
Proceedings of the 17th Linguistic Annotation Workshop (LAW-XVII), pages 211–219
July 13, 2023 ©2023 Association for Computational Linguistics

UMR-Writer 2.0: Incorporating a New Keyboard Interface and Workflow
into UMR-Writer

Sijia Ge 1∗, Jin Zhao 2∗, Kristin Wright-Bettner1, Skatje Myers1
Nianwen Xue2, Martha Palmer1
1 University of Colorado at Boulder

2 Brandeis University
{sijia.ge,kristin.wrightbettner,skatje.myers,

martha.palmer}@colorado.edu
{jinzhao,xuen}@brandeis.edu

Abstract

UMR-Writer is a web-based tool for annotat-
ing semantic graphs for the Uniform Mean-
ing Representation (UMR) scheme. UMR is a
graph-based semantic representation that can
be applied cross-linguistically for deep seman-
tic analysis of text. In this work, we imple-
mented a new keyboard interface for UMR-
Writer 2.0, which adds to the original click-
based interface to support faster annotation for
more experienced annotators. The new inter-
face also addresses some issues with the orig-
inal click-based interface. Additionally, we
demonstrate an efficient workflow for annota-
tion project management in UMR-Writer 2.0,
which has been applied to many projects.

1 Introduction

UMR-Writer (Zhao et al., 2021) is a web-based
application used for annotating Uniform Mean-
ing Representation (UMR). UMR is a graph-based,
cross-linguistically applicable semantic represen-
tation designed to support interpretable natural
language applications that require deep semantic
analysis (Gysel et al., 2021; Bonn et al., 2023).
It captures the meaning of natural language sen-
tences and documents in a structured, human- and
machine-readable format (Figure A1 shows a com-
plete UMR graph).
UMR is an extension of Abstract Meaning Rep-

resentation (AMR, Banarescu et al., 2013) and
enriches the AMR semantic scheme to cover ad-
ditional linguistic categories such as aspect (Do-
natelli et al., 2018; Van Gysel et al., 2019),
and scope (Pustejovsky et al., 2019) in sentence-
level annotation. UMR also supports document-
level annotation for temporal relations (Yao et al.,
2020), modality (Vigus et al., 2019), and corefer-
ence (O’Gorman et al., 2018). Moreover, UMR is
also a universal multi-language semantic scheme

*These authors contributed equally to this work.

that can be used to annotate low-resource lan-
guages such as Arapaho, Kukama, and Secoya,
etc (Van Gysel et al., 2021; Vigus et al., 2020).
As graphs, UMR can be serialized into

triples (parent concept node, relation, child con-
cept node). Parent and child nodes can be abstract
concepts, lexicalized concepts, or attribute values.
Relations can be roles or other types of semantic
relations. UMR-Writer originally has a click-based
interface for annotators to construct UMR triples at
the sentence level. An example is shown in Figure
1, which requires five steps for annotating the con-
cept “free” in the sentence “Edmund Pope tasted
freedom today for the first time in more than eight
months”. Annotators could 1) select a parent con-
cept node “taste” by clicking the node; 2) select
the child concept node “free” by selecting a span
from the raw text; 3) look up senses by clicking the
“lexicalized concept” box. Then, by hovering the
cursor, annotators could 4) view the frame infor-
mation and choose the correct concept sense, and
finally 5) choose the correct relation (here, “ARG1”,
proto-patient) from the corresponding drop-down
menus.
This approach creates several issues during an-

notation. Firstly, many annotators have extensive
experience in annotating AMR with the AMR edi-
tor (Hermjakob, 2013). It uses a keyboard interface
to annotate AMR graphs by entering editing com-
mands. Therefore, annotators who are accustomed
to the AMR editor may prefer to keep the key-
board interface instead of learning how to annotate
in a click-based interface from scratch. Secondly,
the multiple complicated drop-down menus in the
click-based interface often confuse and overwhelm
annotators. Annotators need to move the mouse
back and forth between multiple drop-down menus
and the sentence itself in order to add just one node
to the graph, in addition to simultaneously pay-
ing attention to the sentence-level UMR graph, as
shown in Figure 1. This impacts the annotation

