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Data driven individualized decision making problems have received a lot of attentions in
recent years. In particular, decision makers aim to determine the optimal Individualized
Treatment Rule (ITR) so that the expected speci ed outcome averaging over heterogeneous
patient-speci c characteristics is maximized. Many existing methods deal with binary or a
moderate number of treatment arms and may not take potential treatment e ect structure
into account. However, the e ectiveness of these methods may deteriorate when the number
of treatment arms becomes large. In this article, we propose GRoup Outcome Weighted
Learning (GROWL) to estimate the latent structure in the treatment space and the op-
timal group-structured ITRs through a single optimization. In particular, for estimating
group-structured ITRs, we utilize the Reinforced Angle based Multicategory Support Vec-
tor Machines (RAMSVM) to learn group-based decision rules under the weighted angle
based multi-class classi cation framework. Fisher consistency, the excess risk bound, and
the convergence rate of the value function are established to provide a theoretical guaran-
tee for GROWL. Extensive empirical results in simulation studies and real data analysis
demonstrate that GROWL enjoys better performance than several other existing methods.

Angle-based multicategory classi cation, Group structure, Individualized
treatment rules, Precision medicine, Support Vector Machine.
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A common data-driven individualized decision making problem seeks to optimize the ex-
pected value of a speci ed outcome, by carefully determining the Individualized Treatment
Rule (ITR) based on individual characteristics and contextual information. Since the treat-
ment e ect may contain signi cant heterogeneity, it is necessary to tailor treatment deci-
sion rules to di erent subgroups of individuals. For example, using a large-scale Electronic
Health Records (EHR) database, a physician may assign an optimal individualized therapy
based on a patient s speci ¢ characteristics to maximize the quality of health care (Wu
et al., 2020).

Machine learning based approaches for estimating an optimal ITR have been studied
intensively in the literature. These methods can be usually classi ed into two categories.
The rst category consists of model-based indirect learning methods such as modeling the
conditional treatment e ects given the individual characteristics (Q-learning) (Watkins,
1989; Qian and Murphy, 2011), modeling the contrast between two candidate treatment
e ects (A-learning) (Murphy, 2003), sub-group identi cation methods based on a weighted
loss minimization problem (Tian et al., 2014; Chen et al., 2017), and direct learning methods
(D-learning) (Qi and Liu, 2018). The second category circumvents the need for modeling
conditional mean functions by directly estimating the ITR that maximizes the value function
based on Inverse Probability Weighting (IPW) (Zhao et al., 2012, 2015). To combine the
advantages of methods in the two categories discussed above, Zhang et al. (2012), Liu et al.
(2018) and Athey and Wager (2021) proposed doubly robust augmented IPW estimation to
overcome model misspeci cation issues. In addition, extensions to more than two treatments
were studied in Zhang et al. (2021) and Qi et al. (2020).

Despite great development for estimating the optimal ITRs with a moderate number
of treatments in the literature as discussed above, in some clinical problems, there can be
many treatment options available. For instance, Rashid et al. (2021) analyzed the Patient-
Derived Xenograft (PDX) dataset which permits the evaluation of more than 20 treatments
in the allowable treatment space. Another potential challenge for learning the optimal ITR
is the situation with unbalanced structure of treatment propensity scores. For example, in
the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study (Rush et al.,
2004), the ratio of the number of patients who were provided with the cognitive therapy
and the number of patients who received venlafaxine is only around 1:3. Another example
is that, when studying Type 2 Diabetes (T2D) treatment patterns, Montvida et al. (2018)
concluded that the baseline treatments such as Metformin and Insulin would dominate other
treatment options in the EHR database.

With many treatments but limited data size, model-based indirect methods are di -
cult to model conditional treatment e ect due to the large number of interaction terms
between treatments and features. In addition, it can be impractical to t a useful regres-
sion model without enough observations for certain treatments. Therefore, the estimated
optimal ITR induced by the indirect methods can be inaccurate with large variability due
to the poor performance of the regression model. On the other hand, IPW-based direct
learning methods utilize a plug-in approach for possible unbalanced propensities that ap-
pear in the denominator of IPW-based value function. Su ering from unbalanced structure



of propensities in the presence of many treatments, small values in propensity scores can
lead to large variability of the estimated value function.

It is interesting to point out that many treatments may work similarly for patients,
due to the fact that the development of drugs is often based on intervening the same
disease symptoms and mechanisms. For example, for treating depression in the STAR*D
study, the 7 treatment options at Level 2 are often combined with one class of treatments
involving selective serotonin reuptake inhibitors (SSRI) and the other class of treatments
without SSRI because the treatments within the same class have similar treatment e ects
(Liu et al., 2018; Pan and Zhao, 2021). Hence, it can be helpful to identify such latent
structure in the treatment space. Moreover, utilizing this latent cluster treatment structure
allows us to group homogeneous treatments together and helps reducing the dimension of
the treatment space. This motivates us to explore speci c¢ latent structure for treatments
to identify optimal treatment groups.

To the best of our knowledge, not much has been done in the literature for estimating
the optimal ITR with latent structure for treatments. Rashid et al. (2021) imposed a hier-
archy binary group structure based on the conditional treatment e ects for the treatments
in the PDX study. This estimated group structure helps producing high-quality I'TRs and
identifying the important genes that are known to be associated with response to treatment.
In addition, several existing methods explored combining treatment decision rules for dif-
ferent patients when the conditional treatment e ects cannot be distinguished. Speci cally,
Laber et al. (2014), Ertefaie et al. (2016) and Meng et al. (2020) proposed recommending a
set of near-optimal individualized treatment recommendations that are alternative to each
other to a patient. However, these methods are not tailored to deal with many treatment
options.

In this article, we propose estimating the latent multiple group structure of treatments
and associated optimal group-structured ITRs within a single optimization. Considering
grouping structure, our proposed method reduces the dimension of the treatment space and
automatically clusters the treatments with similar treatment e ects into the same group. In
particular, we de ne our value function associated with both treatment partition and group-
based decision rules in the IPW-based direct learning framework. The optimal treatment
partition and group-based decision rules are obtained by maximizing the value function.
When the treatment e ects employ exact homogeneous group structure, our de ned op-
timal partition can induce the same expected homogeneous group structure. Under the
estimated optimal partition for the treatment space, the estimated group-structured ITR
uses a random treatment assignment strategy, determined by randomly sampling treatment
based on speci c strategies within the estimated optimal treatment group. Speci cally, the
Reinforced Angle based Multicategory Support Vector Machines (RAMSVM) based sur-
rogate loss function (Zhang et al., 2016) is tailored for estimating the optimal treatment
group decision rules robustly in the interpretable angle-based weighted multiclass classi ca-
tion framework (Zhang and Liu, 2014). The group-based decision functions can give linear or
non-linear decision rules to deal with complicate decision boundaries. Moreover, we prove
that the surrogate loss function enjoys Fisher consistency for both group structure and
group-structured I'TRs. Furthermore, we present comprehensive theoretical justi cation on
the excess risk bound, nite sample regret bound and convergence rate for our method, and
allow the number of the treatment groups diverge to in nity as the sample size increases.



Finally, we implement e cient algorithms to solve the non-convex integer programming
problem to search for the optimal partition, and the coordinate descent algorithm to solve
the dual problem of RAMSVM based weighted classi cation problem.

The main contributions of this article are summarized as follows. Our proposed method
learns the optimal ITR by identifying the latent treatment group structure in a possible large
treatment space. We cluster the treatments with similar treatment e ects into the same
group to reduce the dimension of the possible large treatment space. In contrast to existing
methods (Zhao et al., 2012; Liu et al., 2018), our method avoids using weights involving
the inverse of individual treatment propensity scores, which can be close to 0 when there
are many treatments. Using the treatment group propensity scores, our method can obtain
more stable estimate of the value function. In addition, our method simultaneously learns
the optimal group-structured ITR and clusters the treatments. Di erent from the two-
step method (Rashid et al., 2021), we combine both supervised learning (learn the optimal
ITR) and unsupervised learning (cluster the treatments) through one single optimization.
Moreover, we propose an e ective procedure to determine the number of unknown treatment
groups. This procedure is motivated by the trade-o between the bene t and the variability
of the value function. It is worth noting that our theoretical contributions are di erent from
that in the Outcome Weighted Learning (OWL) literature (Zhao et al., 2012). In particular,
we establish the generalized Fisher consistency, excess risk bound, and nite sample regret
bound with respect to both and under the
angle-based multi-class classi cation framework.

