
ll
OPEN ACCESS
iScience

Article
BOA: A partitioned view of genome assembly
Input Reads

Bucketing
to create
graph or

hypergraph

Order reads
by

partitioning
in block(s)

Assemble
reads in

each block to
generate
contigs

in parallel

r1

r2

r3
r4

r5
r6

r8

r4

r7 r2

r5

r1
r3

r6

r8

r4

r7 r2

r5

r1
r3

r6

r8
r4

r7

r2 r1

r3

r6

r8

r5 -mers

r7

r2 r4 r7 r1 r8

r3 r5 r6

r2 r4 r7

r5 r6

r1 r3 r8

r4

r7

r2 r1

r3

r6

r8

r5 -mers

Xiaojing An,

Priyanka Ghosh,

Patrick Keppler, ...,

Aravind

Sukumaran Rajam,

Ümit V.

Çatalyürek,

Ananth

Kalyanaraman

ananth@wsu.edu

Highlights
A graph/hypergraph

partitioning based

method to improve

assembly quality and

runtime

Bucketing and graph/

hypergraph partitioning

to partition reads into

blocks

Each block is then

independently assembled

using any standalone

assembler

Hypergraph variant

produces more precise

contigs and is faster than

state-of-the-art

assemblers

An et al., iScience 25, 105273
November 18, 2022 ª 2022
The Author(s).

https://doi.org/10.1016/

j.isci.2022.105273

mailto:ananth@wsu.edu
https://doi.org/10.1016/j.isci.2022.105273
https://doi.org/10.1016/j.isci.2022.105273
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.105273&domain=pdf


ll
OPEN ACCESS
iScience
Article
BOA: A partitioned view of genome assembly

Xiaojing An,1,7,8 Priyanka Ghosh,2,7 Patrick Keppler,3 Sureyya Emre Kurt,4 Sriram Krishnamoorthy,6

Ponnuswamy Sadayappan,4 Aravind Sukumaran Rajam,3 Ümit V. Çatalyürek,1,5 and Ananth Kalyanaraman3,*
SUMMARY

De novo genome assembly is a fundamental problem in computational molecular
biology that aims to reconstruct an unknown genome sequence from a set of
short DNA sequences (or reads) obtained from the genome. The relative ordering
of the reads along the target genome is not known a priori, which is one of the
main contributors to the increased complexity of the assembly process. In this
article, with the dual objective of improving assembly quality and exposing a
high degree of parallelism, we present a partitioning-based approach. Our frame-
work, BOA (bucket-order-assemble), uses a bucketing alongside graph- and hy-
pergraph-based partitioning techniques to produce a partial ordering of the
reads. This partial ordering enables us to divide the read set into disjoint blocks
that can be independently assembled in parallel using any state-of-the-art serial
assembler of choice. Experimental results show that BOA improves both the
overall assembly quality and performance.
1School of Computational
Science and Engineering,
Georgia Institute of
Technology, Atlanta, GA
30332, USA

2National Center for
Biotechnology Information,
National Library of Medicine,
National Institutes of Health,
Bethesda, MD 20894, USA

3School of Electrical
Engineering and Computer
Science, Washington State
University, Pullman, WA
99164, USA

4School of Computing,
University of Utah, Salt Lake
City, UT 84112, USA

5Amazon Web Services,
Seattle, WA 98109, USA

6Google, Mountain View, CA
94043, USA

7These authors contributed
equally

8Lead contact

*Correspondence:
ananth@wsu.edu

https://doi.org/10.1016/j.isci.
2022.105273
INTRODUCTION

In de novo genome assembly, the relative ordering and orientation of the input reads along the target

genome is not known a priori. In fact, it can be argued that one of the primary contributors to the problem

complexity is the lack of this information—i.e., if the ordering and orientation of the reads is known at input

then the genome assembly problem would reduce to a simpler (albeit less exciting) problem of performing

a linear sequence of pairwise alignments between adjacent reads to produce the assembly. However, the

DNA sequencers preserve neither the genomic coordinates from where the reads were sequenced nor any

significant relative ordering information between the reads (except for paired end read information).

Consequently, assembly algorithms are left to infer an ordering and orientation along the course of their

respective computations.

Different assembly approaches vary on how much they rely on the read ordering and orientation (hence-

forth abbreviated as OO for simplicity) information, and at what stages of their algorithm they try to infer

it. DeBruijngraph assemblers Compeau et al. (2011); Medvedev and Pop (2021); Pevzner et al. (2001), which

now represent a dominant segment of modern day short-read assemblers, use an approach that is largely

oblivious to OO information. This is because these assemblers use deBruijn graphs that break the reads

into shorter fixed-length k-mers at the early stages of the algorithm. Therefore, the information on how

the reads are ordered/oriented along the target genome is typically not recoverable until the end of the

assembly pipeline (i.e., until after contigs are generated). On the other hand, the more traditional over-

lap-layout-consensus (OLC) class of assemblers Li et al. (2012); Medvedev and Pop (2021); Pop (2009) are

more explicit in trying to infer the OO information in their assembly pipeline—as the overlap phase aligns

reads against one another with an intent to arrive at a read layout. And yet, because the overlap phase is

also the most time consuming step of the assembly pipeline for the OLC assemblers, the OO information is

practically not available until later stages of the assembly.

In this article, we ask the simple question of what if either a total (ideal but not practical) or at least

a partial order information can be generated earlier in the assembly computation(In this article, the

notion of a total ordering is used to imply that the relative ordering between every pair of reads is es-

tablished; whereas in a partial order, the relative ordering is established only for a subset of read pairs).

Could that help improve performance and/or assembly quality? If so, what are some of the ways to

generate such OO information earlier in the assembly algorithmic stages and what are their assembly

efficacies?
iScience 25, 105273, November 18, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:ananth@wsu.edu
https://doi.org/10.1016/j.isci.2022.105273
https://doi.org/10.1016/j.isci.2022.105273
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.105273&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. The inputs used in our experiments

Genome Size (bp) No. reads (=V) No. buckets No. pins (=N ) No. edges (=E)
C.elegans 100,286,401 100,286,100 409,957,423 6,389,329,498 9,342,286,308

D. melanogaster 143,726,002 142,426,015 555,183,926 8,250,921,240 11,757,427,193

Human chr 7 160,567,423 160,567,400 620,586,298 9,651,040,529 16,009,424,797

Human chr 8 146,259,322 146,259,300 574,127,869 8,923,132,914 13,977,225,241

Human chr 10 134,758,122 134,758,100 527,306,188 8,211,994,915 13,248,263,074

Maize chr 10 152,435,371 152,313,178 469,060,854 5,869,048,129 14,305,585,805

Bettasplendens 456,232,186 394,258,510 1,610,294,923 25,105,195,932 36,509,423,159

ll
OPEN ACCESS

iScience
Article
Contributions

To address the above questions, we present a parallel assembly framework that uses a graph partitioning-

centric approach. Graph partitioning Garey et al. (1974) is a classical optimization problem in graph theory

that aims to partition the set of vertices of an input graph into a pre-determined number of partitions in a

load balanced manner. The problem has seen decades of research in development and application under

numerous contexts including in the parallel processing of graph workloads Hendrickson and Kolda (2000),

as well as partitioning assembly graphs Pell et al. (2012) and read datasets Al-Okaily (2016); Jammula et al.

(2017).

In this article, we exploit graph partitioning and its properties to produce a partial ordering of reads and in

the process also enable parallelization of the assembly workload. More specifically:

� We cast the assembly problem in two forms: a) one that uses graph partitioning, and b) another that

uses hypergraph partitioning.

� To enable the application for different types of partitioning, we propose a light-weight bucketing

algorithm that bins reads into buckets based on fixed-length exact matches and uses the bins to

generate graph/hypergraph representations suitable for partitioning.

� Once bucketed and partitioned, each individual part can be independently assembled. This strategy

allows the user to use any standalone (off-the-shelf) assembler of choice. Consequently, we call our

assembly framework BOA (stands for bucket-order-assemble). An overview is shown in Figure 1. Two

implementations (i.e., concrete instantiations) of this framework are presented and evaluated—one

that uses a classical graphpartitioner (ParMETIS Karypis et al. (1997)), Graph-BOA, and another that

uses a hypergraph partitioner (Zoltan Devine et al. (2006)), Hyper-BOA.

� To comparatively assess the assembly efficacy of the partitioning-based approach, we also construct

a benchmark Oracle assembly workflow that uses the correct read ordering available from

sequencing simulators.