211



efficiency and quality. Finally, some concepts are
non-sequential in some languages, and it is tricky to
select multiple non-sequential spans with a mouse.
To address these issues, we implemented

a keyboard interface in UMR-Writer 2.0 (§3).
The new interface was developed using Flask,
JavaScript/Jquery, HTML/CSS, and PostgreSQL.
It is specifically designed for sentence-level anno-
tation and coexists with the original click-based
interface, allowing annotators to choose their pre-
ferred approach. The interface for document-level
annotation remains unchanged. Besides the anno-
tation procedure, in terms of the workflow set-up,
users also reported that managing annotation data
for multiple corpora becomes difficult with the in-
creasing size of the annotation. Thus this paper also
introduces an efficient workflow for project man-
agement (§4), and other features for UMR-Writer
2.0 1.

2 Related Tools

AMR editor is an easily accessible web-based an-
notation tool for AMR with comprehensive func-
tionalities (Hermjakob, 2013). It is a command-
based tool where annotators can enter short editing
commands to annotate AMR graphs. Besides the
basic function of building AMR graphs, it offers
many useful features such as copy and paste of par-
tial graphs, searching, and administrative support.
Many features of the keyboard interface in this
paper are inspired by the AMR editor. However,
the AMR editor does not support document-level
annotation and languages other than English.
There are other annotation tools available,

such as Anafora (Chen and Styler, 2013) and
BRAT (Stenetorp et al., 2012). Anafora is a web-
based text annotation tool that is lightweight, flex-
ible, easy to use, and capable of annotating with
a variety of schemas. BRAT offers visualization
for annotators to intuitively figure out the rela-
tions across text annotations. However, neither
of these annotation tools is compatible with the
UMR scheme and annotation requirements because
they cannot annotate the concepts in the form of
word lemmas, concatenated words, or abstract con-
cepts that do not correspond to any specific word
tokens in the source text. Like Anafora and BRAT,
UMR-Writer can be modified to extend its usage
to other graph-based formalisms besides UMR in

1UMR-Writer can access via the link: http://umr-tool.
cs.brandeis.edu/.

theory, making it a versatile annotation tool. These
modifications include customizing the relations and
concept types to meet the requirements of various
annotation tasks.

3 The Keyboard Interface of
UMR-Writer 2.0

We first overview the layout of the new keyboard
interface, then introduce the annotation methods
and related functionalities.

3.1 Layout

Compared with the original click-based interface
of UMR-Writer shown in Figure 1, the keyboard
interface removes the drop-down menus on the
right since annotators no longer need to interact
with them. Instead, annotators enter the editing
commands. To input commands, we added an input
box under the raw text.
In the click-based interface, there is insufficient

space to directly display the frame information,
requiring annotators to hover the cursor over the
predicate’s sense to view the frame. In the new
keyboard interface, we leverage the space created
by removing the drop-down menus to display the
frame information directly to annotators. The over-
all layout is shown in Figure 2. Annotators can pri-
marily focus on the left-most area of the interface,
which includes the raw text, editing command, and
the generated UMR graph. This reduces the need
for excessive eye and mouse movements associated
with the click-based interface.

3.2 UMR Input Methods

To construct UMR graphs, we adopt the same “typ-
ing” method as the AMR editor for annotation but
use an index-based style command (Li et al., 2016).
The tool assigns a “superscript” to each token to
signify its 1-based indexing position in the raw text.
Annotators add an “x” before the index to refer to
the token in the raw text. For example:

Edmund1 Pope2 tasted3 freedom4

today5 for6 the7 first8 time9 in10

more11 than12 eight13 months14

In this example, the first token “Edmund” is
“x1”, the second token “Pope” is “x2”, and so on.
The tool keeps track of tokens entered by the anno-
tator and queries the lemmas from the database to
obtain the corresponding concepts. It then displays
the corresponding PropBank-style frame (Palmer

212

http://umr-tool.cs.brandeis.edu/.
http://umr-tool.cs.brandeis.edu/.


