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ABSTRACT

Most neural network-based classifiers extract features using several
hidden layers and make predictions at the output layer by utiliz-
ing these extracted features. We observe that not all features are
equally pronounced in all classes; we call such features class-specific
features. Existing models do not fully utilize the class-specific differ-
ences in features as they feed all extracted features from the hidden
layers equally to the output layers. Recent attention mechanisms
allow giving different emphasis (or attention) to different features,
but these attention models are themselves class-agnostic. In this
paper, we propose a novel class-specific attention (CSA) module to
capture significant class-specific features and improve the overall
classification performance of time series. The CSA module is de-
signed in a way such that it can be adopted in the existing neural
network (NN) based model to conduct time series classification. In
the experiments, this module is plugged into five start-of-the-art
neural network models for time series classification to test its effec-
tiveness by using 40 different real datasets. Extensive experiments
show that a model embedded with the CSA module can improve
the base model in most cases and the accuracy improvement can
be up to 42%.
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1 INTRODUCTION

Time series analysis (e.g., classification, anomaly detection) is be-
coming more critical in applications that collect increasing amount
of time series data. Different neural network (NN)-based approaches,
such as Long Short-Term Memory (LSTM) model [9], Convolutional
Neural Networks (CNNs) [19], have been introduced for time se-
ries analysis. Fully-Convolutional Networks (FCN) are considered
as a strong baseline in time series classification [17]. Most neural
network models, either CNN or LSTM based, have several hidden
layers (e.g., convolutional layers or LSTM layers) to generate tem-
poral features — only the last several layers (e.g., global pooling
layers or fully-connected layers) are used as output layers to make
predictions [6, 10, 11, 19, 22].

Naturally, each extracted feature may not equally contribute to
the time series classification of instances to different classes [8]:
some features may be more effective for one class while other
features may be more pronounced in instances of another class. If
one feature mostly comes from instances in one specific class, in
this paper, we refer to this feature as a class-specific feature.
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Figure 1: Time-series examples from different classes

Example 1.1 (Class-specific features). Fig. 1 shows the stock prices
of three companies. The red curve shows the stock prices from
a stable performing but no-growth company, without any price
changes. The green curve shows the prices from an up-growth
company and the yellow curve shows the prices of a down-growth
company. It is easy to see that, in this example, the sub-sequences
from time step 1 to 5 can easily separate the down-growth company
from the other two; sub-sequences from 6 to 10 would be more
helpful to differentiate the up-growth company from the other two
companies; and the whole time range from 1 to 10 may be needed
to differentiate the no-growth company from the down-growth and
up-growth companies.
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While the existence of class-specific features have been acknowl-
edged and leveraged in the context of improving model explain-
ability [8], unfortunately they are not well-utilized for the primary
classification tasks by the conventional neural networks models,
which generally feed all the features generated by the hidden layers
to the output layers [10, 11, 17].

In recent years, attention mechanisms [2, 6, 16] have been in-
troduced and widely leveraged to allow providing different levels
of emphasis (or attention) to different features. Extensive research
has shown that such attention mechanisms can improve the perfor-
mance of neural network models in different applications. However,
these attention mechanisms themselves tend to be class-agnostic
and, to the best of our knowledge, for a general time-series classifi-
cation task, no existing attention mechanism explicitly incorporates
class-specific features for generating emphasis.

To make use of the class-specific features to improve the perfor-
mance of general NN models, this paper proposes a novel Class-
Specific Attention (CSA) module that captures class-specific fea-
tures to learn class-specific attention, without negatively impacting
the testing phase. The CSA module is different from existing atten-
tion designs [2, 6, 16], since CSA utilizes class labels to calculate
attention.

The main contributions of this paper are:

e We propose a Class-Specific Attention (CSA) module to cap-
ture class-specific features and learn class-specific attention
from (multivariate) time series data. This module is general
and can be adopted in most neural network based models
for time series classification (with or without attention) to
improve their performance.

e We design a Class-differentiation component to better iden-
tify the specific and important features to one class. The CSA
module leans class-specific features in the hidden layers dur-
ing training and easy to be used in testing.

e The CSA module is applied to five state-of-the-art neural net-
work models for time series classification on 40 real datasets
(28 multivariate time-series (MTS) and 12 univariate time-
series (UTS)). Extensive experiments show that a model with
CSA module provides better overall performance (with accu-
racy gains up to 42%) compared to the same model without
CSA.

The rest of this paper is organized as follows. Section 2 dis-
cusses the related works. Section 3 presents the architecture, the
learning algorithm, and the utilization of the newly proposed CSA
module. Section 4 reports our experimental results to evaluate the
performance of the CSA module. Section 5 concludes this work and
discusses future directions.