The remainder of this article is organized as follows. In Section 2, we introduce the
methodology and implementation details of our proposed GRoup Outcome Weighted Learn-
ing (GROWL) method. In Section 3, we provide theoretical guarantees of GROWL. In Sec-
tion 4, we conduct simulation studies to evaluate the performance of GROWL. Our method
is then illustrated using the data from the Sequenced Treatment Alternatives to Relieve
Depression (STAR*D) study in Section 5. We conclude this article and discuss some future
extensions in Section 6.

In this section, we rst introduce the framework of estimating optimal ITRs. Then we
propose our GROWL method to estimate group-structured ITRs from the IPW-based value
function.

Consider the i.i.d. training data ( ) for 1 , where €~
denotes the patient s prognostic variables, € {12 }o [ ]isthe treatment
assignment, and € is the observed outcome for each patient . Suppose that the number
of treatments may diverge to in nity with a certain rate as the sample size increases
since we consider the large treatment space. We assume that the larger outcome is better
and is bounded. Let () _ € be the potential outcome. In addition, de ne the
propensity function (| ): ( ] ) and the unknown mean-outcome function
C1): [ ) ] for €[ ]. An Individualized Treatment Rule (ITR) € is
a map from the covariate space  to the treatment space and ~ is a prespeci ed



ITR class. Our goal is to nd the optimal ITR € , that maximizes the expected
outcome, known as the value function (Zhao et al., 2012). Speci cally, the value of an ITR
is de ned as

() [ C) 10) L C) 1C1)

Next we state the following identi ability assumptions (Rubin, 1974): (1) Consistency:

| ] (); (2) Unconfoundedness: foreach e[ ] ()L | ; (3)

Positivity: (| ) 0 forany € . If the above assumptions are satis ed, ( ) can be
written as the following two equivalent forms:

() L C) T ] (1)

(2)

Based onA(l), model-based Q-learning methods (Qian and Murphy, 2011) rst give an
estimate for [ | ] (Q-function), then the optimal ITR () is estimated from solving
argmax ¢ | | |. However, due to the large number of treatment options

and possible unbalanced structure of the propensity score ( | ), we may not have
enough observations for some speci ¢ treatments to t the regression model. Consequently,

[ ] ] can be inaccurate due to potential poor performance of the regression model
and the estimated optimal ITR may have large variability. Another common approach
is to estimate the value function based on (2) using empirical data, and then directly

L) ]
)

search for the optimal ITR  that maximizes the empirical value function U

(Zhao et al., 2012). Note that the propensity score ( | ) appears in the denominator of
[ () ]

T . For the case with many treatments where insu cient data are observed

for some speci ¢ treatments, it is likely to have the propensity score ( | ) close to 0 for
some treatments. Hence, this can cause large variability of the empirical estimate for the
value function.

Next we introduce our proposed GROWL method using the idea of latent group structure
for the treatment space. We consider treatments can be partitioned into disjoint
latent groups where 2 . We allow go to in nity with a certain rate as
the sample size increases. Denote as the partition of , which is a map from to
{12 }: [ ] Under , denote {1 () € } as the -th treatment
set for €[ . Intuitively, for a reasonable partition, the treatments that belong to the
same treatment group should have similar treatment e ects. In contrast, the treatment
e ects from di erent treatment groups should have relatively large di erences. Hence, we
need to rst de ne the optimal partition  that maximizes the expected outcome.
To start with, we de ne the following group-structured I'TR class, denoted as L
Speci cally, associated with a partition , a group-structured I'TR in is obtained from a



random treatment assignment strategy given as

) To) Ol (3)

where is a group-based decision rule mapping from  to treatment group space [ |,
and ( ()] ): [ € ( )| ] is the propensity score for the ( )-th treatment group
under . Then, for a given partition and a group-based decision rule , the value function
of group-structured I'TR equals to the expectation of weighted conditional treatment e ects.
With these notations in place, we can express the value of group-structured ITR )
as follows:

For any given , the optimal group-based decision rule is given by

€ argmax  ( ) (5)
-1 ]

and the corresponding optimal value for is

o C ) (6)

The optimal partition  is de ned as

€argmax ( ): (7)
where is the optimal equivalent partition class and each element in this set achieves the
maximum value. Observing that 0) ((( ‘)| )) [ ] ] [ | € ] for

€[ ], the optimal value for in (6) can be written as



Hence, the optimal partition has the following interpretation. Averaging over the
marginal distribution of |, the maximum of conditional treatment e ects under the group
domain, which is a mixture mean of conditional treatment e ects under the individual
treatment domain, is optimized under the optimal partition

It is worth noting that, when treatment e ects have homogeneous structure, our de ned
optimal partition  in (7) would lead to this expected natural group structure. In particu-
lar, treatment e ects have homogeneous structure if treatments can be partitioned into

homogeneous groups { } and the treatment e ects are identical within
each treatment group set ~ for €[ |]. Foreach €[ | and each pair of treatments
within the same treatment group , we have [ | ] [ ] ] [ | €
] a.e. in Meanwhile, for each pair of treatments that belong to two di erent
treatment groups respectively, [ | ] [ ] ] holds with a positive prob-
ability in . In this case, GROWL aims to combine treatments with identical treatment

e ects based on homogeneous structure  to reduce the dimension of treatment space and
learn the optimal group-structured ITR. Denote to be the partition that induces the
group structure , then the following Lemma 2 holds, which demonstrates that our  is
properly de ned for the expected homogeneous structure.

Next we illustrate how to solve ( ) € arg max S ) in order to get
an estimate for the optimal partition and the associated optimal group-based decision
rule under the IPW-based direct learning framework. Since

CCIl)

where the risk function  ( ) NEGID] [ () ( )] . Hence, maximizing

( ) is equivalent to minimizing the generalized risk function:

~

Co U o

In practice, we use empirical risk minimization to approximate the generalized risk func-
tion  ( ) by @I [ () ()] < > Where s the empirical
average based on the training data. To alleviate the di culty of the discontinuity and non-
convexity of the 0-1 loss in the treatment group-based weighted misclassi cation error, for

each € and € ,wepropose replacing the 0-1 loss function [ () ( )] by a angle-
based loss () (), asproposed in Zhang and Liu (2014) and Zhang et al. (2016).

The group-based decision rule is determined by the decision function mapping from
to . Speci cally, We encode the -th treatment group as a vector €
with

{( 1) / 1
(1 v N 1)/ (—)/ 23



where is a vector of ones of length 1,and € is a vector with the -th
element equal to one, and zero elsewhere. Speci cally, when 2, we have 1 and
1, which corresponds to the standard coding procedure in the binary classi cation
problem. In addition, based on this coding procedure, one can check that, this treatment
group simplex is symmetric with all vertices share an equal distance from each other in
. We refer Zhang and Liu (2014) for more details about the angle-based classi cation
method. The RAMSVM-based loss consists of a convex combination of two loss functions

() )= @ ) (1 < () C 1 o ) ©
0

where € [0 1]. The nal group-based decision rule is obtained from

(1) argmax( C»
el ]

The corresponding optimization problem is

mie“{ oy ) O ”'} ©)

where is a pre-speci ed function class of { : — 1, is a tuning parameter,
and | | is the functional penalty associated with ~ to overcome over tting.

We introduce e cient algorithms to solve the optimization problem (9). To this end, we
follow the procedure proposed by Liu et al. (2018) to replace  with the residual ().
The rational is that removing the main e ect that is independent of treatment should not
a ect the treatment decision while using residuals can signi cantly reduce the variability
of weights to improve algorithm performance. However, note that the residual ()
can take negative values, which would break the convexity of the minimization problem.
In this case, we can switch the treatment group to other di erent treatment groups under
the uniform sampling procedure. Speci cally, it can be checked that, for any xed , the
following two optimization problems are equivalent:

min % () () <> min

CCIl)

where  max( 0) max( _ 0), and the conditional distribution of the random
variable ( ) is determined by  ( ( ) | () ) —— for () and O for

(). In this way, the weight term can be easily computed by % (

1)(((% For simplicity of notations, in the following of this section, we use to
denote ( () ( 1)( (1)) . The derivations of why the two optimization
problems in (10) are equivalent can be seen in Appendix C.

