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Abstract. Epidemic prediction is a fundamental task for epidemic con-
trol and prevention. Many mechanistic models and deep learning mod-
els are built for this task. However, most mechanistic models have dif-
ficulty estimating the time/region-varying epidemiological parameters,
while most deep learning models lack the guidance of epidemiologi-
cal domain knowledge and interpretability of prediction results. In this
study, we propose a novel hybrid model called MepoGNN for multi-step
multi-region epidemic forecasting by incorporating Graph Neural Net-
works (GNNs) and graph learning mechanisms into Metapopulation SIR
model. Our model can not only predict the number of confirmed cases
but also explicitly learn the epidemiological parameters and the under-
lying epidemic propagation graph from heterogeneous data in an end-to-
end manner. Experiment results demonstrate our model outperforms the
existing mechanistic models and deep learning models by a large margin.
Furthermore, the analysis on the learned parameters demonstrates the
high reliability and interpretability of our model and helps better under-
standing of epidemic spread. Our model and data have already been
public on GitHub https://github.com/deepkashiwa20/MepoGNN.git.

Keywords: Epidemic forecasting - Hybrid model -+ Metapopulation
epidemic model + Graph Neural Networks + Deep learning - COVID-19

1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic has caused around 500 mil-
lion confirmed cases and more than 6 million deaths in the global, and it is still
ongoing. Due to this circumstance, epidemic forecasting has been a key research
topic again as it can guide the policymakers to develop effective interventions
and allocate the limited medical resources. Many mechanistic models and deep
learning models have been built for the epidemic prediction task. In particu-
lar, human mobility is seen as one of the most important factors to understand
and forecast the epidemic propagation among different regions. In this study, we
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Fig. 1. Illustration of metapopulation epidemic propagation among regions [1].

employ metapopulation SIR model [1,2] as the base model for our task, which
extends the most fundamental compartmental model (i.e., SIR [11]) in epidemiol-
ogy with metapopulation epidemic propagation. As illustrated in Fig. 1, it divides
the total population under the epidemic into several sub-populations (e.g., by
regions). Each sub-population consists of three compartments, S (susceptible
individuals), I (infectious individuals), R (removed individuals, including deaths
and recovery cases), and the human mobility between sub-populations is mod-
eled as a directed graph. Thus, it can well model the epidemic propagation in a
large-scale area. The metapopulation epidemic models have achieved great suc-
cess in modeling and analyzing the propagation of epidemic diseases, such as
SARS, HIN1, and Malaria [3-5].

However, it is always a non-trivial task to build a metapopulation epidemic
model, especially for new emerging epidemics such as the COVID-19 due to
the following reasons. First, the epidemiological parameters in metapopulation
model keep varying from region to region and time to time. As we all know,
the Coronavirus keeps evolving, and the transmissibility and mortality of the
variants (e.g., Alpha, Delta, and Omicron) are significantly different. Besides, the
intervention policies and the human movements also vary over different periods
and regions. Second, due to the mixed factors mentioned above, the epidemic
propagation effects via human mobility in metapopulation model are also difficult
to be obtained or estimated. In the case of prefecture-level prediction in Japan,
we need to collect the large-scale human mobility data of the entire Japan and
obtain the amount of human movements between each pair of prefectures. Then
how to accurately infer the underlying disease propagation network becomes
another intractable task. Third, besides the daily infection data, external features
such as date information (e.g., dayofweek) and daily movement change patterns
should also be involved.

To tackle these challenges, we incorporate deep learning modules into
metapopulation SIR model to form a novel hybrid epidemic model. Specifically,
we first learn the time/region-varying epidemiological parameters from multi-
ple data features through a spatio-temporal module, which consists of Tempo-
ral Convolutional Networks (TCN) and Graph Convolutional Networks (GCN).
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Next, we design two types of graph learning module to automatically approx-
imate the underlying epidemic propagation graph based on the countrywide
human mobility data. Furthermore, we let the learned latent graph be shared
by the spatio-temporal module and the metapopulation SIR module, which fur-
ther enhances the model interpretability and reliability. Previous deep learning
methods [6-10] simply treat the epidemic forecasting as time-series prediction
task or spatio-temporal prediction task, which can only output the predicted
number of infections in a pure black-box manner. Recent study [29] involves
the classical epidemic modeling into deep neural networks, however, it does not
explicitly consider the epidemic propagation among regions via metapopulation
modeling like ours, which largely limits the model interpretability for multi-
region epidemic forecasting. To the best of our knowledge, our work is the first
hybrid model that couples metapopulation epidemic model with spatio-temporal
graph neural networks. In summary, our work has the following contributions:

— We propose a novel hybrid model along with two types of graph learning mod-
ule for multi-step multi-region epidemic prediction by mixing metapopulation
epidemic model and spatio-temporal graph convolution networks.

— Our model can explicitly learn the time/region-varying epidemiological
parameters as well as the latent epidemic propagation among regions from
the heterogeneous inputs like infection related data, human mobility data,
and meta information in a completely end-to-end manner.

— We collect and process the big human GPS trajectory data and other COVID-
19 related data that covers the 47 prefectures of Japan from 2020/04/01 to
2021/09/21 for countrywide epidemic forecasting.

— We conduct comprehensive experiments to validate not only the superior
forecasting performance but also the high interpretability of our model. Our
model and data have already been public on GitHub https://github.com/
deepkashiwa20/MepoGNN.git.

2 Related Work

The models for epidemic simulation and forecasting can be divided into two
types: mechanistic approaches and deep learning approaches.

Mechanistic approaches are built based on the domain knowledge of epi-
demiology which employ pre-defined physical rules to model infectious diseases’
transmission dynamics, mainly classical compartmental models [11,12], metapop-
ulation models [2,13-15] and agent-based models [16-18]. The classical compart-
mental models simulate the spread of infectious diseases in a homogeneous popu-
lation which are unable to model epidemic spread between regions. The metapop-
ulation models assume the heterogeneity of sub-populations and use the human
mobility pattern between regions to model the spread of the epidemic [1,2]. The
agent-based models directly use the individual-level movement pattern [16,17]
or trajectories [18] to emulate the contagion process. Our work is related to the
metapopulation model which is most suitable for multi-region epidemic forecast-
ing task. To implement epidemic modeling, it needs to be calibrated first using
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historical observations and use the optimized or manually modified parameters
to make prediction. These efforts are hardly applicable for multi-step forecasting
tasks. The parameters calibration process needs high computational complexity,
especially when facing huge parameter state space [13,16]. Moreover, in most
mechanistic models, epidemiological parameters keep fixed during forecasting.
The variation of parameters through time is not considered which leads to the
problem of cumulative error on multi-step prediction.

Deep learning approaches have shown excellent performance in the modeling
and forecasting on time series prediction tasks. As a typical time series, sev-
eral research efforts utilizing deep learning techniques, such as LSTM [6,8], have
been conducted for epidemic forecasting over a single region [6,8,19,20]. Never-
theless, the epidemic propagation is often spatially dependent, i.e., co-evolving
over regions. Thus, treating epidemic forecasting as a multivariate time-series
prediction task, performing collaborative forecasting over multiple geographi-
cal units should be a more reasonable choice. For such tasks, a key challenge
is to model the complex and implicit spatio-temporal dependencies among the
observations, on which much evidence shows that GNN can perform very well
for modeling the inter-series relationships. A series of state-of-the-art solutions
based on GNN have been proposed for multivariate time-series prediction tasks,
such as STGCN [21], DCRNN [22], GraphWaveNet [23], ColaGNN [9], and
CovidGNN [10]. In particular, ColaGNN [9] and CovidGNN [10] were explicitly
designed for the epidemic prediction. However, these works ignore the domain
knowledge of epidemiology and are hard to interpret from the epidemiological
perspective. STAN [19] incorporates epidemiological constraints into deep learn-
ing models, but it can only predict infections of a single region. Causal GNN [29]
embeds single-patched SIRD model into GNN for multi-region epidemic fore-
casting.