Experimental results on simulated and real-word datasets demonstrate that our partitioning-based imple-

mentations a) improve parallel performance of assembly workloads; and b) improve assembly quality,

consistently under several qualitative measures. In fact, on the simulated datasets, the partitioning-based

approaches yield results that come closest in terms of quality to the Oracle assemblies produced.
RESULTS

Experimental evaluation was performed on a range of genome inputs—covering model organisms, to hu-

man and plant chromosomal DNA—downloaded from NCBI GenBank Duke University School of Medicine

(Last date accessed: November 2021). All inputs used are listed in Table 1. Short reads were generated from

these reference genomes using the ART sequencing simulator Huang et al. (2012) using an average read

length of 100bp, coverage of 1003 , and with paired-end read information. For the Betta genome, the

ART sequencing run resulted in 863 coverage. An experiment on a real world data for D. melanogaster

is presented in Section real world experiment. The QUAST Gurevich et al. (2013) tool was used to assess

the quality of the output assemblies.
2 iScience 25, 105273, November 18, 2022



ll
OPEN ACCESS

iScience
Article
All our experiments were conducted on the NERSC Cori machine (Cray XC40), where each node has 128GB

DDR4 memory and is equipped with dual 16-core 2.3 GHz Intel Haswell processors. The nodes are inter-

connected with the Cray Aries network using a Dragonfly topology.

The BOA framework is a three-step pipeline:(1) parallel bucketing of input reads; (2) parallel partitioning the

reads using either hypergraph partitioning (Hyper-BOA) or graph partitioning (Graph-BOA); and (3) subse-

quently running a standalone assembler on each part (in parallel). For hypergraph partitioning, we use

Devine et al. (2006), and for standard graph partitioning we use ParMETIS Karypis et al. (1997). By default,

for all our experiments we used k = 31, l = 8 and paired-end read information (Hyper-BOA, Graph-BOA).

For the last step of BOA, any standalone assembler can be used. In our experiments, we used MEGAHIT Li

et al. (2015), Minia Chikhi and Rizk (2013) and IDBA-UD Peng et al. (2012) as three different options for

assembling each block partition in the last step with k = 31. Hyper-BOA (minia) refers to the version that

uses Minia; Hyper-BOA (idba-ud) uses IDBA-UD; and Hyper-BOA (megahit) uses MEGAHIT.

As baselines for comparing our BOA assemblies, we also generated two other assemblies: (1) The Oracle

assembly was generated by: i) first recording the true and total read ordering along the genome (i.e., oracle

ordering) using the read coordinate information from the ART simulator; ii) then trivially block partitioning

the oracle ordering of the reads into roughly equal sized blocks (or parts), with the same block size (r) used

in the partitioning-based approaches; and iii) subsequently running Minia and MEGAHIT on each individ-

ual block. (2) In addition, we ranMinia, IDBA-UD andMEGAHIT on the entire read set to enable direct com-

parison of our partitioning based approach against a (partitioning-free, or K = 1) standalone assembler.
Qualitative evaluation

We first present a qualitative evaluation of the BOA framework alongside comparisons to Minia, IDBA-UD,

and MEGAHIT standalone assemblies and the Oracle assembly. MEGAHIT and IDBA-UD runs were with

paired-end reads, and Minia does not support paired-end reads. Note that the Oracle assembly is not

realizable in practice and is used just as a theoretical benchmark for comparison purposes. The Minia,

IDBA-UD, and MEGAHIT assemblies are meant to be representative outputs from a typical state-of-the-

art standalone assembler. Table 2 shows the results with various qualitative measures including NGA50,

N50, largest alignment (in bp), genome coverage (in %), number of misassemblies, and duplication ratio.

To enable a fair comparison, we set the number of parts (K) to 400 for both Zoltan and ParMETIS runs.

The results show that Hyper-BOA implementations consistently outperform all other assemblers tested by

nearly all the qualitative measures, and for almost all inputs tested. Among the Hyper-BOA implementa-

tions, Hyper-BOA (megahit) is the best. Relative to the MEGAHIT standalone assembler, Hyper-BOA

(megahit) consistently improves the NGA50 values by an average of 23 and up to 2:53 ; the N50 values

by an average of 1:703 and up to 2:133 ; whereas the largest alignment length improves 1:473 on average

and up to 1:943 . Hyper-BOA (minia) also improves the assembly quality of its standalone counterpart

Minia by similar margins. Intuitively, partitioning can help reduce noise within blocks but there is no guar-

antee for it as the bucketing step still uses exact matches to group the reads. Repetitive k-mers could still

confound the partitioning process. We see the effect of these possibly noisy k-mers in the misassemblies

reported by the Hyper-BOA implementations. Yet, the choice of the standalone assembler at the end of the

partitioning pipeline provides certain degree of control over these misassemblies, with IDBA-UD typically

resulting in fewer missassemblies than the other assemblers.

From Table 2, we also observe that Hyper-BOA results consistently come within 90% or more reach of the

quality values produced by the corresponding Oracle assembly. For instance, on average Hyper-BOA

(megahit) reaches within 93% of the corresponding Oracle (megahit) NGA50 values, and within 100% of

the respective largest alignment values on average. The largest gap is seen in Human chr 8, where

Hyper-BOA (megahit)’s largest alignment is only 81% of the Oracle’s value. Even in this case, however,

the Hyper-BOA’s largest alignment is considerably larger (1:483 ) than that of standalone MEGAHIT value.

Of interest, we also note in Table 2 that for two inputs, Human chr 10 and C.elegans, the largest alignment

values produced by Hyper-BOA (minia) are marginally better than that of the Oracle values. This can some-

times happen because, after all, the assembly quality is ultimately a function of the block composition that

is fed into the final stage of BOA assembly; and the composition between the blocks for Hyper-BOA could
iScience 25, 105273, November 18, 2022 3



Table 2. Quality metrics for our test inputs across multiple assemblers

Input Assembler NGA50 N50

Largest

Alignment (bp)

Genome

Coverage %

Miss

assemblies

Duplication

Ratio

C.elegans Oracle (minia) 11,162 14,172 153,394 91.65 10 1.002

Oracle (megahit) 11,979 14,189 157,192 91.49 1.005

Minia 4,155 5,924 75,229 83.26 37 1.002

IDBA-UD 4,387 6,026 75,229 83.14 0 1.002

MEGAHIT 4,464 6,276 108,538 83.71 1 1.002

Graph-BOA (minia) 7,829 9,028 143,663 85.83 49 1.013

Hyper-BOA (minia) 11,977 12,715 158,433 89.96 19 1.013

Hyper-BOA (idba-ud) 11,116 13,404 158,433 89.91 5 1.014

Hyper-BOA (megahit) (2:53 )11,246 (1:23 )12,673 (1:33 )143,817 92.10 11 1.026

D.