Next we specify the decision function : — in a product Reproducing Kernel
Hilbert Space (RKHS) ® . We develop e cient algorithms to solve (9) after



replacing with  and switching treatments for observations with negative residuals. Our
implementation consists of two steps. Step 1: under any xed partition candidate , we
convert the RAMSVM-based weighted classi cation problem (9) to a dual quadratic pro-
gramming problem with box constraints. Then we solve the dual problem using coordinate
descent algorithm to obtain the estimated optimal decision functiAon under , denoted as
Step 2: Treatment partition estimation step: after plugging ( ) back into (9) to get the
value (smaller is preferred) for the candidate , we propose to use the genetics algorithm
(Goldberg and Holland, 1988), which is a stochastic search and evolutionary algorithm to
obtain the optimal . Alternatively, we can also use the coordinate descent type of greedy
algorithm to adjust the partition.

For step 1, we propose the following algorithm to solve the weighted classi cation prob-
lem when specifying in the product linear space or product RKHS. Speci cally, let

7 be the weight for subject € [ ]. For € ,denote () ( () ()
and represents the -th element of |, where €[ Jand €] 1].

For linear decision functions, we assume () with €[ 1], where s are
our parameters of interest. The penalty term | | . Note that we include
the intercepts in  to simplify notation. After introducing slack variables for (9) and taking
partial derivative of the Lagrangian function with respect to each and slack variables,
we can derive the following dual problem with respect to the Lagrangian multiplier and

obtain (T )¢ ] ¢ ] by solving

o
min 5 () ()

()

Note that one can verify that the quadratic optimization function in (11) is strictly con-
vex with respect to each . The constraints in (11) are box constraints. Therefore,
(11) can be solved e ciently by the well-known coordinate descent algorithm. Compared
with standard Quadratic Programming (QP) algorithms for solving the dual problem, the
coordinate descent algorithm can enjoy a faster computational speed and obtain more ac-
curate solutions (Zhang et al., 2016). The nal estimated group-based ITR is obtained by



~ ~ ~ ~ ~

() argmax¢ € (), where () ( () () and ()
for €] 1].

To deal with more complicated functions, we generalize the linear approach to obtain a
nonlinear decision function in RKHS. To begin with, denote to be the corresponding kernel

function and ( /) el ] to be the gram matrix. We assume  is invertible.
Denote to be the -th column of . By using the norm in ® for the penalty
term, i.e., | | , we can represent the decision function as ()

( ) for €] 1]. Here, ( ) is our kernel product
coe cient vector for € | 1]. Similar to the steps in linear case, (© )¢ ] ¢ ] can

be obtained by solving the following dual problem

. 1
min D
( Detye 12 ()

()

s.t. 0 Cr o @ )b CHCell el ]

Furthermore, we can obtain

One can check that (12) can be solved in an analogous manner as (11). The nal decision
function is obtained from A( ) B B ( ) for €] 1]. More details
about how the original problem (9) is transformed to the dual problems (11) and (12) in
step 1 are provided in Appendix C.
For step 2, after we plug ( - ) back to (9), we get the value for the candidate partition
. We formulate the partition space as the discrete problem of partitioning numbers
into groups. To solve this non-convex integer programming problem, when and
are relatively small, we can implement the genetics algorithm using the R package called
GA introduced in Scrucca (2013). Furthermore, if « and both and are

large, then the total number of partitions can be very large. Consequently, the genetics

10



algorithm can be time consuming. Hence, to deal with this case, we propose a coordinate
descent type of greedy algorithm to search for the optimal partition iteratively. Speci cally,
at each iteration, we minimize (9) by successively adjusting the group assignment for one
speci c treatment while holding the assignment of other treatments xed. We go through
each treatment in a cyclic fashion until convergence. The initial partition can be obtained
via clustering the tted conditional expected outcome for each treatment. The conditional
expected outcome can be roughly estimated by ~ penalized regression (Qian and Murphy,
2011), random forest or latent supervised clustering using the pairwise fusion penalty (Chen
et al., 2021).

Our analysis so far treats the group number as given. However, is typically un-
known in practice. We propose the following e ective procedure to determine . We rst
randomly split the observed data {( )} into two folds. For each group number
1 , denote the " and as the estimated optimal partition and associ-
ated group-based decision rule learned from one fold of the training data based on the
implementations discussed in Section 2.3. Then, we calculate the estimated value function
B (A B ) for each  using

~ ~

aa A [T () O C Ol
= = = 13
( ) ) O C O 19)

where denotes the empirical mean of the other fold of observed data. Note that when

1, all the treatments are grouped together and the associated B (A B ) corresponds
to the value when we randomly recommend treatments. Thus, we can obtain the estimated
bene t function of the estimated group-structured ITR for each ~ with

() ) )

We replicate the above process  times. For each replication 12 , denote the
bene t function as ¢ )( ). We propose the following procedure that can be interpreted as
the trade-o between the bene t and the variability of the estimated group-structured ITR
to determine the optimal

" argmax {mean (7O ) } (14)
One can also replace  with “( ) in (13) to remove variability coming from estimating
the main e ect.
The group number estimator (14) can be interpreted as follows. Denote as the
optimal partition when the group number is . For 1 , let () :
max ¢ 1 [ | € ] be the maximum bene t when the group number
is speci ed as  and : max ¢ | | ] () be the optimal
bene t. The optimal bene t corresponds to the case that we do not consider any

11



group structure in the treatment space. We rst consider the case that the treatments
have homogeneous group structure  discussed in Section 2.2 and the true value of group
number equals to . Then, similar to the proof of Lemma 2 shown in Appendix C, one
can check that if setting , then the optimal partition de ned in (7) would result
in over identi ed group structures. These over identi ed optimal group structures can be
any re nement of . In particular, these re ned optimal partitions s of all lead to
the same optimal bene t () when . In this case, the bias of the
value function is 0. However, the stochastic error bound and the convergence rate of the
estimated value function shown in Theorem 6 in Section 3.3 increases with a polynomial
rate () as becomes larger. This demonstrates that as increases, the variability
of the group-structured ITR becomes larger. Based on Xia et al. (2009), this variability is
involved in (14) by using  times of sample splitting. Therefore, the group number selection
procedure (14) incorporates the penalization of variability to avoid the over identi ed group

structures when for the homogeneous case.

When the homogeneous case does not hold, then our optimal bene t () may be
strictly less than the optimal bene t for all 1 . One can check that ()
is a non-decreasing function as  increases by induction, and nally equals to when

. For the non-homogeneous case, together with the same analysis of the increasing
variability as  increases, the selection of group number can be interpreted as a trade-o
between the bene t and the variability of the group-structured ITR.

In this section, we establish Fisher consistency of the optimal partition and associated group-
based I'TR for GROWL. We further obtain an excess risk bound and derive the convergence
rate for the value function with the diverging group number

Denote ( ) as the optimal partition and associated optimal decision function under the

generalized  risk function ()

—

(e wmgn {70 ) () el

12



where the  risk function () is de ned as

() ) (16)

~

Let  be the optimal decision function for any xed : argmin  _, ()
Under the angle-based weighted classi cation framework, a classi er is said to be Fisher
consistent if for each partition and € ,the predicted treatment group has the maximum
conditional group treatment e ect under

arg max( () argmax [ | € ]
el ] e[ ]

For our problem, we establish the generalized Fisher consistency results for both parti-
tion and the decision rule under the group domain if we choose to be the surrogate
loss function, i.e., the derived optimal decision rule is the same as the one using the 0-1
loss. In particular, the following generalized Fisher consistency holds:

() €
argmax ¢ 1 [ | € ] e [0 -] €
argmax ¢ | C» ()

Next we establish the excess risk of 0-1 loss can be upper bounded by that of RAMSVM loss.

