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Abstract. We consider a class of mathematical models describing mul-
tiphysics phenomena interacting through interfaces. On such interfaces,
the traces of the fields lie (approximately) in the range of a weighted sum
of two fractional differential operators. We use a rational function approx-
imation to precondition such operators. We first demonstrate the robust-
ness of the approximation for ordinary functions given by weighted sums
of fractional exponents. Additionally, we present more realistic examples
utilizing the proposed preconditioning techniques in interface coupling
between Darcy and Stokes equations.
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1 Introduction

Fractional operators arise in the context of preconditioning of coupled mul-
tiphysics systems and, in particular, in the problem formulations where the
coupling constraint is enforced by a Lagrange multiplier defined on the inter-
face. Examples include the so-called EMI equations in modeling of excitable
tissue [30], reduced order models of microcirculation in 2d-1d [22,23] and 3d-
1d [20,21] setting or Darcy/Biot–Stokes models [2,24]. We remark that fractional
operators have been recently utilized also in monolithic solvers for formulations
of Darcy/Biot–Stokes models without the Lagrange multipliers, see [5,6].

The coupling in the multiplier formulations is naturally posed in Sobolev
spaces of fractional order. However, for parameter robustness of iterative meth-
ods, a more precise setting must be considered, where the interface problem is
posed in the intersection (space) of parameter-weighted fractional order Sobolev
spaces [17]. Here the sums of fractional operators induce the natural inner prod-
uct. In the examples mentioned earlier, however, the interface preconditioners
were realized by eigenvalue decomposition, and thus, while being parameter
robust, the resulting solvers do not scale with mesh size. Using Darcy–Stokes
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system as the canonical example, we aim to show that rational approximations
are crucial for designing efficient preconditioners for multiphysics systems.

There have been numerous works on approximating/preconditioning prob-
lems such as Dsu = f , e.g. [4,9,27]. The rational approximation (RA) approach
has been advocated, and several techniques based on it were proposed by Hofre-
ither in [15,16] (where also a Python implementation of Best Uniform Rational
Approximation (BURA) for xλ is found). Further rational approximations used
in preconditioning can be found in [12,13]. An interesting approach, which always
leads to real-valued poles and uses Padé approximations of suitably constructed
time-dependent problems, is found in [11]. In our numerical tests, we use Adap-
tive Antoulas-Anderson (AAA) algorithm [26] which is a greedy strategy for
locating the interpolation points and then using the barycentric representation
of the rational interpolation to define a function that is close to the target. In
short, for a given continuous function f , the AAA algorithm returns a rational
function that approximates the best uniform rational approximation to f .

The rest of the paper is organized as follows. In Sect. 2, we introduce a model
problem that leads to the sum of fractional powers of a differential operator on
an interface acting on weighted Sobolev spaces. In Sect. 3, we introduce the
finite element discretizations that we employ for the numerical solution of such
problems. Next, Sect. 4 presents some details on the rational approximation and
the scaling of the discrete operators. In Sect. 5, we test several relevant scenarios
and show the robustness of the rational approximation as well as the efficacy of
the preconditioners. Conclusions are drawn in Sect. 6.

2 Darcy–Stokes Model

We study interaction between a porous medium occupying ΩD ⊂ R
d, d = 2, 3

surrounded by a free flow domain ΩS ⊃ ΩD given by a Darcy–Stokes model [24]
as: For given volumetric source terms fS : ΩS → R

d and fD : ΩD → R find the
Stokes velocity and pressure uS : ΩS → R

d, pS : ΩS → R and the Darcy flux
and pressure uD : ΩD → R

d, pD : ΩD → R such that

−∇ · σ(uS , pS) = fS and ∇ · uS = 0 in ΩS ,

uD + Kμ−1∇pD = 0 and ∇ · uD = fD in ΩD,

uS · νs + uD · νD = 0 on Γ,

−νS · σ(uS , ps) · νS − pD = 0 on Γ,

−PνS
(σ(uS , pS) · νS) − αμK−1/2PνS

uS = 0 on Γ.

