remark 4.3. Several related assumptions, known as diver-
sity assumptions, have been proposed to lower bound the
minimum eigenvalue of the term ¢¢ | . These assumptions

Algorithm 1 Online Representation seLection for EXplo-
ration and EXploitation with Upper Confidence Bound
(ReLEX-UCB)

1: Initialize Q% 4(s,a) = 0 for all (s, a, k, ¢)

2: for episodes k =1,..., K do

3:  Received the initial state s¥.

4: forsteph=H,...,1do

5: for representation ¢ € ¢ do

6: Mfmp = argminy (Zj;ll ||1/’T(5§+1)K1Z1_

@' (sh;, af) M3 + [M][3)

7 Ul =T+ 521 d(sf af)o " (s, af)
8 Calculate qup(s, a) as (4.3)
9: end for
10: Set QF(s,a) = min¢eq>{QZ7¢(s, a)},
11: Set Vi¥(s) = max{0, min{max, Q% (s,a), H}}
12:  end for
13: forsteph=1,...,H do
14: Take action a¥ «+ argmax, Q¥ (s¥, a)
15: Receive next state s§_
16:  end for
17: end for

are discussed in detail in Papini et al. [2021b]. Here, we
extend the assumption from the linear bandit to the rein-
forcement learning setting, where the state distribution at
time-step h is defined by the optimal policy. We note that a
similar but stronger assumption, called ‘uniformly excited
features’, is made by Wei et al. [2021] in the infinite time-
horizon average reward MDP setting. There, they assume
A is strictly positive definite for all possible policies 7. In
contrast, we only require A to be strictly positive for the dis-
tribution induced by the optimal policy, which is a weaker
assumption. This implies that the states that rarely occur in
the optimal policy do not significantly impact the quality of
the representation.

Remark 4.4. We notice that a similar assumption called
UniSoft-mixing, is made in Papini et al. [2021a], where they
assume that for all (s,a) € S x A, there exists a p €
such that ¢(s,a) € span {¢(s,7*(s)) : d=(s) > 0}. The
difference between our assumption and their assumption
is that they filter out the states which are almost surely
never visited by the optimal policy 7*. In contrast, we take
the expectation with respect to d«(s) without explicitly
filtering out the never-visited states.

Now we are ready to present the regret bound result.

Theorem 4.5. Under Assumptions 3.1 and 4.2, set 31, ¢ =
c(Cm + C;f)d¢ log(kHCy|®|/d) in Algorithm 1, where
c is an absolute positive constant, then with probability at
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least 1 — 50, there exists a threshold
Kt = { Iy(de, oY, H,log(|®|/5), gap~.
max | po y(de, 0y 0g(|®(/9), 2ap,nin

independent from episode number k. The regret for the first
k episodes is upper bounded by

{ 128C3 Hod2 c(Co + C,%)

Regret(k) < 2 4 min
(%) &38Pmin

PP
x log (1 + Cgkdg) log (KHCy|®| /5)}

N 96 H* log (2%(1 + log(Hgap,.i,))|®]/0)
£aPmin

N 16H?log ((1 + log (HE))k?|®|/9)
3 Y

where we denote k := min{k, k*}.

Remark 4.6. The regret bound exhibits a phase transition
as the episode number k i~ncreases. When k < k*, the re-
gret is upper bounded by O(d? H® log(k)gap,... ), which is
exactly the logarithmic regret bound (given by Lemma 3.3
in Appendix). However, when £ > k*, the regret bound be-
comes O(d>H° log(k*)gap,, ). Since k* is independent of
k (as shown in (4.4)), the regret bound turns into a problem-
dependent constant regret bound that no longer grows as the
total number of episodes k increases. This result aligns with
our intuition: once we have a fixed, strictly positive sub-
optimality gap, the regret might initially increase over the
first few episodes. However, once the agent collects enough
data, it can learn the environment well and will no longer
incur any additional regret.