Figure 1: The click-based interface

Figure 2: The keyboard interface

et al., 2005; Pradhan et al., 2022) information in the
area to the right of the annotator. If annotators need
to choose the correct sense from the current pred-
icate’s frame, they only have to attach the sense
number with a dash marker following the index,
such as “x3-01”. This represents the first sense
of the concept “taste” and indicates that it is the
third token in the raw text. Annotators can input
commands such as “x3 :ARG1 x4-04” shown in
Figure 2 for annotating concept “free”. This rep-
resents the fourth sense of the concept, which is
the fourth token “freedom” in the text, acting as
the “ARG1” (proto-patient) of its parent node, the
concept “taste” (the sense number only needs to
be specified once). The tool will then add a node
to the UMR graph. When annotating abstract con-
cepts such as named entities, annotators can enter
a command such as “x3 :ARG0 person x1_x2”
by attaching the abstract concept label before the
index.
Additionally, such an approach using index-

based command is applicable to situations where a
concept is composed of multiple tokens or parts of

a token resulting from segmentation errors or other
reasons. In particular, it addresses the issue that
a concept may consist of several non-sequential
tokens such as the phenomenon of “Ionization of
Pseudo-V-O Compounds” in Chinese (Chao, 1968),
e.g.,2

(1) 我1

1SG
先2

first
给3

give
你4

2SG
提5

warn
个6

CLS
醒7

reminder

‘I'll first give you a reminder.’

In this case, the fifth token and the seventh token
should be considered as a whole compound “提
醒” (make aware), but other grammatical elements,
such as the noun classifier, can be freely inserted
into the middle, making the word look like a V-O
construction, even though it makes no sense to in-
terpret the two tokens separately. It can be tricky to
select multiple non-sequential spans with a mouse,
but annotators can enter commands like “x5_x7” to
represent the concept consisting of the fifth and the
seventh tokens.

21SG = first person singular, 2SG = second person singular,
CLS = noun classifier.

213



The tool does not adopt the method used in the
AMR editor that requires typing the concept di-
rectly for three reasons:
1. It can be difficult to record the alignment infor-

mation, which is crucial for UMR annotation.
Explicitly representing the correspondence be-
tween word tokens in the sentence and the
concepts/relations in the UMR graph is useful
for automatic parsing.

2. Entering a concept creates a higher probability
of accidental typos compared with entering an
index.

3. Annotators may need to frequently switch in-
put method editors (IME) for languages such
as Chinese and Arabic that are not based on an
alphabet writing system to input commands.

Along with input commands, we also change vari-
ables represented in PENMAN (Kasper, 1989;
Goodman, 2020) notation for concepts in UMR
graphs. Each concept is associated with a variable
that uniquely identifies a graph node. Variables
serve as “shorthand” references for concepts, for
example:

t / taste-01

“t” is the variable represented in PENMAN nota-
tion for the concept “taste”. It uses the initials of
the concept and a ascending number to distinguish
between concept nodes with the same initial in
AMR. The click-based interface follows the same
convention but adds a sentence number to form
strings such as “s2t” for document-level annota-
tion (“s2” represents the second sentence).
In the keyboard interface, we concatenate the

index after the auto-generated sentence number to
form variables such as “s2x3” instead of taking
the initials of concepts. This is because using the
initials as variables is not feasible for languages
that do not have an alphabet-based writing system.
Additionally, initials-based variables cannot differ-
entiate abstract concepts from lexicalized concepts.
In the keyboard interface, each abstract concept
is assigned a variable with an index that exceeds
the total number of tokens in the sentence, and
it is marked as an abstract concept with the pre-
fix “ac” instead of the prefix “x” used for lexical-
ized concepts. For example, in the previous sen-
tence “Edmund Pope tasted freedom today for the
first time in more than eight months”, the phrase
“eight months” corresponds to an abstract concept
“temporal-quantity”, and since the number of to-
kens in this example is 14, we can assign the vari-

able “s2ac15” to the “temporal-quantity” concept.
Moreover, while the index of a token in a text is
fixed, initial-based variables can vary based on the
annotation order for concepts with the same ini-
tials. If we use the index as the input command to
annotate a concept and then later on adopt initial-
based variables, it would result in inconsistency.
The index-based variables also encode alignment
information.
The above changes in the keyboard interface

make the annotation process more efficient, re-
ducing five steps required in the click-based in-
terface (Figure 1) to a single command (Figure 2)
for adding a node in UMR graphs.