2 RELATED WORKS

Time series classification is a well-studied problem with extensive
literature on the topic. Recently, deep learning models have shown
great success in time series classification. Convolutional Neural
Networks (CNNs) have been exploited in time series classification
because shallow convolutional layers can capture short-term tem-
poral dependencies and deep convolutional layers can encode long-
term temporal dependencies. Various CNN models are designed
to classify multivariate time series (MTS) data [19, 22]. In [17], a
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Figure 2: The overview of the an FCN Model, extended with
Class-Specific Attention (CSA)

Fully-Convolutional Network (FCN) is proposed. It is considered
as a strong baseline for time series classification.

Long Short-Term Memory (LSTM) [9, 13, 14] and Gated Recur-
rent Unit (GRU) [5] based models are also widely used in temporal
analysis. Both LSTM and GRU capture temporal features and makes
predictions by using gating functions in their dynamics states. To
make good use of the FCNand LSTM models, Karim et al. 10, 11] fur-
ther propose two state-of-the-art models, LSTM-FCN and MLSTM-
FCN by combining both FCN and LSTM to classify uni-variate and
multivariate time series. Among these models, class-specific fea-
tures are not utilized.

Recently, the attention mechanism [2] has been widely deployed
to solve various types of problems, including regression analysis
(e.g., [12, 14]) and time series analysis [4, 6, 10, 11, 15, 18, 21]. Despite
all the success that attention mechanisms bring, existing attention
mechanisms cannot be directly applied to capture class-specific
features.

Using class-label information in classification models has been
explored. [8] and [7] apply class information for well-trained models
to improve either the model explainability or the classification
performance. TapNet [20] uses class label information to build a
prototype (a component inside their model) for each class; they
average the features of the instances for the same class label and
apply softmax on the different prototypes. This is different from our
design of calculating attention from class-specific key and query
features [2].

3 CLASS-SPECIFIC ATTENTION (CSA)

It is possible that features generated from hidden layers of neural
network models do not equally contribute to classifying differ-
ent classes. Furthermore, features that are important to classify
instances belonging to one class may not be useful in classifying
instances belonging to other classes [8]. This phenomenon becomes
more obvious in time-series classification when a sub-sequence of a
time series, instead of the whole sequence, is more useful to classify
instances from specific classes (as in Eg. 1.1). In this section, we
describe a Class-Specific Attention (CSA) module that builds on the
above observations to identify and leverage class-specific features
in time series classification.

3.1 Overall Design

We explain the core idea and overall design of the CSA module
using Fig. 2. The CSA module is designed in a way such that it can
be adopted in existing neural network (NN) based time series clas-
sification models. Without loss of generality, we use the FCN [17]
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Figure 3: The architecture of the Class-Specific Attention (CSA) Module — notation convention: (1) A symbol using AMS
blackboard bold font (A€) represents a tensor learning from training instances, and directly used for testing; (2)the other
tensors are represented using math calligraphic font style (e.g., £, K, V, S); (3) class-specific tensors are denoted with a
superscript C (e.g., Q€, K€, VC, S€); (4) kernel weights are represented using W with a subscript (Wp, Wk); (5) dimension sizes

are represented as superscript for R (e.g., RNXT),

model as a representative NN model to explain the design of our
newly proposed CSA module. In this figure, the CSA module is used
to extend the FCN model for time series classification for illustra-
tion purposes. The CSA module is shown in the three dotted-line
boxes at the center of the figure. Note that, while CSA can be placed
after any hidden layer of a neural network model, in this figure
(and in the experiments reported in the paper), we place it after
the last hidden layer of the neural model, as later layers capture
more higher-level features than the previous layers [8]. CSA takes
a special form of input that leverages the class label information of
training instances — such labels are generally used by existing neu-
ral network models for evaluating the loss value from the output
layer, but are not explicitly utilized for learning hidden features. In
contrast to the state-of-the-art, the CSA input data integrates class
label information of training instances with the features learned
from previous hidden layers (the detailed explanation of the matrix
L can be found in Section 3).

CSA gives different attention (or emphasis) to features gener-
ated in the hidden layers to learn class-specific features, which
are then used to evaluate the probabilities of the data instances
belonging to different classes. The design of the CSA module adopts
the basic idea of self-attention mechanism [16] where the features
in the three hidden spaces (key, value, query) are learned from the
same input data. On the other hand, CSA differs from self-attention
mechanisms in two major aspects:

o First, CSA is designed to learn the class-specific features in
the training stage and preserve these features in the hidden
query space. Yet, the design of the query space, which encodes
the class-specific features, can be directly utilized in the
testing stage without knowing the class labels of testing
instances.

o Typical attention mechanisms calculate attention values by
using the similarity between the key features and the query
features; however, such a calculation cannot differentiate
features that commonly exist in all the instances from the
class-specific features that only exist in instances of specific
classes. In contrast, attention calculation in the CSA module
differentiates the importance of class-specific features from
other features.

Table 1 lists the symbols used in the method description.

