Exquisite Feature Selection for Machine Learning
Powered Probing Attack Detection

Hamidah Alanazi®, Shengping Bif, Tao Wang' and Tao Hou*
TNew Mexico State University, Las Cruces, NM, USA, {hamidah, sbi, taow } @nmsu.edu
ITexas State University, San Marcos, TX, USA, taohou@txstate.edu

Abstract—Network attacks have been intensively studied by
recent research. Probing attacks, however, seem not receiving as
much attention as others, because they do not explicitly impact
the network operations. Nevertheless, probing attacks may mon-
itor network behaviors, extract web-sensitive information, and
gather topology information of a target network, which opens a
door for other attacks. It is critically important to understand the
traffic patterns of network probing attacks and prevent suspicious
probing activities from attackers.

In this work, we present a novel user selection tool to build
the optimal feature set that can characterize probing attacks.
It consists of three modules: 1) feature correlation analyzer
to remove highly correlated features for training efficiency; 2)
coarse-grain feature selection to select key features that can
describe the traffic patterns of probing attacks; 3) fine-grain
feature refinement to understand temporal/spatial correlations
among multiple packets to further improve the detection rate.
In addition, we propose a fast hybrid training architecture
that allows simultaneous training for both feature selection and
attack detection to improve the overall training efficiency. In the
experiment, we build a real-world network testbed to validate
our design. The results show that the detection model can achieve
a detection rate of up to 99.74% with the proposed fine-grain
feature selection tool.

Index Terms—Probing Attacks, Machine Learning, Feature
Selection, DDoS Attacks, Intrusion Detection.

I. INTRODUCTION

The Proliferation of different mobile devices (e.g., IoT
devices, mobile phones, laptops) has significantly facilitated
data sharing and benefit network applications in various do-
mains [1, 2]. However, it also raises a range of security
risks and privacy concerns and leads to a dramatic growth of
network attacks during the past few years, such as distributed
denial-of-service (DDoS) attacks, user-to-root attacks (U2R),
remote-to-local attacks (R2L), and probing attacks. Many of
these attacks have been intensively studied by recent re-
search [3—13]. Multiple machine learning models (e.g., Naive
Bayes, Random Forest, J48, and MLP) and various feature
sets have been proposed to achieve a high detection rate for
different attacks (e.g., DDoS).

Network probing attacks, however, seem not receiving as
much attention as others, because they are passively launched
and do not explicitly compromise web servers and affect
their operations. Nevertheless, it is critically important to
understand the attack patterns of network probing attacks
and prevent suspicious probing activities from attackers. By
scanning open ports and listening to online activities, a probing

attack is able to monitor behaviors of a network critical infras-
tructure, extract sensitive information from a web database,
and gather topology information of a target network, which
further opens a door for other attacks to exploit these vul-
nerabilities and exacerbate their adverse impacts. Particularly,
an attacker can leverage probing attacks to identify the most
critical infrastructure in the network and craft an advanced
DDoS attack on the particular infrastructure.

In this work, we aim to understand different types of
probing attacks and extract an effective feature set to identify
them. Machine learning techniques have been proven an
effective way to identify different types of network attacks.
However, initial examination shows that machine learning
models designed for other network attacks cannot achieve
a good performance when identifying probing attacks. The
main reason is that probing attacks behave quite differently
from other network attacks. The feature patterns applied to
other attacks may not work for probing attacks. For example,
protocol type is an important feature when identifying DDoS
attacks, but not for probing attacks. Further, we also notice that
most datasets are only packet-based and do not include any
temporal/spatial features. However, temporal/spatial features
such as consecutive packet interval, are inherent characteristics
of the network traffics and play an important role when
detecting probing attacks.

As such, one of the most challenging tasks in our work is to
select the proper feature set that can identify the traffic patterns
of the probing attacks. In this paper, we develop a novel
fine-grained feature selection tool to keep a pool of the most
effective features to improve training efficiency and detection
rate. Our feature selection tool consists of three modules:

o Feature correlation analyzer is to measure the linear re-
lationship between two features. When multiple features
are highly correlated, the model only requires one of them
as the others cannot provide additional information. In our
tool, we only keep one of them to improve the efficiency
of the model training.

o Coarse-grain feature selection combines both mutual
information analysis and extra tree classifier to rank the
importance of features towards identifying the probing
attacks. We also propose an iterative feature selection
procedure that incrementally adds features according to
their ranking until the training overhead grows faster than
the prediction accuracy.

o Fine-grain feature refinement incorporate the Long

Short-Term Memory (LSTM) to understand the temporal
correlations among multiple packets and reformat all
selected features as a feature vector to further improve
the detection accuracy.