Remark 4.7. If Assumption 4.2 does not hold, then k* =
o0, and our regret bound degenerates to the gap-dependent
regret bound. Similar bounds have been proved in He et al.
[2021] for both linear MDPs and linear mixture MDPs. Our
bound has the same dependency on H, gap, ;.. and episode
number k as the bounds in He et al. [2021]. However, in
terms of d, our dependency is O(d?), while the dependency
is O(d®) for linear MDPs in the LSVI-UCB algorithm [Jin
et al., 2020]. This difference arises from estimating the MDP
parameter M;‘, & which is similar to that in the UCRL-VTR
algorithm [Ayoub et al., 2020] for learning linear mixture
MDPs. Furthermore, since our regret bound minimizes over
all ¢ € @, the performance of ReLEX-UCB is always
competitive with the best one using any single representation
¢ in that function class, ignoring the logarithmic terms.

Remark 4.8. We note that our regret bound includes an
additional log(|®|) factor, which reflects the cost of repre-
sentation selection to guarantee that all |®| regressions can
be learned well by the union bound. This term is caused by
the worst-case scenario and may be eliminated in practice

by considering the average-case scenario instead. By doing
so, we can potentially reduce the impact of the log(|®|)
factor on the regret bound. Additionally, it’s worth noting
that this dependency on |®| is better than the one in the
regret bound of Papini et al. [2021a], which has a |®| factor.
The reason for the better dependency in our result is that
the bilinear MDP structure we consider is simpler than the
linear MDP structure considered in Papini et al. [2021a].
When applying our algorithm to linear MDPs, we still need
a |®| factor to cover the value function class, which degen-
erates to the result in Papini et al. [2021a]. Furthermore,
the log(|®|) dependency allows us to extend our result to
some infinite representation function classes with bounded
statistical complexity [Agarwal et al., 2020].

Remark 4.9. When |®| = 1, i.e., there is only one rep-
resentation function, Assumption 4.2 provides a criterion
for a ‘good representation’ and such a ‘good representa-
tion’ can improve the problem-dependent regret bound from
O(log(k)) [He et al., 2021] to a constant regret bound.

5 REPRESENTATION SELECTION FOR
OFFLINE RL

5.1 RELEX-LCB ALGORITHM

We present an offline version of ReLEX that selects a good
representation based on the offline data generated from a
behavior policy. In this version, the algorithm estimates
the parameter and its covariance matrix for each represen-
tation function ¢ in Lines 3 and 4 in Algorithm 2, using
the offline data D, for the h-th step, which consists of the
triplet (s, a, ) as the state, action, and next-state, then the
estimated M can be therefore written by

My, ¢ = argmin M7

o

(s,a,8")EDR

I " (K — ¢ (s,a)M]3
5.1)

The algorithm then provides a pessimistic estimation of the
@-function, following a similar method as (4.3) in Lines 9
and 10, which is widely used in offline reinforcement learn-
ing to provide a robust estimation for later planning. In de-
tail, the estimated Q function is subtracted by a confidence
radius I' defined by

The(s,a) = CwH\/@pd)T(s,a)U,;é)d)(s,a) (5.2)

and thus the estimated ()-function can be written as

Qne(s,a) =r(s,a) + > " (s,a)Mppth(s") iy ()

s'eS

— Fh}¢(s7a). (53)
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Algorithm 2 Offline Representation seLection for EXplo-
ration and EXploitation Lower Confidence Bound (ReLEX-
LCB)

// offline training
for (h,¢) € [H] x @ do
Calculate M}, 4 as of (5.1)
Calculate Up, g = I+, , syep, P(5,0)d" (s,a)
end for
// offline planning
: Initialize Qg 11,¢(s, a) = 0 for all (s, a, ¢)
cforh=H,H—-1,---,1do
Calculate T'), ¢(s a) as of (5.2)
Calculate Qp, (s, a) as of (5.3)
Set Qn(s,a) = maxgpea{Qn,s(s,a)}
Set V3, (s) = max{0, min{max, Qx(s,
13: Set 7y (s,a) = argmax, Qn (s, a)
14: end for
Output: Policy 7 = {m; }1L,

_ =
TR IIUNAELDD T

,_.
»

a), H}}

Unlike the online version, where a smaller estimation of ()
is preferred, the offline version adopts a pessimistic estima-
tion (Qh,¢ < @), where a larger estimation is considered
more accurate. Therefore, in Line 11, the algorithm selects
the maximum @-function over all representation functions
¢, and in Line 13, it takes the greedy policy based on the
selected -function from the offline training. Similar to the
online version, ReLEX-LCB selects different representation
functions for different state-action pairs instead of a single
representation for the entire environment, thereby leverag-
ing the advantage of different representation functions to
provide a good estimation for the underlying MDP.