Symbol  Meaning

# of instances in a TS dataset

# of distinct classes in a dataset

# of variables in a TS dataset

# of time points of one time series in X

Feature matrix from hidden layers

# of features at each time point in X

# of features in the hidden key and query spaces
# of instances in one batch

mA MR <O Z

Table 1: Symbols used in this paper

3.2 Overview of the CSA Architecture

Fig. 3 presents a detailed view of the CSA architecture. In this
scenario, the features from the hidden layers of the FCN model are
fed as input to the CSA module - in particular, we assume that
features are generated by the hidden layers that are immediately
before the CSA module in the architecture.

The CSA architecture outlined in Fig. 3 embodies our key design
decisions:
Design Decision #1. Unlike the existing self-attention mechanisms,
CSA introduces the class-specific attention A€ to differentiate class-
specific features from other features. In particular, after learning
the features Q and K in the latent query and key spaces, CSA
aggregates the instances in the same class in these two feature
spaces to get two class-specific feature tensors Q© and K€ so that
they can be further utilized in calculating the class-specific attention
AC and the updated features Ocsa.
Design Decision #2. The class-specific attention A is designed
to be a global tensor. It is updated during the training stage and can
be directly used in testing. Consequently, the CSA design avoids
the need for the testing instances to have class labels.

3.3 Training Process

The ultimate goal of the CSA training is to convert regular features
(denoted as £ in Fig. 3) to class-specific features (Ocsy4 in Fig. 3).
This conversion utilizes the class-specific attention AC.

The CSA_Calculation algorithm, shown in Algorithm 1, provides
an overview of the learning process for CSA training. First, for
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Algorithm 1 CSA_Calculation

Input: £ € RNPF. feature tensor from the hidden layers
Output: Ocsa € RVCTXE: feature tensor adjusted using class-specific
attention
K = L - Wi where Wx € RF*Fa
Q = L - Wp where W € RF*fa
: Initialize K€ € RXTXF, Q€ ¢ RTXF
: for each class label ¢ do
L, = all the instances belonging to class c.
KCc,::] = average(K[ Le,::]) on the first dimension
QC|c,:,:] = average(Q[ Le, :,:]) on the first dimension
: end for
- S =K (Q)T where S € REXTXT
: Initialize S¢ € ROTXT
: for each class label ¢ do

N A A o

—_
[T

12: Sc =Sle, ;]
_ SUM(S)-S¢
138 Soc= (g5 —¢
140 8¢, 5:] = Se +abs(Se — S-¢)
15: end for

—_
ey

: A€ = SoftMax(S€) € R&*TXT

. V= £ - Wy, where Wy € REXF

: V€ = shape C copies of V to RNXCXT*F
. L€ = shape C copies of £ to RIVXCXT*F
. Ocsa = LE +0x (A€ . VC)

: return Ocsa

[ R RO
= S v % 3

the training instances, the features in the hidden query space (Q)
and key space () are learned (Lines 1-2). Then, these two feature
tensors are transformed to class-specific query features Q° and
class-specific key K€ features (Lines 4-8). Next, QC are combined
with K€ to calculate the class-specific attention AC (Lines 9-16). Fi-
nally, the attention AC is applied to the value features V< (which is
reshaped from the original feature tensor £) to get Ocsa (Line 20).

In what follows, we provide details of the learning processes for
calculating the class-specific attention AC.

3.3.1 Learning Process for AC . The calculation of the class-specific
attention AC utilizes the class-specific query features Q€ and the
key features KC.

To calculate the similarity between QC and K€, a feature matrix
is calculated as S = K€ - (Q°)T. Different from existing attention
mechanisms, we introduce a class differentiation (CD) component
to post-process the feature matrix S, as shown as the right shaded
area in Fig. 3. Existing attention mechanisms calculate the attention
values directly from S. However, calculating the similarity between
the key and query features is not sufficient for CSA. If a feature
is learned from instances in multiple (or all) classes, finding this
feature may not be very helpful when making predictions. To better
separate instances from one class, CSA needs to identify specific
features from instances within this class, which are not commonly
found from instances belonging to other classes. By adding the abso-
lute differences between features for class c and all the other classes
(—c) (Lines 11-15), we seek features that can differentiate instances
from class ¢ and instances from other classes (—c) while still making
use of the original features. The significant class-specific features
are kept in SC. SC is further used to calculate the class-specific
attention AC (Line 16).
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3.3.2 Updating of L to Ocsa. Class-specific attention A is used
to adjust the value features V from L to get Ocsa (Lines 17-21).

The value features V and the features in £ are transformed to
VC and LE by repeat C copies. The output features in Ocgy are
calculated using Ocsa = LE+0x(AC-VC) where o is a learnable
scalar value.

3.4 Utilization of CSA for the Output of NN

In the CSA-embedded FCN model (i.e., FCN model that embeds
the CSA module, as shown in Figure 2), the features in Ocgy are
adjusted using class-specific attention and are fed to output layers
(global pooling layers and fully connected layers). More specifically,
the output layers of the CSA-embedded FCN consist of one global
pooling layer and one fully connected layer. The design of the
global pooling layer follows the common design practice in existing
models [10, 11, 17]: Ocsa (€ RNCPE) is converted to a condensed
feature tensor G € RNOF by averaging the features in the time
dimension.

