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Abstract—We propose a novel unsupervised anomaly detection

and diagnosis algorithm in power electronic networks. Since most

anomaly detection and diagnosis algorithms in the literature are

based on supervised methods that can hardly be generalized

to broader scenarios, we propose unsupervised algorithms. Our

algorithm extracts the Time-Frequency Domain (TFD) features

from the three-phase currents and three-phase voltages of the

point of coupling (PCC) nodes to detect anomalies and distinguish

anomaly types, cyber-attacks and physical faults. To detect

anomalies through TFD features, we propose a novel Informative

Leveraging for Anomaly Detection (ILAD) algorithm. The pro-

posed unsupervised ILAD algorithm automatically extracts noise-

reduced anomalous signals, achieving more accurate anomaly

detection results than other score based methods.

To assign anomaly types for anomaly diagnosis, we apply

a novel Multivariate Functional Principal Component Analysis

(MFPCA) clustering method. Unlike deep learning methods, the

MFPCA clustering method does not require labels for training

and provides more accurate results than other deep embedding-

based clustering approaches. Furthermore, it is even comparable

to supervised algorithms in both offline and online experiments.

To the best of our knowledge, the proposed unsupervised frame-

work accomplishing anomaly detection and anomaly diagnosis

tasks is the first of its kind in power electronic networks.

Index Terms—Anomaly Detection, Anomaly Diagnosis, Lever-

age Score, Multivariate Principal Component Analysis based

Clustering, Power Electronic Networks.

I. INTRODUCTION

I
N smart grids, power electronics are the fundamental
building blocks. The expansion of the Distributed Energy

Resources (DERs), such as Photovoltaic (PV) farms and wind
farms, has particularly become a major opportunity and chal-
lenge for smart grids. The interconnection of power electronics
in cyber networks allows coordinated control for better energy
efficiency and resilience in smart grids. On the other hand,
the cyber-network connectivity among power electronics also
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exposes them to cyber threats. In addition, the physical faults
due to the deterioration of the equipment, e.g., converter, also
threaten the safety and security of smart grids.

A catastrophic failure of power electronic networks due to
a malicious cyber-attack or an accidental physical fault would
cause degradation of equipment and substantial economic loss.
Early detection and diagnosis of the anomalies are essential for
timely maintenance and recovery of power electronic networks
[1], [2].

To the best of our knowledge, for anomaly detection, limited
studies have been conducted using the information embedded
in electrical signals for cyber-threat in cyber-physical systems
[3]. Thus, exploring physical signals to advance cyberspace
security and trust is essential. While there are a plethora of
potential cyber-attacks, this study utilizes attacks that directly
affect the operation of the electrical machine and its compo-
nents [4], [5]. In addition to malicious cyber-attacks, electrical
equipment may also suffer from accidental physical faults,
of which open-circuit and short-circuit faults are common in
electrical systems [1]. Thus, there is an urgent need to propose
an anomaly detection method suitable for both cyber-attacks
and physical faults.

Anomaly detection of cyber-attacks and physical faults
alone is not enough to mitigate their impact on power elec-
tronic networks. Anomaly diagnosis is also a crucial follow-up
step in identifying the root causes of the failure. That said,
false identification of the root cause might lead to severe
operational failure while performing mitigation strategies in
the power electronic networks [6], [7]. Thus, an ideal system
should be able to distinguish attacks from faults. To solve
this critical problem, we are motivated to develop effective
anomaly diagnosis methods to distinguish cyber-attacks from
physical faults in the power electronic network.

In the anomaly detection literature, several supervised algo-
rithms [8], [9], [10] have been developed to identify anomalies
using deep learning methods. These methods use two differ-
ent pathways to solve the anomaly detection problem. One
pathway is to train the Autoencoder, Autoregressive Integrated
Moving Average (ARIMA) model to reconstruct the distribu-
tion of normal data. If the reconstruction error of testing data is
much larger than that of the normal data, the detector would
immediately raise a flag, declaring the start of an anomaly.
Such methods use labeled normal data to train and assume
that the training and testing data have the same distribution.
This assumption limits the extent of applications, especially
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when the load of the system increases, causing false-positive
alarms. The second pathway approaches anomaly detection as
a binary classification task, which uses binary labels (normal
and abnormal) and waveforms to train a classification model
[11], [12] by Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) network. However, such black-
box deep learning models cannot be adapted to detect new
types of anomalies.

Anomaly diagnosis, which distinguishes different anomaly
types, is a classification or clustering task, depending on
whether labels are used in training. Most available approaches
focus on supervised learning methods [6], [11], [12] that use a
support-vector-based algorithm or deep learning framework for
multi-classification to distinguish different types of anomalies.
Unsupervised methods are more potent in applications since
they do not need label information during training and can
discover new clusters if novel types of anomalies occur.
However, to the best of our knowledge, the literature still lacks
unsupervised approaches for anomaly diagnosis, especially
those based on multi-dimensional features in power electronic
networks.

Furthermore, most unsupervised anomaly detection and
diagnosis methods are offline, which necessitates making the
decisions based on all the data across time. In real scenarios,
this poses certain difficulties in implementing methods for
steaming data. Thus, there is an urgent need to develop an
online framework for anomaly detection and diagnosis tasks.

To overcome the aforementioned challenges, we pro-
pose an unsupervised, data-driven Informative Leveraging for
Anomaly Detection (ILAD) algorithm, combined with a Mul-
tivariate Functional Principal Component Analysis (MFPCA)
clustering algorithm to distinguish between cyber-attacks and
physical faults for anomaly diagnosis. For streaming six-
dimensional waveform data, we sequentially process them
window by window. Specifically, we first extract Time-
Frequency Domain (TFD) features from the waveform data to
combine the time and frequency domain information. We then
model the multivariate time series as a Vector Autoregressive
(VAR) model since the TFD features in a normal state are
stationary, and compute leverage scores [2], [13] for each
time window. Unfortunately, the leverage scores incorporate
noise, making it hard to distinguish between the normal period
and anomalous period of the TFD features. Therefore, we
select significant singular values of the lag matrix associ-
ated with the VAR model by the permutation test, thereby
obtaining informative leverage scores that more accurately
identify anomalies. Instead of heuristically setting thresholds
to detect anomalies [14], we use a data-driven change point
detection algorithm to automatically and sequentially raise
flags of the starts and ends of anomalies. Both offline and
online experiments show that the ILAD algorithm achieves
high accuracy.

After performing anomaly detection, we assign the iden-
tified anomalous windows the type of anomalies based on
our MFPCA clustering algorithm. To this end, we project the
multivariate time series onto a feature space spanned by eigen-
functions and approximate the densities of the TFD features
by the product of the densities of the principal component

scores. By projecting onto a lower-dimensional feature space,
we are able to assign a label to each anomalous time window
by maximizing the likelihood of the TFD features. Features
characterizing two anomaly types on their respective princi-
pal components are extracted. While the pattern of different
anomaly types is hard to detect in a multivariate context,
projection to a lower-dimensional space not only enables us
to distinguish between them but also do so more accurately.