Overall, we distinguish our work from existing ones in the following ways:
Compared with the mechanistic models, MepoGNN adopts an end-to-end frame-
work that can predict the dynamic change of epidemiological parameters and
use predicted parameters to produce multi-region and multi-step prediction;
Compared with the deep learning models for the multi-region prediction task,
MepoGNN incorporates the domain knowledge of epidemiology and enhances
the interpretability by combining spatio-temporal deep learning model with
the metapopulation model; Furthermore, MepoGNN can output the prediction
of infections through the metapopulation epidemic model and learn the inter-
pretable epidemiological parameters and the latent graph of epidemic propaga-
tion simultaneously.

3 Problem

In this study, we focus on forecasting the number of daily confirmed cases
for multi-region and multi-step simultaneously. For a single region, the his-
torical daily confirmed cases from timestep ¢ — T;, + 1 to ¢t can be rep-
resented as x'~(Tin=1* ¢ RTin Then, the historical daily confirmed cases
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of N regions can be denoted as X!~ (Tin—D:it — {x’i_(T""_l):t,xg_(Ti"_l):t

—(Tin—1): )
Xl]tv( 1)t} c RNXTin

Besides the historical observations, we also incor-
porate the external factors to form a multi-channel input as Xt~ (Tin—Dt —
{Xi_(T"”_l):t,Xg_(Tm_l):t,...,XtC_(T'i"_l):t} € RN*TinxC Details of the input
features will be introduced in Sect.5.1. Additionally, human mobility between
regions (static flow data U € RV*N or dynamic flow data O~ (Tin=1t ¢
RNXNxTin) is used as another type of input. The prediction target is the daily
confirmed cases of N regions in next T,,; timesteps Y+ 1+ out ¢ RNXTout The
problem can be formulated as follows:

{th(Tinfl):t’ U} or {th(Tinfl):t’ Otf(Tmfl):t} ) yitlttTow (1)

4 Methodology

We present Metapopulation Epidemic Graph Neural Networks (MepoGNN),
demonstrated in Fig. 2, for spatio-temporal epidemic prediction. MepoGNN con-
sists of three major components: metapopulation SIR module, spatio-temporal
module and graph learning module. These three components tightly cooperate
with each other. Graph learning module learns the mobility intensity between
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Fig. 2. Proposed metapopulation epidemic graph neural networks (MepoGNN) for
spatio-temporal epidemic prediction.
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regions as a graph and output it to spatio-temporal module and metapopulation
SIR module. Spatio-temporal module captures the spatio-temporal dependency
to predict the sequences of parameters for metapopulation SIR module. Then,
metapopulation SIR module takes the learned graph and the predicted param-
eters to produce the multi-step prediction of daily confirmed cases.

4.1 Metapopulation SIR Module

SIR model is one of the most fundamental compartmental models in epidemi-
ology, used for modeling the epidemic spread [11]. However, it can only model
the epidemic spread for a homogeneous population, which ignores the epidemic
propagation between sub-populations. Metapopulation SIR model [2] fills this
gap by assuming the heterogeneity of sub-populations and using human mobility
to model the propagation between sub-populations. Metapopulation SIR model,
consists of three compartments for each sub-population: S! for number of sus-
ceptible individuals, I! for number of infectious individuals, R!, for the number
of recovered or deceased individuals of sub-population n at time ¢. P, represents
the size of sub-population n which is assumed to be a constant number, where
P, = S + I' + RL. 3 is the rate of infection, and v is the rate of recovery
and mortality. Furthermore, it uses h,,, to represent the epidemic propagation
from sub-population (also called patch) n to m. The original metapopulation
SIR model [2] is shown as follows:

N

dSitl ¢ hmn | hom
m=1
dI£L+1 76 St i(h’m’" 4 hnm)]—t o It (2)
dt - nmzl Pm Pn m n
dR:,Jrl
i~

In this study, we model population of each region as sub-population in metapop-
ulation SIR model. So, the h,,, can be represented by human mobility between
regions. Because of different characteristics of regions, policy changes with time
and so on, there is spatio-temporal heterogeneity of epidemic spread. In our
model, 3, v and h,,,, are assumed to vary over time and regions. In addition, to
prevent 3 to be extremely small and make it be in a relatively stable magnitude,
S! is omitted from the equations. Thus, we extend the original metapopulation
SIR in Eq. 2 as follows:

N

d5t+1 41 ht+1 ht—i—l
n — mn nm It
dt B mz::l( P, + P, Mom
t+1 N ot t+1
To gyt 30 (hmn g Bamype et g ®)
m=1 m n
dRLT! )

dt "
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With predicted 5L, 4iF1 and H!*! (the epidemic propagation matrix
formed by {httln,m € {1,2,...,N}}), S, I, R can be updated iteratively:

nm

N i —

n’

BEFT AL gpean [Sfl+1’lfb+l’R$;rl} (4)
n Yn

The final prediction output of daily confirmed cases can be formed as:

gt+1 :ﬂt-s-l i(%+%)lt
; APBLS ek L
gt gt (5)
Y=
gttt )

4.2 Spatio-Temporal Module for Epidemiological Parameters

Spatio-temporal module takes the node input features X € RN*TinxC and the
weighted adjacency matrix A € RV*¥ as input and output the predicted param-
eters 3 € RN *Tout and v € RV*Tout . We use the spatio-temporal layer (ST layer)
combining Gated TCN and GCN (same as in GraphWaveNet [23]) to capture
the spatio-temporal dependency. Gated TCN [24] is used to capture temporal
dependency:

Q1 =9(On*Z+bi1) ©o(Op* 2+ bja) (6)

where Z; is input of I-th layer, @; and @, are temporal convolution kernels, by
and bo are biases, g(-) is tanh activation function for output, o(-) is sigmoid
function to form the gate, x is convolution, ® is element-wise product. Next,
we model the regions and the interactions between regions as a graph and use
diffusion graph convolution [22,23] to capture the spatial dependency:

P; = A/rowsum(A), P, = AT/rowsum(AT) (7)
) K

2 =Y PQWi + Py QWi (8)
k=0

where A € RV*¥ is weighted adjacency matrix, P t is forward transition matrix,
P, is backward transition matrix, Z; is output of I-th layer.

Multiple ST layers can be stacked to capture the spatio-temporal dependency
in different scales. We use a gated dense connection to bridge different ST layers.
It can extract important information from previous ST layers and pass it to next
layer:

X, ifl=1,
D, = . 9)
D;_1+ Z;, otherwise.
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X, if1=0,
T ~ | (10)
Z00Z)+Dio(1—0(2)), otherwise.

where D; stores the information from previous layers. Then, we concatenate the
output from different layers through skip connections to fuse the information
of different scales. Finally, the parameters § € RVN*Tout and v € RN *Tout are
produced through two fully connected layers, respectively.
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Fig. 3. Two types of graph learning: adaptive and dynamic.

4.3 Graph Learning Module for Epidemic Propagation

There are two different graphs used in metapopulation SIR module and spatio-
temporal module, respectively. Unlike the trivial method which input two fixed
graphs to each module separately, we make two modules share a single learnable
graph. With the shared learnable graph, the spatial dependency used in spatio-
temporal module would be consistent with epidemic propagation in metapop-
ulation SIR module which can improve the interpretability of our model. Fur-
thermore, the parameters of graph learning module can be updated by gradients
from both spatio-temporal module and metapopulation SIR module which make
learned graph more realistic.

As shown in Fig. 3, there are two types of graph learning module to deal
with different input data. The first type is adaptive graph learning module which
takes the static flow data (e.g., commuter survey data) as input. Intuitively, we
initialize an adaptive graph G with static flow matrix U and make it learnable
through training. Then, the adaptive graph can be output to spatio-temporal
module (Eq.7) as A € R¥*N and to metapopulation SIR module (Eq.3) as
H e RVxNx1 (which means we use same hy,, for all timesteps). The second
type is dynamic graph learning module which takes the dynamic OD flow tensor
as input. Although the OD flow and epidemic spread status are both dynamic,
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but they are not necessarily one-to-one temporally corresponding. Considering
the delayed effect, influence of mobility on epidemic spread can be seen as a
weighted average of the given past values (75, days). So, we initialize a learnable
time weight matrix L € R7out*Tin and normalize it as L through a softmax
function. The normalized time weight matrix can map the historical dynamic
flow Ot~ (Tin=1):t ¢ RNXNXTin 4 jts influence on future epidemic spread. The
output of H!T1tHTour ¢ RNXNXTour gnd A € RV*N can be calculated as follows:

L= Softmax, j(L) (11)

Tout 4 st+1
21':1 H
Tout

Why Propose Two Types of Graph Learning? Dynamic graph learn-
ing module can illustrate the dynamic change of epidemic propagation. But
it requires dynamic flow data which is not available in most cases. To improve
the applicability of our model, we propose adaptive graph learning module to
address this problem. With two types of graph learning module, our model can
handle different situations of data availability in the best way possible.

Ht—&-l:t—ﬁ—Tou‘ — ]Ai‘(oii—(Tm,—l):t7 A _ (12)

5 Experiment

5.1 Data

We set 47 prefectures of Japan and 2020/04/01 ~ 2021/09/21 (539d) as
our study area and time period, respectively. The number of daily confirmed
cases and cumulative cases and deaths are collected from the NHK COVID-19
database!. The number of recovered cases is collected from Japan LIVE Dash-
board? [25] (original data source is from Ministry of Health, Labour and Welfare,
Japan). The population of each prefecture is collected from 2020 census data.
With above-mentioned data, daily S, I, R of each prefecture can be calculated.
Apart from the number of daily confirmed cases, the input node features also
include daily movement change, the ratio of daily confirmed cases in active cases,
and dayofweek. The movement change data is collected from Facebook Move-
ment Range Maps®. It records the change of people movement range compared
to a baseline period. Because it is not provided at prefecture level, we use pop-
ulation weighted average to get data at prefecture level. The input static flow
data for adaptive graph learning module is the number of commuters between
prefectures, which is collected from 2015 census data. The input dynamic flow
data for dynamic graph learning module is the daily OD flow data among 47
prefectures, which is generated from human GPS trajectory data provided by

! https://www3.nhk.or.jp/news/special /coronavirus/data/.
2 https://github.com/swsoyee/2019-ncov-japan.
3 https://data.humdata.org/dataset /movement-range-maps.
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Blogwatcher Inc. To mitigate the spatio-temporal imbalance in our data, we use
stay put ratio (ratio of people staying in a single location all day) in Facebook
Movement Range Maps to get the ratio of active users and use it to normalize
the OD flow. Finally, the input features of 47 prefectures are generated as a (539,
47, 4) tensor, the static flow is a (47, 47) matrix, and the dynamic flow is a (539,
47, 47) tensor.

5.2 Setting

The input time length T;,, and output time length T,,,; are both set to 14 d which
means we use two-week historical observations to do the two-week prediction of
daily confirmed cases. Then, we split the data with ratio 6:1:1 to get train-
ing/validation/test datasets, respectively. The fifth wave of infection in Japan
is included in test dataset to test the model performance on a real outbreak
situation. During training, we use the curriculum learning strategy [26] which
increases one prediction horizon every two epochs starting from one day ahead
prediction. The batch size is set to 32. The loss function is set as MAE (Mean
Absolute Error). Adam is set as the optimizer, where the learning rate is le-3
and weight decay is le-8. The training algorithm would either be early-stopped
if the validation error did not decrease within 20 epochs or be stopped after
300 epochs. PyTorch is used to implement our model. Then experiments are
performed on a server with four 2080Ti GPUs. Finally, we evaluate the perfor-
mance of model on 3d, 7d, 14 d ahead prediction and overall 14 steps prediction.
The four metrics are used to qualify the performance: RMSE (Root Mean Square
Error), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error)
and RAE (Relative Absolute Error). To mitigate the influence of randomness,
we perform 5 trials for each model and calculate the mean and 95% confidence
interval of results. The used random seeds are 0, 1, 2, 3, 4.