3.3 Other Functionalities for Editing UMR
Graphs

We have implemented additional functionalities
that go beyond adding a single concept node. For
example, annotators can edit UMR graphs and they
can delete an incorrect partial graph by clicking
on its parent concept node. This action will delete
both the parent node and its descendant nodes. An-
notators can also move a partial graph to a different
location instead of deleting and recreating it. In
addition, annotators can use the new “redo” and
“undo” buttons to recover from mistakes and track
their editing progress. Furthermore, they can name
and save partial graphs for future use, or copy-and-
paste a partial graph directly from another annota-
tion when constructing a new graph.

Overall, these additional functionalities enhance
efficiency and flexibility, making the annotation
process more convenient and effective.

4 Annotation as Projects

The annotation process can become messy and dis-
organized if an annotator works on multiple cor-
pora. To address this issue, we have introduced the
“project” concept in UMR-Writer 2.0.

Each project folder contains two sub-folders for
storing completed annotations submitted by anno-
tators: The first sub-folder is called “Quality Con-
trol” (QC), which stores the final version of each
annotation file, and the second sub-folder is called
“Double Annotated” (DA), which preserves multi-
ple copies of the same file annotated by different
annotators.
To manage the annotation projects effectively,

we have created an administrative permission hier-
archy. The hierarchy of administrative permissions

214



Figure 3: Permission hierarchy

and the descriptions for each are shown in Fig-
ure 3. The permission level decreases sequentially
from left to right. The permission on the left side
by default has all permissions on the right side.
Thus, users with the “annotate” permission have
the “view” permission. Similarly, users with the
“edit” permission also have both the “view” and
the “annotate” permissions, and so on. Same-level
permission can be issued to multiple users except
for “admin”, which belongs to the owner of the
project only.

Moreover, we have established an efficient work-
flow for each project:

• Each user can create project folders with the
“admin” permission. “Admin” adds members
to the project, assigns permissions, and up-
loads files into project folders. The annota-
tion files can be exported files including UMR
graphs, or just raw text.

• Anyone can view the original annotation files.
Members with the “annotate” permission or
higher can check out files and independently
edit annotations without impacting other mem-
bers in the project who have checked out the
same files.

• If multiple users check out the same file, they
should submit their annotations into the “DA”
folder3 after completing their work. Members
with the “edit” or “admin” permission can
decide which annotation should be put into
the final “QC” folder by deleting the rest. If
a file is checked out by only one member, the
member can directly upload it to the “QC”
folder. Members with the “edit” or “admin”
permission can delete files with poor quality.

This workflow has been successfully applied to
many projects such as the THYME corpus (Al-
bright et al., 2013), and the Arabic UMR corpus.

Furthermore, UMR-Writer 2.0 provides a search

3One file can be checked out by multiple users rather than
just “double” annotated.

functionality that allows users to search for annota-
tions based on strings, concepts, or triples. Users
can also specify whose annotations they want to
query by entering user names. Each user has the
option to choose the visibility of their project us-
ing a slider bar. The annotations in the project
are publicly searchable by any user if the slider
bar is checked. Annotation managers can leverage
the search functionality to check annotations for
beginner annotators during the training process.

5 Conclusion

UMR-Writer is a significant annotation tool for
Uniform Meaning Representation. This paper in-
troduces a new keyboard interface that constructs
UMR graphs by entering index-based commands.
This increases efficiency and guarantees higher
accuracy of annotations. The new interface also
solves the existing issues within the original click-
based interface for the tool such as non-sequential
tokens as concepts and variable inconsistencies
across languages. The keyboard interface is es-
pecially welcomed by annotators who annotated
with the AMR editor. Moreover, we introduce an
annotation project workflow that can manage anno-
tation projects efficiently.

Limitations

Raw text can sometimes be incorrectly segmented,
especially in languages like Chinese which often
have propagated segmentation errors due to the ab-
sence of explicit word boundaries and ambiguity
caused by multi-character words with shared com-
ponents. Annotators currently correct segmentation
errors by using an underscore “_” to concatenate or
splice tokens. However, this can be inconvenient,
as annotators need to use this approach every time
they edit concatenated/sliced concepts or add an
edge between other concepts. In the future, we plan
to allow annotators to manually correct segmenta-
tion errors by deleting or adding a space in the raw

215



text.
Although the click-based interface supports

low-resource languages well, we have not exten-
sively experimented on many low-resource lan-
guages using the keyboard interface. Currently,
for morphologically-complex languages, annota-
tors need to manually count the index of a character
in the token. Below is an example of Arapaho4:

(2) ceesisnoo’oebiicitiit
ceesis-noo’oe-biicitii-t
IC.begin-around-bead.s.t.-3S

‘She is starting to bead around it.’