To evaluate the performance of the proposed ILAD and
MFPCA clustering algorithms, we use a PV farm as a study
case and generate a variety of electric waveform data under
both offline and online scenarios. The offline dataset has 43
cases, of which 25 are cyber-attacks, and 18 are physical
faults. Both the starts and ends of the anomalies need to be
identified for the subsequent processing step. The proposed
offline ILAD (off-ILAD) successfully identifies the anomalies
of 42 cases. The accuracy of the anomaly diagnosis task is
about 0.94, which is a competitive number and comparable to
the accuracy of the classification task. The real-time dataset is
simulated using NI-device connected to the OPAL-RT. Of the
two simulated scenarios, one ends with a short circuit fault and
the other end with an open circuit fault. For the online anomaly
detection, the proposed online ILAD (on-ILAD) algorithm
achieves higher accuracy compared with other change point
detection algorithms. For online testing of anomaly diagnosis,
we assign the streaming time window to a closer cluster
and obtain more accurate results compared with other deep
embedding based clustering methods.

The novelty and contribution of our work are summarized
as follows.

1) To the best of our knowledge, our algorithm is one of
the first unsupervised data-driven anomaly detection and
diagnosis algorithms utilizing Time-Frequency Domain
(TFD) features in power electronic networks.

2) We propose a novel Informative Leveraging for Anomaly
Detection (ILAD) algorithm to remove random noise in
the original leverage score and amplify the changes due
to anomalies.

3) Our algorithm utilizes a data-driven change point detec-
tion method to raise a flag if the informative leverage
score increases drastically instead of heuristically using
a threshold [14] to flag anomalies. Thus, the proposed
ILAD algorithm is more robust to new anomalies.

4) We apply a novel Multivariate Functional Principal Com-
ponent Analysis (MFPCA) clustering algorithm to the
power electronic network, which projects the TFD fea-
tures onto the lower-dimensional spaces spanned by
eigenfunctions. Thus, the MFPCA clustering algorithm
extracts features differentiating cyber-attacks and physical
faults.

5) Our algorithm can be used in online scenarios to detect
anomalies and diagnose the types of anomalies for TFD
features in each time window.

II. POWER ELECTRONIC NETWORK AND ATTACK MODELS

A. A General Power Electronic Network Model

As the number of DERs grows, a power electronics network
for converting renewable energy sources into smart grids
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Fig. 1: Schematic diagram of the power electronic converter-enabled PV farm. Ipv ,
Upv , If , and Uc are PV array current, PV array voltage, inductance current in the

LCL, and capacitor voltage in the LCL, respectively.

is gradually taking shape. Figure 1 shows a typical power
electronic network in a PV farm. To study the impact of cyber-
attacks and physical faults, a high-fidelity PV farm is modeled.
In the first stage, maximum power point tracking (MPPT) is
designed to generate the maximum power of the PV array. In
the second stage, voltage and current control are designed to
maintain DC-link voltage and convert the power from the PV
array to the power grid. Then, the LCL of each PV inverter
is designed to filter out high-order harmonics in inductance
current, which is expressed as follows:

9x “ Ax ` Bu, (1)

where x “ rIfa, Ifb, IfcsT , and Ift¨u is one
phase inverter-side inductance current in the LCL,
u “ rUka, Ukb, Ukc, Uga, Ugb, UgcsT , Ukt¨u and Ugt¨u
are one phase inverter-side voltage and grid-side voltage in
the LCL, respectively,
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(2)
where R and L are the resistance and inductance.

B. Cyber-attack Model

As discussed in many studies [15], [16], [17], cyber-attacks
could destroy the operation of PV farms by compromising
sensor measurement. In this paper, we assume that the attacker
manipulates the measured data or injects false data into the
sensor. The cyber-attack can be expressed as

YAptq “ ↵Yoptq ` � (3)

where YA is the compromised data vector that is eventually
the input of the controller, Yo is the original measurement
including Ipv , Upv , If , and Uc, ↵ is a multiplicative factor,
and � is the false data injection.

C. Physical Fault

Besides cyber-attacks, physical faults also threaten PV
farms. Figure 2 shows two types of physical faults that are
modeled in PV farms, including open-circuit fault and short

(a) (b)

RG

T1

a b c

RAB

RBG

Fig. 2: (a) Open-circuit fault in the PV converter; (b) Short-circuit faults in the LCL.

circuit fault. The open-circuit fault occurs in each switch of the
PV converter, which leads to the open transistor. Figure 2(a)
shows the open-circuit fault occurs in T1. Short circuit fault
leads to a heavy current which further creates overheating or
destroys the equipment. As shown in Figure 2(b), short-circuit
faults are modeled, including three-phase short-circuit fault,
single phase-to-ground fault, and phase-to-phase short circuit
fault. The RAB , RGB , and RG are the fault resistance.

III. PROBLEM STATEMENT

In a power network, our data consists of observations of the
waveform in the PCC node in many cases. For case i at time
t, let Xiptq “ rIiaptq, Iibptq, Iicptq, Uiaptq, Uibptq, Uicptqs de-
notes a multivariate time series consisting of three-phase cur-
rent I “ pIa, Ib, Icq and three-phase voltage U “ pUa, Ub, Ucq.
By combining information both in the time domain and fre-
quency domain, we utilize the TFD features proposed in [18].
We denote the nine-dimensional TFD features, a multivariate
time series, by Xptq “

”
X

1ptq, . . . , X`ptq, . . . , X9ptq
ı
, where

the i-th case is denoted as Xiptq. Figure 3 shows an example of
waveform data for three-phase voltages (bottom panel), three-
phase currents (middle panel), and nine-dimensional TFD
features (bottom panel) respectively, for one case. Based on
this multivariate time series, we have two goals. The first is
to find the starting point tk`1 and ending point tk`T of an
anomaly in the multivariate time series Xiptq and consider
the anomalous portion of the series,

“
Xiptk`1q, ...,Xiptk`T q

‰
.

Given this anomalous series, the second goal is to assign an
anomaly type (cyber-attack or physical fault) to each detected
anomalous time period.