Where CSA differs from the conventional design is in the fully
connected layer: the features in G, if directly fed to a traditional
fully connected layer, cannot make good use of the features from
specific classes because fully-connected layers directly combine all
features without considering their differences. Instead, we design
a layer by introducing class-specific weights and biases to better
utilize class-specific features. In particular, for each class c, a weight
matrix Q € RP and a bias f§ are used to calculate a value for this
class (val = G - Q+p). This value is used to get the probability of an
instance belonging to class c. Compared with the traditional fully-
connected layer, this design can make better use of the class-specific
features from O¢cgy because features from different classes are not
combined. Instead, the probability of an instance belonging to one
class is calculated only using features specific to this class for most
cases. Meanwhile, the weight parameters (in Q and f) are not more
than those in a traditional fully-connected layer — therefore, model
training time does not increase because of this special design.

Prediction for a testing instance. The class-specific features
Ocsa for a testing instance are calculated by directly utilizing the
global class-specific attention A€ and the value features of this
instance. Note that the testing instance does not need any class
label to leverage class-specific attention. Next, these class-specific
features Ocsa are passed to the specially designed fully connected
layer described above to make class predictions.

4 EXPERIMENTS

We evaluate the effectiveness of the proposed CSA module. All
methods are implemented using Python 3.7 and tested on a server
with Intel Xeon Gold 5218 2.3G CPUs, 192GB RAM, and one Nvidia
Tesla V100 GPU with 32GB memory. PyTorch 1.10 is used to build
all the models. To acquire stable results, every number (accuracy
or running time) we report is an average of five runs.

4.1 Experimental Settings

Datasets. We report results on 40 datasets (28 MTS and 12 UTS)
which are randomly chosen from the time series repositories (UCR [3]
and UEA [1]).
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Dataset ‘ ‘ N ‘ C ‘ \4 ‘ T
ArtWordRec 575 | 25| 9 144
BasicMotions 80 4 6 100
CharTraj 2858 | 20 | 3 182
Cricket 180 12 6 1197
DuckDuckGeese 100 5 | 270 | 1345
EigenWorms 259 5 6 17984
Epilepsy 275 4 3 206
EthanolConc 1751 | 4 3 1751
FaceDetection 9414 2 62 144
FingerMovements 416 2 28 50
HandMovement 234 4 10 400
Handwriting 1000 | 26 | 3 152
Heartbeat 409 2 61 405
InsectWingbeat 50000 | 10 | 30 200
JapaneseVowels 640 | 10 | 26 12
LSST 4925 14 6 36
Libras 360 15 2 45
MotorImagery 378 2 | 64 | 3000
NATOPS 360 6 24 51
PEMS-SF 440 7 963 144
PenDigits 10992 | 10 2 8
Phoneme 6668 | 39 | 11 217
RacketSports 303 4 6 30
SelfRegSCP1 561 2 6 896
SelfRegSCP2 380 2 7 1152
SpokenArab 8798 | 10 | 13 93
StandWalkJump 27 3 4 2500
UWaveGesture 440 8 3 315
Medicallmages 1141 | 10 | 1 99
MelPedestrian 3633 | 10 1 24
MidPhalanxoutGrp 554 3 1 80
MidPhalanxoutCor 891 2 1 80
MidPhalanxtw 553 6 1 80
OsuLeaf 442 6 1 427
PhalangesCor 2658 | 2 1 80
Powercons 360 2 1 144
ProximalPhaGrp 605 3 1 80
ProximalPhaCor 891 2 1 80
ProximalPhaTw 605 6 1 80
RefrigerationDev 750 3 1 720

Table 2: Statistics of 28 MTS and 12 UTS Datasets

Methods for Comparison. The CSA module is designed to be
compatible with, and improve the time series classification perfor-
mance of, existing models. Many NN models exist to classify time
series, it is not realistic to embed CSA to all of them for testing. In
our experiments, we embed the CSA module in five representative
state-of-the-art models, namely (1) Fully Convolutional Networks
(FCN) [17], (2) Multivariate Long Short-Term Memory (MLSTM) [9],
(3) MLSTM-FCN [11], (4) CNN with attention (CNN-ATN) [6], and
(5) TapNet [20]. The first three models are widely used NN models
without attention mechanism, while CNN-ATN leverages attention
in MTS classification, TapNet incorporates both attention and class
label information in training. For these five models, we get their
implementation from their published source code. If the version is
not comparable, we convert the code to PyTorch.