To start with, we introduce the following notations. For any group-based ITR | there
exists a decision function : — such that () argmax ¢ ¢ ().
Similar to the de nition of ( ), we de ne

() [arg max( (Y Ol

and denote () () [ / ( () )]- Then the generalized Bayesian risk is de-

noted as  inf { Cy) s - } In terms of the value function  ( )
de nedin (4), we observe that  ( ) ( ) () . Notethat in GROWL,
we replace the 0-1 loss with the loss. Recall we have de ned the generalized risk
function () in (15) and (16). Similarly, the in mum of generalized risk function
is de ned as inf {N () > } In addition, under any xed , let
argmin () be the optimal decision function under the group domain.
Denote argmin ( ).
_ The following theorem shows the relationship between the generalized excess 0-1 risk
() and generalized excess  risk () under some bounded restrictions
for

13



Note that Theorem 5 is di erent from Theorem 3.2 in Zhao et al. (2012) in the sense
that we consider multiple treatments, and dealing with both partition and the decision
function.

~

De ne the estimated optimal partition " and group-based decision function as

- arg min _ _ 17
For a xed partition , denote the optimal estimated group-based decision function as

- rg min _ _ 18

ffggﬂ{ 5 (O Oy e ep o

Speci cally, for the decision function class, we restrict our consideration to the product
RKHS associated with Radial Basis Function (RBF) kernels:

() exp( | 1) e
where 0 is a bandwidth parameter varying with . For theoretical convenience, we
assume  satis es the extra bounded constraint { (el 1 1] for ¥V €

and V e[ ]. This constraint does not show up in the algorithm discussed in Section 2.3
because it makes the computation algorithm in Section 2.3 become more complicate and
ine cient. Our numerical experience suggests that removing the constraint for ~ can yield
better classi cation performance than including it.

Next we show that (A ) converges to and equivalently, the value function
( ) converges to  ( ) where the estimated group-based ITR () :
argmax ¢ € B ( )). We start with introducing the following quantity:
() w0 T )
E®

For a xed , the term () describes how well the regularized RAMSVM-risk approx-
imates the optimal RAMSVM-risk in the RKHS. This quantity is often referred as the

approximation error term (Steinwart and Scovel, 2007). Speci cally, when 2, Stein-
wart and Scovel (2007) proposed a geometric noise assumption to upper bound ( )in
the context of hinge loss based SVM classi cation problem under any xed . In this paper,
we generalize the geometric noise assumption so that we can upper bound () for the

multicategory group-based ITR problem under the RAMSVM-based loss. Under each
denote the di erence of two group treatment e ects as

() [ e I [l e ] and e[ ]
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De ne the decision regions for each pair of treatment groups e[ ]tobe { €

| () 0}and { € | () 0} Then let [ for e[ ]
be the subset of  where the treatment e ect of group dominates any other treatment
groups under partition . Denote the function () [ € Jsup | ()] as
the maximum di erence of the group treatment e ects for each region . Furthermore,
denote the following distance function to the decision boundary as () [ €

Jinf  dist( ), where dist( ) is the distance between a point and a set . Then
we de ne the following generalized geometric noise assumption:

el ]

One can check that when 2, Assumption 1 is consistent with De nition 2.3 in
Steinwart and Scovel (2007) and De nition 3.8 in Zhou et al. (2017). In some sense, this
geometric noise exponent  describes the concentration of the measure | ( )] near
the decision boundary. In the case of complete separation, i.e., () 0 for some
constant , can be as large as possible.

Let be the total number of partitions. Recall the de nition of () and in
(6) and (7). Consider can diverge to in nity as the sample size  increases. Then,
for any , there exist a positive gap : o—infg¢ { () ()} 0, such that
( ) () () holds for any non-optimal partition ¢ . Here,

can be interpreted as the signal to characterize the minimum distance of the value function
between the optimal partitions and any other non-optimal partitions. Intuitively, we need
the signal to be large enough so that we can distinguish the optimal partitions from
non-optimal partitions. Now we are ready to present the main theorem for the convergence
rate of GROWL.

/I
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For Theorem 6, we can choose ~ ,andlet () besu ciently small. When data
are well separated under one of the optimal partitions, can be su ciently large. Note that

if the group-based propensity score ( ()| ) has balanced structure under , then as
— o, ( ()] ) would decay uniformly. Thus, we have ‘W’ (). In
this case, the convergence rate for the value function can achieve  ( ) (A a )
( ) ( 7)
Note that in Theorem 6 describes the rate of the stochastic error bound for the
regret. Thus, the assumption / — oo implies that, the signal should be large
enough and dominates the noise  so that can nally belong to . To better under

illustrate this assumption, we consider the following simple example. Suppose the number of
treatment groups is xed. Then, under the homogeneous case, the best partition among the
partition set without the optimal partitions corresponds to the case that only one treatment
is misclustered. In this case, one can check that the de ned signal term 1/ )
based on the proof of Lemma 2. Hence, due to (log ), the assumption / — @
is satis ed since  decays at a polynomial rate of
The pipeline for proving Theorem 6 is stated as the follow two steps: First, for any
optimal partition € , we establish a nite sample bound for the di erence between
the expected outcome using the estimated group-based decision function " based on
the training data and that of the optimal group-based decision function under
Second, due to / — o0, as goes to in nity, the stochastic error  of N( ) arising
from using to estimate in (17) would be dominated by the gap for any ¢
Hence, in (17) would nally belong to when is su cient large since €
maximizes the value function . Then, the convergence rate is determined by the rate of
(€ ) — 1 and the convergence rate of the rst step when treating the partition is
xed as € . Speci cally, the novelty of our technical proof arises from bounding the
approximation bias term () with order ( / )) and deriving the nite value
reduction bound in a multicategory setting. The intermediate results deriving from the
rst step generalize Lemma 3.9 in Zhou et al. (2017) and Theorem 3.4 in Zhao et al. (2012)

from binary treatments to multiple treatment groups that may diverge to in nity as the
sample size increases. More details are provided in Appendix B.
For the case that the number of treatments and treatment groups are xed, it
is straightforward to derive the following Corollary 7 from Theorem 6. Note that for the
xed group number case, / — o0 is trivially satis ed since is a constant.
€
0 o ! )
o /0
00 2
~ (G (G —_—
/ I —



We evaluate the nite-sample performance of our proposed method using several simulation
studies.

In this simulation study, we consider the setting where the treatment responses for the
treatments in the same group are equivalent, but di er for the treatments across di erent

groups. We generate 10-dimensional independent prognostic variables , follow-
ing [ 1 1]. The outcome is normally distributed with [ | ] 1 2
05 ( ) and standard deviation 1, where  ( ) re ects the interaction between

the treatment and the prognostic variables. In addition, we assume that the treatment
e ects have the homogeneous grouping structure  induced by  discussed in Section 2.2.
Speci cally, we consider the following three scenarios:

10 2 {12345 {678910}}and ( ) 1802
[ e{12345})] (1) [ €{678910}] 1;
10 2 {12345, {678910}}and ( ) 3508
[ e{12345})] (1) [ e{678910}] 1;
15 3 {12345} {6789 10} {11 12 13 14 15}} and
() 5(02 2 )[ e{12345}] (03 2 )[ € {6789 10}]

(02 3 )[ ef{111213 14 15}] .

Scenario 1 corresponds to 10 treatment arms belonging to two treatment groups with
underlying linear decision boundaries whereas Scenario 2 considers the circle decision bound-
ary. Scenario 3 includes 15 treatments compared with the rst two and deals with three
treatment groups with linear decision boundary. Since our studies are especially interested
in the case that the propensity score of some speci ¢ treatments may be very small, we
perform the following two designs varying from balanced to unbalanced designs within each
scenario:

(a) Balanced Design: ( | ) — foreach € [ ]andeach € ;

(b) Unbalanced Design: The value of ( | ) for some speci ¢ treatments can be very
small compared with other treatments.

Under the unbalanced design, for each € | the propensity scores for the rst two sce-
narios are set tobe (— — — — - ) (— — — — - ) while the propensity scores equal to
- - ) (= = — = ) for Scenario 3. In addition, we
conduct more simulation settings when the propensity scores are more unbalanced and may
depend on the covariates. These additional results are shown in Appendix D. For GROWL,
we use the linear kernel for Scenarios 1 and 3 and utilize the Gaussian kernel for Scenario
2 corresponding to di erent shapes of the decision boundary. The tuning parameter is
chosen to maximize the empirical value function [7( ) Vel / [ ()
]/ (] ) by 10-fold cross-validation among {— - - - 1 2 4 8 16}. For the Gaussian
kernel, we x the inverse bandwidth of the kernel ~ with 1/(2” ), where ~ is the median of
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the pairwise Euclidean distance of the covariates (Wu and Liu, 2007). The treatment group

number is determined by the trade-o procedure (14) with 50 shown in Section 2.4.
The following four methods are compared under each scenario:
(a) SL: Super Learner based Q-learning method to estimate [ | ] (Polley and Van

Der Laan, 2010);

(b) AD: Multi-armed Angle-based Direct learning using linear terms for Scenarios 1 and
3 and polynomial terms for Scenario 2 (Qi et al., 2020);

(c) PLS:  -Penalized Least Squares method (Qian and Murphy, 2011), which estimates

[ | ] using the basis sets (1 ) for Scenarios 1 and 3, and (1 ) for
Scenario 2;

(d) GROWL: Our proposed method.