In addition, we also propose a fast hybrid training architec-
ture that allows simultaneous training for both feature selection
and attack detection to further improve the overall training
efficiency.

The contribution of the work is summarized as follows:

1) We have proposed a novel feature selection tool that
can select the key features for probing attack detection
but also remove redundant ones for training overhead
reduction.

2) We have proposed a fine-grain feature refinement to
study the temporal/spatial correlations among multiple
packets to further improve the detection accuracy.

3) We have implemented a real-world network testbed to
validate the proposed feature selection tool via multiple
machine learning algorithms (i.e., Random Forest, Naive
Bayes, XGBoost, and AdaBoost). The results show that
the detector can achieve a detection rate of 99.74% with
the proposed fine-grain feature selection tool.

II. DATA SET DESCRIPTION

In this section, we describe the dataset used to build our
detection tool. We utilize a well-known dataset for our initial
feature selection and model training. We also build a real-
world testbed and collect our own dataset to further validate
our designs.

A. KDDCUP99 Dataset

Without loss of generality, we adopt the widely used dataset,
KDDCUP99 for our feature selection and initial model train-
ing [14]. The dataset includes a wide variety of network
attacks (e.g., DoS, R2L, U2R, Probing) simulated in a military
network environment.

In our study, we are particularly interested in probing
attacks, which aim to extract privacy information and find
potential vulnerabilities via system and network scanning. The
dataset contains four types of probing attacks:

o IPsweep: It scans the network to learn the victim’s IP
address via ICMP echo requests.

« Portsweep: It is used by attackers to identify open ports
and vulnerable areas of a target victim.

o Nmap: It is a tool to scan the target network by looking
for open ports and online activities to get information
about network parameters.

o SATAN: It can be used by attackers to gather essential
information about the server and find the weak points to
launch attacks.

We take a random sampling (i.e., 41,102 overall samples) of
probing/normal traffics from the dataset, each of which comes
with 41 features including basic features for individual TCP
connections, traffic features within a certain time window, and
content features relevant to specific domain knowledge. We

will carefully examine all these features and select the most
important ones for probing detection.

B. Dataset from Real-world Testbed

We also build a local network for real-world data collection
to further validate our design. Our network consists of work-
stations, laptops, mobile devices, and IoT devices. All devices
are connected to a 2.4 GHz WiFi router to form a client-and-
server LAN. In particular, we build an Apache HTTP Server,
which hosts a personal site as the target of probing attacks.
All other devices are served as the clients and the attacker is
one of them

The real-time data traffic is collected and saved as a PCAP
file. We further develop a feature extraction tool to extract 27
features as KDDCUP99 dataset. Note that we drop 14 content-
based features as they are not relevant to probing attacks.
Overall, our dataset contains 69,000 samples, of which 34,500
are probing attacks and the other half are benign traffics. The
real-world dataset will help us to evaluate the effectiveness of
the proposed schemes.

III. FEATURE SELECTION

Feature selection is a key step for accurate and efficient
attack detection. Since the traffic patterns of probing attacks
are quite different from other attacks, features used for others
cannot be adapted to detect probing behaviors. In this section,
we propose a novel feature selection tool that selects the
most important features to identify probing attacks as well
as removes redundant ones to improve training efficiency.

A. Overview

As shown in Figure 1, Our feature selection tool consists
of three components: 1) correlation analysis, 2) coarse-grain
feature selection; 3) fine-grain feature refinement.

Mutual @]

1 Information 2)
: n Feature “ H
P e

Importance

Correlation
Analysis

%o
%y

Feature
Refinement

el

.

Fig. 1. Structure of the feature selection tool

o Correlation analysis is to measure the linear correlation
between different pairs of features. When multiple fea-
tures are highly correlated, we only keep one of them to
improve the efficiency of the model training.

« In coarse-grain feature selection, we combine both mutual
information analysis and extra tree classifier to rank the
importance of features towards identifying the probing
attacks. We iteratively select each feature according to
their importance rank until the training overhead grows
faster than the prediction accuracy.

o We notice that KDDCUP99 dataset is packet based and
does not include flow based features. In fine-grain feature
refinement, we incorporate the Long Short-Term Memory
(LSTM) to learn the temporal/spatial correlations among

multiple packets and represent all selected features as a
feature vector.