melanogaster

Oracle (minia) 41,283 55,104 356,760 88.81 41 1.005

Oracle (megahit) 46,516 57,037 356,561 88.51 13 1.006

Minia 13,229 19,551 162,262 78.79 37 1.002

MEGAHIT 16,397 24,312 190,107 78.97 0 1.001

Graph-BOA (minia) 19,421 24,136 201,618 83.78 328 1.106

Hyper-BOA (minia) 38,923 42,048 295,288 86.16 299 1.081

Hyper-BOA (megahit) (2:43 )40,101 (1:73 )41,729 (1:83 )343,434 87.81 225 1.124

Human

chr 7

Oracle (minia) 3,350 4,564 39,858 84.26 40 1.003

Oracle (megahit) 3,558 4,569 39,858 84.21 40 1.124

Minia 1,544 2,793 36,845 68.10 88 1.002

IDBA-UD 1,599 2,834 24,503 67.98 0 1.002

MEGAHIT 1,638 2,904 36,845 68.95 0 1.002

Hyper-BOA (minia) 4,124 4,385 39,314 79.54 58 1.008

Hyper-BOA (idba-ud) 3,285 4,585 39,352 79.87 0 1.010

Hyper-BOA (megahit) (2:03 )3,331 (1:53 )4,316 (1:23 )43,498 83.30 10 1.018

Human

chr 8

Oracle (minia) 3,944 4,869 42,828 88.44 34 1.003

Oracle (megahit) 4,194 4,883 56,943 88.40 1 1.005

Minia 1,877 2,784 27,427 74.28 76 1.002

MEGAHIT 1,987 2,893 31,115 75.27 0 1.002

Hyper-BOA (minia) 4,379 4,569 37,028 86.02 29 1.010

Hyper-BOA (megahit) (2:03 )4,044 (1:63 )4,604 (1:53 )46,122 88.92 4 1.020

Human

chr 10

Oracle (minia) 3,462 4,392 37,537 87.12 28 1.003

Oracle (megahit) 3,685 4,395 37,429 87.10 1 1.005

Minia 1,672 2,654 33,773 71.73 78 1.002

MEGAHIT 1,766 2,755 33,773 72.59 0 1.002

Hyper-BOA (minia) 3,942 4,149 42,959 83.02 41 1.007

Hyper-BOA (megahit) (1:93 )3,428 (1:53 )4,125 (1:33 )44,604 86.46 1 1.017

Maize

chr 10

Oracle (minia) 841 3,906 35,657 56.33 4 1.003

Oracle (megahit) 904 3,903 35,657 56.33 0 1.005

Minia – 2,058 15,644 17.08 29 1.003

MEGAHIT – 2,134 15,645 17.34 0 1.003

Hyper-BOA (minia) – 3,629 30,306 34.23 178 1.056

Hyper-BOA (megahit) – (1:23 )2,559 (2:03 )30,664 39.64 86 1.102

The target number of reads per part (r) for Graph-BOA and Hyper-BOAwas set to 500K. Also shown in parentheses (3 ) are the factor of improvements achieved

by Hyper-BOA (megahit) over the corresponding standalone MEGAHIT values. Boldface entries are best values.

ll
OPEN ACCESS

4 iScience 25, 105273, November 18, 2022

iScience
Article



Table 3. Runtime performance of the different assemblers

Input Assembler

Parallel

Bucketing

(sec): max

Parallel

Partitioning

(sec): max

Assembly

(sec): avg

Total time

(sec)

C.elegans Graph-BOA (minia) 51 180 150 381

Hyper-BOA (minia) 33 536 39 608

Hyper-BOA (megahit) 33 536 13 582

Minia 1,364

MEGAHIT 2,000

D. melanogaster Graph-BOA (minia) 81 195 51 327

Hyper-BOA (minia) 57 867 39 963

Hyper-BOA (megahit) 57 867 18 942

Minia 2,444

MEGAHIT 2,845

Human chr 7 Hyper-BOA (minia) 70 967 86 1,123

Hyper-BOA (megahit) 70 967 16 1,053

Minia 2,569

MEGAHIT 3,377

Human chr 8 Hyper-BOA (minia) 67 826 61 954

Hyper-BOA (megahit) 67 826 26 919

Minia 2,518

MEGAHIT 3,134

Human chr 10 Hyper-BOA (minia) 61 844 115 1,020

Hyper-BOA (megahit) 61 844 18 923

Minia 2,027

MEGAHIT 2,970

Maize chr 10 Hyper-BOA (minia) 51 745 220 1,016

Hyper-BOA (megahit) 51 745 19 815

Minia 3,625

MEGAHIT 3,670

The BOA implementations were run on the NERSC Cori machine with 256 cores (i.e. on 32 nodes with 8 processes per node),

while the standaloneMinia and Bettasplendens baselines run inmultithreadedmode on a single node with 32 cores. All times

reported are in seconds.

ll
OPEN ACCESS

iScience
Article
have favored longer growth of the longest contig (relative to the Oracle). NGA50 for Hyper-BOA (minia) is

also consistently better thanOracle (minia). Overall, these results show that partitioning helps in closing the

gap toward the theoretically achievable peaks in total read order-aware assemblies.

Hyper-BOA versus Graph-BOA

In our results we observed that in general, Hyper-BOA significantly outperforms Graph-BOA. ForC.elegans

and D. melanogaster, where both results are available, we see from Table 2 that Hyper-BOA implementa-

tions outperform Graph-BOA by all qualitative measures. This is to be expected as the input graph into

Graph-BOA, are not weighted (see related discussion in Section graph-BOA and hyper-BOA). Note that

for the remaining four inputs tested, Graph-BOA could not complete because of lack of memory. As

described in Section graph-BOA and hyper-BOA, graphs can have a higher memory complexity even

with edge duplication reductions shown in Figure 2.
Runtime performance evaluation

Table 3 shows the runtime performance for Hyper-BOA and Graph-BOA implementations, alongside

standaloneMiniaandMEGAHIT. The bucketing and partitioning steps are parallel, and therefore we report

their parallel runtimes. For the assembly step, we report the mean processing time per block partition.
iScience 25, 105273, November 18, 2022 5



Table 4. Quality and runtime performance for Bettasplendens assembly

NGA50 N50

Largest

Alignment (bp)

Genome

Coverage % Missassemblies

Duplication

Ratio

Total time

Avg. (sec)

Total time

Max. (sec)

Oracle (megahit) 5,551 7,830 84,290 89.58 1,132 1.005 *

Minia 3,425 5,571 59,787 81.85 878 1.002 5,415

MEGAHIT 4,253 5,765 59,789 82.05 676 1.002 10,313

Graph-BOA (megahit) 4,253 6,516 76,575 84.13 916 1.010 640 663

Hyper-BOA (minia) 5,362 7,458 96,553 88.75 1,254 1.012 2,159 3,017

Hyper-BOA (megahit) 5,427 7,474 101,570 89.88 1,140 1.016 1,791 1,812

Parallel bucketing and partitioning was performed across 512 cores of NERSC Cori (64 nodes 3 8 cores per node) with 1024 partitions. The runs for baseline

(standalone) Minia and MEGAHIT were executed on a shared memory node with 32 cores. (* indicates that these timings could not be collected in time on

the same system.)

ll
OPEN ACCESS

iScience
Article
The results in Table 3 show that the BOA implementations are significantly faster than the standalone Minia

and MEGAHIT executions. For instance, for the MEGAHIT runs, Hyper-BOA (megahit) delivers speedups

consistently between 3 and 43 over standalone MEGAHIT. The speedups for the Minia runs are larger.

Large-scale experiment

As one large-scale experiment, we tested our Hyper-BOA (megahit) on the full assembly of the

456MbpBettasplendens (Siamese fighting fish). Table 4 shows the key results. Consistent with the results

on smaller genomes, the Hyper-BOA implementations outperform their respective standalone assem-

blers—e.g., Hyper-BOA (megahit) yields 1:33 improvement on both NGA50 and N50, 1:73 improvement

on largest alignment, and 1:13 improvement in genome coverage over standalone MEGAHIT. Hyper-BOA

implementations also significantly reduce time to solution—e.g., it took 2 h 52 min for the standalone

MEGAHIT to assemble the Betta genome, whereas this only took 30 min for Hyper-BOA (megahit) (i.e.,

5:693 speedup).

Real world experiment

We evaluated Hyper-BOA with real world data. More specifically, we ran Hyper-BOA (megahit) and

MEGAHIT on a D. melanogaster read set (SRA accession SRX13859210) and compared the results. This

is an IlluminaHiSeq4000 dataset (average read length 150bp), containing 40:4M paired-end reads totaling

6:1Gbp in size. Similar to previous studies with real world datasets Li et al. (2015); Chikhi and Rizk (2013), we

retained only the reads that align to the reference genome. We used minimap2 Li (2018) for the alignment.

Following this step, we were left with 31M reads totaling 4:6G base pairs. The setting of Hyper-BOA

(megahit) is the same as the simulated D. melanogaster dataset. The results in Table 5 show Hyper-BOA

(megahit) generated an assembly comparable to the standaloneMEGAHIT in N50 length and largest align-

ment length, whereas achieving 1:43 improvement in NGA50 length and 73 improvement in runtime

performance.

DISCUSSION

We presented a parallel assembly framework named BOA that leverages a graph/hypergraph partitioning-

based approach to enforce a partial ordering and orientation of the input reads. Our experiments using

three different off-the-shelf assemblers on a variety of inputs, demonstrate that our Hyper-BOA implemen-

tations consistently (and significantly) improve both the assembly quality and performance of the stand-

alone assemblers. This work has opened up further research avenues for future exploration including: a)
Table 5. Assembly quality and runtime performance for the real world read set SRA accession SRX13859210

NGA50 N50

Largest

Alignment (bp)

Genome

Coverage % Missassemblies

Duplication

Ratio

Total time

Avg. (sec)

Total time

Max. (sec)

MEGAHIT 1,566 2,651 82,462 74.29 22 1.001 1,498

Hyper-BOA (megahit) 2,147 2,668 79,365 78.62 226 1.124 227 233

Parallel bucketing and partitioning was performed across 256 cores of NERSCCori (32 nodes3 8 cores per node) with 400 partitions. The runs for baseline (stand-

alone) MEGAHIT were executed on a shared memory node with 32 cores.