MiLeTS, Aug 15, 2022, Washington DC

Datasets || Alren |AIvpstAInsti-reNATTapnedAIonn-aTN
ArtWordRec 0.204 | 4.902 1.029 0.816 | 0.407
BasicMotions -0.207 | 0.948 0.207 -0.600 1.833
CharTraj 0.000 | 0.616 0.403 0.000 0.000
Cricket 0.000 0.568 2.050 -1.895 | 2.228
DuckDuckGeese || 3.514 | 3.274 1.662 -6.630 -
EigenWorms 1.471 0.000 9.125 -3.333 -
Epilepsy 6.045 |3.003 | 1157 |-5517| 0.421
EthanolConc 5.449 1.170 5.145 13.043| -1.923
FaceDetection 0.000 | 0.692 1.079 1.423

FingerMovements|| 1.235 | 0.000 0.000 3.583 | 2.990
HandMovement 4.274 |11.892| 5.579 12.069| 4.739
Handwriting 1.408 | 7.692 4.965 40.404| 0.676
Heartbeat 0.739 | 0.244 0.741 -2.139 | 0.000
InsectWingbeat 27.778 | 0.000 17.241 - -

JapaneseVowels 0.907 | 1.493 0.215 0.405 | 0.000

LSST 2.703 | 0.379 5.283 42.667| 1.506
Libras 0.443 |28.261 -0.442 3.797 | 0.000
MotorImagery 1.250 | 2.632 0.000 -3.459 -

NATOPS 1.354 3.535 1.814 0.000 0.423
PEMS-SF 1.720 |22.222 1.724 0.000 -

PenDigits -0.203 0.000 0.000 0.000 0.000
Phoneme 4.545 | 6.000 18.750 |31.707 -

RacketSports 3.476 1.542 4.416 15.909| 0.000
SelfRegSCP1 0.229 | 0.668 0.452 -13.587| 5.783
SelfRegSCPZ 3.169 4.196 0.000 2.076 2.198
SpokenArab 0.821 0.000 0.407 0.000 0.000
StandWaIkJump 0.000 -5.780 -3.271 15.748 -

UWaveGesture -0.962 | 0.737 -0.260 -0.907 | -0.477
Wins 21/28 | 22/28 21/28 13/27 | 11/20
Average 2.549 3.603 2.838 5.392 1.040

Table 3: AI using CSA for all the models on MTS datasets
(bold entries indicate scenarios where a model with CSA
provides positive accuracy improvements)

Hyper-Parameter Setting. We use the hyper-parameter settings
reported in [11], and [6]: The convolutional layers of the FCN model
contain three 1-D kernels with sizes 8, 5, 3 — the corresponding
numbers of kernels are 128, 256, and 128. The pooling filter in the
global pooling layer has the same as the length as the time series
output from the previous layer. The 2D kernels in the CNN-ATN
model have sizes (8 X 1), (5 X 1), and (3 X 1). The number of the
hidden states of MLSTM model is 128. The F parameter for £ (Fig. 3)
for all the models is set to 128. For TapNet, the number of variable
subsets is set to 3.

Evaluation Measure. We consider a commonly used classification
performance measure, accuracy (Acc € [0, 1]). More specifically,
we compute and report accuracy improvement, Al, to compare two
models, A and B, with accuracy values Acc4 and Accp:

Accyg — Accp

AI(A,B) = (1)

Accp
Since we are generally interested in measuring the improvement
provided by the CSA module over the conventional baselines, we
use Alpjoqel to denote AI(Model-CSA, Model). Each experiment were
run five times on each dataset and the average improvements for
each dataset are reported.
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4.2 Effectiveness Analysis

This section presents the effectiveness of the CSA module.

4.2.1 MTS datasets. Table 3 presents the detailed AI values for
all MTS datasets. In this table, the results on several datasets for
CNN-ATN model are missing (denoted with ’-’) because the models
cannot finish utilizing the GPU memory. CNN-ATN uses 2D convo-
lutional operations, as well as attentions over variable and temporal
dimensions, which requires a lot of memory.

The table clearly show that the AI values is bigger than zero
for most datasets for each base model. This means that the CSA
module helps improve all these different base models. The average
AT for the different models ranges from 1.04% to 5.39%. There are a
few cases where the base models show slightly better performance
than their corresponding CSA model; we conjecture that this is
due to the increase in the number of model parameters when using
CSA extension.

The accuracy improvement over the TapNet method is the high-
est. This is because TapNet generates the £ tensor from three sub-
sets of the input MTS data, which is three times larger than the
L € RNXTXF from other models. The large £ provides more infor-
mation for our CSA module to utilize.