SL aims to nd the optimal combination of multiple estimated Q-functions by mini-
mizing the cross-validated risk. For the collection of learning algorithms, we include ridge
regression (Hoerl and Kennard, 1970), elastic net (Zou and Hastie, 2005), random forest
(Breiman, 2001), XGBoosting (Chen and Guestrin, 2016), and neural network (Venables
and Ripley, 2013). We refer Polley and Van Der Laan (2010) for more implementation de-
tails about SL. In addition, the tuning parameters in AD and PLS are selected to maximize

[7() Vel )/ [7() 1/ (| ) by 10-fold cross-validation.

We evaluate the above methods using the empirical value function and the group-based
misclassi cation rate between the estimated group decision rules and the true group deci-
sion rules on an independently generated testing data of size 10 000. The empirical value
function is calculated by the mean of treatment e ects under the empirical distribution of

based on the estimated decision rule. Note that under the homogeneous setting, the
maximum group-based treatment e ect equals to the maximum individual treatment based
e ect. Hence, the misclassi cation rate under the group domain is equivalent to the mis-
classi cation rate under the individual treatment domain. For each scenario, the training
sample sizes vary from 200, 400 to 600 and we replicate the simulations for 200 times.

We present the empirical value function of each scenario under di erent designs using
boxplots in Figure 1. Results of group-based misclassi cation rates are included in Figure 5
of Appendix D. We also report the square root of Mean Square Error (MSE) of the empirical
value function and the misclassi cation rate in Table 1. Based on Lemma 2 and Theorem
4, we have shown that  should equal to the optimal partition  de ned in (7), and
should equal to the optimal partition  derived from (15). Accordingly, the Ratio column

in Table 1 reports the ratio of our estimated B exactly being  among the 200 replications.
It can be seen that , the estimation of , converges to  with a high ratio as  becomes
larger, which con rms part (I) of Theorem 6. In general, as the trial design becomes more
unbalanced, all these methods perform worse, in the sense that MSE becomes larger for
each scenario. Without considering the group structure for the treatments, SL, PLS and
AD su er from the inaccurate estimation of functions related to individual-treatment e ects
because of the small amount of observations for some speci ¢ treatments. However, GROWL
estimates the group-structured I'TR, which reduces the dimension of the treatment space
and clusters the treatments that employ similar treatment e ects into the same group. In
addition, since GROWL estimates the ITR in the treatment group domain, the variance of
the value function shrinks quicker than other methods as the training sample size increases.
As is demonstrated in Figure 1 and Table 1, our method outperforms other methods in most

18



cases with higher empirical value functions, smaller misclass cation rates, and especially
lower variabilities for both evaluation criteria.

Table 1: Results for Ratio of nding the optimal partition = and square root of of Empir-
ical Value Function and Misclassi cation Rate evaluated on the independent test data under the
settings. The best values are in bold.

200 400 600

Ratio(%) Value Misclassi cation Ratio(%) Value Misclassi cation Ratio(%) Value Misclassi cation

Scenario
SL 0.109 0.112 0.046 0.069 0.028 0.052
AD 0.132 0.126 0.056 0.098 0.044 0.086
PLS 0.070 0.092 0.041 0.065 0.030 0.057
GROWL 97.0 99.5 100

Scenario
SL 0.181 0.167 0.068 0.097 0.052 0.078
AD 0.106 0.133 0.073 0.111 0.069 0.107
PLS 0.086 0.112 0.047 0.079 0.041 0.069
GROWL 92.5 98.5 99.0

Scenario
SL 0.567 0.260 0.169 0.154 0.119 0.108
AD 1.310 0.463 0.752 0.369 0.565 0.342
PLS 0.199 0.177 0.191 0.170
GROWL 67.5 0.511 0.269 92.0 97.5

Scenario
SL 0.258 0.164 0.073 0.088 0.046 0.068
AD 0.416 0.216 0.270 0.145 0.075 0.101
PLS 0.146 0.129 0.045 0.067 0.032 0.058
GROWL 91.5 99.0 99.0

Scenario
SL 0.255 0.199 0.127 0.139 0.082 0.102
AD 0.246 0.197 0.123 0.138 0.089 0.120
PLS 0.166 0.148 0.072 0.093 0.047 0.075
GROWL 83.5 97.5 98.0

Scenario
SL 0.675 0.288 0.183 0.162 0.121 0.112
AD 1.484 0.481 0.814 0.386 0.664 0.355
PLS 0.231 0.184 0.198 0.174
GROWL 56.0 0.570 0.281 83.5 98.0

In many cases, it is possible that the treatment e ects do not have exactly homogeneous
grouping structure assumed in Section 4.1. In this section, we perform nearly homoge-
neous and nonhomogeneous scenarios to examine our method. Speci cally, we generalize

Scenario 1 in Section 4.1 with the following Scenario 4 indexed by a parameter 0:
: 10, () 1802 [ e{12345)] (1 —-) [ e
(678910)] (1 —).

The parameter determines the level of heterogeneity of treatment e ects. As  be-
comes smaller, the treatment e ects become more diverse and thus the group structure
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Figure 1: Boxplots of Empirical Value Function evaluated on the independent test data under the
settings. Red horizontal dashed lines show oracle values for each scenario.
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tends to disappear. When 00, Scenario 4 has the exact homogeneous structure
{12345} {6789 10}} shown in Scenario 1. We vary from 40 20 10 to 5. In
particular, the simulation scenarios in this section only focus on the unbalanced design. For
GROWTL, the treatment group number is determined by the trade-o procedure in (14).
Other simulation settings and comparison methods are the same as those in Section 4.1.

Similar to Section 4.1, we provide boxplots of the empirical value function in Figure 2,
and MSE of the empirical value function in Table 2. When decreases from 40 to 5, the
treatment e ects vary from nearly homogeneous structure to nonhomogeneous structure.
For nearly homogeneous cases with 40 and 20, our method still outperforms other
methods while for nonhomogeneous cases with 10 and 5, PLS performs the best. The
results are consistent with Remark 3. For each 1 10, the maximum bene t of group-
structured ITR () is strictly less than the optimal bene t because the conditional
treatment e ects within the same group are di erent under in nonhomogeneous cases.
When 00, these two values are equal. As  decreases, the gap between these two
values increases. Based on our simulation results, for each  and training sample size,
over 95% of the replications suggest 2 based on the trade-o procedure (14), and
over 90% of the estimated partition still equals to the same two-group structure

{12345} {6789 10}} as the homogeneous setting. Hence, in Scenario 4, GROWL
tends to sacri ce the bene t while retain small variability of the value function, and the gain
of small variability continues to dominate the loss of bene t when decreases from 40 to
5. In Figure 2, one can observe that the empirical value of our method would not converge
to the optimal value (shown by dashed lines) and a positive gap would exist. In addition,
when sample size increases from 200 to 600, the relative improvement ratio in terms of the
MSE for GROWL decreases when has smaller values. However, due to the usage of the
group structure, the variability of our method is very small compared with others shown in
Figure 2. Therefore, the trade-o between the bene t and variability of the value function
for the group-structured ITR estimated by GROWL is clear. From Table 2, GROWL is

still competitive in nonhomogeneous settings in terms of the MSE criterion.

In this section, we apply our proposed GROWL to analyze the data from the STAR*D
study (Rush et al., 2004). The STAR*D study performed research on outpatients with
nonpsychotic major depressive disorder. The goal of the study was to compare various
treatment options for the patients who failed to obtain a satisfactory response with citalo-
pram (CIT), an initial antidepressant treatment. The primary outcome was measured by
the Quick Inventory of Depressive Symptomatology (QIDS) score ranging from 0 to 27,
where higher scores indicate more severe depression.