6 iScience 25, 105273, November 18, 2022



A C

D

B

Figure 1. Schematic illustration of the BOA framework

ll
OPEN ACCESS

iScience
Article
understanding the effect of varying the block (or partition) sizes and modeling that as a space-time-perfor-

mance quality trade-off problem, b) scaling up to much larger inputs and metagenomic inputs, c) incorpo-

ration of long reads as a way to guide the partitioning step, d) extensions of the BOA framework for long

read assemblies or hybrid assembly workflows; e) extension of the partitioning-based assembly approach

to generate contigs that fall between block boundaries; and f) exploration of alternative partitioning stra-

tegies that exploit auxiliary information (e.g., sequence) information.

Limitations of the study

Long reads have become increasing available and have shown to significantly improve assembly quality. As

a framework that uses partitioning, BOA can be potentially applied to different read lengths or
Figure 2. An illustrative example of our pair generation algorithm

On the left are shown four reads and two maximal matches shared among them (shown underlined). Let k = 3. The right

panel shows a selected subset of buckets relevant to the maximal matches (along each column), and the division of the

respective read sets across the different left character sets Lchar (along each row). For instance, read r1 appears in the

Lchar set for t under column acc because the k-meracc in read r1 has t as its left character. The pairs generated from each

bucket are shown in the bottom panel.

iScience 25, 105273, November 18, 2022 7



ll
OPEN ACCESS

iScience
Article
technologies. But the original design reported in this article was restricted to short reads, as it is important

to first demonstrate the utility of the partitioning idea on the more mature problem of short read assembly.

In this regard, there are some non-trivial extensions that have been planned and we believe those exten-

sions (for long reads) would have to be part of a future manuscript.

Another limitation of BOA is the larger memory footprint incurred during the partitioning phase. One of the

primary motivations for developing a distributed memory implementation was to be able to scale up the

input size by scaling up the available memory in the distributed setting. However, we note that it is also the

space required by the graph/hypergraphpartitioner that needs to be factored in while determining mem-

ory requirements. To scale to larger inputs on the current evaluation system (64 compute nodes), further

optimizations focused on memory will be needed.

Our current implementation does not have the capability of extending the contigs beyond the boundaries

of a block, whereas doing so could potentially improve the assembly quality even further. The limitation

with the current implementation is because traditional partitioning approaches, by default, generate a

disjoint partitioning (of the reads in this case). To grow a contig beyond block boundaries, it will be impor-

tant to take into account potential overlaps between reads that fall into genomically adjacent partitioned

blocks. For this, we would have to sort or at least generate an approximate ordering among the blocks to

detect potentially adjacent blocks as per (the unknown) genome. The challenge is to ensure such an

ordering is done without introducing a chance/risk of a misassembly. Hence, this is a part of our future

work/extension.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Preliminaries and notation

B The BOA assembly framework overview

B Bucketing algorithm

B The BOA framework using hypergraph partitioning: Hyper-BOA

B The BOA framework using graph partitioning: Graph-BOA

B Graph-BOA and Hyper-BOA

B Parallelization

ACKNOWLEDGMENTS

The research is supported by U.S. National Science Foundation (awards: CCF 1946752, 1919122, 1919021).

This publication describes work performed at the Georgia Institute of Technology and is not associated

with Amazon.

AUTHOR CONTRIBUTIONS

Conceptualization, U.V.C. and A.K.; Methodology, Validation, Formal analysis, X.A., P.G., P.K., S.E.K.,

U.V.C, S.K., P.S., A.S.R., and A.K.; Software, X.A., P.G., P.K., U.V.C., and A.K.; Investigation, X.A., P.G.,

and P.K.; Resources, A.K.; DataCuration, X.A., P.G., and P.K.; Writing – Original Draft, X.A., P.G., and

A.K.; Writing – Review and Editing, X.A., P.G., U.V.C., P.S., and A.K.; Visualization, X.A., and A.K.; Supervi-

sion, U.V.C, P.S., and A.K.; Project Administration, A.K.; Funding Acquisition, U.V.C., P.S., and A.K. This

author is currently at the National Center for Biotechnology Information (NCBI). The contributions to

this work was done during their a_liation with Paci_c Northwest National Laboratory and is not associated

with the NCBI.

DECLARATION OF INTERESTS

The authors declare no competing interests.
8 iScience 25, 105273, November 18, 2022



ll
OPEN ACCESS

iScience
Article
Received: February 12, 2022

Revised: September 27, 2022

Accepted: September 30, 2022

Published: November 18, 2022
REFERENCES

Al-Okaily, A.A. (2016). Hga: de novo genome
assembly method for bacterial genomes using
high coverage short sequencing reads. BMC
Genom. 17, 1–11. https://doi.org/10.1186/
s12864-016-2515-7.

Chikhi, R., Limasset, A., Jackman, S., Simpson,
J.T., and Medvedev, P. (2014). On the
representation of de bruijn graphs. In
International conference on Research in
computational molecular biology, pp. 35–55.
https://doi.org/10.1089/cmb.2014.0160.

Chikhi, R., and Rizk, G. (2013). Space-efficient and
exact de bruijn graph representation based on a
bloom filter. Algorithm Mol. Biol. 8, 1–9. https://
doi.org/10.1186/1748-7188-8-22.

Compeau, P.E.C., Pevzner, P.A., and Tesler, G.
(2011). How to apply de bruijn graphs to genome
assembly. Nat. Biotechnol. 29, 987–991. https://
doi.org/10.1038/nbt.2023.

Devine, K., Boman, E.G., Heaphy, R., Bisseling, R.,
and Çatalyürek, U.V. (2006). Parallel hypergraph
partitioning for scientific computing. In
Proceedings of 20th International Parallel and
Distributed Processing Symposium (IPDPS)
(IEEE). https://doi.org/10.1109/ipdps.2006.
1639359.

Duke University School of Medicine, Last date
accessed: November 2021. NCBI
GenBank.https://www.ncbi.nlm.nih.gov/
genbank/.

Garey, M.R., and Johnson, D.S. (1979).
Computers and Intractabilityvolume 174
(freeman San Francisco). https://doi.org/10.1016/
0045-7949(87)90014-9.

Garey, M.R., Johnson, D.S., and Stockmeyer, L.
(1974). Some simplified NP-complete problems.
In Proceedings of the sixth annual ACM
symposium on Theory of computing, pp. 47–63.
https://doi.org/10.1016/0304-3975(76)90059-1.
Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler,
G. (2013). Quast: quality assessment tool for
genome assemblies. Bioinformatics 29, 1072–
1075. https://doi.org/10.1093/bioinformatics/
btt086.

Hendrickson, B., and Kolda, T.G. (2000). Graph
partitioning models for parallel computing.
Parallel Comput. 26, 1519–1534. https://doi.org/
10.1016/s0167-8191(00)00048-x.

Huang, W., Li, L., Myers, J.R., and Marth, G.T.
(2012). Art: a next-generation sequencing read
simulator. Bioinformatics 28, 593–594. https://
doi.org/10.1371/journal.pone.0090581.

Jammula, N., Chockalingam, S.P., and Aluru, S.
(2017). Distributed memory partitioning of high-
throughput sequencing datasets for enabling
parallel genomics analyses. In Proceedings of the
8th ACM International Conference on
Bioinformatics, Computational Biology, and
Health Informatics, pp. 417–424. https://doi.org/
10.1145/3107411.3107491.

Karypis, G., Schloegel, K., and Kumar, V. (1997).
Parmetis: Parallel Graph Partitioning and Sparse
Matrix Ordering Library48, pp. 71–95. https://doi.
org/10.1006/jpdc.1997.1403.

Lengauer, T. (2012). Combinatorial Algorithms for
Integrated Circuit Layoutvolume 21 (Springer
Science & Business Media). https://doi.org/10.
7155/jgaa.00447.

Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H.,
Gan, J., Li, N., Hu, X., Liu, B., et al. (2012).
Comparison of the two major classes of assembly
algorithms: overlap–layout–consensus and de-
bruijn-graph. Brief. Funct. Genom. 11, 25–37.
https://doi.org/10.1108/aa-02-2019-0031.