Here “biicitii ” (“bead s.t.”) is a concept. To select
the token representing the concept, we need to in-
put “x1_13:20” to represent “biicitii”, where “x1”
represents the token “ceesisnoo’oebiicitiit” as the
entire sentence is a single token, “_13:20” repre-
sents the substring “biicitii” spanning from the thir-
teenth to the twentieth character in the token. Many
low-resource languages such as Arapaho lack the
lexical frame, thus we define frameworks for both
non-lexicalized and lexicalized annotation of predi-
cates and semantic roles (Gysel et al., 2021). For
non-lexicalized UMR predicates, the role annota-
tion is based on a general inventory of core partic-
ipant roles given in Table A1. We are expanding
the lexical frame coverage and constructing the
predicate-specific definitions on the fly. The lexical
entries should be mapped to the non-lexicalized
roles in Table A1. We are also working on simpli-
fying the process of selecting tokens by combining
span selection with a mouse.
In the keyboard interface, the index-based vari-

able system assigns different variables to within-
sentence co-reference entities due to their distinct
token alignments. Previously, we marked within-
sentence co-reference using re-entrancy with the
same variable. In the keyboard interface, it is nec-
essary to identify and mark the two variables repre-
senting the co-referenced entities.
The identification of event-related concepts is

crucial for annotating participant roles, as well as
aspect and modality annotations. Currently, we
do not include such a feature to detect eventive
concepts. We plan to develop a system capable
of detecting eventive concepts and providing auto-
complete reminders to assist annotators in fully
annotating the UMR graph. This approach aims
to prevent any necessary annotations (such as the

4IC = initial change, 3S = third person singular.

aspect of the eventive concept) from being omitted
during the annotation process.
We also plan to refactor our code into a

JavaScript framework, such as React.js, in a fu-
ture version release. Additionally, we plan to make
some improvements and changes to streamline the
user experience, such as adjusting the visualization
of the document-level annotation and implement-
ing auto-completion of commands. Finally, we
are currently working on mapping the named enti-
ties hierarchy in UMR to the ontology hierarchy in
Wikidata.

Ethics Statement

We did not identify any potential ethical issues with
the annotation tool.

Acknowledgements

This work is supported by grants from the CNS Di-
vision of National Science Foundation (Awards no:
NSF_2213805, NSF_2213804, NSF_IIS 1764048,
NSF_1763926 RI) entitled “Building a Broad In-
frastructure for Uniform Meaning Representation”
and “Developing a Uniform Meaning Represen-
tation for Natural Language Processing”, respec-
tively. We also gratefully acknowledge the support
of NIH: 5R01LM010090-09, THYME-3, Tempo-
ral Relation Discovery for Clinical Text, (sub from
Harvard Children's). Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not nec-
essarily reflect the views of NSF, NIH, or the U.S.
government. We extend our thanks to Jie Cao and
Kathryn Conger for their valuable suggestions on
the paper revision.

References
Daniel Albright, Arrick Lanfranchi, Anwen Fredriksen,

IV Styler, William F, Colin Warner, Jena D Hwang,
Jinho D Choi, Dmitriy Dligach, Rodney D Nielsen,
James Martin, Wayne Ward, Martha Palmer, and
Guergana K Savova. 2013. Towards comprehensive
syntactic and semantic annotations of the clinical nar-
rative. Journal of the American Medical Informatics
Association, 20(5):922–930.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

216

https://doi.org/10.1136/amiajnl-2012-001317
https://doi.org/10.1136/amiajnl-2012-001317
https://doi.org/10.1136/amiajnl-2012-001317
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322


Julia Bonn, Skatje Myers, Jens E. L. Van Gysel,
Lukas Denk, Meagan Vigus, Jin Zhao, Andrew
Cowell, William Croft, Jan Hajič, James H. Mar-
tin, Alexis Palmer, Martha Palmer, James Puste-
jovsky, Zdenka Urešová, Rosa Vallejos, and Nian-
wen Xue. 2023. Mapping AMR to UMR: Resources
for adapting existing corpora for cross-lingual com-
patibility. In Proceedings of the 21st International
Workshop on Treebanks and Linguistic Theories (TLT,
GURT/SyntaxFest 2023), pages 74–95, Washington,
D.C. Association for Computational Linguistics.