A. Anomaly Detection Problem

Based on the extracted TFD feature vector from one case,
we aim to find a change point that shows a large change in
the pattern of the data. We assume that there are n cases in
total and the i-th case of the TFD feature Xiptq under normal
conditions is generated by the model, Xiptq “ ⌘iptq ` ✏iptq,
where t “ 1, .., tk, and i “ 1, ..., n. If there is an abrupt
change at time point tk`1, then the TFD feature vector would
be assumed to have the form: Xiptq “ ↵i⌘iptq ` ✏iptq, for
some real number ↵i and t “ tk`1, ..., tk`T for some T ,
where ↵i denotes the rate of change. That is, there would be
a significant change in some dimensions of the TFD feature
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Fig. 3: An example of waveform data for three-phase voltages (bottom panel),
three-phase currents (middle panel), and nine-dimensional TFD features (bottom

panel), respectively, for one case. In this example, we show the data in a time range
(14 16s). The anomaly happens at 15s.

vector when an anomaly happens. In statistics, leverage is a
measure of how far away the value of the observation of TFD
feature X is from those of other observations. As shown in
3, the TFD features increase at 15 s, at which the anomaly
happens. Thus, we formulate the problem as the identification
of the time points with high leverage scores like the previous
work [2], [13] did.

B. Anomaly Diagnosis Problem

We assume that there are two major anomaly types in the
device-level power electronics converters (PEC), cyber-attack
and physical faults. While these are two common types of
anomalies, it is hard to distinguish between them. Wrong
identification of the anomaly types might cause degradation of
the devices and huge economic losses in the power electronic
network. Thus, it is essential to identify the anomaly types of
the anomalous time series after performing anomaly detection.
To make sure our algorithm is still applicable to the online sce-
nario, we slice the anomalous series

“
Xiptk`1q, ...,Xiptk`T q

‰

into pieces of anomalous windows. We are interested in
predicting the cluster that each anomalous window belongs
to with a label z P t1, 2u, where 1 denotes cyber-attack, and
2 denotes physical fault. Note that this is an unsupervised
problem where we do not have labels during the training
phase, which is common in studies involving power electronic
networks.
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Fig. 4: The workflow chart of the online algorithm of anomaly detection and anomaly
diagnosis.

IV. ALGORITHM DESIGN

Our algorithm consists of three parts, as shown in Figure 4.
First, through domain knowledge, we calculate the streaming
TFD features for each time window. The extracted features
contain information that not only helps distinguish normal
data from anomalous data, but also enables us to distinguish
between a cyber-attack and a physical fault. Second, we
detect anomalies of the extracted features by the proposed
ILAD algorithm. Since the informative leverage score of
the extracted features will increase drastically if an anomaly
starts or ends, we can easily detect the change points and
raise flags when anomalies happen. The informative leverage
score selects significant singular vectors for the leverage score
calculation using a permutation test. The ILAD algorithm
removes the noise and enlarges the difference between the
anomalous period and normal period. The ILAD algorithm
does not need labels in training and is effective in various
emerging anomalies. Third, the anomaly diagnosis task would
be triggered to assign labels (cyber-attack or physical fault) to
the anomalous time windows after getting the anomalous data
from the second step. This step also uses an unsupervised
method, MFPCA, to cluster different anomaly types. Most
classification methods need labels to train, while in power
electronic networks, the true anomaly types are hard to obtain.
Without needing the labels to train, our method extracts
feature characterizing the difference between cyber-attacks and
physical faults.

A. Feature extraction

Based on the raw waveform data, it is hard to distinguish
the two anomaly types — cyber-attacks and physical faults.
As shown in Figure 5, the plots of waveform data for two
cases are on the left, one is under cyber-attack and the other
has a physical fault. There is little difference between the
two cases solely from the waveform data. This motivates us
to use domain knowledge [18] to extract some higher-level
time domain features and frequency domain features to help
distinguish between the two anomaly types. We use the TFD
features to identify the onset of anomalies and to distinguish
between the two anomaly types via distinct patterns.

1) Frequency Domain Features: First, we obtain micro
PMU (µPMU) features through fast Fourier transform (FFT)
to convert a signal into individual spectral components and
thereby extract frequency information about the signal. In
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Fig. 5: An example of waveform data for two cases (5 and 31) and extracted TFD
features. The first column shows the plot of waveform data, and the second column
shows the plot of extracted TFD features. Sensor 5 encounters a cyber-attack while

sensor 31 encounters a physical fault. In this example, we show the data in a time slot,
from 15.025s to 15.525s.

addition, we use total harmonic distortion (THD) to capture the
harmonic information of the distorted waveform. This yields
a feature vector denoted by

F “
“
Mt¨u, Tt¨u

‰
, (4)

where Mt¨u, and Tt¨u are six-dimensional vectors representing
the magnitude (M ) of the fundamental frequency and THD
(T ), respectively, for each phase of the waveform. The raw
µPMU features sometimes lead to false positive results, es-
pecially when the magnitude is affected by a huge change
in irradiance. Whereas the fundamental frequency, THD in a
waveform are known to be lower than some boundary under
normal conditions. Through expert knowledge, the maximum
THD is set as Tmax “ 5%. Then, THD for each phase is
defined as:

T̄t¨u “ min

"
Tt¨u
Tmax

, 1

*
(5)

The six-dimensional total harmonic distortion feature is de-
noted by T̄ .

There are two typical physical faults, short circuit fault, and
open circuit fault. Since the difference between the magnitudes
of the three-phase waveforms Rm increases drastically when a
short circuit fault happens, we could first extract features that
help distinguish short circuit fault from other types of attack.
Rm is defined as:

Rm,I “
b
�M

2
I1

` �M
2
I2

` �M
2
I3

Rm,U “
b
�M

2
U1

` �M
2
U2

` �M
2
U3

Rm “ pRm,I ` Rm,U q{2

(6)

where �MI1 “ MIa ´ MIb , �MI2 “ MIb ´ MIc , �MI3 “
MIa ´MIc , and Rm,U is defined similarly. After normalization

Fig. 6: An example of 9-dimensional TFD features for one case. Blue lines indicate the
anomaly start/end time. There are 6 anomaly periods in total.

and scaling, the magnitude based features become:

R̄m1 “ min

"
Rm

Rm1,max
, 1

*

R̄m2 “ min

"
ln pRm ` eq ´ 1

Rm2,max
, 1

*
,

(7)

where Rm1,max is the maximum of Rm, and Rm2,max is the
maximum of lnpRm ` eq ´ 1.

2) Time Domain Features: Except for the frequency do-
main feature, the transformation of the time domain features,
three-phase currents, helps distinguish open-circuit fault from
other attacks. We use a variant of the mean current vector
(MCV) by current Concordia transformation:

I↵ “
c

2

3
Ia ´

c
1

6
Ib ´

c
1

6
Ic

I� “
c

1

2
Ib ´

c
1

2
Ic.

The cyber-attack and short circuit fault cases show a circle
pattern centered in the origin in the plot of the vector pI↵, I�q
for all the time points. Whereas the open circuit fault’s pattern
is distorted due to the poor circuit contacts. Thus, to reflect
the degree of distortion of points pI↵, I�q at a time point tk,
we define the MCV point at time tk as:

Pmcvptkq “ p 1

Nk

tkÿ

i“tk´Nk`1

I↵piq, 1

Nk

tkÿ

i“tk´Nk`1

I�piqq (8)

Next, the time-domain feature P̄mcv is defined based on the
randomness of the distribution of Pmcv in a time window
rtk1 , tk2s. The more concentrated the distribution of Pmcv is,
the more likely the anomaly type is the open circuit fault.