Li, D., Liu, C.M., Luo, R., Sadakane, K., and Lam,
T.W. (2015). Megahit: an ultra-fast single-node
solution for large and complex metagenomics
assembly via succinct de bruijn graph.
Bioinformatics 31, 1674–1676. https://doi.org/10.
1093/bioinformatics/btv033.

Li, H. (2018). Minimap2: pairwise alignment for
nucleotide sequences. Bioinformatics 34, 3094–
3100. https://doi.org/10.1093/bioinformatics/
bty191.

Medvedev, P., and Pop, M. (2021). What do
Eulerian and Hamiltonian cycles have to do with
genome assembly? PLoS Comput. Biol. 17,
e1008928. https://doi.org/10.1371/journal.pcbi.
1008928.

MPI Forum (2020). MPI: A Message-Passing
Interface Standard. 2020 Draft
Specification.Technical Report (Univ. of
Tennessee). Note: This is a MPI-4 Draft
Specification. https://doi.org/10.22443/rms.
emc2020.425.

Pell, J., Hintze, A., Canino-Koning, R., Howe, A.,
Tiedje, J.M., and Brown, C.T. (2012). Scaling
metagenome sequence assembly with
probabilistic de bruijn graphs. Proc. Natl. Acad.
Sci. USA 109, 13272–13277. https://doi.org/10.
1073/pnas.1121464109.

Peng, Y., Leung, H.C.M., Yiu, S.M., and Chin,
F.Y.L. (2012). IDBA-UD: a de novo assembler for
single-cell and metagenomic sequencing data
with highly uneven depth. Bioinformatics 28,
1420–1428. https://doi.org/10.1093/
bioinformatics/bts174.

Pevzner, P.A., Tang, H., and Waterman, M.S.
(2001). An Eulerian path approach to dna
fragment assembly. Proc. Natl. Acad. Sci. USA 98,
9748–9753. https://doi.org/10.1073/pnas.
171285098.

Pop, M. (2009). Genome assembly reborn: recent
computational challenges. Briefings Bioinf. 10,
354–366. https://doi.org/10.1093/bib/bbp026.
iScience 25, 105273, November 18, 2022 9

https://doi.org/10.1186/s12864-016-2515-7
https://doi.org/10.1186/s12864-016-2515-7
https://doi.org/10.1089/cmb.2014.0160
https://doi.org/10.1186/1748-7188-8-22
https://doi.org/10.1186/1748-7188-8-22
https://doi.org/10.1038/nbt.2023
https://doi.org/10.1038/nbt.2023
https://doi.org/10.1109/ipdps.2006.1639359
https://doi.org/10.1109/ipdps.2006.1639359
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://doi.org/10.1016/0045-7949(87)90014-9
https://doi.org/10.1016/0045-7949(87)90014-9
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1016/s0167-8191(00)00048-x
https://doi.org/10.1016/s0167-8191(00)00048-x
https://doi.org/10.1371/journal.pone.0090581
https://doi.org/10.1371/journal.pone.0090581
https://doi.org/10.1145/3107411.3107491
https://doi.org/10.1145/3107411.3107491
https://doi.org/10.1006/jpdc.1997.1403
https://doi.org/10.1006/jpdc.1997.1403
https://doi.org/10.7155/jgaa.00447
https://doi.org/10.7155/jgaa.00447
https://doi.org/10.1108/aa-02-2019-0031
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1371/journal.pcbi.1008928
https://doi.org/10.1371/journal.pcbi.1008928
https://doi.org/10.22443/rms.emc2020.425
https://doi.org/10.22443/rms.emc2020.425
https://doi.org/10.1073/pnas.1121464109
https://doi.org/10.1073/pnas.1121464109
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1093/bib/bbp026


ll
OPEN ACCESS

iScience
Article
STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

C. elegans C. elegans Sequencing Consortium NCBI GenBank assembly accession GCA_000002985.3

D. melanogaster The FlyBase Consortium/Berkeley

Drosophila Genome Project/Celera

Genomics

NCBI GenBank assembly accession GCA_000001215.4

Human chr 7 T2T Consortium NCBI GenBank assembly accession GCA_009914755.2,

GenBank sequence CP068271.1

Human chr 8 T2T Consortium NCBI GenBank assembly accession GCA_009914755.2,

GenBank sequence CP068270.1

Human chr 8 T2T Consortium NCBI GenBank assembly accession GCA_009914755.2,

GenBank sequence CP068268.1

Maize chr 10 MaizeGDB NCBI GenBank assembly accession GCA_902167145.1,

GenBank sequence LR618883.1

Bettasplendens BGI NCBI GenBank assembly accession GCA_003650155.1

Real world read set Duke University NCBI SRA, accession numberSRX13859210

Software and algorithms

ART_Illumina v 2.8.5 Huang et al. (2012) RRID:SCR_006538; https://www.niehs.nih.gov/research/

resources/assets/docs/artbinmountrainier2016.06.05linux64.tgz

Megahit v 1.2.9 Li et al. (2015) RRID:SCR_018551; https://github.com/voutcn/megahit/

releases/download/v1.2.9/MEGAHIT-1.2.9-Linux-x86_64-static.tar.gz

Minia v 0.0.102 Chikhi and Rizk (2013) RRID:SCR_004986; https://github.com/GATB/minia/

releases/download/v0.0.102/minia-v0.0.102-bin-Linux.tar.gz

IDBA v 1.1.3 Peng et al. (2012) RRID:SCR_011912; https://github.com/loneknightpy/

idba/releases/download/1.1.3/idba-1.1.3.tar.gz

ParMetis v 4.0.3 Karypis et al. (1997) http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/

parmetis-4.0.3.tar.gz

Zoltan v 3.83 Devine et al. (2006) https://github.com/sandialabs/Zoltan/archive/refs/

tags/v3.83.tar.gz

QUAST v 5.1.0rc1 Gurevich et al. (2013) RRID:SCR_001228; https://github.com/ablab/quast

Minimap2 v 2.24 Li (2018) RRID:SCR_018550; https://github.com/lh3/minimap2/

releases/download/v2.24/minimap2-2.24_x64-linux.tar.bz2

BOA v0 This work https://github.com/GT-TDAlab/BOA
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, Xiaojing An (anxiaojing@gatech.edu).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d The paper analyzes existing, currently available data. The accession identifiers for the datasets are listed

in the key resources table.
10 iScience 25, 105273, November 18, 2022

mailto:anxiaojing@gatech.edu
https://www.niehs.nih.gov/research/resources/assets/docs/artbinmountrainier2016.06.05linux64.tgz
https://www.niehs.nih.gov/research/resources/assets/docs/artbinmountrainier2016.06.05linux64.tgz
https://github.com/voutcn/megahit/releases/download/v1.2.9/MEGAHIT-1.2.9-Linux-x86_64-static.tar.gz
https://github.com/voutcn/megahit/releases/download/v1.2.9/MEGAHIT-1.2.9-Linux-x86_64-static.tar.gz
https://github.com/GATB/minia/releases/download/v0.0.102/minia-v0.0.102-bin-Linux.tar.gz
https://github.com/GATB/minia/releases/download/v0.0.102/minia-v0.0.102-bin-Linux.tar.gz
https://github.com/loneknightpy/idba/releases/download/1.1.3/idba-1.1.3.tar.gz
https://github.com/loneknightpy/idba/releases/download/1.1.3/idba-1.1.3.tar.gz
http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/parmetis-4.0.3.tar.gz
http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/parmetis-4.0.3.tar.gz
https://github.com/sandialabs/Zoltan/archive/refs/tags/v3.83.tar.gz
https://github.com/sandialabs/Zoltan/archive/refs/tags/v3.83.tar.gz
https://github.com/ablab/quast
https://github.com/lh3/minimap2/releases/download/v2.24/minimap2-2.24_x64-linux.tar.bz2
https://github.com/lh3/minimap2/releases/download/v2.24/minimap2-2.24_x64-linux.tar.bz2
https://github.com/GT-TDAlab/BOA


ll
OPEN ACCESS

iScience
Article
d BOA is publicly available online from https://github.com/GT-TDAlab/BOA.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Preliminaries and notation

Strings and genome assembly

Let s denote an arbitrary string over a fixed alphabet S, and let jsj denote the length of the string. Let s½i; j�
denote the substring of s starting at index i and ending at index j. As a convention, we index strings from 1,

and the ith character of s is denoted by s½i�. A k-mer is a (sub)string of length k.