(1)

Here, σ(u, p) := 2με(u) − pI with ε(u) := 1
2 (∇u + ∇uT ). Moreover, Γ := ∂ΩD ∩

∂ΩS is the common interface, νS and νD = −νS represent the outward unit
normal vectors on ∂ΩS and ∂ΩD. Given a surface with normal vector ν, Pν :=
I − ν ⊗ ν denotes a projection to the tangential plane with normal ν. The final
three equations in (1) represent the coupling conditions on Γ . Parameters of the
model (which we shall assume to be constant) are viscosity μ > 0, permeability
K > 0 and Beavers-Joseph-Saffman parameter α > 0.
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Finally, let us decompose the outer boundary ∂ΩS \ Γ = Γu ∪ Γσ, |Γi| > 0,
i = u, σ and introduce the boundary conditions to close the system (1)

uS · νS = 0 and PνS
(σ(uS , pS) · νS) = 0 on Γu,

σ(uS , pS) · νS = 0 on Γσ.

Thus, Γu is an impermeable free-slip boundary. We remark that other conditions,
in particular no-slip on Γu, could be considered without introducing additional
challenges. However, unlike the tangential component, constraints for the normal
component of velocity are easy1 to implement in H(div)-conforming discretiza-
tion schemes considered below.

Letting VS ⊂ H1(ΩS), VD ⊂ H(div, ΩD), QS ⊂ L2(ΩS), QD ⊂ L2(ΩD) and
Q ⊂ H1/2(Γ ) the variational formulation of (1) seeks to find w := (u, p, λ) ∈ W ,
W := V ×Q×Λ, V := VS ×VD, Q := QS ×QD and u := (uS , uD), p := (pS , pD)
such that Aw = L in W ′, the dual space of W , where L is the linear functional
of the right-hand sides in (1) and the problem operator A satisfies

〈Aw, δw〉 = aS(uS , vS)+aD(uD, vD)+b(u, q)+bΓ (v, λ)+b(v, p)+bΓ (u, δλ), (2)

where δw := (v, q, δλ), v := (vS , vD), q := (qS , qD) and 〈·, ·〉 denotes a duality
pairing between W and W ′. The bilinear forms in (2) are defined as

aS(uS , vS) :=
∫

ΩS

2με(uS) : ε(vS) dx +
∫

Γ

αμK−1/2PνS
uS · PνS

vS dx,

aD(uD, vD) :=
∫

ΩD

μK−1uD · vD dx,

b(v, p) := −
∫

ΩS

pS∇ · vS dx −
∫

ΩD

pD∇ · vD dx,

bΓ (v, λ) :=
∫

Γ

(vS · νS + vD · νD)λ ds.

(3)

Here, λ represents a Lagrange multiplier whose physical meaning is related to the
normal component of the traction vector on Γ , λ := −νS ·σ(uS , pS) · νS , see [24]
where also well-posedness of the problem in the space W above is established.

Following [17], parameter-robust preconditioners for Darcy–Stokes operator
A utilize weighted sums of fractional operators on the interface. Specifically, we
shall consider the following operator

S := μ−1(−ΔΓ + IΓ )−1/2 + Kμ−1(−ΔΓ + IΓ )1/2, (4)

where we have used the subscript Γ to emphasize that the operators are con-
sidered on the interface. We note that −ΔΓ is singular in our setting as Γ is a
closed surface and adding lower order term IΓ thus ensures positivity.
1 Conditions on the normal component can be implemented as Dirichlet boundary

conditions and enforced by the constructions of the finite element trial and test
spaces. The tangential component can be controlled e.g., by the Nitsche method [29]
which modifies the discrete problem operator.
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Letting AS be the operator induced by the bilinear form aS in (3) we define
the Darcy–Stokes preconditioner as follows,

B := diag
(
AS , μK−1(I − ∇∇·), μ−1I,Kμ−1I, S

)−1
. (5)

Note that the operators I in the pressure blocks of the preconditioner act on dif-
ferent spaces/spatial domains, i.e., QS and QD. We remark that in the context of
Darcy–Stokes preconditioning, [14] consider BURA approximation for a simpler
interfacial operator, namely, Kμ−1(−ΔΓ + IΓ )1/2. However, the preconditioner
cannot yield parameter robustness, cf. [17].