In all, we combine both the time and frequency domain
features, and use the following set of features to do anomaly
detection and anomaly diagnosis:

X “
“
R̄m1, R̄m2, P̄mcv, T̄ s (9)

We refer to the above 9-dimensional feature as the TFD
features. We use this feature to carry out anomaly detection
and anomaly diagnosis.
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B. Informative Leveraging for Anomaly detection

After extracting TFD features that could signal anomalous
patterns of power electronic networks, we further model the
9-dimensional TFD features Xptq by a VAR model, and
determine the highly influential time points based on the
leverage score of the VAR model. The original leverage
score calculation method cannot eliminate the random noise,
resulting in an insignificant difference between the normal and
anomalous periods. This insignificant difference would result
in false detection of the starts and ends of the anomalies. To
overcome this issue, we propose an informative leverage score
to remove the random noise from the small singular values.

After extracting the bump pattern through the informative
leverage score, we use a sequential change point method [19]
to identify the starts and ends of anomalies automatically. Our
method can also be generalized to an online scenario to detect
the starts and ends of the anomalies using the informative
leverage scores.

1) Leverage Score for Offline Anomaly Detection: For each
case, we assume that the 9-dimensional TFD feature at a time
point depends on the past p observations of the series. Thus,
we use the following p-th order VAR model representation
to characterize the temporal dependence structure of the time
series Xptq:

Xptkq “ Xptk´1qA1 `Xptk´2qA2 `¨ ¨ ¨`Xptk´pqAp `✏ptq
(10)

where tAiupi“1 are 9 ˆ 9 unknown parameters matrices and
✏ptq is the vector of error terms that are independently and
identically distributed with mean zero and constant variance.

The VAR(p) model in (10) can also be expressed in the
form of a linear model:

Y “ D
p
A ` ✏, (11)

where Y “
”
X

T ptkq,XT ptk`1q, ...,XT ptk`T q
ıT

, D
p

is the
lag matrix of time series Xptq defined as:

»

————–

Xptk´1q Xptk´2q ¨ ¨ ¨ Xptk´pq
Xptkq Xptk´1q ¨ ¨ ¨ Xptk´p`1q

...
...

. . .
...

Xptk`T´1q Xptk`T´2q ¨ ¨ ¨ Xptk`T´pq

fi

����fl
, (12)

and A “ rAT
1 , ¨ ¨ ¨ ,AT

p sT is the parameter matrix to be
estimated, and ✏ is the random noise.

By the linear model representation in equation (11), the
leverage score of the q-th data point can be interpreted as
the amount of leverage or influence the q-th observed value
exerts on the q-th fitted value [20]. The leverage score in the
linear model has been generalized to the VAR model in time
series [13]. In the VAR model, the time points with drastic
fluctuation tend to have higher leverage scores, and we call
them influential data points. In this way, we can convert the
problem of detecting anomalies into the problem of identifying
time points with high leverage scores.

The time points associated with the drastic fluctuation indi-
cate the starts or ends of anomalies. Figure 6 shows an example
of the TFD features for one case. We see anomalies happen

when the TFD features drastically change, which motivates us
to use the leverage scores to detect anomalies. For each case,
the leverage score of the q-th observation can be expressed as

lqq “ d
p
pqq

T pDpTD
pq´1d

p
pqq, (13)

where d
p
pqq

T is the q-th row of D
p
, and we call D

pTD
p

the
lag-covariance matrix of the TFD features Xptq.

In real applications, some scenarios involve an online setting
where we need to determine whether a streaming data window
exhibits an anomaly based only on the information from
the data collected before the current time point. For this, a
generalization of the idea in [13] yields a streaming leverage
score that only utilizes the history and the current information
to approximate the leverage score.

2) Streaming Leverage score for Online Anomaly Detec-

tion: When the anomaly detection problem is extended to
a real-time task, some additional difficulties arise. The main
challenge is that one usually needs to make an immediate
decision when a change has occurred as soon as a new data
point streams in. However, the calculation of the lag covariance
matrix needs the input of the whole time series. To overcome
this, a natural and effective way is to use a pilot sample to
approximate the true lag covariance matrix. Here, we use the
method introduced by [13] to calculate the streaming leverage
score, which guarantees the accuracy of the estimation while
reducing the computational cost. We use the pilot sample of
size r to approximate the lag-covariance matrix D

pTD
p
. The

streaming leverage score of the q-th observation, l̃qq , is defined
as:

l̃qq “ d
p
pqq

T p�p
rq´1d

p
pqq, (14)

where �p
r represents the approximation to the lag-covariance

matrix based on the pilot sample with size r, and we call it
the sketched lag-covariance matrix.

We show a simplified version of the streaming leverage
score. We denote the singular value decomposition (SVD) of
the sketched lag-covariance matrix �p

r by U⌃VT , where ⌃ is
the diagonal matrix of singular values, U and V are orthogonal
matrices such that UTU “ VTV “ I. Let

l̃qq “
r´pÿ

j“1

´
d
p
pqq

Tvpjq
¯2

{�2
j , (15)

where vpjq is the j-th column of V, �j is the j-th singular
value, and r ´ p is the total number of singular values of the
sketched lag-covariance matrix �p

r . The singular values of the
lag-covariance matrix are also referred to as spectrum in this
article.

Here, the information of the lag-covariance matrix is pro-
jected onto orthogonal directions of singular vectors vpjq,
and each singular value is the variance of the data in the
corresponding singular vector space. The Principal Component
Analysis (PCA) method selects the most significant singular
vectors representing the whole data distribution and removes
the ones with smaller singular values. In our case, each
pair of nearly equal eigenvalues and associated PCs of the
lag-covariance matrix characterizes an oscillatory mode, e.g.,



7

Example 1
Original Leverage Score Informative Leverage Score

Example 2
Original Leverage Score Informative Leverage Score

Example 1
Original Leverage Score Informative Leverage Score

Example 2
Original Leverage Score Informative Leverage Score

Fig. 7: An example of the original leverage score and informative leverage score. By
removing the noise and obtaining an informative leverage score, the gap between the

normal and the anomalous rises. This leads to higher accuracy while detecting the
starts and ends of anomalies.

trend, periodicity, and noise. However, not every PC can help
distinguish between normal and anomalous data. For exam-
ple, the first PC characterizing the trend is not informative
to anomaly detection, and anomalies often appear in other
oscillatory modes.