Datasets | Alren |AILstvALLsTvFONATTapNedATCNN-ATN
Medicallmages 0.253 |11.111] 0.509 0.267 | 1.044
MelPedestrian 0.909 |8.434| 0.251 3.788 1.412

MidPhalanxoutGrp|| 5.298 |35.514] -0.323 | 0.608 | 2.096
MidPhalanxoutCor|| 0.246 | 0.000 0.247 0.474 | 0.242

MidPhalanxtw 0.000 [20.961] 3.200 |-1.294| 0.370
OsuLeaf 0.828 | 0.000 1.245 1.029 | 2.004
PhalangesCor 0.249 | 0.000 | 1.003 2.332 | 1.985
Powercons 0.432 |1.277| 0.648 1.695 1.089

ProximalPhaGrp 0.955 [25.085 0.238 | -0.234 | 0.235
ProximalPhaCor 2.128 |4.348| 3.118 0.671 | -1.089

ProximalPhaTw -2.151 [12.262| 3.261 | 0.756 | 1.222
RefrigerationDev || -0.769 (13.725] 1.515 0.000 | -2.405
Wins 9/12 | 9/12 | 11/12 9/12 | 10/12
Average 0.644 (11.251 1.175 | 0.776 | 0.631

Table 4: AI using CSA for all the models on UTS datasets
(LSTM model on UTS corresponds to MLSTM model for MTS;
LSTM-FCN model on UTS corresponds to MLSTM-FCN model
for MTS)

4.2.2  UTS datasets. Table 4 presents the Al values on UTS for all
the models (the detailed accuracy results can be found from the
appendix). The results show that the proposed CSA module can
also improve the classification performance of all the base models
on UTS datasets. The average Al for the different models ranges
from 0.6% to 11% Compared with the results on the MTS datasets,
the Al is slightly smaller on MTS datasets. This is because MTS
datasets normally have more features than the UTS datasets.

We want to particular mention that the improvement on the
TapNet model is low on UTS. The reason is that there is only one
variable in a UTS. Thus, we cannot create multiple variable subsets
to generate L. The best improvement is observed on LSTM model
(which corresponds to the MLSTM model for MTS). This is because
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LSTM is the worst performing base model on UTS (detailed accuracy
information can be found in the appendix).

4.3 Ablation Study

FCN-CSA

Datasets woCD [ wCD || Al

ArtWordRec 0.980 0.982 || 0.204
BasicMotions 0.962 0.966 0.416
CharTraj 0.990 0.990 0.000
Cricket 0.914 0.910 -0.438
DuckDuckGeese 0.742 0.766 || 3.235
EigenWorms 0.562 0.552 -1.780
Epilepsy 0.818 0.842 || 2.997
EthanolConc 0.658 0.658 0.000
FaceDetection 0.560 0.562 0.357
FingerMovements 0.653 0.656 || 0.536
HandMovement 0.475 0.488 || 2.737
Handwriting 0.280 0.288 2.857
Heartbeat 0.813 0.818 || 0.677
InsectWingbeat 0.134 | 0.138 || 2.985
JapaneseVowels 0.890 | 0.890 || 0.000
LSST 0.478 0.456 -4.50
Libras 0.896 0.906 1.116
MotorImagery 0.642 0.648 0.935
NATOPS 0.898 0.898 0.000
PEMS-SF 0.943 0.946 0.371
PenDigits 0.980 0.982 0.204
Phoneme 0.086 0.092 6.977
RacketSports 0.764 | 0.774 || 1.309
SelfRegSCP1 0.886 0.874 -1.354
SelfRegSCP2 0.573 0.586 2.358
SpokenArab 0.972 | 0.982 || 1.029
StandWalkJump 0.418 | 0.400 || -4.192
UWaveGesture 0.612 0.618 || 0.980
Wins 19/28
Average 0.715

Table 5: AI comparison for FCN-CSA models with and w/o
CD component on MTS datasets

CSA relies on a class-differentiation (CD) component to detect
the features that can differentiate a class c and the remaining ones
—c. In order to assess the the impact of the CD component, we im-
plement a version of CSA without CD, Model-CSA-NoCD as follows.
We calculate the CSA outputs by applying the SoftMax function
directly on S to calculate AC, without calculating the feature dif-
ferences between class ¢ and classes —c (i.e., without computing
S¢ and S€ in Fig. 3). Without loss of generality, we choose one
base model (FCN model) and run FCN-CSA and FCN-CSA-NoCD
over all the MTS datasets. As we expect, for most data sets, the CD
component helps improve the performance. As shown in Table 5, on
average, FCN-CSA increase the accuracy of FCN-CSA-NoCD with
0.72%. Despite that this number is not big, we note that among
all the MTS datasets, FCN-CSA outperforms FCN-CSA-NoCD on
19 datasets and they have same performance on 4 datasets. These
results show that the CD component helps improve the time series
classification performance in general.
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4.4 Efficiency Analysis

The above results show that class-specific attention generally has
positive impact on classification accuracy. In this section, we exam-
ine the efficiency of the proposed CSA module.

Fig. 4 (a) reports the training time for the baseline models (i.e.,
Model) and Model-CSA per iteration. As we would expect, CSA
requires additional time to calculate the tensors and learning pa-
rameters in the CSA architecture. Model-CSA uses up to 0.2 seconds
more than Model to train the models in one iteration. While class-
specific attention has an impact on training times, there are no
significant differences between the testing times of baseline models
with models extended with CSA. Fig. 4 (b) shows Model-CSA uses
almost the same time as Model to make predictions for one instance
for all models except the TapNet. TapNet has a bigger difference be-
cause it has more features (three times) than other models to learn
in the CSA module. This confirms that class-specific attention can
be used effectively in practice for accurate time series classification.