3 Mixed Finite Element Discretization

In order to assess numerically the performance of rational approximation of S−1

in (5), stable discretization of the Darcy–Stokes system is needed. In addition
to parameter variations, here we also wish to show the algorithm’s robustness
to discretization and, in particular, the construction of the discrete multiplier
space. To this end, we require a family of stable finite element discretizations.

Let k ≥ 1 denote the polynomial degree. For simplicity, to make sure that the
Lagrange multiplier fits well with the discretization of both the Stokes and Darcy
domain, we employ the same H(div) based discretization in both domains. That
is, we discretize the Stokes velocity space VS by Brezzi-Douglas-Marini BDMk

elements [8] over simplicial triangulations Ωh
S of ΩS and likewise, approxima-

tions to VD are constructed with BDMk elements on Ωh
D. Here, h denotes the

characteristic mesh size. Note that by construction, the velocities and fluxes
have continuous normal components across the interior facets of the respective
triangulations. However, on the interface Γ , we do not impose any continuity
between the vector fields. The pressure spaces QS , QD shall be approximated in
terms of discontinuous piecewise polynomials of degree k − 1, Pdisc

k−1. Finally, the
Lagrange multiplier space is constructed by P

disc
k elements on the triangulation

Γh := Γh
S , with Γh

S being the trace mesh of Ωh
S on Γ . For simplicity, we assume

Γh
D = Γh

S .
Approximation properties of the proposed discretization are demonstrated in

Fig. 1. It can be seen that all the quantities converge with order k (or better)
in their respective norms. This is particularly the case for the Stokes velocity,
where the error is measured in the H1 norm.

Let us make a few remarks about our discretization. First, observe that by
using BDM elements on a global mesh Ωh

S∪Ωh
D the Darcy–Stokes problem (1) can

also be discretized such that the mass conservation condition uS ·νS +uD ·νD = 0
on Γ is enforced by construction, i.e. no Lagrange multiplier is required. Here, u
is the global H(div)-conforming vector field, with ui := u|Ωi

, i = S,D. Second,
we note that the chosen discretization of VS is only H(div, ΩS)-conforming. In
turn, stabilization of the tangential component of the Stokes velocity is needed,
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see, e.g., [3], which translates to modification of the bilinear form aS in (3) as

ah
S(u, v) := aS(u, v) −

∑
e∈F h

S

∫
e

2μ {{ε(u)}} · [[Pνe
v]] ds

−
∑

e∈F h
S

∫
e

2μ {{ε(v)}} · [[Pνe
u]] ds +

∑
e∈F h

S

∫
e

2μγ

he
[[Pνe

u]] · [[Pνe
v]] ds,

(6)

see [18]. Here, Fh
S = F (Ωh

S) is the collection of interior facets e of triangulation
Ωh

S , while νe, he denote respectively the facet normal and facet diameter. The
stabilization parameter γ > 0 has to be chosen large enough to ensure the
coercivity of ah

S . However, the value depends on the polynomial degree. Finally,
for interior facet e shared by elements T+, T− we define the (facet) jump of
a vector v as [[v]] := v|T+∩e − v|T −∩e and the (facet) average of a tensor ε as
{{ε}} := 1

2 (v|T+∩e · νe + v|T −∩e · νe).
We conclude this section by discussing discretization of the operator (−Δ+I)

needed for realizing the interface preconditioner (4). Since, in our case, the mul-
tiplier space Λh is only L2-conforming we adopt the symmetric interior penalty
approach [10] so that in turn for u, v ∈ Λh,

〈(−Δ + I)u, v〉 :=
∫

Γ

(∇u · ∇v + uv) dx −
∑

e∈F (Γh)

∫
e

{{∇u}} [[v]] ds

−
∑

e∈F (Γh)

∫
e

{{∇v}} [[u]] ds +
∑

e∈F (Γh)

∫
e

γ

he
[[u]][[v]] ds.