5.3 Evaluation

We implement three classes of baselines to compare and evaluate our model on
epidemic prediction task:

Mechanistic Models: (1) SIR [11]. SIR model is one of most basic com-
partmental models in epidemiology. We use optimized 8 and ~y of each regions
to produce the prediction. (2) SIR(Copy). Because of weekly periodicity, we
copy the 8 and ~ of last week to produce the prediction. (3) MetaSIR [2].
Metapopulation SIR model considers the heterogeneity of sub-populations and
models the interaction between sub-populations. We use the commuter survey
data as ‘H and optimize 3 and « for each region to produce the prediction. (4)
MetaSIR(Copy). We copy the 5 and v of last week to produce the prediction.

Spatio-Temporal Deep Learning Models: (5) STGCN [21]. STGCN is one
of the earliest models which applies GCN and TCN to do spatio-temporal pre-
diction. (6) DCRNN [22]. DCRNN proposes a variant of GCN, called diffusion
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Table 1. Performance comparison with baselines

Model 3d Ahead 7d Ahead

RMSE MAE MAPE RAE RMSE MAE MAPE RAE
SIR 429.44+23.2 |153.9+5.2 | 83.8+0.7 0.47+£0.02 |507.5+29.6 |191.4+£7.7 |111.4+£3.8/0.57+0.02
SIR(Copy) 248.1 97.4 57.4 0.29 318.5 127.1 67.2 0.38
MetaSIR 336.0+£21.6 |126.8+£3.5 |72.2+£0.9 0.38£0.01 |429.8+25.5 |166.9+3.7 [92.9+0.8 |0.504+0.01
MetaSIR(Copy) | 236.5 92.2 54.1 0.28 307.6 120.0 62.7 0.36
STGCN 375.6+18.8 | 118.64+10.8|45.3+2.8 0.36 £0.03 |381.1+17.7 |128.0£6.6 |52.5+3.0 |0.38+0.02
DCRNN 305.0+9.8 89.3+44 37.3£0.7 0.27+£0.01 |323.8+15.9 |107.6£5.3 |47.3+1.4 |0.32+0.02
AGCRN 223.5+£28.5 |80.0+7.8 56.6£13.2 |0.24+£0.02 |[253.1£37.7 |97.9+7.6 60.8+£10.10.294+0.02
GraphWaveNet |223.84+46.6 |70.6+11.7 |354+1.2 0.21£0.04 |259.9+52.2 [89.2+15.2 [42.3+1.5 |0.27+0.05
MTGNN 297.6+£19.2 |102.4+£6.7 |40.6£0.8 0.31£0.02 |363.5+37.9 |130.9+£13.149.1+£1.7 |0.39+0.04
CovidGNN 261.9+55.5 |88.4+16.7 |43.3+£3.8 0.27+£0.05 |305.4+70.6 |116.5+23.860.9+5.3 |0.35+0.07
ColaGNN 221.7+£40.7 |72.7£7.2 389+15 0.22+0.02 |300.6+61.2 |109.4+16.449.3+1.5 |0.33+0.05

MepoGNN(Adp) | 141.0£7.2 54.3£2.3 349+08 |0.16+£0.01 |174.6+10.1 |69.7+42 |41.4+1.6|0.214+0.01
MepoGNN(Dyn) | 1835.94+17.8 | 52.7+4.6 |34.2+0.7 [0.16+0.01|160.6+4.5 67.6+1.2 |41.7+0.9 |0.20+0.00