The objective of the proposed tool is to construct a feature
vector that can characterize the patterns of probing attacks yet
keep the training efficient.

B. Correlation Analysis

Correlation is to describe the inter-relationship between a
pair of two features. When two features are highly correlated,
they are linearly dependent and have the same effect on model
training. As such when multiple features are highly correlated,
we only keep one of them to improve the training efficiency.

In our tool, we conduct a statistical correlation analysis
over all features and build a correlation matrix to indicate the
strength of the linear relationship of any feature pairs. Assume
we have N features X7, Xo,....X . For any pair of features
X; and X, their correlation Cj; is defined as

_Cou(Xi, X5) Y (@i —Zi)(x; — T;)
TooXixoXs (2P ()

where z; and x; are samples for features X; and X; respec-
tively, and Z; and Z; are mean values for features X; and
X respectively. Figure 2 depicts the correlation matrix of all
features. As shown, there indeed exist some features that are
highly correlated, while most of them are independent from
each other. In our tool, we only keep one feature when the
correlation between two features is larger than 0.95 (e.g., the
correlation between serror_rate and dst_host_serror_rate is 1).
To this end, we remove 8 highly correlated features and keep
the remaining 33 features for the next stage.

C;

& @ @ @ @ @ & & 2
ESETEE E E CE R U
FF T

£

Fig. 2. Feature correlation matrix

C. Coarse-grain Feature Selection

In this session, we aim to build a feature pool that can best
characterize the traffic patterns of the probing attacks.

First, we rank the importance of all available features. In
order to better quantize the importance of each feature, the
proposed tool integrates both Mutual Information Analysis and
Extra Trees Classifier. Second, we build the feature pool for
probing attack identification in an iterative manner. Specifi-
cally, we incrementally add features into our feature pool until
new features cannot gain any performance improvement (i.e.,
the attack detection rate grows slower than the computational
overhead).

1) Mutual Information Analysis: Mutual information (MI)
is a model-neutral scheme that can measure the dependency
of two variables [15]. In our tool, we adopt MI to measure the
potential connection between the probing attack and specific
features.

For any feature X; in the dataset, the mutual information
I(A; X;) between the attack and the feature is defined as the
relative entropy conditioned on the feature X,

I(A; X;) = H(A) — H(A[X,),

where probing attacks and the feature are treated as two vari-
ables A and X respectively, H(A) is the entropy of the prob-
ing attacks, and H(A|X;) is the attack entropy conditioned on
X;. Specifically, H(A) indicates the uncertainty of the probing
attacks and is defined as H(A) = — > Pa(a) * log Pa(a).
Since our dataset is balanced (i.e., we have the same number
of attack and benign samples), the statistical probability of a
probing attack is 0.5 and H(A) is computed as 1. H(A|X;) in-
dicates the uncertainty of attacks when the feature X; is known
and is defined as H(A|X;) = > Px,(x;) * H(A|X; = x;).
In our tool, the MI value will fall in the range from O to 1,
where a higher value indicates a closer connection between
the feature and probing attacks, while a lower value indicates
a weak connection. We plot the mutual information values for
all features in Figure 3.

0.6
0.5
0.4
0.3
0.2
0.1 II
0.0 SALLLLLLE] UE T O —
VU ooe e LT E S 0=
mEB:EEc&EEBEEgcEScE%SESoB:o:.Egcmgggg
TPt P SL PR Rr S eSP2rrRcloo0262E85T
S R3CE35 e P3Le3 s R0l oG oRcl
B8 0I8 A 10 I8 SIS i i EE IR i @g’m
22 22 i I66659L MR 165666 SQESHABE |
VGG GhpuoL2004882L32LL o5 0l00s ¢
, gUeREEECP3Roo2EDEEE 505 $058T8
B! 96T 000028 0CE G o900 2E 9298 5
g5 EE wpon B LTS SEE Eo B30 FO ©
T ©°h . >|>I wp_,l':._ s als oc I"E -3
8 %8 8 22 %S 5 BE S5 «ef 3
HE o wnun 2T 2
Bo,l < | E 22 PO €3 SE 5
och B O 66 0 = €3 £
KB B 8 v 2" oB c c
L] kel .cl 2 3 -CI ©
no
o 5 2 £ B
8 S g0°
L ©

Fig. 3. Feature ranking upon mutual information

2) Extra Trees Classifier: We further incorporate a ma-
chine learning based ranking algorithm, extra trees classifier
(extremely randomized trees classifier) to better describe the
importance of different features. Extra trees classifier is an en-
semble supervised machine learning technique that aggregates
results from multiple uncorrelated decision trees.