(7)

Here, the jump of a scalar f is computed as [[f ]] := f |T+∩e − f |T −∩e and the
average of a vector v reads {{v}} := 1

2 (v|T+∩e · νe + v|T −∩e · νe). As before, γ > 0
is a suitable stabilization parameter.

Fig. 1. Approximation properties of BDMk-BDMk-Pdisc
k−1-P

disc
k−1-P

disc
k discretization of the

Darcy–Stokes problem. Two-dimensional setting is considered with ΩS = (0, 1)2 and
ΩD = ( 1

4
, 3
4
)2. Parameter values are set as K = 2, μ = 3 and α = 1

2
. Left figure is for

k = 1 while k = 2, 3 is shown in the middle and right figures, respectively.
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4 Rational Approximation for the General Problems
of Sums of Fractional Operators

Let s, t ∈ [−1, 1] and α, β ≥ 0 where at least one of α, β is not zero. For
interval I ⊂ R

+, consider a function f(x) = (αxs + βxt)−1, x ∈ I.. The
basic idea is to find a rational function R(x) approximating f on I, that is,
R(x) = Pk′ (x)

Qk(x)
≈ f(x), where Pk′ and Qk are polynomials of degree k′ and k,

respectively. Assuming k′ ≤ k, the rational function can be given in the following
partial fraction form

R(x) = c0 +
N∑

i=1

ci

x − pi
,

for c0 ∈ R, ci, pi ∈ C, i = 1, 2, . . . , N . The coefficients pi and ci are called poles
and residues of the rational approximation, respectively.

We note that the rational approximation has been predominantly explored to
approximate functions with only one fractional power, that is x−s̄ for s̄ ∈ (0, 1)
and x > 0. Additionally, the choice of the rational approximation method that
computes the poles and residues is not unique. One possibility is the BURA
method which first computes the best uniform rational approximation r̄β(x) of
xβ−s̄ for a positive integer β > s̄ and then uses r̄(x) = r̄β(x)

x to approximate x−s̄.
Another possible choice is to use the rational interpolation of z−s̄ to obtain r̄(x).
The AAA algorithm proposed in [26] is a good candidate. The AAA method is
based on the representation of the rational approximation in barycentric form
and greedy selection of the interpolation points. Both approaches lead to the
poles pi ∈ R, pi ≤ 0 for the case of one fractional power. An overview of rational
approximation methods can be found in [15].

The location of the poles is crucial in rational approximation precondition-
ing. For f̄(x) = xs̄, s̄ ∈ (0, 1) the poles of the rational approximation for f̄
are all real and negative. Hence, in the case of a positive definite operator D,
the approximation of Ds̄ requires only inversion of positive definite operators
of the form D + |pi|I, for i = 1, 2, . . . , N , pi �= 0. Such a result for rational
approximation of f̄ with s̄ ∈ (−1, 1) is found in a paper by H. Stahl [28]. In the
following, we present an extensive set of numerical tests for the class of sum of
fractional operators, which gives a wide class of efficient preconditioners for the
multiphysics problems coupled through an interface. The numerical tests show
that the poles remain real and nonpositive in most combinations of fractional
exponents s and t.

Let V be a Hilbert space and V ′ be its dual. Consider a symmetric positive
definite (SPD) operator A : V → V ′. Then, the rational function R(·) can be
used to approximate f(A) as follows,

z = f(A)r ≈ c0r +
N∑

i=1

ci (A − piI)−1
r

with z ∈ V and r ∈ V ′. The overall algorithm is shown in Algorithm 1.
Without loss of generality we let the operator A be a discretization of the

Laplacian operator −Δ, and I is the identity defined using the standard L2



106 A. Budǐsa et al.

Algorithm 1. Compute z = f(A)r using rational approximation.
1: Solve for wi: (A − piI) wi = r, i = 1, 2, . . . , N.