5 CONCLUSIONS AND FUTURE WORKS

This paper presents a class-specific attention (CSA) module to im-
prove the classification performance of neural network models for
time series classification. The proposed module can be embedded to
neural network model for time series classification (including those
that leverage other forms of attention) to automatically capture
significant features to differentiate instances of one class from the
instances of the other classes. CSA identifies class-specific features
leveraging training labels, while avoiding the need to access label
information during testing phase. To the best of our knowledge,
this is the first attention design that leverages the class label in-
formation in the hidden layers to generate class-specific features.
Experiments on 40 real datasets have shown that CSA generally
boosts accuracy — in the experiments, we have seen performance
improvements up to 42%.

MilLeTS, Aug 15, 2022, Washington DC
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A DETAILED RESULTS A.2 Multivariate Time Series Results
A.1 Univariate Time Series Results Table 7 presents all the accuracy and Al results on 28 MTS datasets.
Table 6 presents all the accuracy and Al results on 12 UTS datasets.

FCN MLSTM MLSTM-FCN
Datasets woCSA [ wCSA[[ Al || woCSA| wCSA]| Al woCSA | wCSA'[[ Al
Medicallmages 0792 | 079 | 0.253 0522 | 0580 | 11111 ||| 0786 | 0790 || 0.509
MelPedestrian 0660 | 0.666 | 0.909 ||l 0.830 | 0.900 || 8.434 079 | 0798 || 0.251
MidPhalanxoutGrp ||| 0.604 | 0.636 | 5.298 ||| 0428 | 0580 || 35514 ||| 0618 | 0.616 || -0.323
MidPhalanxoutCor ||| 0.814 | 0.816 | 0.246 ||| 0.570 | 0570 || 0.000 0810 | 0812 || 0.247
MidPhalanxtw 0516 | 0516 || 0.000 0458 | 0554 | 20.961 ||| 0500 | 0516 || 3.200
OsuLeaf 0.966 | 0.974 || 0.828 ||| 0.210 | 0210 || 0.000 0964 | 0976 | 1.245
PhalangesCor 0.804 | 0.806 || 0.249 ||| 0.600 | 0.600 || 0.000 0.798 | 0.806 || 1.003
Powercons 0926 | 0.930 || 0.432 0940 | 0952 | 1.277 0926 | 0932 || 0.648
ProximalPhaGrp 0.838 | 0.846 | 0.955 059 | 0738 || 25.085 ||| 0.840 | 0842 || 0.238
ProximalPhaCor 0.846 | 0.864 || 2.128 ||| 0.690 | 0720 || 4.348 0.834 | 0860 || 3.118
ProximalPhaTw 0.744 | 0728 || -2.151 ||| 0734 | 0.824 || 12.262 ||| 0718 | 0744 | 3.261
RefrigerationDev 0520 | 0516 || -0.769 ||| 0408 | 0464 || 13.725 || 0528 | 0536 | 1515
TAPNET CNN-ATN
Datasets WwoCSA | wCSA[[ Al woCSA | wCSA[[ Al
Medicallmages 0750 | 0.752 | 0.267 0.766 | 0.774 | 1.044
MelPedestrian 0792 | 0.822 | 3.788 0.850 | 0.862 | 1.412
MidPhalanxoutGrp 0.658 0.662 || 0.608 0.668 0.682 || 2.096
MidPhalanxoutCor 0.844 | 0.848 | 0.474 0.826 | 0.828 | 0.242
MidPhalanxtw 0618 | 0.610 | -1.294 0.540 | 0.542 | 0.370
OsuLeaf 0.972 | 0982 || 1.029 0.898 | 0916 | 2.004
PhalangesCor 0772 | 0.790 | 2.332 0.806 | 0.822 | 1.985
Powercons 0.944 | 0.960 | 1.695 0.918 | 0.928 | 1.089
ProximalPhaGrp 0.856 | 0.854 | -0.234 0.850 | 0.852 || 0.235
ProximalPhaCor 0.894 | 0.900 | 0.671 0.918 | 0.908 | -1.089
ProximalPhaTw 0794 | 0.800 | 0.756 0818 | 0.828 | 1.222
RefrigerationDev 0.584 | 0.584 || 0.000 0.582 | 0568 || -2.405