In order to comprehensively assess each feature, we need to
make the decision trees diversified and uncorrelated. Specif-
ically, each decision tree in the extra trees classifier is built
upon the random sampling of the original training dataset and
starts with a randomly selected subset of features. Further,
instead of choosing an optimum split for each feature, extra
trees classifier randomly selects the splitting points to de-
correlate different trees.

The feature importance in the extra trees classifier is com-
puted based on Gini Index (Gini impurity), which indicates
how well a decision tree is split upon a specific feature. In
particular, it calculates the amount of the probability of a
specific feature being wrongly classified at the split node. For
a particular split node n in the decision tree j, its Gini Index is
defined as Gini,; =1— Y P2, where P, is the probability

of a sample being classiéléedAas a distinct class (i.e., probing
attack/benign traffic) in this node. Assume the node is then
split upon the feature X, the importance of X; at the split
node is computed as

FIXM = GZ’I’LZnJ - G’LTLZl] - Gim’rh

Where Gini;; and Gini,; are the Gini Index of two child
nodes respectively. Finally, we aggregate and normalize the
feature importance for all features obtained from different
decision trees and rank each feature based on their importance.
Figure 4 plots the feature importance for all the features.

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
- o = 2o n o == un P~
LUELLYeCEYL UL YR NN UT L URCC S BN QNLTT
COSOCOCO0 _|ISO00SO00CO0UVL 0RO 0LRN==cO00=00 g
< L e i RN e =R A cAc R Neh
SSIOILILIOO LIS LI ISR JIE LIS JI6F00 P is e 5T g
CC_IS000D o000 @ 2sa 12 W5STEEQH 15
BAZEEEED EEEREY OfPBEO2ZURYTDISLUE 8
VNI TCE GOLOTT VLS m o3 " 2EcV 05 B
gEoman SEEEEE o ZECTE & F @eC I
rum>|>|“| Ssslbln =5 ©ok T I w= = >
cwogch cZ2hun, To 10T %) [@
n e 3 Angov (1<] = IE
Leon cee > Sep E g5
Bl LIE o 22 OofEc S
o% B @ Lo 6T £5a% c 3c
o oh o "’ml o LS <
o €T < B Qg %)
1} { oo & 3
T a9 <
© R
w
2 o

Fig. 4. Feature ranking upon importance value

3) Performance Gain: After ranking each feature according
to their mutual information and feature importance, we care-
fully build our feature pool to improve the predictive accuracy
and control over-fitting.

In the proposed tool, we incrementally add top features
to our feature pool and compare the evaluation results (e.g.,

detection rate and training overhead) of different numbers
of selected features via model pre-training. Specifically, we
define a metric, performance gain (PG) to facilitate the com-
parison of different selected features.

_P.—P, T.-T,
- P.+P, T.+T,

where P, and P, are the detection rates for current and
previous number of selected features respectively, and 7
and T}, are training computational overhead for current and
previous number of features respectively. A positive perfor-
mance gain indicates detection rate grows faster than the
training overhead when adding new features, while a negative
performance gain indicates adding new features cannot benefit
overall performance anymore. The proposed tool incrementally
expands the feature pool until adding new features cannot yield
a positive performance gain.

PG

D. Fine-grain Feature Refinement

We notice that the dataset of KDDCUP99 only contains
packet-based features and may not capture the correlations
among multiple consecutive packets. However, packet corre-
lations such as consecutive packet interval, are inherent char-
acteristics of network traffics and play an important role when
detecting probing attacks. To this end, we further concatenate
the long short-term memory (LSTM) into our feature selection
tool to understand the temporal/spatial correlations of probing
packets and capture correlation features to improve detection
efficiency.