2: Compute: z = c0r +
N∑

i=1

ciwi

inner product. In particular, unlike in (4) we assume that −Δ is SPD (e.g. by
imposing boundary conditions eliminating the constant nullspace). Therefore,
the equations in Step 1 of Algorithm 1 can be viewed as discretizations of the
shifted Laplacian problems −Δwi − pi wi = r, pi < 0, and we can use efficient
numerical methods, such as Algebraic MultiGrid (AMG) methods [7,32], for
their solution.

We would like to point out that in the implementation, the operators involved
in Algorithm 1 are replaced by their matrix representations on a concrete basis
and are properly scaled. We address this in more detail in the following section.

4.1 Preconditioning

Let A be the stiffness matrix associated with −Δ and M a corresponding mass
matrix of the L2 inner product. Also, denote with nc the number of columns of
A. The problem we are interested in is constructing an efficient preconditioner for
the solution of the linear system F (A)x = b. Thus, we would like to approximate
f(A) = F (A)−1 using the rational approximation R(x) of f(x) = 1

F (x) .
Let I be a nc ×nc identity matrix and let U be an M-orthogonal matrix of the

eigenvectors of the generalized eigenvalue problem Auj = λjMuj , j = 1, 2, . . . , nc,
namely,

AU = MUΛ, UT MU = I =⇒ UT AU = Λ. (8)

For any continuous function G : [0, ρ] → R we define

G(A):=MUG(Λ)UT M, i.e., f(A) = MUf(Λ)UT M. (9)

where ρ:=ρ
(
M−1A

)
is the spectral radius of the matrix M−1A.

A simple consequence from the Chebyshev Alternation Theorem is that the
residues/poles for the rational approximation of f(x) for x ∈ [0, ρ] are obtained
by scaling the residues/poles of the rational approximation of g(y) = f (ρy) for
y ∈ [0, 1]. Indeed, we have, ci(f) = ρci(g), and pi(f) = ρpi(g). Therefore, in the
implementation, we need an upper bound on ρ

(
M−1A

)
. For P1 finite elements,

such a bound can be obtained following the arguments from [31],

ρ
(
M−1A

) ≤ 1
λmin (M)

‖A‖∞ = d(d + 1)
∥∥diag(M)−1

∥∥
∞ ‖A‖∞ (10)

with d the spatial dimension2.
2 Such estimates can be carried out for Lagrange finite elements of any polynomial

degree because the local mass matrices are of a special type: a constant matrix,
which depends only on the dimension and the polynomial degree, times the volume
of the element.
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Proposition 1. Let Rf (·) be the rational approximation for the function f(·)
on [0, ρ]. Then for the stiffness matrix A and mass matrix M satisfying (8), we
have

f(A) ≈ Rf (A) = c0M
−1 +

N∑
i=1

ci (A − piM)−1
. (11)

Proof. The relations (8) imply that UUT = M−1, and therefore,

AU − piMU = MU(Λ − piI) ⇐⇒ (A − piM)U = MU(Λ − piI).

This is equivalent to (Λ − piI)−1 U−1M−1︸ ︷︷ ︸
UT

= U−1(A − piM)−1. Hence,

(Λ − piI)−1 = U−1(A − piM)−1U−T .

A straightforward substitution in (9) then shows (11). ��
In addition, to apply the rational approximation preconditioner, we need to

compute the actions of M−1 and each (A − ρpiM)−1. If pi ∈ R, pi ≤ 0, this leads
to solving a series of elliptic problems where the AMG methods are very efficient.

5 Numerical Results

In this section, we present two sets of experiments: (1) on the robustness of
the rational approximation with respect to the scaling parameters and the frac-
tional exponents; and (2) on the efficacy of the preconditioned minimal residual
(MinRes) method as a solver for Darcy–Stokes coupled model. We use the AAA
algorithm [26] to construct a rational approximation. The discretization and
solver tools are Python modules provided by FEniCS ii [19], cbc.block [25], and
interfaced with the HAZmath library [1].