Yuen Ren Chao. 1968. A grammar of spoken Chinese
/ by Yuen Ren Chao. University of California Press
Berkeley.

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of the 2013 NAACL HLT Demonstration Session,
pages 14–19, Atlanta, Georgia. Association for Com-
putational Linguistics.

Lucia Donatelli, Michael Regan, William Croft, and
Nathan Schneider. 2018. Annotation of tense and as-
pect semantics for sentential AMR. In Proceedings
of the Joint Workshop on Linguistic Annotation, Mul-
tiword Expressions and Constructions (LAW-MWE-
CxG-2018), pages 96–108, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Michael Wayne Goodman. 2020. Penman: An open-
source library and tool for AMR graphs. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 312–319, Online. Association for Computa-
tional Linguistics.

Jens Van Gysel, Meagan Vigus, Jayeol Chun, Kenneth
Lai, Sarah Moeller, Jiarui Yao, Timothy J. O’Gorman,
Andrew Cowell, W. Bruce Croft, Chu-Ren Huang,
Jan Hajic, James H. Martin, Stephan Oepen, Martha
Palmer, James Pustejovsky, Rosa Vallejos, and Ni-
anwen Xue. 2021. Designing a uniform meaning
representation for natural language processing. KI -
Künstliche Intelligenz, 35:343 – 360.

Ulf Hermjakob. 2013. Amr editor: A tool to build
abstract meaning representations. USC Information
Sciences Institute, Tech. Rep.

Robert T. Kasper. 1989. A flexible interface for link-
ing applications to Penman’s sentence generator. In
Speech and Natural Language: Proceedings of a
Workshop Held at Philadelphia, Pennsylvania, Febru-
ary 21-23, 1989.

Bin Li, Yuan Wen, Weiguang Qu, Lijun Bu, and Ni-
anwen Xue. 2016. Annotating the little prince with
Chinese AMRs. In Proceedings of the 10th Linguis-
tic Annotation Workshop held in conjunction with
ACL 2016 (LAW-X 2016), pages 7–15, Berlin, Ger-
many. Association for Computational Linguistics.

Tim O’Gorman, Michael Regan, Kira Griffitt, Ulf Her-
mjakob, Kevin Knight, and Martha Palmer. 2018.

AMR beyond the sentence: the multi-sentence AMR
corpus. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 3693–
3702, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated corpus of
semantic roles. Computational Linguistics, 31(1):71–
106.

Sameer Pradhan, Julia Bonn, Skatje Myers, Kathryn
Conger, Tim O’gorman, James Gung, Kristin Wright-
bettner, and Martha Palmer. 2022. PropBank comes
of Age—Larger, smarter, and more diverse. In Pro-
ceedings of the 11th Joint Conference on Lexical and
Computational Semantics, pages 278–288, Seattle,
Washington. Association for Computational Linguis-
tics.

James Pustejovsky, Ken Lai, and Nianwen Xue. 2019.
Modeling quantification and scope in Abstract Mean-
ing Representations. In Proceedings of the First In-
ternational Workshop on Designing Meaning Repre-
sentations, pages 28–33, Florence, Italy. Association
for Computational Linguistics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. brat: a web-based tool for NLP-assisted text
annotation. In Proceedings of the Demonstrations
at the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
102–107, Avignon, France. Association for Compu-
tational Linguistics.

Jens E. L. Van Gysel, Meagan Vigus, Lukas Denk, An-
drew Cowell, Rosa Vallejos, Tim O’Gorman, and
William Croft. 2021. Theoretical and practical is-
sues in the semantic annotation of four indigenous
languages. In Proceedings of the Joint 15th Linguis-
tic Annotation Workshop (LAW) and 3rd Designing
Meaning Representations (DMR) Workshop, pages
12–22, Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.