3) Informative Leverage Scores for Anomaly Detection:

The aforementioned challenges motivate us to propose an
informative leveraging for anomaly detection (ILAD) algo-
rithm to select more informative PCs to differentiate between
the normal and anomalous periods. Instead of directly using
the original leverage scores, we perform a test to see if
each singular vector is informative by examining the amount
of noise it contains. If a singular vector contains excessive
random noise, we exclude it while calculating the leverage
score. Mimicking the idea of a permutation test, we randomize
different rows of the lag-covariance matrix D

p
i
TD

p
i for each

feature in the offline setting and the sketched lag-covariance
matrix �p

r in the online setting, and perform an SVD again.
The result of the SVD in online and offline settings is usually
denoted by Ũ⌃̃ṼT . We repeat this procedure many times, and
each time compare the actual values to the randomized ones. If
the true singular value is outside the 95% confidence interval,
then we declare that the singular value and the associated
singular vector are informative. Through the permutation test,
we get a set I of informative singular vectors. Then, we let

l̃
k
qq “

ÿ

j“PI

´
d
p
pqq

T ṽpjq
¯2

{�̃2
j , (16)

where ṽpjq is the j-th column of Ṽ, �̃j is the j-th entry of ⌃̃,
and k is the cardinality of the set of the informative singular
vectors I. We illustrate the advantages of filtering informative
singular vectors via a comparison of original leverage scores
and the proposed informative leverage scores for two cases in
Figure 7; these are calculated in an offline manner. We can
clearly see that the patterns of the two leverage scores are
entirely different. The red lines shown in Figure 7 are the
original leverage scores, and the blue lines shown in Figure 7
are the informative leverage scores. Comparing the two sets
of leverage scores, we see that the informative leverage scores
seem to remove the noise, especially before the anomaly starts
and after the anomaly ends , making the refined algorithm
perform better for anomaly detection. In addition, switching
from original leverage scores to informative leverage scores,

Fig. 8: An example of one dimension of the TFD features (top panel) and the
informative leverage score of the total TFD features (bottom panel).

the gap between the score of the normal to that of the
anomalous rises significantly. Thus, the performance of the
anomaly detection improves by removing the information in
the direction of the least important singular vectors.

To illustrate that the proposed ILAD algorithm still works in
online settings, we show that informative leverage scores re-
flect drastic changes caused by the starts and ends of anomalies
in an online manner. Figure 8 shows an example of streaming
data with five cyber-attacks and one physical fault. The top
panel shows one dimension of the TFD features, and the
bottom panel shows the informative leverage scores calculated
by the total TFD features. We can see that the time points with
high leverage scores and those signaling presence of anomalies
always coincide, which confirms our belief that influential
points with high leverage scores are where anomalies happen.
Due to the drastic change in the informative leverage scores as
soon as there is an anomaly, we subsequently use a sequential
change point detection algorithm [19] to identify the starts and
ends of anomalies. Most available anomaly detection methods
use a pre-specified threshold to raise a flag. The threshold
based methods are ad-hoc and need a fine-tuning step to set an
appropriate value. Instead, the sequential change point method
is a data-driven approach, making decisions based on past
information. Thus, the anomaly detector prevents information
leakage from future observations, and identifies anomalies
adaptive to the data.

C. Multivariate Functional Principal Component Analysis

Clustering for Anomaly Diagnosis

Most approaches for anomaly diagnosis [11], [21] use a
supervised classification model, where information from labels
is used for prediction. However, for anomalies in power
electronic networks, the labels for the anomaly types are
hard to obtain. Thus, accurate unsupervised methods are
urgently needed for anomaly diagnosis in power electronic
networks. Currently, existing unsupervised anomaly diagnosis
methods distinguish between anomaly types using distance
based methods, such as K-means and hierarchical clustering
[22]. These methods ignore the dependency between different
data features and are sensitive to outliers. In addition, distance
based and dissimilarity based methods do not assume models,
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and therefore, we cannot find the probability that a new data
point belongs to a certain cluster. In order to model the
dependence and assign a probability of cluster membership
to each data point, we use the MFPCA to approximate the
data distribution and maximize the likelihood of the mixture
model. MFPCA can embed the multivariate time series into
a low-dimensional space spanned by eigenfunctions based on
Karhunen-Loeve expansion [23]. Through such projection, the
density of the multivariate time series can be approximated by
the product of the densities of the principal component scores.

Assume that the data is generated from multiple clusters,
then the multivariate time series follows a mixture model,
whose likelihood can be maximized by the iterative Expec-
tation–maximization (EM) algorithm [24], [25]. To find the
optimal representation of the time series in a functional space,
we further assume that Xptq is an L2-continuous stochastic
process, that is,

@t P rt1, t2s, lim
hÑ0

E
“
}Xpt ` hq ´ Xptq}2

‰

“ lim
hÑ0

ª t2

t1

9ÿ

`“1

E
„´

X
`pt ` hq ´ X

`ptq
¯2
⇢
dt “ 0

(17)

Note that most real data satisfy this assumption, and
so does the TFD feature, which is normalized in r0, 1s.
We also denote the mean of the `-th variate as µ

` “!
µ
`ptq “ E

”
X

`ptq
ı)

tPr0,T s
, and let µptq “ ErXptqs “

`
µ
1
, . . . µ

`
, . . . , µ

9
˘T . We further define the covariance func-

tion of Xptq as:

V ps, tq “ ErpXpsq ´ µpsqq b pXptq ´ µptqqs, (18)

where s, t P rt1, t2s, and b is the tensor product on Rp. Then,
the eigenfunctions

!
fm “

`
f
1
m, . . . , f

`
m, . . . , f

9
m

˘T )

m•1
are

defined as: ª t2

t1

V p¨, tqfmptqdt “ �mfm, (19)

which satisfy
≥t2
t1

∞9
`“1 f

`
mptq1

f
`
m1 ptqdt “ 1 if m “ m

1 and
0 otherwise, and t�mum•1 are associated eignvalues. Conse-
quently, the principal component tCmum•1 are the projections
of F on the space spanned by the eigenfunctions tfmum•1 of
the covariance function:

Cm “
ª t2

t1

9ÿ

`“1

´
X

`ptq ´ µ
`ptq

¯
f
`
mptqdt, (20)

where the principal components tCmum•1 are zero-mean un-
correlated random variables with variance t�mum•1, respec-
tively. After removing the mean effect of Xptq, we truncate
the first q

1 terms of the Karhunen-Loeve expansion of Xptq
and write it as:

Xptq “
q1ÿ

m“1

Cmfmptq, t P rt1, t2s. (21)