The STAR*D data consist of four levels. In our analysis, we focus on the 1407 eligible
patients who received treatments at Level 2. In particular, at Level 2, patients were asked
to indicate their preference of either switching to one of the 4 di erent treatments, i.e.,
bupropion (BUP), cognitive therapy (CT), sertraline (SER), and venlafaxine (VEN), or
augmenting their existing CIT with 3 options, i.e., CIT+BUP, CIT+buspirone (BUS), and
CIT4CT. If a patient indicated no preference, then he/she was assigned to any of the
above 7 treatments. To encourage the active collaboration and shared decision-making
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Figure 2: Boxplots of Empirical Value Function evaluated on the independent test data under the
nonhomogeneous settings and unbalanced design. Red horizontal dashed lines show oracle values
for each scenario.
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Table 2: Results for square root of of Empirical Value Function evaluated on independent test
data under the settings and unbalanced designs. The best values are in bold.

with patients, we consider the patients preference as part of the intervenable treatment
options and assume the future patients preference can be intervened when recommending
treatments. Hence, we have a total of 3 4 7 14 treatment options and these preference-
related treatments are often called patient-centered medications in the literature (Robinson
et al., 2008). Figure 3 demonstrates the distribution of the observation numbers for the 14
patient-centered treatments. Due to the relatively large treatment space and the unbalanced
structure of propensities of treatments, it can be seen that only a few observations were
obtained for many treatment options, especially for the treatments in the no-preference
(Nop-) group.

We apply four methods (SL, PLS, AD, GROWL) discussed in Section 4 to estimate the
optimal treatment rules among the 14 treatment options for patients. Speci cally, the re-
ward  in our study is calculated by the reduction of QIDS score from the start to the end of
Level 2. Hence, a higher value of is preferred. Feature variables include QIDS score at
the start of Level 2, reduction of QIDS score during Level 1, and other demographic variables
such as gender, race, age, education level, employment status, and marital status, etc. The
estimated propensities “( | ) are obtained from tting the multinomial logistic regression
model. For PLS, we use terms (1 ) to tthe  penalized linear regres-
sion to estimate conditional treatment e ects; For AD, polynomial terms are also included as
the basis set of decision functions; For GROWL, we implement the Gaussian kernel for deci-
sion functions. Comparisons of all these methods were based on 200 repetitions of three-fold
cross-validation, where two folds are used to train the model. For our proposed GROWL, we
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Aug and Nop correspond to patients that switch to other treatments, augment existing treat-
ments, and have no preference for two previous options.

follow equation (14) discussed in Section 2.4 to determine the number of groups with train-
ing data. We evaluate the four methods on the remaining one fold of testing data based on
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Figure 4: Boxplots of Expected Reduction of QIDS score during Level 2 for patients in testing data
based on 200 repetitions for the STAR*D study (higher value is better).
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The testing results are shown in Figure 4. The means of expected reduction of QIDS
score during Level 2 by using GROWL is 6 44, which outperform the mean value of SL
(5 28), AD (5 32) and PLS (5 04). Thus, compared with methods without considering the
treatment partition, GROWL substantially improves the performance of the optimal ITR
estimation. The estimated group numbers are 5 or 6 for most of the repetitions. Among the
200 estimated partitions of the treatment space, the patient-centered treatments containing
SER, CIT+BUP, CIT+BUS, and CIT+CT are often combined within one group and the
treatments containing BUP, CT and VEN are integrated with another group with high
frequency. It is interesting to point out that, the treatments SER, CIT+BUP, CIT+BUS,
and CIT+4CT are often considered as one class of treatments including Selective Serotonin
Reuptake Inhibitors (SSRI) while the treatments BUP, CT and VEN are non-SSRI treat-
ments because the treatments within the same group have similar treatment e ects (Liu
et al., 2018; Pan and Zhao, 2021). In addition, the patient-centered treatments with the
same patients preference are often clustered into the same group. With the overall dataset,
we implement the GROWL with the Gaussian kernel and obtain the nal estimated group
structure with 5 treatment groups:

{{Swi—BUP, Swi-VEN, Nop-VEN} {Swi-SER}

{Aug-CIT+BUP, Aug-CIT+BUS, Aug-CIT+CT}
{Swi-CT, Nop-CIT+CT, Nop-CT, Nop-VEN}

{Nop-CIT+BUP, Nop-CIT+BUS, Nop—SER}}

It can be seen that these patient-centered treatments with the same preference work simi-
larly within the SSRI groups and the non-SSRI groups respectively.

To better interpret the decision rule and examine the e ects of the feature variables, we
implement our GROWL with linear kernel based on "~ . For the STAR*D dataset, the mean
of expected reduction of QIDS score for GROWL with linear kernel is 6 11, demonstrating
that GROWL with the linear kernel still outperforms other methods. Note that we have
13 feature variables (including the intercept) and 5 treatment groups. Therefore, we obtain
a4 13 estimated coe cient matrix  for the linear decision function. The -th column
of Table 3 in Appendix D demonstrates B for the -th treatment group where
12 5. We can see that nearly all feature variables play an important role in the
estimated optimal ITR. In particular, for the important biomarker, the QIDS score, the
patients with higher QIDS score reduction during Level 1 are suggested with augmenting
the current CIT treatment implemented at Level 1, while patients with low QIDS reduction
are recommended with switching to other treatments at Level 2.

In this article, we propose a new method called GROWL to cluster treatment options and
at the same time, estimate the optimal group-structured ITR within one RAMSVM-based
objective function. Other comparison methods estimate the ITR under the individual treat-
ment domain while GROWL focuses on the group treatment domain. When homogeneous
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or nearly-homogeneous treatment group structure is satis ed for the treatments, GROWL
is able to nd the expected partition with high accuracy and the superior performance of
GROWL is demonstrated in our numerical studies. Under heterogeneous settings when
is small shown in Section 4.2, our method tends to sacri ce the bene t while reduce the
variability signi cantly. In this case, our method is still superior to other methods when the
sample size is small. Another advantage of GROWL is that it combines both supervised
and unsupervised learning through one single optimization.

From a broad perspective, our method is not limited to I'TR problems. It can be viewed
as a multicategory classi cation technique. In particular, consider using observed data
( ) ( ) to classify the covariate € asaspeci cclass in a large class space

. Due to the large number of labels, insu cient data are observed for some speci c¢ labels.
Consequently, standard classi cation methods can become ine ective. On the other hand,
the conditional probability [ | ] may employ possible similar patterns for some
classes € . Then our method tends to estimate this pattern with group-based structure
to reduce the dimension of the classi cation label space and classify the observations in the
group domain. Although our paper mainly focuses on estimating the optimal ITR in the
decision making framework, the essence is similar because the conditional treatment e ects

[ ] | play a similar role as | | ]in classi cation problems.

Several possible extensions can be explored for future studies. First, most scenarios con-
sidered in the paper is that the group structure of the treatment e ects is independent with
the marginal distribution of feature variables . However, consider the case that homo-
geneous group structure is completely di erent with di erent values of € | the optimal
partition in (7) tends to sacri ce some subgroups of individuals. Consequently, more value
would be lost because the optimal partition is obtained via averaging the marginal distri-
bution of . For these more complex scenarios, it will be interesting to estimate di erent
partitions targeting subgroups of individuals. Secondly, our method can be extended to
learn group structures for multi-stage Dynamic Treatment Regimes (DTR) (Murphy, 2003;
Zhao et al., 2015). This can be an interesting direction for future research.

The authors would like to thank the action editor and reviewers, whose helpful comments
and suggestions led to a much improved presentation. This research was partially supported
by NSF grants DMS 2100729, SES 2217440; and NIH grants GM126550, GM124104, and
MH123487.