5.2 GAP-DEPENDENT SAMPLE COMPLEXITY

In this section, we provide the sample complexity of Algo-
rithm 2. Similarly to its online counterpart, we start with
a coverage assumption for offline RL, which suggests that
the representation function class ¢ can provide a good rep-
resentation for all possible state-action pairs in the offline
training data.

Assumption 5.1. Suppose the representation function class
® is admissible, and for any (s, a,h) € S x A x [H], there
exists a representation function ¢ € ® such that

B(s,a) € Im(Ang), Ang = Egld(s,a)¢(s,a) "],

where dF is the state-action visitation distribution in the
offline dataset on step h induced by some behavior policy 7
in the underlying MDP for the offline data. We denote the
minimal non-zero eigenvalue of Ay, ¢ as o, 4.

Remark 5.2. Similar assumptions have been made in the
offline RL literature [Wang et al., 2020, Jin et al., 2021, Min
et al., 2021, Uehara et al., 2021, Yin et al., 2022], which

require that the offline dataset can provide good coverage of
the entire state-action space. Notably, thanks to representa-
tion selection, we only require that the representations in the
function class ® can together cover the state-action space,
rather than every single representation covering the state-
action space perfectly. This relaxes existing assumptions by
allowing every single representation to not provide perfect
coverage. For example, it is possible to define two repre-
sentations {¢1, @2} such that each representation does not
satisfy Assumption 5.1, but the representation function class
d = ¢1, ¢ satisfies. For more details about this example,
please refer to Appendix 2.2, or Appendix G in Papini et al.
[2021a].

We also need the following assumption, which is standard
in the literature.

Assumption 5.3. The trajectories in the offline dataset are
i.i.d. sampled, i.e., different trajectories are generated by the
same behavior policy 7 independently.

Now we are ready to present the sample complexity result.

Theorem 5.4. Set 4 = Cdglog(2KH|®|/d) where C
is an absolute positive constant, then with probability at
least 1 — 9, then under Assumptions 5.1 and 5.3, the sub-
optimality of the policy m output by Algorithm 2 could be
bounded by

)~ (0) < 200 H
hZ_E [min {/Bollb(s.a) 2 Yon = 3],

5.4)

Furthermore, under Assumptions 3.1, if the size of the of-
fline dataset is greater than

K>

max

32C3d2 log(Hd|®|/3)
PED, he[H]

~2
Th,e

rs GG VL
Agap;;, C5dg log(Hdg|®|/0)

then Algorithm 2 is guaranteed to output the optimal policy
="

Remark 5.5. Our error bound in (5.4) contains the min
operator, which suggests that our result should be no worse
than using any single representation, compared with the
offline RL algorithm using a single representation [Jin et al.,
2021, Yin et al., 2022].

Remark 5.6. The bound of /34|/¢(s,a HU 1 cannot
I

decrease to 0 without other further assumptlons Jin et al.
[2021], Yin et al. [2022] require a ‘uniform coverage’ as-
sumption to make the sub-optimality decrease at a 1/v/ K

2494



Table 1: Cumulative regret (mean + dev.) after SM episodes
for ReLEX-UCB v.s. UC-MatrixRL and e-greedy using a
single representation

Alg. + Rep.
UC-MatrixRL + ¢ (oracle)

UC-MatrixRL + ¢!
UC-MatrixRL + ¢(?)
e-greedy + ¢
e-greedy + o1
e-greedy + ¢p(?)
ReLEX-UCB + {¢(), (@)}

Cumulative regret
2534.9 £+ 26.6

11459.5 £ 225.7
13838.5 £ 266.2
15305.9 £ 245.7
15745.8 £ 408.0
15652.9 £ 471.2
6765.0 &= 146.6

rate. This ‘uniform coverage’ suggests that the covariance
matrix under the behavior policy can cover the entire state-
action space. In sharp contrast, according to Assumption 5.1,
our results only require the representations in the function
class to together cover the state-action space, even if any
single representation cannot.