Model 14d Ahead Overall

RMSE MAE MAPE RAE RMSE MAE MAPE RAE
SIR 890.2+83.8 |314.5+16.9228.3+11.80.94+0.05 |595.0+43.5 |210.04+9.2 |128.2+£4.7|0.63+0.03
SIR(Copy) 835.5 332.6 183.2 1.00 539.1 190.2 102.7 0.57
MetaSIR 766.1£58.5 |279.1+£82 |177.4+4.5 0.84+0.02 |500.4+£33.9 |182.1+4.4 104.94+1.3]0.55+0.01
MetaSIR(Copy) | 786.4 302.7 161.9 0.91 503.7 175.6 92.7 0.53
STGCN 430.2+15.8 [159.44+6.0 |74.7+3.7 0.48+£0.02 |389.5+7.9 132.0+£29 |55.6+£2.4 | 0.40+0.01
DCRNN 377.9+11.1 |146.0£5.0 |69.5+£4.0 0.44+0.01 |335.0+11.8 |112.5+4.5 |49.5+1.3 |0.344+0.01
AGCRN 390.4+105.8 1149.04+11.4|88.04+12.8 |0.45+£0.03 |322.7+136.7|108.0£9.9 |67.9+£15.60.324+0.03
GraphWaveNet |389.8+20.8 [1444+7.3 |60.2+4.2 0.43+0.02 |294.74+40.9 |100.1£11.1|44.7+1.4 |0.30+0.03
MTGNN 443.5+15.4 |168.3+8.1 |68.0+2.9 0.50£0.02 |363.24+20.5 |130.0£8.3 |50.7£1.6 |0.39+0.03
CovidGNN 414.7+59.8 |177.44+15.9|111.2+6.6 |0.53£0.05 |329.6+59.8 |124.24+19.266.9+4.2 |0.37+0.06
ColaGNN 388.3+£23.2 |153.4+£10.2|75.5+£10.8 |0.46+0.03 |310.7£31.4 |110.2+7.2 |51.94+3.7 |0.334+0.02

MepoGNN(Adp) | 261.1+16.0 |{105.1+7.3/60.1+3.2 |0.32+0.02196.2+11.3 |75.4+4.7 |44.0+1.6|0.23+0.01
MepoGNN(Dyn) | 253.24+7.5 |107.0£3.0 [62.0£2.0 [0.324+0.01 |186.1+5.0 |74.3+2.0 |44.4+0.8 |0.22+0.01

convolution and combines it with gated recurrent unit (GRU) to build a spatio-
temporal prediction model. (7) GraphWaveNet [23]. GraphWaveNet proposes
an adaptive learnable graph and uses GCN and TCN to capture spatio-temporal
dependency. (8) MTGNN [26]. MTGNN uses a graph learning module to learn
spatial correlation and fuse different spatial hops and different TCN kernels to
enhance the model capacity. (9) AGCRN [27]. AGCRN uses GCN and GRU
along with a graph learning module and a node adaptive parameter learning
module to capture spatio-temporal dependency.

GNN-Based Epidemic Models: (10) CovidGNN [10]. CovidGNN is one
of the earliest GNN-based epidemic models. It embeds temporal features on
node and uses GCN with skip connections to capture spatial dependency. (11)
ColaGNN [9]. ColaGNN uses the location-aware attention to extract spatial
dependency and uses GCN to integrate the spatio-temporal information.

Performance Evaluation: In Table 1, we compare the performance on three
different horizons and overall performance for multi-step prediction among the
above-mentioned three classes of baseline models and proposed MepoGNN with
two types of graph learning module. Generally, the spatio-temporal deep learning
models and GNN-based epidemic models outperform the mechanistic models,
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Table 2. Ablation study

Graph Model Mean RMSE Mean MAE | Mean MAPE | Mean RAE

Adaptive | w/o glm 209.514+22.70 |81.85+6.69 |47.51+2.62 |0.25+£0.02
w/o propagation | 203.23 £24.70 | 82.05+8.05 |45.84+1.68 |0.25+0.02
w/o SIR 318.05+16.30 | 108.53 £5.26 | 46.07 £0.53 |0.33£0.02
MepoGNN 196.16 £11.33 | 75.45+4.65 | 44.02+1.55 | 0.23 +0.01

Dynamic | w/o glm 194.50 £17.65 |76.84+6.04 |43.63+1.59|0.234+0.02
w/o propagation | 200.55+17.00 |80.73+5.54 |45.16+1.24 |0.24+0.01
w/o SIR 290.78 +33.92 102.00£9.93 | 45.794+1.61 |0.31+0.03
MepoGNN 186.07+4.99 |74.30+1.99 |44.43+0.77 |0.22+0.01

especially for long horizons. Among all baseline models, GraphWaveNet gets
the best performance. However, our proposed two MepoGNN models get the
very significant improvement over all baseline models. For two types of graph
learning module, dynamic one gets slightly better performance than adaptive
one. Figure4 compares the 7d ahead prediction results of Tokyo and Hyogo of
the top two baseline models and MepoGNN model with dynamic graph learning
module. From the prediction results, GraphWaveNet and ColaGNN can not
produce accurate predictions for high daily confirmed cases during the outbreak.
This phenomenon could be explained by different data distributions of daily
confirmed cases in training dataset and test dataset. The test dataset covers
the period of fifth epidemic wave in Japan which is much more severe than
previous ones. Deep learning models have difficulty to predict these high daily
confirmed cases that never happened before the fifth wave. However, with the
help of metapopulation SIR module, our proposed MepoGNN model can handle
this problem and make significantly better prediction for unprecedented surge
of cases. This capability is very crucial for a trustworthy epidemic forecasting
model.