Given a substring s½i; j� of s, we refer to the character immediately preceding the substring in s to be its ‘‘left-

character’’ or lchar (if one exists). More specifically, lchari = s½i � 1�if 1< i% jsj, and if i= 1, then lchari = B,

where B;S is used to represent a blank symbol.

The input to genome assembly is a set of n reads (denoted by R). Each read is a string over the alphabet

S = fa; c;g; tg. We denote the reverse complemented form of a read r as rc(r). If reads are generated with

paired-end information, then the two reads of the same pair are assigned consecutive read IDs i and i + 1,

so that the odd read ID corresponds to the forward strand read and the even read ID corresponds to the

reverse strand read. We denote the set of all forward (alternatively, reverse) reads as Rf (alternatively, Rr ).

Note that R = RfWRr , and jRf j = jRr j = n
2.

Graph partitioning

A undirected graph G = ðV; EÞ is defined by a set of vertices V and a set of edges E. An edge ei;j is a pair of

distinct vertices, i.e., eij = fvi ; vjg; vi ˛V; vj ˛V. The degree di of a vertex vi is defined as the number of

edges incident to that vertex. Weights and costs can be assigned to vertices and edges.W is used to repre-

sent the weight assignment for vertices, where wi is the weight for the vertex vi ˛V. C is the cost assignment

for edges, where cij represents the cost for the edge eij ˛ E.

A K-way partition of G,P = fP1;/PKg, places each vertex of the graph into a part. More concretely,P is a

K-way partition if each part P i is a non-empty subset of V, each pair of parts is disjoint, i.e., P iX P j = B for

all 1% isj%K , and the union of all parts recovers V, that is W1% i%KPi = V. For a K-way partition P, an

edge eij = fvi; vjg is called external (or cut) if vi ˛Pa, vj ˛Pb with asb, otherwise called internal (or

uncut). EE is used to represent the set of all external edges. The cost (or cutsize) c of P is defined as: A

K-way partition, P, is called balanced if the following holds:

ci ˛ f1;.;Kg;
X
vj ˛Pi

wj % ð1 + εÞWavg (Equation 1)

where, Wavg = ðPvj ˛ VwjÞ=K , and ε is a given maximum imbalance ratio.

The graph partitioning problem is defined as follows: given a graph G = ðV; EÞ, vertex weight and edge

cost assignments W and C, a part number requirement K, and the maximum allowed imbalance ratio ε,

find a balanced K-way partitioning that minimizes the cost. The graph partitioning problem is known to

be NP-hard Garey and Johnson (1979), even for seemingly easier problems such as uniform weighted bi-

partitioning Garey et al. (1974).

Hypergraph partitioning

A hypergraph H = ðV;NÞ contains a set of vertices, V, and a set of nets (hyperedges), N . Hypergraph is a

generalization of graph where each hyperedge can connect more than two vertices, i.e., a net ni ˛ N is a

subset of vertices V. The vertices in a net are called its pins, represented by pins½ni �; and the size of the net is

the number of its pins. The number of nets incident on vi represents the vertex degree di. Similar with

graphs, we use W and C as vertex weight and net cost assignments, wi to represent the weight of a vertex

vi ˛V and cj to represent the cost of a net nj ˛N .
iScience 25, 105273, November 18, 2022 11

https://github.com/GT-TDAlab/BOA


ll
OPEN ACCESS

iScience
Article
The K-way partitioning of a hypergraph is similar to that of a standard graph. The main difference comes

from the definition of partitioning cost. A net is connected to a part if at least one of its pins is in that part.

The connectivity setLj of net nj is all the parts that the net connects to. The size ofLj is denoted lj , i.e. lj =��Lj

��. A net nj is external (or cut), if it connects to more than one part, i.e. lj > 1, otherwise, the net is called

internal (or uncut). The set of all external nets for a partition P is represented as N E . There are multiple

definitions of cost c of a partitioningP, in this work we will use connectivity � 1 metric, defined as: The hy-

pergraph partitioning problem is known to be NP-hard as well Lengauer (2012).
The BOA assembly framework overview

The BOA framework hinges on the key idea of block partitioning the reads so that each block is expected to

contain reads from neighboring regions of the (unknown) target genome. This blocking mechanism is a

proxy to obtaining a fully ordered sequence of reads. After block partitioning, each block can be assem-

bled using any standalone assembler of choice, and the combined set of contigs generated across all

the blocks represent the final output assembly. This partitioning-based strategy has several advantages:

� The quality of the output assembly can potentially see improvements if the block partitioning of

reads is faithful to the origins of the reads along the genome (i.e., reads mapping to neighboring

genomic regions are assigned to the same block, while unrelated reads are kept separated across

blocks).

� From the performance standpoint, block partitioning can provide significant leverage in controlling

the degree of parallelism as each block is independently processed.

� Finally, the BOA framework is oblivious to and allows the use of any standalone assembler of choice

downstream. Instead, the framework shifts the focus on keeping related reads together, unrelated

reads separate, and keeping the block sizes reasonably small so as to enable fast parallel assemblies.

Figure 1 illustrates the BOA framework with its different components. In what follows, we describe these

major components. In particular, we describe two instantiations of the framework—one using classical

graph partitioning (Section the BOA framework using graph partitioning: graph-BOA) and another using

hypergraph partitioning (Section the BOA framework using hypergraph partitioning: hyper-BOA). Both

the initial bucketing step and final assembly step are common to both instantiations.
Bucketing algorithm

Given the set of reads R, the bucketing algorithm computes set of buckets B, where each bucket b˛ B
corresponds to a k-mer in R. The bucketing algorithm assigns the reads in R to at most

���Sjk buckets, for

a fixed length k > 0. We define a bucket for each distinct k-mer present in R. In particular, a read r is as-

signed to all buckets corresponding to the list of k-mers it contains. Therefore, a bucket is simply a set

of read IDs with that k-mer. To account for bidirectionality of reads, we take the lexicographically smaller

variant of each k-mer and assign reads to that bucket. This ensures that the read is either present in the

bucket corresponding to the k-mer in its direct form or its reverse complemented form (but not both).

Let B denote the collection of all buckets generated in this process, and b denote an arbitrary member of B.
Note that each b4R. We use kmerðbÞ to denote the k-mer that defines bucket b. Note that it is possible for

buckets to intersect in reads (given that the same read could have multiple distinct k-mers).
The BOA framework using hypergraph partitioning: Hyper-BOA

Hyper-BOAmodels the multi-way interaction between reads and buckets using a hypergraph. We describe

this hypergraph-based model first because it naturally follows from the bucketing step.

Input to Hyper-BOA is the set of buckets B and output is the read-bucket hypergraph H = ðV;NÞ, where
reads are represented as vertices, and buckets as nets. Thisstep produces a partitioningP ofH, which is a

partitioning of reads. Each bucket b˛B contains the subset of all reads in R that share the same k-mer

(either in the direct or reverse complemented form). With the hypothesis that this is a necessary—but

not sufficient—condition for reads originating in the same region of the target genome, we construct a hy-

pergraph H = ðV;NÞ for two possible scenarios.
12 iScience 25, 105273, November 18, 2022



ll
OPEN ACCESS

iScience
Article
No paired-end information available

If the inputR does not contain paired-end information, then we construct a hypergraphH = ðV;NÞ such that

V = R andN = B. In other words, we initialize a hypergraph where each read is represented by a vertex and

each bucket by a net. The pins of a net correspond to all the reads that are part of the corresponding bucket.

Since each vertex is a read and the subsequent assembly workload is not expected to vary with similar sized

reads, we assign unit weights to each vertex. One can use a cost function to represent importance of a k-mer,

but for this initial work we simply treat each k-mer equally and thus assign unit costs to nets.

Paired-end information available

If the input read set R contains paired-end information, then we construct our read-bucket hypergraph

H = ðV;NÞ after post-processing the buckets as follows. Recall that for paired-end reads, the two reads

of a given pair are assigned consecutive IDs i (odd) and i + 1 (even). While these two reads of the pair

can take part in different sets of buckets, it is desirable to assign these two reads to the same block at

the end of partitioning, so that the subsequent assembly step can use the paired-end information. To force

this block assignment during partitioning, we fuse the two reads into a single vertex in the hypergraph—

i.e., the reads i and i+ 1 of a pair are both mapped to the same vertex in the hypergraph H, identified by

vertex
�
i
2

�
(same as

�
i + 1
2

�
). This can be achieved by simply scanning the list of read IDs in each bucket and

renumbering each using the above ceiling function (In our implementation, we actually renumber the read

IDs as they are entered into their buckets, so that a second pass is unnecessary). Consequently, the new

hypergraph H will contain exactly n
2 vertices. The set of nets N is the updated set of buckets B with the re-

numbered read IDs (as its pins). Each vertex and each net are assigned unit weights.