Lo o Lo =)

y
I
'
'
'
'

Fig. 5. Fine-grain feature refinement with LSTM

LSTM is a special kind of Recurrent Neural Network
that can learn the long-term dependency by adding multiple
memory cells. It shows good performance for time-series
data processing, prediction, and classification[16]. Figure 5
shows the architecture of LSTM based feature refinement.
As shown, the inputs (i.e., x1,Z2,...,xx) are all features
we have selected from previous steps. We further adopt a
fully connected layer fy, to summarize all the features and
represent them as a feature vector H,,. The LSTM memory
cell takes the feature vector H,, as input and learn the
correlations with previous packet representations Rc, ,. h;
is the output for attack identification of feature vector H,.
Finally we add another full connected layer fy, to map the
updated correlation R, into a vector representation V;. The
LSTM based feature refinement could be used independently
to identify probing attacks, but may impose additional training

and prediction overhead. Alternatively, it can be adopted for
dataset pre-processing and combined with simple machine
learning algorithms to improve their detection accuracy but
also save the training time.

IV. MACHINE LEARNING ALGORITHM CONCATENATION

Our feature selection tool is model neutral and can be
adopted by any typical machine learning algorithms. We also
propose a fast hybrid training architecture to improve training
efficiency for both feature selection and attack detector.

A. Hybrid Training

Instead of training feature selection and attack detector in-
dividually, we concatenate them altogether to launch a hybrid
training procedure. As shown in Figure 6, we add an additional
layer in front of the attack detector to accommodate various
dimensions of feature inputs, such that we can support hybrid
simultaneous training. The coarse-grain feature selection now
gets feedback from both feature refinement and attack detector,
the additional information can facilitate its decision-making on
adding/removing/modifying the features from the candidate
pool. The fine-grain feature refinement also gets additional
feedback from the detector, which could help LSTM to better
understand the temporal correlations of probing packets. The
attack detector now starts training at the beginning and does
not need to wait until we have the fine-grain feature set, which
will expedite the detector training procedure.

Mutual

Information @
Feature
Importance A}fh

Attack
Detector

o2

Feature
Refinement

Fig. 6. Hybrid training structure

The hybrid training also supports module freezing. When
the fine-grain feature set is obtained, we can freeze the user
selection module and keep tuning the detector parameters even
when the system is online.

B. Machine Learning Algorithms

We will validate our designs and incorporate our tool with
typical machine learning algorithms.

+ Random Forest is a tree-based ensemble learning clas-
sifier that includes a collection of decision trees derived
from a subset of the training data [17].

« Naive Bayes is a supervised machine learning algorithm
that relies on the conditional independence of features to
find the similarity and match to the output class to make
the prediction [18].

o XGBoost is a shorthand for Extreme Gradient Boosting
which supports parallel tree boosting-developed machine
learning [19].

o AdaBoost is known for adaptive boosting which builds
a composite strong learner by repeatedly adding weak
learners through several cycles [20].

The above machine learning algorithms show good perfor-
mance in traffic identification. We will use all of them to
evaluate the performance of the proposed feature selection
tool.

V. EXPERIMENTAL ANALYSIS

In this section, we demonstrate the effectiveness of the
proposed feature selection tool and validate our designs via
multiple machine learning algorithms.

0.8

XGBoost
=== AdaBoost

=== Random Forest
Naive Bayes

Performance Gain

The number (N) of features selected

Fig. 7. Performance gain for different numbers of features

A. Performance Gain

In section III-C3, we define performance gain to compare
the evaluation results when different numbers of top features
have been selected. We start the feature set from the top 5
features. As shown in Figure 7, we can obtain a positive
performance gain until the feature set reaches around 13
features, indicating that the top 13 features would be the best-
chosen set for probing attack detection. Table I describes the
top 13 features used in our experiment.

TABLE I
ToP 13 FEATURES SELECTED FOR PROBING ATTACK DETECTION

In. Feature Name In. Feature Name

10 Hot 29 same_srv_rate

12 logged_in 30 diff_srv_rate

13 num_compromised 32 dst_host_count

15 su_attempted 33 dst_host_srv_count

23 Count 35 dst_host_diff_srv_rate
25 serror_rate 37 dst_host_srv_diff_host_rate
27 rerror_rate

B. Evaluation Metrics

We use fowling metrics to evaluate the effectiveness of the
proposed selection tool.

o Detection Accuracy: it is defined by the ratio of the

number of accurate detections to all the detections,
Accuracy = (TP +TN)/(TP + TN + FP + FN),

where TP is the true positive, FN is the false negative,
FP is the false positive and TN is the true negative.

e F1 Score: It is a widely used metric to evaluate the
quality of a predictive system, F'1 = 2 x (Precision
Recall)/(Precision + Recall), where Precision =
TP/(FP + TP) and Recall=TP/(FN + TP).

e Training Time: it records the actual time used for detec-
tion model training.