5.1 Approximating the Sum of Two Fractional Exponents

In this example, we test the approximation power of the rational approximation
computed by AAA algorithm regarding different fractional exponents s, t and
parameters α, β. That is, we study the number of poles N required to achieve

‖f − R‖∞ = max
x∈[0,1]

∣∣∣∣∣(αxs + βxt)−1 −
(

c0 +
N∑

i=1

ci

x − pi

)∣∣∣∣∣ ≤ εRA,

for a fixed tolerance εRA = 10−12. In this case, we consider the fractional function
f to be defined on the unit interval I = (0, 1]. As we noted earlier, however,
the approximation can be straightforwardly extended to any interval. We also
consider the scaling regarding the magnitude of parameters α and β. Specifically,
in case when α > β, we rescale the problem with γα = β

α < 1 and approximate

f̃(x) = (xs + γαxt)−1 ≈ R
˜f (x).
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Fig. 2. Visualization of the number of poles in the rational approximations of the
function f(x) = (αxs+βxt)−1 for x ∈ (0, 1] with regards to varying fractional exponents
s, t and coefficients α, β.

Then the rational approximation for the original function f is given as

f(x) ≈ R(x) =
1
α

R
˜f (x).

Similar can be done in case when β > α.
The results are summarized in Fig. 2. To obtain different parameter ratios

γα, we take α ∈ {10−9, 10−6, 10−3, 1} and β ∈ {10−10, 10−6, 10−2, 102}. Fur-
thermore, we vary the fractional exponents s, t ∈ [−1, 1] with the step 0.2. We
observe that the number of poles N remains relatively uniform with varying the
exponents, except in generic cases when s, t = {−1, 0, 1}. For example, for the
combination (s, t) = (1, 1), the function we are approximating is f(x) = 1

2x ,
thus the rational approximation should return only one pole p1 = 0 and residues
c0 = 0, c1 = 1

2 . We also observe that for the fixed tolerance of εRA = 10−12, we
obtain a maximum of 22 poles in all cases.

Additionally, we remark that in most test cases, we retain real and negative
poles, which is a desirable property to apply the rational approximation as a
positive definite preconditioner. However, depending on the choice of fractional
exponents s, t and tolerance εRA, the algorithm can produce positive or a pair of
complex conjugate poles. Nevertheless, these cases are rare, and the number and
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the values of those poles are small. Therefore numerically, we do not observe any
significant influence on the rational approximation preconditioner. More concrete
analytical results on the location of poles for sums of fractionalities are part of
our future research.

5.2 The Darcy–Stokes Problem

In this section, we discuss the performance of RA approximation of S−1 in
the Darcy–Stokes preconditioner (5). To this end, we consider ΩS = (0, 1)2,
ΩD = (14 , 3

4 )2 and fix the value of Beavers-Joseph-Saffman parameter α = 1
while permeability and viscosity are varied3 10−6 ≤ K ≤ 1 and 10−6 ≤ μ ≤ 102.
The system is discretized by BDMk-BDMk-Pdisc

k−1-P
disc
k−1-P

disc
k elements, k = 1, 2, 3,

which were shown to provide convergent approximations in Fig. 1. A hierarchy of
meshes Ωh

S , Ωh
D is obtained by uniform refinement. We remark that the stabiliza-

tion constants γ in (6) and (7) are chosen as γ = 20k and γ = 10k respectively.
The resulting linear systems are then solved by preconditioned MinRes method.
To focus on the RA algorithm in the preconditioner, for all but the multiplier
block, an exact LU decomposition is used. Finally, the iterative solver is always
started from a zero initial guess and terminates when the preconditioned residual
norm drops below 10−10.

We present two sets of experiments. First, we fix the tolerance in the RA algo-
rithm at εRA = 2−40 ≈ 10−12 and demonstrate that using RA in the precondi-
tioner (5) leads to stable MinRes iterations for any practical values of the material
parameters, the mesh resolution h and the polynomial degree k in the finite ele-
ment discretization (see Fig. 3). Here it can be seen that the number of iterations
required for convergence is bounded in the above-listed quantities. Results for dif-
ferent polynomial degrees are largely similar and appear to be mostly controlled by
material parameters. However, despite the values of K, μ spanning several orders
of magnitude, the iterations vary only between 30 to 100.