The truncation leads to a dimension reduced subspace. We
further assume the density of each principal component Cm

is univariate Gaussian distribution. Since the structure of the
distribution of the multivariate time series can be retained in

the spectrum of the covariance of the data, one natural density
surrogate of TFD feature Xptq is the density of the first q

1

principal components:

f
pq1q
Xptqpxq “

q1π

j“1

fCm pcmpxq;�mq , (22)

where cmpxq is the principal component score of data x,
and fCm is the density of the m-th principle component
Cm. Assume the data generation procedure follows a mixture
model, the probability of generating data from g-th cluster
⇡g satisfies

∞K
g“1 ⇡g “ 1. We denote the indicator of the

cluster g as Zg , which takes the value 1 when the data belongs
to g-th cluster and 0 otherwise. Then, we approximate the
density of X|Zg“1ptq by product of the densities of random
variables

 
Cm|Zg“1

(
m“1,...,q1 with zero mean and variance

t�m,gum“1,...,q1 . Thus, the density of Xptq can be represented
by:

f
pq1q
Xptqpx; ✓q “

Kÿ

g“1

⇡g

q1
gπ

j“1

fCm|Zg“1
pcm,gpxq;�m,gq , (23)

where cm,gpxq is the pricipal component score of x belonging
to g-th cluster, and q

1
g is the number of principal components

for g-th cluster, and ✓ “
"´

⇡g,�1,g, . . . ,�q1
g,g

¯

1§g§K

*
are

unknown parameters to be estimated. We can represent the
likelihood of the observed data x “ txiu by:

l
pq1qp✓;xq “

nπ

i“1

Kÿ

g“1

⇡g

q1
gπ

m“1

1a
2⇡�m,g

exp

˜
´1

2

c2m,g pxiq
�m,g

¸
,

(24)
where cm,gpxiq is the m-th principal component score of i-th
observation xi belonging to the g-th group. We use the iterative
EM algorithm to maximize the above likelihood function with
respect to ✓. By finding the optimal representation of the data
x, we can estimate the most probable clustering assignment
for each observation xi.

To make this algorithm applicable to anomaly diagnosis
in power electronic networks, we use the sliding window
approach to slice the long time series into small fragments
since the duration of the attack may be short and it could shift
between different anomaly types. Thus, we assign clustering
labels to each sliding window. In our context, there are only
two anomaly types to be distinguished. Thus, we set the
number of clusters as two. Another implementation issue of
the MFPCA clustering algorithm is how to decide the number
of principal components for approximating the likelihood
function. We use the Cattell scree test [26] to select q

1
g for

each g-th group.

V. OFFLINE TESTING RESULTS

A. Experiment setup

The model and data used in this study are based on a testbed

model co-developed by the Intelligent Power Electronics Elec-
tric Machine Lab and the Sensorweb Research Lab at the
University of Georgia (UGA) for generating electric waveform
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Fig. 9: Real-time testbed.

data. In this study, we refer to the data from this testbed as the
UGA dataset. The PV farm consisting of seven converters and
an IEEE 37-node distribution grid is simulated in OPAL-RT as
shown in Figure 9. To simulate the dynamics of the PV farms,
PV converters are modeled in Embedded Field Programmable
Gate Array (eFPGA). The IEEE 37-node distribution grid is
simulated in Advanced Real-Time Electro-Magnetic Solvers
(ARTMEiS) to realize the real-time simulation. In the real-
time testbed, a number of cases are simulated. The offline
dataset consists of 43 abnormal cases. As we show in Table
I, among all 43 anomalous cases, there are 25 cyber-attack
cases, of which 14 are single-DIA cyber-attack cases, 10 are
coordinated-DIA cyber-attack cases, and 1 is a replay attack,
and 18 are physical fault cases, of which 14 are short circuit
fault cases and 4 are open circuit fault cases. The data is the
six-dimensional raw waveform data composed of three-phase
currents and three-phase voltages. Each case has a total of
800,000 time points with a sampling frequency of 20,000 Hz.
As a pre-processing step, we first down-sample the raw time
series every ten points to prevent the high computational cost.
Then, we extract TFD features from the raw waveform data.
For the down-sampled six-dimensional waveform of length
1000, we could extract nine-dimensional TFD features of
length 20. After feature extraction, we get a multivariate time
series with dimension p1600, 9q.

TABLE I: Number of Each Type of Anomaly in Dataset

Anomaly SubType Number of Cases Cyber or Physical?

Single DIA 14 Cyber-Attack
Coordinated DIA 10 Cyber-Attack

Replay attack 1 Cyber-Attack
Short-circuit fault 14 Physical Fault
Open-circuit fault 4 Physical Fault

B. Offline test results

1) Offline Anomaly Detection: For offline anomaly detec-
tion, our task is to identify the starts and ends of the anomalies.
The input for our algorithm is the 9-dimensional TFD features
with 1600 time points. The true anomalies start at 15 seconds
and end at 25 seconds. If the delay of the detector’s responses
to the true starts or ends is no later than 5 seconds, we say
the detection is successful.

Before implementing the ILAD algorithm, we first fit the
VAR(p) model to the TFD features, then we calculate the

TABLE II: Experiment Results of Offline Anomaly Detection

Approach Start End
off-ILAD 42{{{43 32{{{43
Leverage 40/43 21/43
Hotelling T2 33/43 3/43
MCUSUM 17/43 17/43

informative leverage scores for all time points and estimate
the breakpoints of the scores, which are our estimated starts
and ends of anomalies. It should be noted that the choice of
the hyper-parameter p in the VAR(p) model is data-driven.
Since the initial part of the streaming data is mostly normal,
we take this part as the pilot sample to determine the order
p of the time-dependence structure. Specifically, we aim to
find the VAR(p) model which best represents the underlying
dependence structure of the normal patterns of the TFD
features. Considering both the prediction loss and the model
complexity, we choose p with the smallest BIC value in the
range of p P r1, 15s. We also build the model under different
pilot sample sizes (from 35 to 65) to test if our model is
sensitive to the pilot sample size. We find that the optimal
choice of the order p remains the same. Thus, we set the pilot
sample size as 50.

To show the benefits of the proposed informative leverage
score, we compared it with the original leverage score in
terms of the accuracy of identifying the starts and ends of the
anomalies. We also compared two unsupervised score based
algorithms, Hotelling T2 [27], [28] and Multivariate CUSUM
[29], [30], for detecting the starts and ends of anomalies. We
deployed these two methods since they are designed to deal
with the multivariate time series data. The same sequential
change point detection algorithm is applied in the proposed
ILAD algorithm to ensure fairness. Results are shown in Table
II. The performance of the proposed algorithm denoted by
“off-ILAD” is better than that of the original “Leverage”
approach and is superior to the other score based methods.
Note that “off-ILAD” identifies 42 starts and 32 ends of
anomalies out of the 43 cases. The reason why the accuracy
of “off-ILAD” in detecting the ends of the anomalies is lower
than detecting the starts is that, even though some physical
faults are withdrawn, the system cannot return to its normal
state. This is why detecting of the ends of anomalies fails in
some cases.