Ablation Study: To demonstrate the effect of different components of our
model, we conduct an ablation study for MepoGNN models with two differ-
ent graph learning modules, respectively. The variants are as follows: (1) w/o
glm: Remove the graph learning module of MepoGNN model; (2) w/o prop-
agation: Remove the metapopulation propagation from metapopulaiton SIR
module (which means metapopulation STR model is reduced to SIR model); (3)
w /o SIR: Remove the metapopulation SIR module completely. Table 2 demon-
strates that all three components can bring significant boost of performance
for our model. Particularly, it is easy to find that the biggest performance drop
happens when removing the metapopulation SIR module. Because the metapop-
ulation SIR module enables the capability of MepoGNN model to handle the
unprecedented surge of cases.
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Fig. 4. Predicted daily confirmed cases of Tokyo and Hyogo with horizon = 7.

State of State of Tokyo Tokyo
Emergency Emergency Olympics Olympics
End Start Open Close
0.56
0.55
0.54
0.53 \\/_
0.52
0.51
0.50
o © o \J 0 » N >l \ 3 P >
I 2 S o~ o N N » I ~
“,'S” ‘\/Q " b ’\P N ° ’\’6\ VQ/\ ‘\/é " * ’»’e% N’QQ ‘\,Qq
U U U v v v U v U SV v v
o o o 2 " S o o o o o o

Fig. 5. 7-day moving average of predicted 8 of Tokyo with horizon = 7.
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Fig. 7. Learned adaptive mobility graph of the 47 prefectures of Japan with log trans-
formation (left) and its difference with static commuter graph (right).

5.4 Case Study

The final output of MepoGNN model is fully produced by metapopulation SIR
module. It brings significant interpretability for our model. We conduct an anal-
ysis for the predicted parameters of metapopulation SIR module to demonstrate
the interpretability. As shown in Fig. 5, we plot weekly average of predicted 3 of
Tokyo at 7d ahead horizon in validation and test dataset and label major events
and policy changes on timeline. 3 starts to increase when state of emergency
ends and starts to decrease when state of emergency starts. 3 rapidly increases
during Tokyo Olympics, and decreases after it. It demonstrates the predicted
(B is consistent with reality. Figure6 shows the learned time weight matrix of
dynamic graph learning module. The most significant time lag of mobility effect
on epidemic spread is 22 d. This result is consistent with a public health research
[28] which states that the effective reproduction number significantly increased
3 weeks after the nightlife places mobility increased in Tokyo. Although the used
indicator is different from our research, the mechanisms behind time lag could
be similar. Figure 7 shows the learned graph of adaptive graph learning module
and the difference between it and commuter graph. The learned adaptive mobil-
ity graph keeps the major structure of commuter graph. And the minor change
from initialization can reflect the difference between commuter graph and spatial
epidemic propagation.

6 Conclusion

Since the outbreak of COVID-19, epidemic forecasting has become a key research
topic again. In this study, we propose a novel hybrid model for epidemic forecast-
ing that incorporates spatio-temporal graph neural networks and graph learning
mechanisms into metapopulation SIR model. Our model can not only predict
the number of confirmed cases but also explicitly learn the time/region-varying
epidemiological parameters and the underlying epidemic propagation graph from
heterogeneous data in an end-to-end manner. Then, we evaluate our model by
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using real COVID-19 infection data and big human mobility data of 47 prefec-
tures in Japan. The evaluation results demonstrate the superior performance as
well as the high reliability and interpretability of our model.
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ber JPMJSC2104.
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