Partitioning

Once the hypergraph H is constructed, we call the partition function on H (described in Section prelimi-

naries and notation) using the Zoltan hypergraph partitioner Devine et al. (2006). Partitioning takes as an

input parameter the number of output parts K. However, instead of fixing the number of parts (or equiva-

lently, output blocks) arbitrarily, we set a target for the output block size, i.e., for the number of reads per

part, denoted by r. Intuitively, since each output block is input to a standalone assembler, it is important to

keep related reads together so that contigs have a chance to grow long (and not fragment the assembly).

However, if the block size becomes too large, then it may not only start including unrelated reads (from far

regions of the genome) but also would have a negative impact on the runtime performance. (Note that a

single block configuration (K = 1) is equivalent to running the standalone assembler on the entire inputR.)

Therefore, we set a target r for the number of reads per block, and using r determine K (z
�
n
r

�
).

To determine an appropriate r, we can use the longest contigs produced by state-of-the-art assemblers as

a lower-bound. The idea is to set a target for r so that the contigs produced from each block have an op-

portunity to grow into a contig that is longer than this baseline length. For instance, a block with 100K reads

can produce only a contig that is as long as �100Kbp (assuming 100bp read length and 1003 genome

sequencing coverage). So if our goal is to surpass this baseline, then the block size has to reflect that—

e.g., a constant factor more than that baseline. Setting a high target for r as described above is not a guar-

antee for qualitative improvement, but it provides a chance (to the per-block standalone assemblers). This

approach enables empirically calibrating the block size for assembly quality.

One last parameter in partitioning is the balance criterion. To achieve a similar workload across all the in-

dividual block assembler runs, we prefer roughly similar sized blocks. However, keeping this very tight

might unnecessarily constrain the related reads that will need go into same part. To strike a balance be-

tween these two goals we use a balanced constraint of ε = 1% (see Equation 1).
The BOA framework using graph partitioning: Graph-BOA

Graph-BOAmodels the interaction among reads using a graph. Input to Graph-BOA is the set of buckets B
and output is the read-overlap graph G = ðV; EÞ where reads are represented as vertices, and edges repre-

sent alignment-free, exact match overlaps between pairs of reads, identified by bucketing phase. This

phase produces a partitioning P of G, which is a partitioning of reads.

Given a setR of n input reads, we construct a read-overlap graph G = ðV; EÞ where V = R and fri ; rjg ˛ E if

the two reads ri and rj share at least one maximal match (A maximal match is a nonempty exact match
iScience 25, 105273, November 18, 2022 13



ll
OPEN ACCESS

iScience
Article
between two strings that cannot be extended in either direction) of length R k, for some integer constant

k > 0. In other words, the set of edges E is generated by enumerating all pairs of reads sharing at least one

maximal match a of length R k. Let P denote the set of pairs, given by:

P =
��

ri; rj
� ��ri; rj ˛ R; is j; and d a maximal match of length R k between ri and rj

�
For example, two reads r1 = cagcca and r2 = tgagcc share substring agcc as a maximal match, and if k = 3

there will exist an edge between the nodes corresponding to r1 and r2 in G. The focus onmaximal matches is

due to the following performance consideration. While buckets are defined based on k-mers, two reads

that share a longer exact match of length t could appear in up to t � k + 1 distinct buckets. Instead of de-

tecting the same pair fri; rjgmultiple times in those many buckets, our algorithm detects it only once due to

the leftmost common k-mer in themaximal matching. In the above example of r1 and r2, the pair is detected

due to the leftmost k-mer agc in the maximal match.

Note that once all pairs are generated, each bucket b containing m reads would have effectively contrib-

uted

�
m
2

�
pairs to P—i.e., a clique of size min G. The above maximal match trick is mainly to avoid dupli-

cate detection of any edge in the clique.

Pair generation

To generate P using all the buckets, our algorithm deploys a two-step strategy as described below. Intu-

itively, we use the two characters (if present) flanking the maximal match to its left and right. A maximal

match is a substring that is both left-maximal (i.e., left characters on both reads mismatch) and right-

maximal (i.e., right characters on both reads mismatch). The only exception is when there is no flanking

character on any one of the read. In such a case, we use the blank character B for maximality. Note that

two reads that have B as their respective left characters are left-maximal. Our algorithm exploits the buck-

eting information for right maximality and instead checks only for left maximality (while still guaranteeing

maximality). The details of the algorithm are described below.

a) Left-maximality: Consider the read collection covered by bucket b. For each read r ˛ b, let jðr;bÞ
denote the set of suffix positions in read r that have kmerðbÞ as their prefix; and let

Lcharsðr;bÞ ˛ SWfBg denote the set of all characters that immediately precede those suffix posi-

tions in r. Using Lcharsðr;bÞ, we generate a bit vector Lr of length jSj+ 1 as follows:

Lr ½x� =

	
1; if x ˛ Lcharsðr ;bÞ
0; otherwise

Example 1. Consider a read r = accttacc and the bucket b for 2-mer ac. Then jðr;bÞ are the suffix positions

f1; 6g and the corresponding left characters are r½0� = B and r½5� = t (i.e., Lcharsðr;bÞ = fB; tg). Therefore the

bit vector Lr for the bucket corresponding 2-mer ac is ½1; 0; 0; 0; 1� for left characters ½B; a; c;g; t� respectively.

Remark 1. As noted in x7.3.3, k-mers are indexed by their lexicographically smaller variant to account for

bidirectionality. If a given k-mer in a read r is not in its lexicographically smaller form, we use character

following the k-mer in its complemented form, for the purpose of left character lists (Lchars). This is to

capture the reversal in direction.

Example 2. Consider a read r = atgcgttg and the bucket b for 2-mer tg (or equivalently, its smaller form ca).

Then, the Lcharsðr;bÞ = fg;Bg as they are the corresponding left characters in the reverse complemented

form for r. Therefore the bit vector Lr for the bucket corresponding 2-mer tg (or equivalently, ca) is

½1; 0; 0; 1; 0� for left characters ½B; a; c;g; t� respectively.

b) Pairing: Subsequently, we use the Lr -arrays for all reads r ˛b to generate the pairs of reads from that

bucket b. The set of pairs contributed by bucket b, denoted by PðbÞ, is given by:

PðbÞ =
n�

ri; rj
���ri; rj ˛ b; d x ˛ SW fBg s:t:Lri ½x�4 Lrj ½x� = 1 or Lri ½B�nLrj ½B� = 1

o

14 iScience 25, 105273, November 18, 2022



ll
OPEN ACCESS

iScience
Article
Here,4 andn are the bitwise XOR and OR operators respectively. Intuitively, a pair of reads is generated

at a bucket b only if there exists a pair of suffixes in those reads that differ in their left-characters (thereby

guaranteeing left-maximality of the match detected). Note that right-maximality of the match in a pair de-

tected is implicitly guaranteed as the suffixes in those two reads will have to eventually differentiate at some

point past the k-mer prefix. Therefore this algorithm is able to report only one instance of a read pair fri ; rjg
for the leftmost matching k-mer of a maximal match.

Example 3. Figure 2 presents an example to illustrate our pair generation algorithm. This example shows

two maximal matches (accgc and aagg) appearing among four reads. As highlighted in the orange, r1,r2
and r3 share the maximum matching accgc. This match contains multiple 3-mers: acc, ccg and cgc, and

therefore the corresponding reads will appear in all those buckets (shown in orange colored buckets in

the table). The rows show the left character lists (Lchar) that each read will appear within a given bucket.

Our pair generation algorithm will generate pairs from each bucket by performing a cross-product across

the different Lchar lists. The only exception is the B list, where reads appearing in that list are left-maximal

and so will yield pairs. Pairs generated from each bucket are shown in the bottom panel. The second

maximal match in the example aagg (in green), shows a case where the pairing could happen between a

read and the reverse complement of another read. In this example, reads r3 and the reverse complement

of r4 share the maximal match aagg, and therefore will be generated from the bucket corresponding to aag

that is the lexicographically smaller of the two variants (aag, ctt).