C. Evaluation Results on KDDCUP99

1) Coarse-grain Feature Selection: We compare the evalua-
tion results when different numbers of top features are selected
via various machine learning algorithms. As shown in Table II,
the best-chosen feature set always yields the highest detection
accuracy and F1 score for all machine learning algorithms.
For example, random forest can achieve a detection accuracy
of 99.68% when top 13 features have been used. On the
other hand, when an insufficient or excessive number of
features have been selected, the detection accuracy will drop
a bit. Specifically, the detection rate of random forest with
5 features been selected is 96.65% and will drop to 45.60%
with all features been used due to overfitting. As discussed
in performance gain, the detection accuracy grows faster than
the training overhead until the feature set increases to 13.

TABLE I
EVALUATION RESULTS WITH DIFFERENT FEATURES

Name # Features | Accuracy | F1 score | Time (secs)

5 96.65% 0.97 5.519

Random Forest 13 99.68% 1.00 7.486
33 45.60% 0.63 10.983

5 95.83% 0.96 0.379

Naive Bayes 13 96.48% 0.97 0.58
33 54.39% 0.70 0.291

5 96.67% 0.97 6.833

XGBoost 13 99.36% 0.99 13.838
33 47.40% 0.63 26.032

5 96.56% 0.97 42.752

AdaBoost 13 99.67% 1.00 66.976
33 50.64% 0.65 94.854

2) Fine-grain Feature Refinement: We also adopt LSTM to
further refine the selected feature set. As shown in Figure 8§,
the detector can achieve a trivial improvement and obtain
a detection rate higher than 99.78%. But LSTM training
takes 30.372s for KDDCUP99 dataset, which is a bit longer
compared with Random Forest, Naive Bayers and XGBoost.
Since model training may be needed periodically even when
the detector is online. We can use LSTM feature refinement
to extract the feature vector only. Online detector training can
be done independently to save computational overhead.

D. Evaluation Results on Real-world Testbed

We also adopt the proposed feature selection tool into the
real-world network testbed. Table III shows the performance
when different machine learning techniques have been applied.
Overall, the results show consistent performance as the results
using KDDCUP99 dataset. The detection model can achieve

Lstm Model Accuracy

0.9981 1

0.9980

0.9979 1

Accuracy

0.9978

0.9977 1

0.9976
—— Test

0.9975 - Train

0 1 2 3 4 5
Epoch
Fig. 8. Accuracy improvement with LSTM feature refinement

a detection rate of up to 99.21% with the best chosen set
obtained from the proposed feature selection tool.

TABLE III
EVALUATION RESULTS USING REAL-WORLD NETWORK TESTBED

Name # Features | Accuracy | F1 score | Time (secs)
5 94.44% 0.97 2.561
Random Forest 13 98.86% 0.99 2.89
27 94.31% 0.97 3.791
5 98.02% 0.98 0.328
Naive Bayes 13 98.75% 0.99 0.004
27 56.84% 0.50 0.013
5 99.10% 1.00 3.74
XGBoost 13 99.21% 1.00 9.248
27 99.19% 1.00 10.195
5 94.22% 0.97 13.537
AdaBoost 13 98.99% 0.99 25.963
27 98.24% 0.99 47.349

VI. CONCLUSION

In this work, we have proposed a novel feature selection tool
to construct a feature vector that can characterize the patterns
of probing attacks yet keep the training efficient. We also de-
veloped an LSTM-based fine-grain feature refinement to study
the temporal/spatial correlations of probing packets to further
improve the detection accuracy. In addition, we have built a
real-world network testbed to validate the proposed feature
selection tool via multiple machine learning algorithms. We
plan to implement a deep learning model to detect the probing
attack for future work.

VII. ACKNOWLEDGMENT

The work was sponsored by the DEVCOM Analysis Center
under Cooperative Agreement Number W911NF-22-2-0001
and NSF under grant ECCS-2139028. The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Office
or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

F Jiang, B.-c. Wang, C.-y. Sun, Y. Liu, and X. Wang,
“Resource allocation and dynamic power control for d2d
communication underlaying uplink multi-cell networks,”
Wireless Networks, vol. 24, pp. 549-563, 2018.