2) Offline Anomaly Diagnosis: Among all the anomalies,
two major anomaly types are to be categorized. Since the
repair involved after attacks of different types of anomalies
is significantly different, it is necessary to distinguish cyber-
attack from physical fault accurately.

The extracted TFD features for each case are long and
periodic, therefore, we slice the long time series into several
time slots (each slot has 20 time points). Thus, we have 80
time slots from one case. Furthermore, we filter the data
in the anomalous duration detected by our proposed ILAD
algorithm. Thus, we obtain 893 windows in total. We apply
the MFPCA clustering to diagnose the 893 observations of
multivariate time series. Our method embeds the data onto a
low-dimensional space spanned by eigenfunctions. Thus, we
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TABLE III: Experimental Results of Offline Anomaly Diagnosis

Approach Accuracy F1 TPR TNR
MFPCA 0.9440 0.9490 1.0000 0.9029
t-SNE 0.6002 0.6557 0.5650 0.4630
UMAP 0.6663 0.6469 0.5709 0.6190

compare the benchmark deep embedding methods t-SNE, and
UMAP to embed the data onto a two-dimensional space and
apply the K-means clustering algorithm. The results are shown
in Table III. We measure the performance of clustering through
Accuracy, F1 score, TPR (True Positive Rate), and TNR (True
Negative Rate). In terms of all four measures, the proposed
MFPCA algorithm is the best among the three methods con-
sidered here. The Accuracy measure of the MFPCA algorithm
is 94.40% and the F1 score is 94.90%, which are relatively
higher numbers and even comparable to some of the clas-
sification algorithms [18]. Our MFPCA clustering algorithm
successfully identifies all the cyber-attacks. However, some
physical faults are wrongly identified as cyber-attacks because
some are hard to distinguish from cyber-attacks.

VI. ONLINE TESTING RESULTS

A. Online Experiment Setup

To validate the proposed method, we develop a real-time
detection and diagnosis testbed using NI device. As shown in
Figure 10, the NI 9205 is connected to the OPAL-RT. The
real-time data obtained by NI 9205 is sent to the PC through
Ethernet. To perform a comprehensive real-time data analysis,

NI 9205

From
OP5700

Send data to PC

Fig. 10: Real-time testbed using OPAL-RT and NI device.

we also distinguish between the two types of physical faults by
considering the short circuit fault and the open circuit fault.
We obtained streaming data consisting of different anomaly
types under two scenarios: (1) Scenario one consists of a set
of streaming data with five cyber-attacks, and one physical
attack due to a short circuit fault; (2) Scenario two consists
of another set of streaming data with five cyber-attacks, and
one physical attack due to an open circuit fault. An illustration
of the real-time experiment setup of the two scenarios is in
Figure 11. The y-axis represents the state of the streaming
data, whether it is normal, under cyber-attack (anomaly type

!"#$ %

&'(#&)(*+
%,-$ 2

&'(#&)(*+
%,-$ 1

'(0#&)

Fig. 11: The figure shows the set-up of the real-time data. The first five anomalies are
cyber-attacks, and the last is the physical fault.

1), or under physical fault (anomaly type 2). There are 6 starts
and 5 ends of anomalies to be detected.

B. Online test results

Anomaly happens

Fig. 12: Top panel: One phase of the current for the second scenario; Bottom panel:
Zoom-in of the anomalous duration under cyber-attack (The anomaly happens between

1.35s and 1.40s).

1) Online Anomaly Detection: The proposed online-ILAD
algorithm is implemented on the above online datasets to
test its performance. Under each scenario, we continuously
collect waveform data and detect the anomaly as the new data
streams. The raw streaming waveform data contain around
500,000 time points(« 25s). Figure 12 shows one phase of the
current under the second scenario. Our goal is to detect the
starts and ends of all attacks. We first down-sample the long
time series every 10 time points to prevent high computational
cost, and then extract the nine-dimensional TFD features. Our
following analysis is based on the TFD features. We use a
similar procedure in the offline setting to choose the best
VAR(p) model and apply the online-ILAD algorithm to the
streaming data. As in the offline experiment, the pilot sample
size for selecting the best VAR model is 50. Varying different
order values p, we choose the best hyper-parameter for the
VAR(p) model with the smallest BIC value. According to
Figure 13, the VAR(3) model is chosen for scenario one, and
VAR(5) is for scenario two. Figure 14 shows the calculated
online informative leverage scores for both scenarios. The
top panel is the result of scenario one and the bottom panel
is the result of scenario two. The blue vertical lines are
where the anomalies happen. The red vertical lines are the
detected starts and ends of anomalies. We can see that the
time points with high leverage scores are consistent with
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Fig. 13: (a): For scenario 1, BIC score under different p; (b):For scenario 2, BIC score
under different p

0 200 400 600 800 1000

0
1

2
3

4

time point

le
ve

ra
ge

 s
co

re

0 200 400 600 800

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

time point

le
ve

ra
ge

 s
co

re

time

time

Le
ve

ra
ge

 S
co

re
Le

ve
ra

ge
 S

co
re

In
fo

rm
at

iv
e 

Le
ve

ra
ge

 S
co

re
In

fo
rm

at
iv

e 
Le

ve
ra

ge
 S

co
re

Fig. 14: The results of online Informative Leveraging for anomaly detection. The solid
black line is the informative leverage score. The blue vertical lines are where the

anomalies happen. The red vertical lines are the detected starts and ends of anomalies.
The upper one shows the results of scenario one, and the lower one shows the results

of scenario two.

the anomalies on waveform data. We then used the change
point detection algorithm to sequentially detect change points
of the informative leverage score. Table IV and Table V
show the results of online anomaly detection for scenario one
and scenario two, respectively. Our proposed online ILAD
algorithm is denoted by “on-ILAD”. We compare the proposed
methods with other score based anomaly detection methods
and identify the anomalies by the same sequential change point
algorithm. The performance of the anomaly detection task in
the two scenarios is good, with the 100% accuracy. Thus,
our method is superior in performance to other competing
methods. It should be noted that the anomalous data returns
to the normal state after the attack ends. Thus, our proposed
method successfully detects all the ends of anomalies and
validates the efficiency of the proposed algorithm.