Remark 5.7. Our ‘gap-dependent sample complexity’ is
also aligned with the gap-dependent sample complexity
for offline RL in the tabular setting under the condition
(P, gap,,;,,) in Wang et al. [2022]. In their setting, P stands
for a uniform optimal policy coverage coefficient in the
tabular MDP, which is analogous to our E,;}b in the linear
function approximation setting. Our result has the same
inverse dependence on gap, ;..

6 EXPERIMENTS

6.1 ONLINE RL

To showcase the efficacy of representation selection by
ReLEX-UCB, we conduct the following experiments on
an environment with |S| = 20,|4] = 3, H = 10,
and d = d’ = 5. We generate the feature functions
¢ : SxA— Rland ¢ : S — R? such that for
all h € [H], there exists a matrix M;, € R%*?¢ where
Py (s']s,a) = ¢(s,a) " Mpp(s'). The generated ¢ satis-
fies Assumption 4.2. We set the reward function such that
r(s,a) ~ Bernoulli(0.5) and rp,(s,a) = 0 forall h < H,
forcing the algorithm to learn the transition kernel in order
to achieve good performance.

Furthermore, we generate two additional representations
¢ and ¢® such that neither ¢(*) nor ¢ satisfies As-
sumption 4.2, but their union ® = ¢, ¢ does. Ap-
pendix 2.1 contains a detailed definition of these representa-
tions.

We evaluated the performance of ReLEX-UCB using the
feature map class ® = {¢(), ¢} with episode K =
5,000,000. We also reported the performance of UC-

Table 2: Relative sub-optimality of ReLEX-LCB over 500K
episodes

Final sub-optimality

Representation (mean + dev.) x 103
& (oracle) 1.288 + 0.807
oW 3.424 +1.455
o 3.336 + 1,624
{pM), (2} 1.292 4+ 0.806

MatrixRL [Yang and Wang, 2020] and e-greedy using the
feature map ¢, ¢V, and ¢(?) separately.

We repeated the experiment on the same environment eight
times and reported the mean and standard deviation of
the cumulative regret in Table 1. Our experiment results
showed that ReLEX-UCB outperformed both e-greedy and
UC-MatrixRL using ¢(*) or ¢(2), which verifies the effec-
tiveness of representation selection. More results, including
the figure of cumulative regret, are deferred to Appendix
24.1.

6.2 OFFLINE RL

In this subsection, we present experiments to demonstrate
the performance of ReLEX-LCB. We use a setup similar
to the online RL setting with one oracle representation ¢
satisfying Assumption 5.1 and two representations ¢(*) and
¢ . Neither of ¢(*) nor ¢ satisfies Assumption 5.1, but
the union of these two representations satisfies the assump-
tion. We collect K = 500K episodes of offline trajectories
using a fixed randomly-generated behavior policy and eval-
uate the sub-optimality of Algorithm 2 using different sizes
of offline training data. The rest of the parameter settings
are the same as in the online RL setting.

We report the performance of Algorithm 2 using (1) the or-
acle representation ¢, (2) the representation function class
{¢1, P2}, (3) @1, and (4) o, respectively. We use the rel-
ative sub-optimality over the initial policy, i.e., (Vi*(s) —
V™ (8))/(Vi*(s) — V"' (s)) as a performance measure. We
repeat the experiment 32 times and report the mean and
standard deviation of the relative sub-optimality in Table 2.

We observe that by selecting over two imperfect representa-
tions, ReLEX-LCB can match the performance of the oracle
algorithm using a single perfect representation, even if using
the two representations separately leads to a larger (~ 2.5X)
sub-optimality on the same offline data. More results, includ-
ing the figures comparing the sub-optimality over different
algorithms, are deferred to Appendix 2.4.1.
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7 CONCLUSION AND FUTURE WORK

In this paper, we have explored representation selection for
reinforcement learning by focusing on a special class [Yang
and Wang, 2020] of low-rank MDPs [Yang and Wang, 2019,
Jin et al., 2020]. Our proposed ReLEX algorithm has demon-
strated the ability to improve performance in both online
and offline RL settings. The promising theoretical and em-
pirical results suggest that there is potential in combining
our work with FLAMBE [Agarwal et al., 2020] or MOF-
FLE [Modi et al., 2021]. By integrating our approach with
these methods that select the correct representations, we
can further select the good representation from a class of
correct representations. This may help in designing more
practical, theory-backed representation learning algorithms
for reinforcement learning.
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