BOA has an optional modification dealing with a specific boundary case where edges may be missed be-

tween reads, at a cost of increased memory and runtime. Specifically, consider when:

� The maximum matching a has length ˃ k.

� The leftmost k-mer in a is lexicographically larger than its reverse complement, and.

� The rightmost k-mer is lexicographically smaller than its reverse complement.

In this case, for the k-mers in both ends, the leftmost character recorded for the corresponding k-mer in

the read is a character within the maximum matching a. BOA does not look outside of the maximum

matching in the read to be able to recognize the end of the maximum matching and generate the

read pair.

Example 4. Consider the example of two reads r1 = r2 = ctac and k = 2. Read r1 will be in the following

buckets: ag, ta, ac with leftmost character as t,c,t respectively. The assignment is the same with r2. Thus,

the baseline algorithm would miss detecting the pair (r1,r2).

The algorithm can be easily modified to avoid this boundary case. More specifically, the method can store

both the leftmost and rightmost characters for each k-mer in the following way: each bucket has two groups

of sub-buckets: a–,t–,g–,c–,B– for leftmost character and � a; � t; �g; � c; �B for rightmost character.

Edges are generated only within each group of sub-buckets and not among the groups. Note that this so-

lution comes with a slight increase in cost: each length k or greater maximummatching between two reads

will produce two of the same read pairs even if the length of themaximummatching is k. For this reason and

as BOA is a heuristic, we have not implemented this change in practice but note that in theory we can

address it.

Similar to Hyper-BOA, we assign unit weights to vertices and edges, and create one of two different vari-

ants of the read-overlap graph G depending on whether paired-end read information is available or not.

More specifically, if paired-end information is available, then we follow the same fuse strategy described

underHyper-BOA, by representing both reads of a pair by a single vertex in V of G. This is achieved by re-

numbering the read IDs within each input bucket bprior to generating pairs.

Partitioning

Once the read-overlap graph G is constructed, then we call the partition function on G (described in Section

preliminaries and notation) using the ParMETIS graph partitioner Karypis et al. (1997). Here again, we use

the number of reads per output block (r) as our guide to determine the number of blocks K and set the

balanced constraint ε as 1%.
iScience 25, 105273, November 18, 2022 15



ll
OPEN ACCESS

iScience
Article
Graph-BOA and Hyper-BOA

There are a few important connections as well as differences between the graph-based approach (Graph-

BOA) and hypergraph-based approach (Hyper-BOA) within our BOA framework that are worth noting.

First, from the assembly problem formulation standpoint, Graph-BOA is very similar to the OLC assembler

model with the key difference being the ‘‘overlaps’’ in the read-overlap graph are detected using light-

weight exact match-based criteria (as described in the bucketing step). Therefore our approach is

alignment-free. The read-bucket hypergraphs we construct under Hyper-BOA, are also alignment-free.

Furthermore, they can be viewed as a generalization of the read-overlap graphs (from edges to nets;

i.e., read pairs to read subsets).

Secondly, from a method standpoint, intuitively both graph and hypergraph approaches try to put reads

that are strongly connected to each other into the same part. In hypergraph model, each bucket (i.e., k-

mer) is uniquely represented by a net. If two reads share multiple k-mers, they will be incident in multiple

nets, hence representing how strong their connection is. In the graphmodel, each edge does not represent

a unique relation. An edge between two reads might come from different overlaps (or buckets). Hence, one

would need an aggregation function to represent that accurately. In our current implementation of Graph-

BOA, the edges established between any two reads are unweighted (or equivalently, unit weight). This is in

contrast with alignment-based OLC assemblers, which typically use an alignment-based weight along an

edge. While edge weights would help guide partitioning decisions, for Graph-BOA there is a tradeoff

with performance. One approach to calculate an edge weight between a pair of reads is based on the

length of maximal matches that led to detection of that edge. However, in our pair generation algorithm,

we only detect the presence of a maximal match for pairing two reads, without explicitly determining the

match itself or its length (as it will becomemore expensive to compute thematches). An alternative strategy

is to count the number of buckets a pair of reads co-occurs to use as the corresponding edge weight. How-

ever, this also implies detecting and storing a count for each pair—which could become expensive both for

runtime and memory. As a compromise, we have used an unweighted representation for Graph-BOA.

Another point of difference between Hyper-BOA and Graph-BOA is their space and run time complexities.

For Hyper-BOA, the k-mer based buckets are used to construct the hypergraph. Every bucket with say m

distinct reads in it, induces a net with m pins. Whereas, under Graph-BOA, extra computation is needed

to establish pairwise connections between reads as described in Section the BOA framework using graph

partitioning: graph-BOA—i.e., every bucket with m reads contributes

�
m
2

�
edges. This leads to higher

memory usage for Graph-BOA. For example, in case of C.elegans, the peak memory usage per MPI rank

for Graph-BOA in the bucketing phase is 8.3 GB in comparison to 5.3 GB for Hyper-BOA. While in the par-

titioning phase, Graph-BOA is much lighter in runtime than Hyper-BOA as shown in Section runtime per-

formance evaluation.
Parallelization

The BOA pipeline is comprised of three phases:

1) Parallel Bucketing: In this step, the algorithm first loads the input FASTA file(s) in a distributed

manner such that each process receives roughly the same amount of sequence data zjRj
p , where p

is the total number of processes. This is achieved by each process loading a chunk of reads using

MPI-IO functions MPIForum (2020), such that no read is split among processes. Each read is assigned

a distinct read id. We use MPI_Scan to determine the read offset at each process. Next we generate

k-mers by sliding a window of length k (k = 31 in our experiments) over each read, as elaborated in

the bucketing step (Section bucketing algorithm). For parallel bucketing, an owner process that col-

lects the read IDs for each bucket is assigned. To identify the owner, we use an approach based on

minimizersChikhi et al. (2014). In particular, for each k-mer bucket, a minimizer of length l (l<k; l = 8 in

our experiments) is identified. We use the least frequently occurring l-mer within that k-mer as the

minimizer. Subsequently, a hash function is used to map the minimizer to its owner process. The

idea of using minimizers for this assignment step is to increase the probability that adjacent

k-mers in a read are assigned the same owning process for the corresponding buckets (thereby

reducing communication latency). Collective aggregation of the read IDs corresponding to each
16 iScience 25, 105273, November 18, 2022



ll
OPEN ACCESS

iScience
Article
bucket is carried out through an MPI_Alltoallv primitive MPIForum (2020). Any bucket with 200 or

more distinct reads represented is pruned. This pruning step is to account for over-representation

in the buckets corresponding to repetitive regions.

2) Parallel Partitioning: In this step at first we generate the input read-overlap graph (G) or read-bucket
hypergraph (H), for Graph-BOA or Hyper-BOA, respectively. For Hyper-BOA, we provide Zoltan’s

hypergraph generating function, a list of all distinct sorted read IDs for each k-mer bucket assigned

to a process. For Graph-BOA, each process enumerates edges between pairs of reads sharing at

least one maximal match (Section the BOA framework using graph partitioning: graph-BOA) in par-

allel and then sends the edge lists to the owner processes of the vertices through MPI_Alltoallv. We

provide ParMETIS the CSR (Compressed Sparse Row) format graph. We then call the partitioning

function, providing as input the generated hypergraph or graph, the number of block partitions K

and the balanced constraint ε.

3) Assembly: The final phase of the pipeline takes the K partitions generated by the partitioner and

launches K concurrent assembly instances using a standalone assembler on each of the K parts (or

equivalently, blocks).

Our BOA framework is available at https://github.com/GT-TDAlab/BOA.
iScience 25, 105273, November 18, 2022 17

https://github.com/GT-TDAlab/BOA

	BOA: A partitioned view of genome assembly
	Introduction
	Contributions

	Results
	Qualitative evaluation
	Hyper-BOA versus Graph-BOA

	Runtime performance evaluation
	Large-scale experiment
	Real world experiment

	Discussion
	Limitations of the study

	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Preliminaries and notation
	Strings and genome assembly
	Graph partitioning
	Hypergraph partitioning

	The BOA assembly framework overview
	Bucketing algorithm
	The BOA framework using hypergraph partitioning: Hyper-BOA
	No paired-end information available
	Paired-end information available
	Partitioning

	The BOA framework using graph partitioning: Graph-BOA
	Pair generation
	Partitioning

	Graph-BOA and Hyper-BOA
	Parallelization