The appendix contains detailed proofs of the main results, additional gures and tables, and
more implementation details. In Appendix A, we introduce some useful lemmas to prove
the theorems in the main paper. In Appendix B, we give the detailed proofs of theorems in
the main paper. In Appendix C, we prove the lemmas in the main paper and the lemmas in
Appendix A. We also provide proofs of equation (10) and how the dual problems (11) and
(12) are derived. Additional results of more simulations and real data analysis are given in
Appendix D. Finally, implementation details are summarized in Appendix E.
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Note that Lemma 8 generalizes the excess risk bound in Theorem 3.2 in Zhao et al.
(2012) from the binary setting to the multi-class setting for any xed

00 2 1

Note that Lemma 10 is a generalization of Theorem 3.4 in Zhao et al. (2012) to deal
with the multiclass ITR problem under the -based loss.
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Based on the de nition of  loss, () equals to
L1 ]
(()|)[( ) ()( C ) ( ooy O]
[ 1)
; O ) [( ) < ) ( ( C» 1
[ | € 1 ) < C» ( € (01
For each xed and xed € , denote () argmax¢ | [ | € ].
Then based on the proof of Theorem 1 in Zhang et al. (2016), when € [0 1/2], we have
{ ¢y D 1 and ¢ ) 1 for (). Hence, classical Fisher
Consistency holds for group-based decision rule for each xed . By plugging into above
equation, we have
W) ()
[ ] e ) |
()
[ ] e ] max [ | € ]
S
ma €
O i L ]
Hence, we have
€argmin{ —_—
{00 () o |
arg max max] [ | € ]
Then argmax o 1€ () agmax¢ 1 [ | € | follows straightfor-
ward. |

To prove the excess risk bound, we notice the following decomposition:
o) ) ) o)« )
C ) ) o)« )
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The rst inequality follows from Lemma 8. For the second inequality, notice that

~ ~ ~ ~ ~ ~

coH o ) ) )

Then the proof is complete. |
For each partition , take the following notations. De ne the random variable
<7 Denote () () as the weighted loss. Similarly, under , let
be the population measure of () /() ) and  be the associated empirical
measure. Recall that - min ¢ () () 0. Then, for any ¢ , we
have inf () N . To prove part (I) in this theorem, we need to control the

probability of event {A ¢ } Take an optimal € . Note that based on the de nition

of , the following two events are equivalent:

fete { O 7 (H CCy o O}

¢
After rearranging both sides, we can only control the following probability for each xed

¢ in order to lower bound T e

Note that the last inequality above is due to 0. Here, after removing , the advantage
is that we only need the generalized geometric noise condition holds for to bound
following from Lemma 10.
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Now, we would bound the above three terms respectively using concentration techniques.

First, to bound , we start with obtaining a bound for . Since i ( a ) i )
a ( () ) | | holds forany and €® , we can select
"~ and to get
- 11 - 2( 1)

so that only the constrained class {\/ €E® RV 2( 1)
would be considered. Note that RAMSVM loss is Lipschitz continuous with respect to
with Lipschitz constant . Then, for each , McDiarmid s inequality (Bartlett and

Mendelson, 2002) implies that with probability at least 1 ,

sup ( ) () sup ( ) () 2 \/T

Next we de ne the Rademacher complexity over  as R sup . ( ()), where

is the Rademacher variable independent of ( () ) under . Then by standard
symmetrization arguments and Lemma 22 in Bartlett and Mendelson (2002), we have

2 1
ap( ) () m oy D
€
Similar proof holds for . Therefore, we have 1 2 | where
L2 /2
Next we bound the second term . Note that by assumption, for each , ( |
( 1) . By Hoe ding inequality (Steinwart and Christmann, 2008), we have

where

Finally, bounding with Lemma 10, we have for any 0 € [0 2] such that for all
1 and /) , we have

and
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where is a constant depending on and

Therefore, combining the bound for , we have
[ ] 1 4
where and dependon andgotoOas — oo. Notethat ( r / /
/) ( /)and ()*E%Ei*
() . Basedon /( ) — 00, we can nd su cient larget
such that , then we have
[ e 1 1 ()

To prove (II), for each xed 1 00 2, consider

Next we bound the above two terms respectively. For the rst term, take su cient large
such that , then

0 ¢

4
For the second term, Lemma 10 implies that T a ) Combining
both parts, when , we have for all 1,

C ) ( ) 15

Therefore, we have

) )

Note that when is replaced with ( () ( 1)( ()) discussed in
Section 2.3, the nal convergence rate would also include the rate coming from estimating
(). More details can be found in Liu et al. (2018). [ |
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For any xed : —[ |,

max [ ] €] ()

where the last equation is because of the homogeneous group structure. So, taking supre-

mum over all of the partitions gives sup | () (). Therefore, based on the
de nition of , we have

First, for the excess risk of 0-1 loss,

) [arg max( () ()] [argmax( Cn )

[ ] e | [arg max( C» ()] [argmax( C» )

Then, for the excess risk of RAMSVM loss,
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The inequality is because, taking out the positive operator would make the rst term smaller
while leave the second term unchanged due to { (el 1 1] for every €
Next, we can only prove, for each €

[ | e K () (P
[ e | [arg max( () () [argmax( C» Ol
(19)
Suppose [ | € ] [ | € ] for every . Then based on Fisher
Consistency for group-based decision rule, we have arg max ¢ ¢ ) . Suppose
arg max ( ) where . The right hand side of (19) becomes
[ | e a1 [ e 00 1) [ e 1t 0)
[ [ e I [l e ]
Since , the left hand side of (19) equals to
[ [ e K () (» [ | € K () (P
[ ] e I L1 e 1< ()
[ | e I [l e 1@ < (D)
[ | e I [l e 1@ < (D)
The last equation is based on ¢ ) 1 for each (Theorem 1 in Zhang et al.
(2016)). Then, by the de nition of and the constraint of bound, we have { ) 1
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for and ¢ (1)) 0. Hence, (19) holds and taking expectation for  in both
sides of (19) gives the result. [ |

Let () be the RKHS of the RBF kernel with parameter . Then based on Stein-
wart and Scovel (2007), the following linear operator '® ()—-® ()
de ned by

O B g ee () e
is an isometric isomorphism. Accordingly, for any xed , we obtain

R L

Using the notation of Lemma 4.1 of Steinwart and Scovel (2007), de ne 3 . Let be
similarly de ned as on the domain of . We x a speci ¢ measurable function  such
that foreach €[ Jand € , satis es( ) 1 and ( ) 1
for . For € it can be checked that the above property is equivalent with ()
( 1) [ € ] Besides ,de ne () . By similar approach of Lemma
4.1 in Steinwart and Scovel (2007), we can make sure the ball  ( () for every
€ ( €[ ]) on this enlarged support for . Choose ( /)/  and note that
| | 1, we immediately obtain the following with Jensen inequality and assumption of
bounded volume of

o & o) o pEys

Similar to the proof of Lemma 2 in our paper,
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Now for € |, we would bound [{ () ( ))| when . We observe

where 2 /)/ | is a spherical Gaussian in . According to Ledoux and
Talagrand (2013), we have (| | () 4 ()/ and consequently,

< (p 1 4 ¢
Note that ¢ () 1for € and . Observe that above derivation holds

forall e[ |]. Hence, we conclude

< () ()l 4 ()/

for all € [ . Then generalized geometric noise assumption for — yields

( ) () 4 ( ) (2)/

Therefore, combining both part, we conclude that

() /0
where depends on the dimension of covariates , geometric noise component and as-
sociated constant , and upper bound of volume of covariate space when we set
/C)
|

To begin with, according to 1, it su ces to prove the result for - ( B ) T Then,
similar to the proof idea in Theorem 3.4 in Zhao et al. (2012), we observe the following
decomposition:

~ ~ ~ ~ ~ ~ ~

( ) ( ) inf |1 C )

S

inf |1 ¢ )

€Q
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where the rst term is referred as stochastic error and the second term is called the ap-
proximation bias term. We will bound each term separately in the following. First, the

( /(

approximation bias term has been bounded by )) in Lemma 9.

Next, to bound the stochastic error term, we follow the proof of Theorem 3.4 in Zhao
et al. (2012). The proof of their theorem is basically derived by verifying the conditions of
Theorem 5.6 in Steinwart and Scovel (2007). To achieve that, we rst point out that, with

Cauchy-Schwarz inequality, RAMSVM loss (1 ) ( )(1 ( ) (
1 < () ( ))) isLipschitz continuous with respect to  with Lipschitz constant
In addition, let be the population measure of () /(C () ) and be the

associated empirical measure. Next, by the de nition of B , we have

holds for any €® . Hence, we can select to get

Therefore, it su ces to consider a ball with radius V/2( 1) / in the product
RKHS ® , denoted by o (). We de ne the function class
lcom (0 oy ¢ <o O

where arg min { ( ) I e g ( )} Then similar to the
proof of Theorem 3.4 in Zhao et al. (2012), we verify the following three conditions: (i)
By the Lipschitz continuity of , there exists constant  such that sup o | |,
where ( / ); (ii) Based on the convexity of , there exists constant such that

[ ] [ ]forall € where (); (ili) Theorem 2.1 in Steinwart and Scovel
(2007) gives that, for all 00 2 0 0,sup log ( ()

C /)
(2007).