Table 6: AI comparison for models with and w/o CSA on UTS
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FCN MLSTM MLSTM-FCN
Datasets woCSA [ wCSA'[[ Al woCSA T wCSA[[ Al woCSA T wCSA[[ Al
ArtWordRec 0.980 0.982 0.204 0.816 0.856 4.902 0.972 0.982 1.029
BasicMotions 0.968 0.966 -0.207 0.844 0.852 0.948 0.966 0.968 0.207
CharTraj 0.990 0.990 0.000 0.974 0.980 0.616 0.992 0.996 0.403
Cricket 0.910 0.910 0.000 0.704 0.708 0.568 0.878 0.896 2.050
DuckDuckGeese 0.740 0.766 3.514 0.672 0.694 3.274 0.722 0.734 1.662
EigenWorms 0.544 0.552 1.471 0.464 0.464 0.000 0.526 0.574 9.125
Epilepsy 0.794 0.842 6.045 0.666 0.686 3.003 0.864 0.874 1.157
EthanolConc 0.624 0.658 5.449 0.342 0.346 1.170 0.622 0.654 5.145
FaceDetection 0.562 0.562 0.000 0.578 0.582 0.692 0.556 0.562 1.079
FingerMovements 0.648 0.656 1.235 0.614 0.614 0.000 0.642 0.642 0.000
HandMovement 0.468 0.488 4.274 0.370 0.414 11.892 0.466 0.492 5.579
Handwriting 0.284 0.288 1.408 0.208 0.224 7.692 0.282 0.296 4.965
Heartbeat 0.812 0.818 0.739 0.818 0.820 0.244 0.810 0.816 0.741
InsectWingbeat 0.108 0.138 || 27.778 0.124 0.124 0.000 0.116 0.136 17.241
JapaneseVowels 0.882 0.890 0.907 0.938 0.952 1.493 0.932 0.934 0.215
LSST 0.444 0.456 2.703 0.528 0.530 0.379 0.530 0.558 5.283
Libras 0.902 0.906 0.443 0.552 0.708 || 28.261 0.906 0.902 -0.442
MotorIlmagery 0.640 0.648 1.250 0.608 0.624 2.632 0.638 0.638 0.000
NATOPS 0.886 0.898 1.354 0.792 0.820 3.535 0.882 0.898 1.814
PEMS-SF 0.930 0.946 1.720 0.576 0.704 22.222 0.928 0.944 1.724
PenDigits 0.984 0.982 -0.203 0.976 0.976 0.000 0.980 0.980 0.000
Phoneme 0.088 0.092 4.545 0.100 0.106 6.000 0.096 0.114 18.750
RacketSports 0.748 0.774 3.476 0.778 0.790 1.542 0.770 0.804 4.416
SelfRegSCP1 0.872 0.874 0.229 0.898 0.904 0.668 0.884 0.838 0.452
SelfRegSCP2 0.568 0.586 3.169 0.572 0.596 4.196 0.592 0.592 0.000
SpokenArab 0.974 0.982 0.821 0.960 0.960 0.000 0.982 0.986 0.407
StandWalkJump 0.400 0.400 0.000 0.692 0.652 -5.780 0.428 0.414 -3.271
UWaveGesture 0.624 0.618 -0.962 0.814 0.820 0.737 0.768 0.766 -0.260
TAPNET CNN-ATN

Datasets woCSA [ wCSA[[ Al woCSA [ wCSA' ][ AI

ArtWordRec 0.980 0.988 0.816 0.984 0.988 0.407

BasicMotions 1.000 0.994 -0.600 0.982 1.000 1.833

CharTraj 0.990 0.990 0.000 0.990 0.990 0.000

Cricket 0.950 0.932 -1.895 0.808 0.826 2.228

DuckDuckGeese 0.724 0.676 -6.630 - - -

EigenWorms 0.600 0.580 -3.333 - - -

Epilepsy 0.870 0.822 -5.517 0.950 0.954 0.421

EthanolConc 0.322 0.364 13.043 0.520 0.510 -1.923

FaceDetection 0.562 0.570 1.423 - - -

FingerMovements 0.614 0.636 3.583 0.602 0.620 2.990

HandMovement 0.464 0.520 12.069 0.422 0.442 4.739

Handwriting 0.198 0.278 40.404 0.296 0.298 0.676

Heartbeat 0.748 0.732 -2.139 0.820 0.820 0.000

InsectWingbeat - - - - - -

JapaneseVowels 0.988 0.992 0.405 0.990 0.990 0.000

LSST 0.450 0.642 42.667 0.664 0.674 1.506

Libras 0.790 0.820 3.797 0.790 0.790 0.000

MotorImagery 0.636 0.614 -3.459 - - -

NATOPS 0.890 0.890 0.000 0.946 0.950 0.423

PEMS-SF 0.912 0.912 0.000 - - -

PenDigits 0.940 0.940 0.000 0.970 0.970 0.000

Phoneme 0.164 0.216 31.707 - - -

RacketSports 0.704 0.816 15.909 0.888 0.888 0.000

SelfRegSCP1 0.736 0.636 || -13.587 0.830 0.878 5.783

SelfRegSCP2 0.578 0.590 2.076 0.546 0.558 2.198

SpokenArab 0.982 0.982 0.000 0.990 0.990 0.000

StandWalkJump 0.508 0.588 15.748 - - -

UWaveGesture 0.882 0.874 -0.907 0.838 0.834 || -0.477

Table 7: AI comparison for models with and w/o CSA on MTS
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