Next, we assess the effects of the accuracy in RA on the performance of
preconditioned MinRes solver. Let us fix k = 1 and vary the material parameters
as well as the RA tolerance εRA. In Fig. 4, we observe that the effect of εRA

varies with material properties (which enter the RA algorithm through scaling).
In particular, it can be seen that for K = 1, the number of MinRes iterations is
practically constant for any εRA ≤ 10−1. On the other hand, when K = 10−6,
the counts vary with εRA and to a lesser extent with μ. Here, lower accuracy
typically leads to a larger number of MinRes iterations. However, for εRA ≤
10−4 the iterations behave similarly. We remark that with K = 10−6 (and any
10−6 ≤ μ ≤ 102), the tolerance εRA = 10−1 leads to 2 poles, cf. Figure 5, while
for K = 1 there are at least 5 poles needed in the RA approximation.

Our results demonstrate that RA approximates S−1 in (4), which leads to
a robust, mesh, and parameter-independent Darcy–Stokes solver. We remark
that though the algorithm complexity is expected to scale with the number of
degrees of freedom on the interface, nh = dimΛh, which is often considerably

3 These ranges are identified as relevant for many applications in biomechanics [6].
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Fig. 3. Number of MinRes iterations required for convergence with preconditioner (5)
using the RA with tolerance εRA = 2−40. Setup from Fig. 1 is considered with the
system discretized by BDMk-BDMk-Pdisc

k−1-P
disc
k−1-P

disc
k elements. (Top) k = 1, (middle)

k = 2, (bottom) k = 3.

smaller than the total problem size, the setup cost may become prohibitive.
This is particularly true for spectral realization, which often results in O(n3

h)
complexity. To address such issues, we consider how the setup time of RA and
the solution time of the MinRes solver depend on the problem size.

In Fig. 5 we show the setup time of RA (for fixed material parameters) as
function of mesh size and εRA. It can be seen that the times are < 0.1 s and
practically constant with h (and nh). As with the number of poles, the small
variations in the timings with h are likely due to different scaling of the matrices
A and M. We note that in our experiments 32 ≤ nh ≤ 1024. Moreover, since Λh

is in our experiments constructed from P
disc
1 we apply the estimate (10).

In Fig. 5, we finally plot the dependence of the solution time of the precon-
ditioned MinRes solver on the problem size. Indeed we observe that the solver
is of linear complexity. In particular, application of rational approximation of
S−1 in our implementation requires O(nh) operations. We remark that here the
solvers for the shifted Laplacian problems are realized by the conjugate gradient
method with AMG as a preconditioner. Let us also recall that the remaining
blocks of the preconditioner are realized by LU, where the setup cost is not
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Fig. 4. Number of MinRes iterations required for convergence with preconditioner (5)
using the RA with varying tolerance εRA. (Top) K = 1. (Bottom) K = 10−6. Setup as
in Fig. 3 is used with discretization by BDM1-BDM1-P

disc
0 -Pdisc

0 -Pdisc
1 elements.

included in our timings. However, LU does not define efficient preconditioners
for the respective blocks. Here instead, multilevel methods could provide order
optimality, and this is a topic of current and future research.

Fig. 5. Dependence of the number of poles (left), the setup time of RA (center) and
runtime of the MinRes solver (right) on mesh size h and RA tolerance εRA. Parameters
in the Darcy–Stokes problem are fixed at K = 10−6, μ = 10−2 and α = 1. Setup as in
Fig. 3 is used with discretization by BDM1-BDM1-P

disc
0 -Pdisc

0 -Pdisc
1 elements.

6 Conclusions

We have demonstrated that RA provides order optimal preconditioners for sums
of fractional powers of SPD operators and can thus be utilized to construct
parameter robust and order optimal preconditioners for multiphysics problems.
The results are of practical interest for constructing efficient preconditioning on
interfaces in models for which fractional weighted Sobolev spaces are the natural
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setting for the resulting differential operators, for example, when flow interacts
with porous media. The techniques presented here could aid the numerical sim-
ulations in a wide range of biology, medicine, and engineering applications.
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