Then the result follows from Theorem 5.6 in Steinwart and Scovel

Combining the bound for stochastic error term and approximation bias term, we com-
plete the proof. |
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We rstly derive the equivalence of the two optimization problems based on the 0-1 loss.
For any xed

wn SO o oy S50 0 o
wa AL OIO Ty
Cov o S O
AL OIO Ty
oA 10 ] O
min C(NIC)y 1L () ]
Co(»IC 1 ()
i o (NIC)Y 10 ()]
C (NI 1 L) 1L ()]
min C(»IC) I () ]
Co(»IiC 1 L) ]
min L) 1L ()]
(1 CoCnIC) ]
win 5L () ()]
(b Co(nIC) ]
Note that the second term in the last equation is not related to . Hence, the problem is

equivalent with minimizing the rst term. This nishes the proof for the equivalence based
on the 0-1 loss. The equivalence based on the RAMSVM loss can be directly guaranteed
by Fisher consistency from Theorem 4. |
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For the linear kernel, we solve (9) with its dual form. After introducing new slack
variables ()¢ ] ¢ |, the problem with linear learning can be written as

min7 () @ )

8.t 0(Cel] e[ 1
(y <O ( o o(el ]
CC) > 1 o0(el] ()

The corresponding Lagrangian function is de ned as

()

where ( )e ] e jand ()¢ ¢ ] arethe Lagrangian multipliers. Furthermore, we
can rewrite with

Next we take partial derivative of  with respect to ()¢ ] ¢ jand () ¢ ], and
let them be 0. We have

0
o [ O a )b ) 0(el] €[ D
and
0
S () () oCel 1))
()
When the partial derivatives for () ¢ 1 equal to 0, we have
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After plugging the above characterizations of into , we can simplify  with

-5 ( 1)
2 ()

Note that maximizing  with respect to is equivalent to minimizing , which solves
the dual problem (11). The constraints of problem (11) come from ()¢ (¢ | 0,
( Jefre 1 Oand (@ /0 )eqe 1 O

For the general kernel, we similarly introduce the slack variables ()¢ 1 ¢ |- If the
intercepts () ¢ ] are included in the penalty term, then (9) is equivalent to

Similar to the linear case, we introduce the Lagrangian multipliers ( )E[ 1 e[ 1 and
( )e[] e[ ] calculate partial derivative with respect to () ¢ 10 ) g ], and
) elel 1 and set the derivatives to 0. Then we have that

1
— C)y )
()
and
1
— C) ()
()
where is the -th column of . After plugging the above characterizations of into the
Lagrangian function and rewriting it, we get (12). [ |

39



Misclassification Rate for Scenario 1
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Figure 5: Boxplots of Misclassi caiton Rate evaluated on the independent test data under the
settings.
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To better demonstrate the performance of GROWL, we conduct several other simula-
tions under more unbalanced designs for Scenario 3 in homogeneous setting. For the unbal-
anced design (II), the propensity scores of 15 treatments are set to be (0 035 0035 0 035
0114 0114) (0035 0035 0035 0114 0114) (0035 0035 0 088 0 088 0 088) , and for the
unbalanced design (III), the propensity scores are set to be (0 020 0 020 0 020 0 137 0 137)
(0020 0020 0020 0137 0137) (0020 0020 0098 0098 0098) . Varying from balanced
design, unbalanced design (I) (same setting as shown in Section 4.1), unbalanced design (II),
and unbalanced design (III), the treatment propensities become more and more unbalanced.
In addition, we conduct another simulation setting where the propensity scores of one of the
three treatment groups is extremely small. Speci cally, for this extreme case, the propensity
scores are (0070 0070 0087 0087 0087) (0100 0100 0 100 0 100 0 100) (0 020 0 020
0020 0020 0020) . Overall, GROWL still performs the best in most cases shown in Fig-
ures 6 and 7. As treatment propensities become more unbalanced, GROWL may need more
training data in order to learn the true partition  correctly. In addition, a roughly correct

is still helpful in terms of the performance of the value function. Compared with other
methods that do not consider the treatment structure, GROWL is able to combine the simi-
lar treatments into the treatment groups. The decision rules learned from GROWL perform
better because they are estimated under the treatment groups that have more observations
than the individual treatments.

Empirical Value for Scenario 3
Unbalanced Design (I1) Unbalanced Design (lII)

o
=
3
2- :
i
i :
3 i
1- B . LR |
200 400 600 200 400 600
Sample.size
Methods EE sL EJ AD EJ PLs EF GRowL
Figure 6: Boxplots of Empirical Value Function under more designs for the homoge-
neous case.
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Empirical Value for Scenario 3
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Figure 7: Boxplots of Empirical Value Function under designs for the homogeneous case.

We conduct more general simulation settings when the treatment propensity scores
depend on the covariates. Speci cally, the treatment propensity score ( | ) is provided
with the following multinomial model:

(1)
()

for 2 , where s are all generated independently from [ 01 01]. For
the homogeneous case, we take Scenario 1 as an example. The value shown in Figure 8
demonstrates that GROWL still has superior performance over other methods. For the
non-homogeneous case in Scenario 4, as shown in Figure 9, the overall trend of GROWL
is similar to that of the unbalanced design in Figure 2. GROWL is still competitive, and
especially has smaller variance than other methods.

log
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LEARNING OPTIMAL GROUP-STRUCTURED ITRs wiTH MANY TREATMENTS
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Figure 8: Boxplots of Empirical Value Function under the dependent design for the homogeneous
case.
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Figure 9: Boxplots of Empirical Value Function under the dependent design for the non-
homogeneous case.
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Table 3: Estimated coe cients of linear comparison function for GROWL on the STAR*D dataset.
Larger coe cients encourage better reward.

Variable Name Group 1 | Group 2 | Group 3 | Group 4 | Group 5
intercept 0.713 0.168 0.658 0.191 -1.730
gender (female) -0.839 0.249 1.635 -0.444 -0.601
ethnic (white) -0.878 -0.180 -0.764 0.221 1.601
age -0.959 -0.319 0.579 -0.746 1.445
depression history (yes) -1.427 0.021 -0.368 0.528 1.245
marital 1.049 0.371 -1.636 0.282 -0.066
school years 1.421 -0.151 -0.033 0.153 -1.390
education 0.526 -1.230 1.166 -0.841 0.379
student (yes) -0.813 1.704 -0.541 -0.377 0.026
employment 0.178 -0.867 -1.085 1.369 0.405
volunteer work 0.066 -0.750 -0.056 -0.886 1.626
QIDS change during Level 1 -1.574 0.136 1.206 0.228 0.004
QIDS at the start of Level 2 0.743 0.576 -0.952 0.851 -1.218
a. Fit (penalized) linear regression with training data and get residuals ;

b. Input the estimated initial partition set

For each partition in |

a. Fit treatment  into group ( ) based on

b. 0, Stay with the same assigned treatment ( ), and set ( ) ();

Uniformly switch ( ) to arbitrary unassigned treatment ( ), andset ( ) ( );

c. Use( () )to t RAMSVM with weights %;

d. Get tted decision function ~ based on RAMSVM;

e. Plug ( B ) back into the empirical average of the risk function
f. Get the risk value for
the set  using the until convergence;

the optimal " and corresponding " under group domain;
one treatment from group  ( ) based on , and nally get the ITR ( ).
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a. Fit (penalized) linear regression with training data and get residuals ;
b. Input the estimated initial partition set

12 12 ,
a. Adjust the assignment of the -th treatment and hold the assignment for others xed;
b. Get the risk value for the adjusted in the same way shown in Algorithm 1;
c. Obtain the locally best in cyclic fashion.
convergence.
the optimal " and corresponding " under group domain;
one treatment from group () based on ,and nally get the ITR ( ).
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