TABLE IV: Comparison of prediction results for Scenario 1

Approach Start End
on-ILAD 6/6 5/5
Leverage 5/6 2/5
Hotelling T2 5/6 4/5
MCUSUM 3/6 2/5

TABLE V: Comparison of prediction results for Scenario 2

Approach Start End
on-ILAD 6/6 5/5
Leverage 4/6 3/5

Hotelling T2 2/6 1/5
MCUSUM 5/6 4/5

TABLE VI: Experimental Results of Real-time Anomaly Diagnosis for Scenario 1

Approach Accuracy F1 TPR TNR
MFPCA 0.8571 0.9032 1.0000 0.8235
t-SNE 0.7143 0.2500 0.2500 0.2500
UMAP 0.8095 0.8947 1.0000 0.0000

TABLE VII: Experimental Results of Real-time Anomaly Diagnosis for Scenario 2

Approach Accuracy F1 TPR TNR
MFPCA 0.9524 0.9697 0.9412 1.0000
t-SNE 0.8095 0.8667 0.7647 1.0000
UMAP 0.9047 0.9444 1.0000 0.5000

2) Online Anomaly Diagnosis: As in the offline experiment,
we slice the TFD feature in the anomalous period into small
time slots and predict the TFD feature label in each time
slot based on the mixture model we trained in the offline
experiment. For each incoming time slot, we estimate its prin-
cipal components in each cluster, and compare the likelihood
of the window belonging to each cluster. Finally, we assign
the clustering label to the one with a higher likelihood. The
online testing result of the MFPCA clustering algorithm is
shown in Table VI and Table VII. In the online testing, the
performance of our clustering algorithm is still comparable to
the classification method mentioned in [18], and our method
is superior in performance to other deep embedding based
clustering methods in terms of the binary classification metrics
we use. For scenario one, our MFPCA clustering method iden-
tifies all the cyber-attacks successfully. Besides, our method
successfully identifies 82.35% of all the time slots with short
circuit faults. For scenario two, our method identifies all the
open circuit faults, and 94.12% of the time slots with cyber-
attacks. Compared to the open circuit fault, it is harder to
distinguish the short circuit fault from the cyber-attack.

VII. CONCLUSION

This paper presents a novel framework for solving the
anomaly detection and diagnosis problems in power electronic
networks. To detect anomalies, we use a novel informative
leveraging for anomaly detection (ILAD) algorithm that does
not need any data to train the algorithm. Compared to other
deep learning algorithms that need labels of the normal data
or labels of both the normal and anomalous data, the pro-
posed algorithm is unsupervised and does not need labels to
train. Compared to other unsupervised score based anomaly
detection methods, the proposed method has higher accuracy.
Furthermore, it is shown that our offline ILAD algorithm
can be generalized to the online ILAD by sketching the lag-
covariance matrix.

Most available work uses supervised classification mod-
els for the anomaly diagnosis task. However, the labels for
anomaly types in the power electronic networks are not easily
accessible in real applications. Therefore, we use an unsuper-
vised Multivariate Functional Principal Component Analysis
(MFPCA) clustering method to train the algorithm without
labels. Based on the model trained by offline cases, for each
time window, we tested the data in an online manner to decide
on the cluster association. To the best of our knowledge, this
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is the first article to use unsupervised anomaly detection and
diagnosis algorithm for the power electronic network.

It should be mentioned that more work needs to be done
in the future to make our method discover novel anomaly
types. Our clustering model cannot discover new clusters in an
online scenario as more data streams in. To make the algorithm
identify new clusters, we may need to borrow ideas from
dynamic linear models to generalize the MFPCA clustering
algorithm to a dynamic version.

APPENDIX

APPENDIX A
PSEUDO CODE OF THE ONLINE INFORMATIVE

LEVERAGING FOR ANOMALY DETECTION ALGORITHM

Algorithm 1: Online Informative Leveraging Anomaly
Detection and Diagnosis Algorithm

Result: The detected anomaly start time tstr , end time tend and the
anomaly type g.

Input: Streaming Input of the waveform, that is, a window of a
streaming input rXipt ´ hq, .., Xiptqs; and time lag between two
data windows l; extract a short period of starting data’ feature
(details of feature extraction refers to IV-A) as initials
rXipt0q, ...Xipt1qs; the anomalous state S “ ´1, which means
that the status is normal;

for time interval rt ´ h, ts do

1) Extract the TFD features rXipt ´ h˚q, ...,Xiptqs from the
input data window rXipt ´ hq, .., Xiptqs (details of extracting
TFD features can be found in section IV-A);

2) Based on the TFD features, get the streaming informative
leverage scores l̃kqq of each data point q in time window
rt ´ h˚, ..., ts (details of calculating informative leverage
scores can be found in section IV-B);

3) Based on the calculated informative leverage score, apply the
sequential change point detection algorithm (See details in B);

4) if the informative leverage score is flagged as a change point

then

The anomalous state changes, and S “ ´S;
if the anomalous state S “ 1, which means the status is

abnormal then

Do anomaly diagnosis by MFPCA clustering to
identify if it’s a cyber-attack or physical fault.
(details of the MFPCA clustering algorithm can be
found in section IV-C);

end

if the anomalous state S “ ´1, which means the status is

normal then

The anomaly ends;
end

end

end

APPENDIX B
CHANGE POINT DETECTION ALGORITHM FOR ANOMALY

DETECTION

Here, we provide details on the change point detection
algorithm we used in the article ([31]). To test whether a
change point occurred at some time point p, we first divide the
observations into two samples, x1, ..., xp, and xp`1, ..., xn,
and apply a likelihood ratio test to determine whether the
data before the time point p has the same mean and variance
as the data after time point p. The null hypothesis of the
likelihood ratio test is:

H0 : xi „ Exp p�0q @i (25)

The alternative hypothesis of the likelihood ratio test is:

H1 : xi „
#
Exp p�0q if i § p

Exp p�1q if i ° p

(26)

where Exp denotes an exponential distribution and �0 and
�1 are unknown parameters. Then, the statistic corresponding
to the generalized likelihood ratio test is given by:
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Mp,n “ ´2

ˆ
n log

n

S0,n
´ p log

p

S0,p
´ pn ´ pq log n ´ p

Sp.n

˙

(27)
where Sr,s “ ∞s

i“r`1 pxi ´ x̄r,sq2 {ps ´ rq, and x̄r,s is the
mean value of data from time point r to s. This statistic is
used for testing whether the time point p is the change point
in a sequence of length n. Since the value p is unknown, we
use the statistic defined below to identify whether the sequence
contains a change point:

Mn “ max
p

Mp,n, 2 § p § t ´ 2

p
˚ “ argmax

p
Mp,n, 2 § p § t ´ 2

(28)

If the test statistics Mn ° hn for some threshold hn, then
the point p˚ is the detected change point.

For sequential change point detection, we process the ob-
servations sequentially. The statistics Mn is calculated using
the observations between the current data point and the past
observations. If Mn ° hn then the change point is marked,
otherwise Mn`1 is computed. This sequential change point
detection algorithm can help identify the duration of anomalies
when the informative leverage scores change drastically.
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