Jens E. L. Van Gysel, Meagan Vigus, Pavlina Kalm,
Sook-kyung Lee, Michael Regan, and William Croft.
2019. Cross-linguistic semantic annotation: Recon-
ciling the language-specific and the universal. In Pro-
ceedings of the First International Workshop on De-
signing Meaning Representations, pages 1–14, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Meagan Vigus, Jens E. L. Van Gysel, and William Croft.
2019. A dependency structure annotation for modal-
ity. In Proceedings of the First International Work-
shop on Designing Meaning Representations, pages
182–198, Florence, Italy. Association for Computa-
tional Linguistics.

Meagan Vigus, Jens E. L. Van Gysel, Tim O’Gorman,
Andrew Cowell, Rosa Vallejos, and William Croft.
2020. Cross-lingual annotation: a road map for low-

217

https://aclanthology.org/2023.tlt-1.8
https://aclanthology.org/2023.tlt-1.8
https://aclanthology.org/2023.tlt-1.8
https://aclanthology.org/N13-3004
https://aclanthology.org/N13-3004
https://aclanthology.org/W18-4912
https://aclanthology.org/W18-4912
https://doi.org/10.18653/v1/2020.acl-demos.35
https://doi.org/10.18653/v1/2020.acl-demos.35
https://aclanthology.org/H89-1022
https://aclanthology.org/H89-1022
https://doi.org/10.18653/v1/W16-1702
https://doi.org/10.18653/v1/W16-1702
https://aclanthology.org/C18-1313
https://aclanthology.org/C18-1313
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://doi.org/10.18653/v1/2022.starsem-1.24
https://doi.org/10.18653/v1/2022.starsem-1.24
https://doi.org/10.18653/v1/W19-3303
https://doi.org/10.18653/v1/W19-3303
https://aclanthology.org/E12-2021
https://aclanthology.org/E12-2021
https://doi.org/10.18653/v1/2021.law-1.2
https://doi.org/10.18653/v1/2021.law-1.2
https://doi.org/10.18653/v1/2021.law-1.2
https://doi.org/10.18653/v1/W19-3301
https://doi.org/10.18653/v1/W19-3301
https://doi.org/10.18653/v1/W19-3321
https://doi.org/10.18653/v1/W19-3321
https://aclanthology.org/2020.dmr-1.4


and no-resource languages. In Proceedings of the
Second International Workshop on Designing Mean-
ing Representations, pages 30–40, Barcelona Spain
(online). Association for Computational Linguistics.

Jiarui Yao, Haoling Qiu, Bonan Min, and Nianwen Xue.
2020. Annotating Temporal Dependency Graphs via
Crowdsourcing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5368–5380, Online. As-
sociation for Computational Linguistics.

Jin Zhao, Nianwen Xue, Jens Van Gysel, and Jinho D.
Choi. 2021. UMR-writer: A web application for
annotating uniform meaning representations. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, pages 160–167, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

A Appendix

Figure A1 is a UMR graph example borrowed from
Zhao et al. (2021). It includes three sentences:
1. “Edmund Pope tasted freedom today for the

first time in more than eight months.”
2. “Pope was convicted on spying charges and

sentenced to 20 years in a Russian prison.”
3. “He denied any wrongdoing.”

Each sentence is represented as a Directed Acyclic
Graph (DAG), and multiple sentences can be con-
nected to form a more complex graph at the docu-
ment level.
Table A1 presents a general inventory of non-

lexical core participant roles for low-resources lan-
guages.
Figure A2 is an example of project manage-

ment (the “DA” folder is not shown here).

218

https://aclanthology.org/2020.dmr-1.4
https://doi.org/10.18653/v1/2020.emnlp-main.432
https://doi.org/10.18653/v1/2020.emnlp-main.432
https://doi.org/10.18653/v1/2021.emnlp-demo.19
https://doi.org/10.18653/v1/2021.emnlp-demo.19


Figure A1: An example of UMR

Central roles Actor, Undergoer, Theme, Recipient, Force, Causer, Experiencer, Stimulus
Peripheral roles Instrument, Companion, Material/Source, Place, Start, Goal, Affectee
Roles for entities and events Cause, Manner, Reason, Purpose, Temporal, Extent

Table A1: UMR non-lexical roles

Figure A2: Project management page

219