F. Jiang, Y. Liu, B. Wang, and X. Wang, “A relay-aided
device-to-device-based load balancing scheme for mul-
titier heterogeneous networks,” IEEE Internet of Things
Journal, vol. 4, no. 5, pp. 1537-1551, 2017.

P. S. Saini, S. Behal, and S. Bhatia, “Detection of ddos
attacks using machine learning algorithms,” in 2020 7th
International Conference on Computing for Sustainable
Global Development (INDIACom). IEEE, 2020, pp. 16—
21.

R. Doshi, N. Apthorpe, and N. Feamster, “Machine
learning ddos detection for consumer internet of things
devices,” in 2018 IEEE Security and Privacy Workshops
(SPW), 2018, pp. 29-35.

M. H. Kamarudin, C. Maple, and T. Watson, “Hybrid fea-
ture selection technique for intrusion detection system,”
International Journal of High Performance Computing
and Networking, vol. 13, no. 2, pp. 232-240, 2019.

S. Fang, Y. Liu, and P. Ning, “Mimicry attacks against
wireless link signature and new defense using time-
synched link signature,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 11, no. 7, pp. 1515-
1527, 2016.

Y. Liu and P. Ning, “Poster: Mimicry attacks against
wireless link signature,” in Proceedings of the 18th ACM
conference on Computer and communications security,
2011, pp. 801-804.

Y. Meng, J. Li, H. Zhu, X. Liang, Y. Liu, and N. Ruan,
“Revealing your mobile password via wifi signals: At-
tacks and countermeasures,” IEEE Transactions on Mo-
bile Computing, vol. 19, no. 2, pp. 432-449, 2019.

S. Fang, Y. Liu, W. Shen, H. Zhu, and T. Wang, “Virtual
multipath attack and defense for location distinction
in wireless networks,” IEEE Transactions on Mobile
Computing, vol. 16, no. 2, pp. 566-580, 2016.

A. Alagil, M. Alotaibi, and Y. Liu, “Randomized posi-
tioning dsss for anti-jamming wireless communications,”
in 2016 International Conference on Computing, Net-
working and Communications (ICNC). 1EEE, 2016, pp.
1-6.

Z. Li, Q. Pei, I. Markwood, Y. Liu, M. Pan, and H. Li,
“Location privacy violation via gps-agnostic smart phone
car tracking,” IEEE Transactions on Vehicular Technol-
ogy, vol. 67, no. 6, pp. 5042-5053, 2018.

S. Fang, I. Markwood, Y. Liu, S. Zhao, Z. Lu, and
H. Zhu, “No training hurdles: Fast training-agnostic
attacks to infer your typing,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018, pp. 1747-1760.

T. Wang, Y. Liu, Q. Pei, and T. Hou, “Location-restricted
services access control leveraging pinpoint waveform-

ing,” in Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, 2015,
pp- 292-303.

M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani,
“A detailed analysis of the kdd cup 99 data set,” in
2009 IEEE symposium on computational intelligence for
security and defense applications. leee, 2009, pp. 1-6.
F. Amiri, M. R. Yousefi, C. Lucas, A. Shakery, and
N. Yazdani, “Mutual information-based feature selection
for intrusion detection systems,” Journal of Network and
Computer Applications, pp. 1184-1199, 2011.

Y. Li and Y. Lu, “Lstm-ba: Ddos detection approach com-
bining Istm and bayes,” in 2019 Seventh International
Conference on Advanced Cloud and Big Data (CBD).
IEEE, 2019, pp. 180-185.

R. Santos, D. Souza, W. Santo, A. Ribeiro, and
E. Moreno, “Machine learning algorithms to detect ddos
attacks in sdn,” Concurrency and Computation: Practice
and Experience, vol. 32, no. 16, p. €5402, 2020.

S. Chen, G. I. Webb, L. Liu, and X. Ma, “A novel selec-
tive naive bayes algorithm,” Knowledge-Based Systems,
vol. 192, p. 105361, 2020.

B. Pan, “Application of xgboost algorithm in hourly pm?2.
5 concentration prediction,” in IOP conference series:
earth and environmental science, vol. 113, no. 1. IOP
publishing, 2018, p. 012127.

C. Ying, M. Qi-Guang, L. Jia-Chen, and G. Lin, “Ad-
vance and prospects of adaboost algorithm,” Acta Auto-
matica Sinica, vol. 39, no. 6, pp. 745758, 2013.

